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Abstract 

1. The blanket bogs of the southern Pennines and Peak District are severely degraded, attributed to 

centuries of poor land management, wildfire and atmospheric pollution. Restoration efforts have 

focussed on the revegetation of bare and eroding peat surfaces, with considerable success. 

2. Sphagnum mosses provide the form and function of blanket bog, with their remains making up the 

majority of the peat body. These species were lost from the region and remain largely absent, despite 

restoration efforts. 

3. As a keystone species of peatlands, their return is essential to the continued provision of ecosystem 

services derived from these uplands. Hence, their reintroduction is of great importance. 

4.  Preliminary trials determined Sphagnum can be reintroduced to numerous degraded conditions 

found on blanket peat, with S. fallax the best performing species. Water availability was strongly 

implicated as a significant factor, with drought proving fatal to propagules. In areas of dense 

vegetation, flailing has the potential to increase establishment, but requires further verification. 

5. Growth trials indicated the legacy of atmospheric pollution was still exerting influence upon the 

growth of Sphagnum. Peat from the southern Pennines region was shown to contain elevated 

concentration of numerous pollutant heavy metals and nutrients. A comparative study of some UK 

bogs demonstrated the consequences of biogeochemical characteristics, whilst further implicating 

the importance of water availability in degraded sites. 

6. The potential of Sphagnum reintroduction to degraded sites was demonstrated, within the constraints 

of shorter time scales. Over longer periods, with increased experimentation and subsequent 

monitoring, further understanding will undoubtedly be gathered. It is essential this knowledge is 

shared, updated and applied by conservation agencies and parties conducting such work. 
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1.1 Overview 

The blanket bogs of the southern Pennines are arguably the most degraded peatlands within the United 

Kingdom (Tallis, 1985b). A history of industrial pollution, poor land management and wildfire has 

ravaged these landscapes, resulting in large swathes of actively eroding moorland, characterised by bare 

peat surfaces (Holden et al., 2007b), and species-poor vegetation communities. Amid improving air 

quality and land management reforms, efforts have been made to restore these landscapes to functional, 

peat-accumulating systems. There has been widespread success in revegetating denuded areas and 

limiting further peat loss. However, one vital component of these landscapes remains largely absent – 

Sphagnum mosses (Caporn et al., 2006; Carroll et al., 2009). Whilst restoration techniques utilised on 

lowland raised bogs (e.g. Wheeler & Shaw, 1995) have yielded some success, the upland blanket bogs 

of northern England present new challenges: a legacy of industrial pollution, severe erosion, disturbed 

hydrology, and isolated and inaccessible locations. It is these problems which necessitate the research 

undertaken here. Sphagnum provides the very form and function of these peatlands (Tallis, 1998) and 

so their widespread return is essential to the restoration of blanket bogs. 

This Chapter will describe and analyse these ecosystems, along with the causes and impacts of 

degradation. The focus of this introduction will be on the blanket bogs of the southern Pennines, and 

does not aim to collate all available knowledge on peatlands, but to highlight the factors of relevance to 

the research and region described. 

 

 

1.2 Ombrotrophic mires 

1.2.1 Formation and structure 

Peat is the partially decomposed remains of plants and forms wherever the rate of growth and subsequent 

accumulation of organic material is greater than the rate of decay. Peat formation tends to occur in 

conditions of waterlogging since this drastically reduces the amount of oxygen available to aerobic 

bacteria; oxygen diffuses through water 10,000 times more slowly than through air (Clymo & Hayward, 

1982). Decomposition is therefore effectively limited to anaerobic microorganism species (e.g. Archaea) 

and pathways, with a greatly reduced rate of mineralisation (Lindsay, 2010). This leads to the net 

accumulation of semi-decomposed plant remains – peat. 

Waterlogging occurs where inputs of water into a system exceed those being lost. This can be due to 

high levels of precipitation and humidity, and low levels of evapotranspiration and drainage. Peat can 

be formed from a range of vegetation types, and in temperate and humid climates Sphagnum mosses can 

dominate (Aerts et al., 1992), along with significant contributions from other vegetation types, such as 
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sedges and rushes (Lindsay, 2010). Sphagnum exhibits a range of physiological traits which make it 

resistant to decay, and therefore efficient at forming peat (discussed later in Section 1.3.2). 

Ombrotrophic bogs receive almost all their hydrological and nutrient inputs through precipitation 

(Clymo, 1983). They are diplotelmic (dual-layered) systems (Ingram, 1983), made up of the acrotelm 

and catotelm (Ivanov, 1981). The acrotelm is the uppermost layer containing the live and recent dead 

plant material, through which water and oxygen can move freely. The water table usually fluctuates 

within this region, which can be anywhere up to 75 cm deep (Holden et al., 2011; Lindsay, 1995a; 

Wallage & Holden, 2011). Due to the penetration of oxygen into this layer, aerobic decomposition has 

the potential to occur. Sphagnum and other mosses differ from vascular plants, growing from an apical 

region and dying from their base upwards (Lindsay, 2010). The structure of Sphagnum begins to break 

down 10 – 20 cm below the surface as stems and branches collapse (Clymo, 1992). Beyond the acrotelm, 

and within the zone of permanent waterlogging and anoxia is the catotelm, containing the bulk of the 

peat (Holden et al., 2011; Lindsay, 1995a; Wallage & Holden, 2011). This is a more uniform colloidal 

matrix containing identifiable plant remains, through which water moves extremely slowly, effectively 

isolating the bog from the underlying substrate (Baird et al., 1997; Clymo, 2004). 

There are two distinct types of ombrotrophic peatland: raised bog and blanket bog, sharing common 

traits but differing in some key aspects. 

 

 

Raised bog 

Peat can begin to accumulate where waterlogging occurs due to the features of the landscape and inputs 

of groundwater. These groundwater-fed peatlands are known as fens. Over time and through shifts in 

vegetation, the build-up of organic material and peat becomes sufficient to raise the surface above this 

groundwater influence. Sphagnum usually becomes dominant and the peatland takes on a raised, dome-

like structure as more material is added to the body of peat, hence the term raised bog (Rydin & Jeglum, 

2013). This relies upon sufficient input of water through precipitation and minimal losses through 

drainage to maintain the hydrology. It is now referred to as a bog since it receives nearly all its nutrient 

and hydrological inputs through precipitation (ombrotrophic) (Clymo, 1983). 
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Blanket bog 

Blanket bog forms in conditions of high rainfall and humidity, limiting rates of evapotranspiration 

(O'Connell, 1990). The balance of these parameters is critical to the formation of these ecosystems. 

Whilst some threshold values exist; e.g. > 1200 mm annual precipitation, > 160 wet days each year, 

mean annual temperature of < 15 °C for the warmest month, and an excess of 200 mm precipitation over 

evapotranspiration for the month of April – September (Lindsay et al., 1988; Moore, 1993; Wheeler & 

Shaw, 1995); there is likely to be significant variation. For example, blanket bog in Wick, Caithness 

receives ~ 800 mm rainfall each year (Met Office, 2015). 

Blanket peat covers 22,500 km2 of the UK (nearly 8 %) to an average depth of 2 m (Tallis, 1998), 

reaching 4 – 5 m or more on extensive plateaux (Charman, 2002; Ratcliffe, 1964). Blanket bog is mostly 

found in the north and west where conditions are wettest and coolest. Scotland contains most of this 

resource in the UK (Carey et al., 2008). Moving easterly and southerly raises the altitudinal limit from 

sea level in the Shetlands (Evans & Warburton, 2011), 180 m  in Northern Ireland (Cruickshank et al., 

1993), 250 m in Wales (Yeo, 1997), and 350 m or more in the southern Pennines (Anderson & Tallis, 

1981; Anderson & Yalden, 1981b; Evans & Warburton, 2007). 

Blanket peat formation in the UK is likely to be the result of a combination of natural and anthropogenic 

factors. The uplands have been subjected to thousands of years of human influence, and as such are 

cultural landscapes influenced by grazing, cutting and burning (Dodgshon & Olsson, 2006; Ratcliffe & 

Thompson, 1988; Webb, 1986). Much of the uplands would have been forested prior to human 

intervention some 5,000 – 6,000 years ago (Simmons, 2002, 2003; Tipping et al., 2003), with the only 

open areas limited to above the climatic tree line, or on very shallow or wet soils (Birks, 1988). When 

combined with a shift to a wetter climate causing waterlogging (Godwin, 1981), and a reduction in tree 

cover through wildfire (Robinson, 1983) and wild animal grazing (Simmons, 1975; Yalden, 1996), 

conditions for peat formation were created. In some instances, blanket bog could therefore be considered 

a plagioclimax ecosystem. 

Blanket bog is defined by the Habitats Directive (EC, 2007) as: “Extensive bog communities or 

landscapes on flat or sloping ground with poor surface drainage, in oceanic climates with heavy rainfall, 

characteristic of western and northern Britain and Ireland. In spite of some lateral water flow, blanket 

bogs are mostly ombrotrophic. They often cover extensive areas with local topographic features 

supporting distinct communities.” Its name arises from the way the peat drapes itself over the landscape, 

covering underlying features, resulting in smooth and undulating scenery. Where blanket peat cover is 

extensive, it may form part of a mire complex, including ombrotrophic and minerotrophic (fen) 

components (Doyle, 1990, 1997). Peat in these systems accumulates at a rate of 0.07 – 1.2 mm year-1 

(Chambers, 1984; Tallis, 1995a). 
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1.2.2 Blanket bog ecology 

Since peat forms in waterlogged conditions, the plant species and communities found on blanket bog 

are those which can tolerate persistently wet conditions. These conditions are beneficial to Sphagnum 

mosses, which dominate these areas (Boudreau & Rochefort, 1998; Buttler et al., 1998; Campeau & 

Rochefort, 1996; Clymo & Reddaway, 1971; Grosvernier et al., 1997b; Holden et al., 2011; Komulainen 

et al., 1999; Malmer et al., 1994). Indeed, the blanket peats of northern England were formed from the 

remains of Sphagnum affine and S. austinii (previously grouped and termed S. imbricatum), with 

Eriophorum spp., dwarf shrubs and other graminoids all contributing variable amounts depending on 

the prevailing vegetation composition (Chambers et al., 2007a; 2007b; Malmer et al., 1994). Analysis 

of contemporary peat macrofossils indicates that the vegetation composition was similar to current 

blanket mire NVC (Rodwell, 1991) communities (Chambers et al., 2007a; 2007b). 

Providing a universal description of the vegetation of high-quality blanket bog can be difficult since 

there is considerable floristic variation across the UK (Ratcliffe, 1977), influenced by a range of factors, 

such as geographical features and altitude (Tallis, 1998). A consistent feature is the significant 

abundance of Sphagnum, encompassing a number of different NVC communities (M15, M17, M18, 

M19, etc. (Rodwell, 1991)) alongside sedges such as Eriophorum spp. and dwarf shrubs (Johnson & 

Dunham, 1963; Rawes & Heal, 1978). This indicates the peatland is active – i.e. peat-forming vegetation 

is growing and material is being transferred to the catotelm (Gunnarson et al., 2008; Malmer et al., 

1994). 

High quality, active blanket bog shows characteristic surface patterns, following a hummock-hollow 

structure (Boatman, 1983). This microtopographical gradient runs, from highest to lowest: hummock, 

high ridge, low ridge, hollow, and pool (Lindsay, 2010). Since intact blanket bogs are characterised by 

a high, stable water table (5 – 10 cm from the surface) (Holden et al., 2006; 2011; Stewart & Lance, 

1991; Wallage & Holden, 2011), these structural differences in height represent a hydrological gradient. 

Characteristic species occupy these differing niches (Lindsay, 1995b; Lindsay et al., 1988; Ratcliffe & 

Walker, 1958), with some limited to particular surface structures (Tallis, 1998). 

Pristine ombrotrophic bogs are nutrient poor, acidic ecosystems due to their dominance by Sphagnum 

and hydrological regime. The permanent waterlogging of the peat and chemical conditions created by 

Sphagnum drastically reduces rates of mineralisation and therefore nutrient availability (see Section 

1.3.2 for details on Sphagnum). In ombrotrophic systems all inorganic inputs are from precipitation and 

air-borne sources (Proctor, 2006). Hence, the composition of bog water is similar to the average 

composition of rainwater, but is concentrated and modified due to evaporation and ion exchange 

(Proctor, 1992, 2003, 2006). There is some seasonal variation due to temperature, a direct influence 

upon evaporation and biological activity (Proctor, 2003). Sphagnum acts as an efficient ion exchanger, 
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binding cations and releasing H+ ions (Anschutz & Gessner, 1954; Ramaut, 1954; Williams & 

Thompson, 1936). This, along with the release of organic acids from the vegetation (Clymo, 1984; 

Proctor & Maltby, 1998), leads to an acidic environment with pH < 5, with Cl- and SO4
2- as the main 

anions (Wheeler & Proctor, 2000). Plant growth is often limited by phosphorus or nitrogen, or a 

combination of the two, dependent upon local rates of N deposition (Beltman et al., 1996; Hayati & 

Proctor, 1991; Proctor, 2006). Due to their development under such stringent conditions, blanket bog 

hydrology, soils and ecology are very sensitive to small changes in their local environment (Holden et 

al., 2007b). 

 

 

1.2.3 Significance of blanket bog 

Blanket bogs are relatively common in Britain but are rare within the global context (Tallis, 1995a), 

with the UK containing perhaps 13 % of the resource worldwide (Tallis, 1998). The total extent of 

blanket bog worldwide is thought to be 100,000 – 150,000 km2 (Lindsay et al., 1988; Stroud et al., 

1987), with the UK as the largest single contributor (Tallis, 1998), hence they are of international 

importance (Lindsay, 1993, 1995a; b). They provide the largest extent of unfragmented habitats in the 

UK, supporting nationally important species such as cloudberry Rubus chamaemorus, mountain hare 

Lepus timidus, golden plover Pluvialis apricaria, black grouse Tetrao tetrix, and hen harrier Circus 

cyaneus (Pearce-Higgins et al., 2009; Stroud et al., 1987; Van der Wal et al., 2011; Yalden, 2009). 

Blanket bogs and the uplands have provided humans with a range of benefits throughout history,  

including seasonal hunting of wild animals during Neolithic times, grazing of livestock and extraction 

of peat for fuel up until the 16th century (Van der Wal et al., 2011). Over the last century or so, there has 

been a gradual shift in attitude towards the uplands, and blanket bogs in particular, from barren 

wasteland and quagmire, to increasing recognition of the beneficial ecosystem services these areas 

provide for humans (Parkyn et al., 1997). 

Perhaps the two most important ecosystem services provided by blanket bog are those relating to carbon 

and water. These include the provision of high quality drinking water and buffering of storm events, 

reducing flooding downstream; the uptake and storage of carbon on geological timescales (2010; Bonn 

et al., 2009); and the regulation of global levels of atmospheric gases (Clymo, 1998; Moore et al., 1998). 

Their continued provision relies upon the functional state of the bog, featuring an acrotelm layer with a 

stable water table and abundant Sphagnum (Rydin & Jeglum, 2013). 

Northern peatlands hold about 450 Gt carbon, around 25 % of total global soil carbon (Gorham, 1991; 

Moore, 2002), representing around 25 % of all atmospheric carbon in CO2 (Schlesinger, 1991). Active, 

peat-forming ecosystems are a net sink of carbon dioxide (Gorham, 1991) and a source of methane, a 
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potent greenhouse gas (Huttunen et al., 2003). Hence, peatlands play an important role in global carbon 

cycling and concentrations of atmospheric gases (Gorham, 1991; Yu et al., 2010; 2013). 

The majority of the UK’s drinking water (68 %) comes from surface water sources (DWI, 2008; DWQR, 

2008), with most of that from the uplands. For example, the Peak District National Park contains 55 

reservoirs supplying surrounding towns and cities. Abstraction licenses total more than 450 billion litres 

of raw water per year from these catchments (Bonn et al., 2010). High rainfall in the uplands due to 

orographic enhancement (Malby et al., 2007), together with a peat-covered catchment makes these areas 

well suited to the provision of drinking water (Evans et al., 1999; Holden & Burt, 2003a; b). In intact 

condition, deep peat soils and the vegetation communities they support are effective at retaining a 

proportion of pollutants deposited in these upland areas (Currey et al., 2011), a priority under the EU 

Water Framework Directive (Van der Wal et al., 2011).  

Some ecosystem services are less tangible and more difficult to quantify, such as cultural heritage, 

human well-being and the provision of leisure activities (Natural England, 2009; SNH, 2008). Tourism 

and recreation generates substantial income. For example, the Peak District National Park receives 22 

million visitors per year, spending £185 million and providing 3,400 jobs (Peak District National Park 

Visitor Survey, 1998). Van der Wal et al. (2011) gives a summary of the ecosystem services provided 

by blanket bogs and the uplands, and Bonn et al. (2010) provides an extensive analysis relevant to the 

Peak District.  

 

 

1.3 Sphagnum ecology 

1.3.1 Species distribution 

The keystone species of bogs is Sphagnum, a genus of between 150 and 200 species (Isoviita, 1966), 

including around 100 well-known species of North America and Eurasia, and another 10 – 15 in similar 

climates of the southern hemisphere (Rydin & Jeglum, 2013). The range of Sphagnum extends from the 

arctic to sub-Antarctic, and whilst most abundant at high latitudes of the northern hemisphere (Gore 

1983) there is thought to be substantial diversity in the tropics (Shaw et al., 2003). Sphagnum-dominated 

peatlands can be found in many other regions of the world, including Argentina, Chile, Madagascar, 

New Zealand, Tasmania (Daniels & Eddy, 1990).  

Over the Sphagnum-formed, hummock-hollow undulations of the bog surface, there are distinct niches 

occupied by Sphagnum species, separated by vertical distance representing differences in hydrological 

conditions  (Robroek et al., 2007a). The highest parts are the furthest from the water table and therefore 

the driest, with the lowest areas often submerged. The distribution of Sphagnum species is governed by 

their competitive ability across these niches rather than optimum growing conditions. Species may be 
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capable of growing in a wide range of conditions but can be restricted because of this competition; e.g. 

S. papillosum outcompeting S. compactum across much of its range, relegating it to very wet or very dry 

conditions (Lindsay, 2010). Competitive ability is the result of morphological and physiological 

constraints (Andrus et al., 1983), with a balance between growth rate, the ability to transport water to 

the apical zone (capitulum), and the ability to minimise evaporative water loss (Rydin & McDonald, 

1985a; b; Rydin et al., 1999; Titus & Wagner, 1984). Environmental factors, such as nutrient and light 

availability, are also involved (Hayward & Clymo, 1983; Rydin et al., 1999), alongside intraspecific 

competition for space, light and water  (Robroek et al., 2007a). The 34 species found in the UK are 

separated into six taxonomic sections, with well-defined common niches of growth (Table 1). 

 

 

Table 1 – Taxonomy of UK Sphagnum species (Atherton et al., 2010).  

Section Sphagnum species Niche 

Acutifolia S. capillifolium, S. fimbriatum, S. fuscum,  Hummocks, carpets 

 S. girgensohnii, S. molle, S. quinquefarium, S. russowii,   

 S. skyense, S. subnitens, S. warnstorfii  

Cuspidata S. angustifolium, S. balticum, S. cuspidatum, S. fallax, Aquatic, carpets 

 S. flexuosum, S. lindbergii, S. majus, S. pulchrum,   

 S. riparium, S. tenellum  

Sphagnum S. affine, S. austinii, S. magellanicum, S. palustre,  Low hummocks,  

 S. papillosum carpets 

Squarrosa S. squarrosum, S. teres Flushes 

Subsecunda S. contortum, S. denticulatum, S. inundatum,  Flushes, carpets 

 S. platyphyllum, S. subsecundum  

Rigida S. compactum, S. strictum Carpets, hummocks 

 

 

Sphagnum is classified as a xerophytic hydrophyte – water-loving with adaptations for periodic drought 

conditions. Its growth requires a consistent supply of water to the capitula, the ability of which varies 

between species and is thought to be the most important factor in determining their occurrence along 

hydrological gradients (Andrus, 1986). This is due to varying capabilities of water holding capacity and 

capillary water transport (Andrus et al., 1983). Hummock species have greater ability in these two key 

features (Hayward & Clymo, 1982; Ingram, 1983; Luken, 1985; Titus & Wagner, 1984), compared with 

hollow species, which are usually restricted to zones closer to the water table (Robroek et al., 2007c). 
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However, hollow species have a higher growth rate than hummock species (Andrus, 1986; Gunnarsson, 

2005) and so under favourable hydrological conditions can expand their range beyond their regular 

habitat  (Robroek et al., 2007c). Conversely, hollow species are severely affected by water limitation 

with some unable to survive drought (Boatman, 1977; Hulme, 1986). Despite this, Sphagnum appears 

able to regenerate from considerable beneath the bog surface (> 30 cm), even from plant material which 

appears brown and dead (Clymo & Duckett, 1986). Hummock species have a slower growth rate, but a 

high tolerance to drought and potential to recover subsequently (Clymo, 1973; Titus & Wagner, 1984). 

However, these relationships can be complex. S. denticulatum was shown to survive desiccation well, 

whilst hummock species such as S. capillifolium survived poorly, and with S. papillosum shown to be 

the most sensitive (Clymo & Hayward, 1982). Irrespective of their ecological niche, the greatest 

productivity of all Sphagnum species is found in conditions of high water availability (Clymo & 

Reddaway, 1971, 1974). 

 

 

1.3.2 Sphagnum properties 

Sphagnum forms a large part of many peat deposits (Clymo, 1970) thanks to their biomass production 

and slow rate of decay (Clymo & Hayward, 1982; Limpens & Berendse, 2003; Moore, 2002; Rydin et 

al., 1999). The hydrological and hydrochemical conditions of the bog are regulated by Sphagnum 

(Clymo & Hayward, 1982; Rydin et al., 1999; Van der Schaaf, 2002), maintaining conditions which 

reduce decomposition and favour carbon sequestration (Berendse et al., 2001; Van Breemen, 1995a). 

Sphagnum acidifies its environment through ion exchange, selectively taking up cations (Ca2+, K+, Mg2+) 

and replacing them with H+ ions (Andrus, 1986; Anschutz & Gessner, 1954; Ramaut, 1954; Williams 

& Thompson, 1936). The maximum ecological amplitude for several Sphagnum species was found to 

be pH 4 – 5, with no significant presence below pH 3.5 (Andrus, 1986; Andrus et al., 1983). Higher pH 

(up to 7.5) in itself is not detrimental to the growth of Sphagnum, however, this increase in pH is often 

accompanied by an increase in Ca2+ which can lead to reduced growth in some species (Clymo & 

Hayward, 1982). 

Mineralisation is further limited by the production of compounds by Sphagnum (Verhoeven & Liefveld, 

1997). For example, the genus-specific p-hydroxy-β-carboxymethyl-cinnamic acid, and polysaccharide 

sphagnan greatly reduce the decay of Sphagnum and neighbouring plants (Bartsch & Moore, 1985; 

Børsheim et al., 2001; Clymo & Hayward, 1982; Painter, 1991; Verhoeven & Toth, 1995). This acidic, 

waterlogged and hostile environment produces extremely slow rates of decay and a net increase in 

accumulated plant material, and therefore, carbon. Sphagnum species sequester more carbon in 

temperate and northern ecosystems than any other group of plants (Berendse et al., 2001; Van Breemen, 

1995a). 
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1.4 Drivers of blanket bog degradation 

1.4.1 Overview 

Blanket bogs are viewed as sensitive ecosystems which can be destabilised by a change in number of 

factors (Tallis, 1998), the majority of which are the result of human activities, whether direct or indirect. 

These communities have developed over thousands of years, and on similar timescales are able to adapt 

to changes in prevailing conditions (Lindsay, 2010). However, the rapid changes in conditions brought 

about by man are potentially beyond the capacity of these ecosystems to adapt (Holden et al., 2007b). 

These changes and activities can be obvious: e.g. the burning of vegetation to promote particular species, 

or the removal of peat for fuel. However, others can be more indirect: e.g. the emission of pollutants 

from industry, or an increase in greenhouse gases and shifts in climate. The extent of UK blanket bog is 

estimated to have declined by 44 % (from 0.3 % to < 0.2 % absolute aerial cover) between the 1940s 

and 1980s (Van der Wal et al., 2011), with 3,500 km2 classified as degraded (Tallis, 1998).  

Prior to the Industrial Revolution, erosion features were present on blanket bogs (Tallis, 1997a), 

however, these did not extend to the landscape-scale devastation seen in the upland areas of northern 

England. Current erosion patterns are the result of combined natural and anthropogenic factors over the 

last 1,000 years (Tallis, 1987), resulting in the most degraded blanket bogs in the country (Tallis, 1985b). 

Widespread erosion and loss of vegetation cover with consequent increased degradation appears to 

coincide with the onset of the Industrial Revolution, particularly in the southern Pennines (Tallis, 1964, 

1987). Many areas of the southern Pennines were, and remain to be, in unfavourable condition (JNCC, 

2009), due to large areas of eroding bare peat, species-poor vegetation communities and the widespread 

absence of Sphagnum. Stratigraphic analysis shows Sphagnum formed a substantial component of the 

vegetation and was present as recently as 250 years ago (Conlan, 1991; Conway, 1954; Montgomery & 

Shimwell, 1985; Tallis, 1964). 

The region has suffered from a legacy of intensive grazing, atmospheric pollution deposition and a series 

of wildfires (McMorrow et al., 2009). This has led to large-scale degradation with extensive bare peat 

areas, widespread gully erosion covering up to 34 % of plateaux (Evans & Lindsay, 2010), increased 

soil acidity (pH between 2.9 and 3.5), severely elevated heavy metal concentrations (Rothwell et al., 

2005b) and very low water tables (> 300 mm below surface in eroded areas (Allott et al., 2009)). Areas 

unaffected by erosion with continuous vegetation are characterised by high cover of cotton grasses and 

heather (NVC M19 and M20 (Rodwell, 1991)). The species-poor community Eriophorum angustifolium 

blanket bog (M20) (Crowe et al., 2008), and the E. angustifolium sub-community (M20a) are 

distinguished where some species have declined due to aerial pollution (Ferguson et al., 1978) and land 

management (Phillips et al., 1981), namely Sphagnum and associated species. The loss of Sphagnum 

has been attributed to the successive and combined effects of fire and atmospheric pollution (Tallis, 

1964). Figure 1 shows a typically degraded blanket bog landscape in the southern Pennine region, 

displaying degraded features outlined here. 
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Figure 1 – Typically degraded blanket bog, displaying a number of highlighted features. A: naturally 

revegetated gully containing grasses and sedges; B: bare peat dune with some heather brash applied; C: 

early revegetation of bare peat dune, with nurse grasses; and D: vegetated hag dominated by bilberry 

and crowberry. See Section 1.5 for details on natural and managed revegetation. 

 

 

Sphagnum was not entirely eradicated from the region, with small patches managing to survive in 

sheltered pockets and flushes (Conlan, 1991; Conway, 1949; Johnson et al., 1990; Montgomery & 

Shimwell, 1985), where deposition of atmospheric sulphur and nitrogen was only 60 – 70 % of that on 

the exposed plateaux (Conlan, 1991). Minerotrophic conditions helped to counter the effects of sulphur 

deposition (Baxter et al., 1989), and as a result, minerotrophic species were the most common (Tallis, 

1964), with occasional ombrotrophic species (Studholme, 1989). 
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1.4.2 Physical erosion 

Blanket bog erosion is considered by some to be a natural process (Tallis, 1985a; b), but one which can 

be triggered or exacerbated by anthropogenic factors (Lindsay, 2010). Climate, geology and landform 

have all been identified as significant natural drivers of this erosion through the action of water (Bower, 

1960, 1961, 1962). Blanket peat is considered to be inherently unstable (Tallis, 1987) due to the high 

water content of the peat, typically > 90 % in active ombrotrophic systems (Proctor, 2006). 

Whilst climate has a key role in blanket bog formation, it is also a factor in its erosion and degradation. 

The southern Pennines have been subjected to both wetter and drier periods over the last 2,800 years 

(Tallis, 1994, 1997a). During wetter periods, rapid Sphagnum growth can produce structurally-unstable 

peat (Tallis, 1985b), whilst drier periods cause shrinking and cracking of the peat which can affect 

hydrological regimes. Lowered water tables will cause a shift in species composition from Sphagnum 

dominance to Empetrum nigrum and Racomitrium lanuginosum (Tallis, 1985b, 1987, 1994, 1995b, 

1997a).  

Any substantial disruption in vegetation cover allows water to flow in what quickly become 

differentiated drainage channels (Tallis, 1987), leading to more widespread erosion of the system 

(Lindsay, 2010). Water will always follow the route of least resistance, hence once such channels have 

opened, they will tend to persist collecting more run-off and develop into gullies. Over time, gullies will 

incise deeper (~ 5.5 mm yr-1 (Anderson et al., 1997; Tallis, 1997b)), lowering the water table of the 

surrounding peat (Holden, 2006). However, spontaneous revegetation can halt this (e.g. Crowe et al., 

2008; Lindsay & Freeman, 2008). Not all routes will form above ground. Pipes can develop within the 

peat mass as water flows through and off the catchment, and can be found in intact bog systems (Lindsay, 

2010). These internal drainage systems can cause the collapse of the overlying peat (Johnson & Dunham, 

1963; Pearsall, 1950). 

Areas of exposed bare peat will be susceptible to erosion through freeze-thaw action, desiccation and 

wind. Frost action loosens the upper most layer of peat (6 – 7 cm (Evans, 1989; Francis, 1990)) through 

repeated freeze-thaw cycles which is then removed by rain and wind (Francis, 1990; Tallis, 1998). 

During spring and summer, the peat surface is smoothed by desiccation and wind (Radley, 1962; Tallis 

& Yalden, 1983). In the southern Pennines, wind erosion could occur on more than 47 days per year 

(Evans, 1989), and may be a major cause of damage to the blanket peat in exposed conditions (Radley, 

1962). Storms following periods of drought can cause the most significant loss of peat from eroding 

peatlands, with up to 20 mm being lost during a single storm (Hulme & Blyth, 1985). The loss of peat 

in this way can be so great, that the peatland as a whole becomes a net source of carbon (Evans et al., 

2006b). 

Until recently, 74 % of blanket peat in the southern Pennines was actively eroding (Anderson & Tallis, 

1981), with 8 % of peat bare and eroding at rates of up to 30 mm yr-1 (Tallis, 1997b). The incidence of 
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erosion increases with altitude (Bower, 1961); > 90 % above 550 m is eroded (Anderson & Tallis, 1981) 

with the most severe found at the south-east limits of blanket bog extent (Tallis, 1997b; Taylor, 1983; 

Yeo, 1997). Heavily eroding catchments can remove an estimated 260 t km-2 yr-1 of suspended sediment 

(Evans et al., 2006b), compared to < 1 t km-2 yr-1 in intact Scottish moorland (Hope et al., 1997). This 

material is transported downstream leading to the infilling of reservoirs, and transporting and releasing 

pollutants deposited in the uplands (Rothwell et al., 2005b; Shotbolt et al., 2006). As a direct 

consequence of eroding catchments, reservoirs of the Peak District have seen reductions in water storage 

capacity of up to 75 % per century (Anderson et al., 1997), with economic implications of reduced 

quality and quantity of drinking water (Labadz et al., 1991; Pattinson et al., 1994). 

 

 

1.4.3 Pollution 

Overview 

The Industrial Revolution marked the onset of emission of atmospheric pollution on an unprecedented 

scale. The vast increase in both the amount and type of manufacturing released large amounts of a range 

of pollutants. Coal burning, smelting and other processes emitted large quantities of sulphur and metals 

into the atmosphere, which were then deposited locally and further afield. During the 19th and early 20th 

century, the effects of this pollution upon ecosystems would have been widespread (Caporn & Emmett, 

2009). The decline of heavy industry in the UK resulted in reduced levels of sulphur and metal 

deposition, but an increase in levels of nitrogen, ozone and organic compounds associated with 

agriculture and transport, a problem encountered across most populated regions of the world (Bell & 

Treshow, 2002). Ecological effects arise due to the increased availability of biologically active 

compounds, disturbing biogeochemical cycles and balances in which ecosystems have developed over 

millennia. The blanket bogs of the southern Pennines offer an example; these are nutrient-poor 

ecosystems where plants tend to be slow growing and efficient at acquiring and retaining nutrients 

(Chapin, 1980). Deposition of nutrients such as nitrate (NO3
-) and ammonium (NH4

+) shifts the 

competitive balance of these communities, whilst pollutants such as sulphur and heavy metals have a 

direct toxic effect on species such as Sphagnum (Lee, 1998; Lee et al., 1993). Eutrophication and 

acidification are the widespread current effects of pollution (RoTAP, 2012). 

The southern Pennine blanket bogs are especially prone to atmospheric pollution. Sandwiched between 

numerous conurbations of northern England, these upland areas have been subjected to around 250 years 

of heavy pollution deposition. To the west lie Manchester and Lancashire, to the east is Yorkshire with 

its cities of Huddersfield and Sheffield, and to the south lie Stoke-on-Trent and Staffordshire. These 

towns and cities were sites of intense industrial activity some 200 – 250 years ago. However, where 

once there were factories and chimneys, there are now dense residential areas. A population of more 
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than 16 million live within 40 miles of the Peak District (Dougill et al., 2006), emitting a cohort of 

pollutants, including oxidised nitrogen (NOx) from vehicle exhausts, reduced nitrogen (NHy) from 

intensive agricultural, nitrogen and sulphur from electricity generation, and volatile organic compounds 

(VOCs) from industrial and combustion processes (Caporn & Emmett, 2009; Van der Wal et al., 2011). 

Ozone (O3) is generated by the photochemical reaction between NOx and VOCs and is an important 

phytotoxic gaseous pollutant. Unlike products of nitrogen and sulphur, O3 is of increasing concern, 

especially in the uplands due to the periods of prolonged high concentrations (Ashmore, 2005; 

NEGTAP, 2001).  

Blanket bogs in the southern Pennines form at altitude where there are high levels of precipitation 

(Lindsay et al., 1988). Pollution is deposited in this rainfall (wet deposition), hence these areas receive 

greater overall inputs, increased further by orographic cloud cover (Fowler et al., 1988). Isolated areas 

with relatively clean rainwater therefore still receive a relatively high pollutant input. Many of the 

pollutants and their reaction products form aerosols, resulting in two harmful deposition mechanisms. 

These particles can be scavenged by water droplets in rain and clouds, or due to their life span of several 

days, can be transported over long distances (Fowler, 2002). Water droplets form around these aerosols, 

hence they contain higher concentrations of pollutants which are then deposited more easily due to their 

large size (Dore et al., 2001). Upland regions are covered by cloud for a significant amount of time (25 

% of the year in the north Pennines (Fowler, 2002)), hence there are implications for pollution 

deposition. Similarly, snow can act to concentrate atmospheric pollution, releasing large amounts during 

snowmelt (Woolgrove & Woodin, 1996). 

The impact of pollution is very much dependent upon the features of the ecosystem on which it is 

deposited. Blanket bogs are particularly susceptible due to their vegetation communities, soil type and 

underlying geology. The main component of intact bog vegetation is Sphagnum mosses, however, like 

most other bryophytes, they lack the protection of a cuticle and so are vulnerable to deposition of 

phytotoxic metals and compounds (Lee, 1998; Press et al., 1986). Mosses also lack a root system and 

so are very efficient scavengers of atmospheric and deposited nutrients. These are nutrient-poor 

ecosystems, with the flora reflecting a limitation of available N. This renders them prone to the effects 

of N deposition and subsequent eutrophication. Higher plants respond with increased growth often at 

the expense of other species, whilst N accumulates in bryophytes, causing damage to some species 

(Mitchell et al., 2004; Pearce et al., 2003). The wet acidic deposition of S and N is particularly 

detrimental due to the poor buffering capacity of organic soils. They contain little in the way of mineral 

content and are effectively isolated from the basal substrate by meters of peat. Weathering of this 

underlying mineral material is extremely slow and insufficient to replace base cations lost through 

acidification and leaching, and uptake and removal by fire and grazing. 

The UK uplands are noted as being particularly sensitive to pollutant inputs (Hall et al., 2004). Whilst 

individual pollutants can be harmful enough, their combined effects can be greater than the sum of their 
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parts (Fangmeier et al., 2002). Conversely, some beneficial synergistic effects of this mixed pollution 

have also been observed (e.g. Baxter et al., 1991). The response of blanket bogs to such pollutant inputs 

includes shifts in plant community composition (RoTAP, 2012), changes in carbon and nutrient cycling 

(Chapman & Edwards, 1999; Evans et al., 2006a; Fog, 1988; Pilkington et al., 2005) and soil 

acidification (Holden et al., 2007b). 

 

 

Sulphur 

The disappearance of Sphagnum coincided with the appearance of soot (i.e. small carbonaceous 

particles) in peat cores taken from the southern Pennines (Tallis, 1964, 1987). Increases in coal burning 

during the Industrial Revolution released huge quantities of sulphur dioxide. Between the 1880s and 

1970s, there was a ten-fold increase in anthropogenic SO2 emissions (Mylona, 1996). The southern 

Pennines received much greater levels of sulphur deposition than other areas of the country (Table 2), 

areas where Sphagnum did not suffer such extensive decreases. Oxidised and reactive sulphur is 

phytoxic (Lee, 1998), with bryophytes being  particularly susceptible to SO2, as both a gas and its 

solution products (Inglis & Hill, 1974; Türk & Wirth, 1975). Mosses lack a cuticle and most have leaves 

only one cell thick, resulting in almost direct and continual contact between their photosynthetic cells 

and atmospheric pollutants (Lee, 1998). The growth of ombrotrophic Sphagnum species is slowed by 

high sulphur deposition rates, however, the toxicity of SO2 in solution is pH-dependent (Ferguson et al., 

1978). At low pH values, such as those found on blanket bog, the damage to photosynthetic rates is 

greater (Hill, 1971; Puckett et al., 1973; Türk & Wirth, 1975). This is thought to be caused by the pH-

dependent equilibrium of ionic species of SO2 in solution, giving rise to bisulphite (HSO3
-) and sulphate 

(SO4
2-) which is subsequently deposited on the vegetation (Puckett et al., 1973; Vas & Ingram, 1949). 

Bisulphite is a potent phytotoxin, with effects on Sphagnum chlorophyll and photosynthesis observed at 

levels as low as 0.01 mM HSO3
-, compared with no effect on either at 5 mM SO4

2- (Ferguson et al., 

1978). Experimental application of dilute HSO3
- onto a Sphagnum-dominated bog in Snowdonia, north 

Wales,  resulted in the loss of Sphagnum cover within 12 months, with Eriophorum species surviving 

the treatment (Ferguson & Lee, 1979). During the late 1970s, analysis of Manchester rainwater found 

concentrations of up to 0.15 mM HSO3
-, and up to 1.8 mM SO4

2- (Ferguson et al., 1978). Sulphur dioxide 

itself has been shown to be 30 times as toxic as SO4
2- (Thomas, 1961), however, SO4

2- does not appear 

to affect photosynthesis, even at levels of 50 mM, with no effect on Sphagnum chlorophyll up to at least 

5 mM (Hill, 1974). Fumigation experiments found a reduction of moss species at 191 µg m-3 SO2 (Bell, 

1973), and Sphagnum growth affected at 131 µg m-3 SO2 (Ferguson et al., 1978). These values are well 

within range of observed concentration, with mean annual SO2 levels in Manchester ~ 500 µg   m-3 as 

late as the early 1950s (Lee, 1998). Sphagnum and associated species (e.g. Andromeda polifolia L. and 
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Drosera spp.) were all but lost from much of the southern Pennines (Lee, 1998), with S. fallax the only 

species found in any significant quantities across the region (Tallis, 1973), in part due to its ability to 

withstand relatively high levels of sulphur pollutants (Ferguson et al., 1978). Some Sphagnum species 

in minerotrophic flushes were also able to survive due to their uptake of transition elements. These 

metals, namely iron, catalyse the oxidation of toxic HSO3
- to less harmful SO4

2- (Baxter et al., 1989). 

 

 

Table 2 – Total deposition of oxidised sulphur to blanket bogs over the period 1880 – 1991 (Mylona, 

1993). 

Location Deposition oxidised sulphur (kg S ha-1) 

Southern Pennines 6400 

North Pennines 1580 

Central Scottish Highlands 1000 

North-western Scotland & Ireland 400 

 

 

Nitrogen 

The deposition of nitrogen arises from the conversion of inert atmospheric N2 into reactive oxidised and 

reduced forms (NOx and NHy) through industrial process such as fertiliser production, agriculture and 

fossil fuel burning. An estimated 140 Tg of reactive N per year is released into the environment, with a 

10-fold increase in N deposition rates over the last 40 years (Lee, 1998). Deposition over northern 

Europe ranges from 5 – 60 kg N ha-1 yr-1 (Wedin & Tilman, 1996), with rates of 40 kg N ha-1 yr-1 over 

large areas of the UK (NEGTAP, 2001). An increase of 60 % in anthropogenic N fixation and release 

by 2020 is projected, due to increasing fossil fuel and fertiliser use (Galloway et al., 1995; Matthews, 

1994). 

The plant communities of blanket bogs have developed over thousands of years in low nutrient 

conditions, with nitrogen being limiting in most pristine examples. This renders them susceptible to the 

effects of N deposition through eutrophication (Bobbink et al., 1992) bringing subsequent shifts in 

vegetation composition. Nitrogen can also have direct toxic effects, with gaseous ammonia (NH3) being 

the most damaging form (RoTAP, 2012). Bryophytes are particularly susceptible to the effects of 

elevated N (Van der Wal et al., 2011), exhibiting rapid increases in tissue N levels, reduced growth, 

cover and diversity (Carroll et al., 1999; 2000; Edmondson et al., 2013; Edmondson et al., 2010; 

Pilkington et al., 2007a). 
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The main effect of N deposition is eutrophication (Van der Wal et al., 2011), with competitive species, 

such as graminoids, increasing in vigour and cover at the expense of slower growing, stress-tolerant 

species (Grime, 2002). This can lead to a shift in vegetation communities, from the nutrient-poor species 

typical of ombrotrophic bogs to that dominated by nutrient-loving species (Smart et al., 2003), and the 

eventual loss of diversity (Borer et al., 2014; Field et al., 2014; Southon et al., 2013). The addition of N 

can cause nutrient imbalances, such as phosphorus and potassium limitation (Goodman & Perkins, 

1968a; b; Hayati & Proctor, 1991; Phoenix et al., 2003), and is linked to the incidence of pest outbreaks, 

disease and late winter injury (Carroll et al., 1999; Nordin et al., 2009; Power et al., 1998). 

Nitrogen is rapidly taken up by the vegetation of blanket bogs, reflecting its limitation in pristine systems 

(Aerts et al., 1992), with atmospheric N deposition correlated with tissue N concentration (Caporn, 

1997; Lee, 1998; Pitcairn et al., 1995; Woodin & Farmer, 1993).  There is a gradual accumulation in 

plant tissues as N addition increases (Bobbink et al., 1998; Lamers et al., 2000). At higher levels of N 

deposition, uptake saturates (2005; Bragazza et al., 2004) and phosphate becomes growth limiting 

(Clymo & Hayward, 1982). Bryophytes are particularly rapid in showing this shift in limitation at low 

levels of N deposition (Aerts et al., 1992). Above 18 kg N ha-1 yr-1, Sphagnum cannot retain any more 

deposited N and it is lost to deeper layers of the bog (Lamers et al., 2000; Woodin & Lee, 1987b), 

becoming available to higher plants and allowing competitive species to encroach (Roelofs, 1986). 

Higher levels of N addition leads to reduced Sphagnum growth and increased higher plant cover 

(Berendse et al., 2001; Gunnarsson & Rydin, 2000), with direct toxic effects shown at > 80 kg N ha-1 

yr-1 (Lamers et al., 2000; Limpens et al., 2003a). 

High levels of atmospheric NH3 deposition have been shown to remove some species of Sphagnum 

entirely, whilst favouring nutrient-tolerant species, such as S. fallax (Sheppard et al., 2009; Sheppard et 

al., 2011; Twenhöven, 1992). In the southern Pennines, S. fallax is the most common Sphagnum species 

(Carroll et al., 2009; Tallis, 1973), with a notable and widespread absence of ombrotrophic species. On 

the Bowland Fells, mainly north-east Lancashire and part of north Yorkshire, N deposition was 45 – 55 

% of that in the southern Pennines (Mackay, 1993) and there is a good range and abundance of 

Sphagnum species present (Tallis, 1998). Levels of NO3
- and NH4

+ in samples of bog pool water and 

litter from the southern Pennines were found to be many times higher than that of a more intact region 

in Wales (Caporn et al., 2014; Caporn et al., 2006; Edmondson et al., 2010). 

 

 

Acidic deposition 

Oxides of nitrogen (NOx) and sulphur (SO2) are transformed in the atmosphere to generate nitric (HNO3) 

and sulphuric acid (H2SO4) which is deposited in precipitation (Caporn & Emmett, 2009). From the 

onset of the Industrial Revolution until recently, sulphur from fossil fuel combustion was the major 
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contributor to acid rain. As such, some areas of the UK have been subjected to decades, if not centuries, 

of acid precipitation (Cohen & Rushton, 1925), with the southern Pennines having the largest 

accumulation of acid deposition of any region in Europe (Skeffington et al., 1997). Acid deposition 

strips base cations from soils, lowering the pH and mobilising harmful ions, such as aluminium 

(NEGTAP, 2001). A threshold of pH 3.5 was suggested for negative effects on Sphagnum (Andrus, 

1986). Blanket bog landscapes are particularly vulnerable to the effects of acid precipitation due to the 

high rainfall they receive and the peat which covers them. They are base-poor soils and effectively 

isolated from their underlying mineral material, making them unable to buffer the acidic inputs. 

Acidification and mobilisation of toxic metals can lead to decreased plant growth or shifts in species 

composition (Lee et al., 1993), with soil organisms and microbial communities also being affected; e.g. 

slower decomposition of litter influencing nutrient cycling (Sanger et al., 1994). 

 

 

Heavy metals 

The southern Pennines have been subjected to potentially toxic levels of metal deposition since the early 

19th century (Evans & Jenkins, 2000; Shotbolt et al., 2006; Tipping et al., 2006; Tipping & Smith, 2000) 

emitted from the nearby industrial conurbations of Lancashire and Yorkshire. Localised inputs from 

mining and smelting have also contributed to the deposition of metals onto the blanket peat (Livett et 

al., 1979). Blanket bogs bind pollutant metals by adsorption to organic matter (Tipping et al., 2003) and, 

as such, they are known to persist in peat soils (Brookes, 1995; Rothwell et al., 2005b). Very high 

concentrations of a range of metals can be found in these peats, particularly in uneroded areas (Caporn 

& Emmett, 2009; Linton et al., 2007). Where peat is actively eroding, these metals can be released into 

aquatic systems (Rothwell et al., 2007a; 2007b). Aluminium, cadmium, chromium, copper, lead, 

mercury, nickel and zinc are the most ecologically significant in terms of potential ecological damage 

(Tipping et al., 2003). 

In recent decades, emissions of heavy metals have changed, in both their quantity and source (EEA, 

2012; Travnikov et al., 2012). For example, lead has seen an average of 74 % reduction in modelled 

deposition from 1990 to 2010, thanks in part to the phasing out of leaded petrol, originally the source of 

76 % emissions and now reduced to 11 % (Harmens et al., 2013). Despite the vast reductions in 

deposition rates, areas of the southern Pennines are still known to exceed threshold values, beyond which 

potential toxic effects may occur (see Linton et al., 2007). 

The toxicity of metals within soil is correlated with the free ion fraction of the total soil metal pool (Lofts 

et al., 2004; Sauvé et al., 1998). Heavy metals are generally present in the form of stable complexes 

with organic matter. However, the strength with which metals bind to organic matter is inversely related 

to pH (Tipping et al., 2003), hence metals can become remobilised by drought-induced acidification. 
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Periods of drought allow reduced sulphur stored in the peat to oxidise and produce sulphuric acid (e.g. 

Dillon et al., 1997; Scott et al., 1998). This increases the concentration of bioavailable metals to plants 

and soil organisms, thus increasing the toxicity of such polluted soils. The vast amounts of sulphur 

deposited in the southern Pennines (Mylona, 1993), and poor hydrological condition of many of its 

blanket bogs (Allott et al., 2009) renders these areas susceptible to these episodes of increased toxicity. 

Periodic drought-induced acidification is also likely to be a feature of unpolluted peatlands in which 

marine-sourced sulphur is oxidised (Tipping et al., 2003). However, given the intact hydrology and 

limited additional pollutant inputs, damage will be slight. 

The toxic actions of heavy metal ions are caused by the inhibition of enzymes, which can lead to a range 

of effects in higher plants (e.g. Adema & Henzen, 1989; Das et al., 1997; Mitchell & Fretz, 1977). In 

the longer term, this can lead to changes in species composition, as more acid- and metal-tolerant species 

gain an advantage (Grime, 2002; Stevens et al., 2009). Bryophytes are more susceptible to atmospheric 

exposure, and subsequent accumulation of heavy metals, since they lack a protective cuticle. This makes 

them useful biomonitors of metal pollution (Clymo & Hayward, 1982; Harmens et al., 2013).  

 

 

1.4.4 Land management 

Burning and wildfire 

Controlled burning has been used as a management technique by hill farmers for centuries, as a means 

of improving grazing value of their land for livestock (Tallis, 1998). The rotational burning of heather 

(Calluna vulgaris) on sporting estates is more recent, dating back to the early and mid-1800s (Usher & 

Thompson, 1993). Stands of Calluna are burned on intervals of 8 – 25 year, depending on recovery 

(Lovat, 1911), to produce high densities of red grouse. Over the last 50 years, there has been an increase 

in the number of management burns (Anderson et al., 1997; McMorrow et al., 2009; Yallop et al., 2006), 

however, there is increasing evidence to support a ban on burning on blanket bogs (Coulson et al., 1992; 

Shaw et al., 1996; Tucker, 2003; Usher & Thompson, 1993). It has been suggested that Calluna growing 

on blanket bog does not exhibit the same growth pattern as on drier heathland. Stems become buried by 

accumulated Sphagnum leading to continued new shoot growth, however, this will be limited to areas 

of intact hydrology (Holden et al., 2007b). This process would render burning unnecessary as a means 

of Calluna rejuvenation (Mowforth & Sydes, 1989). Conversely, burning practices were thought to not 

be incompatible with Sphagnum, when combined with grazing exclusion (Rawes & Hobbs, 1979). 

Charcoal is a recurrent feature in the peat profile of many sites (Robinson, 1987; Smith & Cloutman, 

1988; Tallis & Livett, 1994) indicating that fire, both managed and wild, has been a consistent feature 

of blanket bogs throughout their history (Anderson, 1997a). More recently, wildfires are often the result 
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of arson or carelessness, causing substantial environmental damage and economic loss in the uplands 

(Haskins, 2000; Lindley et al., 2009; Maltby et al., 1990; McMorrow et al., 2009). In 2003, a fire on 

Bleaklow lasted a month and firefighting costs rose to around £1 million (Van der Wal et al., 2011). 

Wildfires often burn longer and at a hotter temperature, which can lead to peat being damaged or even 

destroyed. In these instances, the regenerative potential is also affected as the seed bank, spores and 

basal buds of vascular plants are consumed. The effects of a fire are dependent upon the vegetation type, 

fire intensity and hydrology. Wet peat is an excellent insulator, protecting it from damage (Watson & 

Miller, 1976). However, given the eroded and degraded state of many blanket bogs of the southern 

Pennines, the impact of such wildfires has been severe. Particularly damaging fires affected the region 

in 1947, 1959, 1976, 1980, 1984 and 1989 – 1990 (Anderson, 1986; Anderson et al., 1997; Tallis, 1981). 

Some of these areas remained unvegetated until recent restoration works began (Maltby et al., 1990; 

Radley, 1965; Tallis, 1981). 

Burning of blanket bog not only removes the vegetation but also causes a number of other changes in 

the surface layers of the peat. Nutrients from ash, increased pH and higher peat temperatures cause an 

increase in microbial activity (Fullen, 1983; Hobbs & Gimingham, 1987; Lindsay et al., 1988; Stoneman 

& Brooks, 1997), leading to a reduction in the rate of peat accumulation (Kuhry, 1994). Peat nutrient 

levels are elevated for the first two years following burning, benefitting regeneration (Hansen, 1969). 

Other nutrients can be lost during and after the burn in smoke as particulate matter and volatilisation 

(Holden et al., 2007b), and through leaching (Pilkington et al., 2007b) which can affect subsequent 

vegetation growth for years to come (Kinako & Gimingham, 1980). The high heat of wildfires produces 

water-repellent compounds in the surface layers of the peat, forming an impermeable skin (Clymo, 1983; 

Lindsay et al., 1988; Stoneman & Brooks, 1997). This increases the run-off and reduces the water-

holding capacity of these areas (Robinson, 1985). Removal of the vegetation renders peat surfaces 

susceptible to wind and fluvial erosion, and increased freeze-thaw action (Holden et al., 2007b; Imeson, 

1971). The initiation of major periods of erosion have been attributed to historic wildfires or 

anthropogenic fires (Mackay & Tallis, 1996; Tallis, 1987). For example, Holme Moss, in the southern 

Pennines, suffered a catastrophic fire in the 1700s, leading to a huge bog-slide in 1777 (Tallis, 1987). 

 

 

Grazing 

Grazing is an important upland management practice and is thought to have been a factor in the original 

development of blanket bogs (Shaw et al., 1996). Since the end of the Second World War, farming in 

the uplands has been supported by the UK government and European funding through a variety of 

schemes (Van der Wal et al., 2011), promoting higher stocking levels and drainage of the landscape. 

The result of this was a four-fold increase in sheep numbers between the 1930s and 1970s, and 
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subsequent damage to dwarf shrubs and bog vegetation structure (Anderson & Yalden, 1981a; Dallimer 

et al., 2009; Dixon, 1984; Thompson et al., 1995). The effects of grazing and trampling are well known 

(Hulme et al., 2002; Lake et al., 2001; Stevenson & Thompson, 1993; Welch & Scott, 1995), and are 

dependent upon stocking rates, species composition, site wetness and time of year. Over-grazing is 

thought to be a major cause of blanket bog degradation across the UK (Tallis et al., 1997), and even at 

moderate stocking levels, vegetation community composition will be affected (Tallis, 1998), allowing 

tolerant species, such as graminoids, to become dominant (Gimingham, 1995). The Hill Grazing 

Management Model recommends < 0.4 sheep ha-1 to avoid damage to blanket bog vegetation (Tallis, 

1998). Stocking levels in some areas of the southern Pennines were 2.5 sheep ha-1 as recently as the 

1980s (Anderson & Radford, 1994), indicating the severity of damage occurring. Grazing-induced 

erosion is prevalent throughout the world (Evans, 1998), and in some upland areas of the UK, may be 

the main cause of soil degradation (Evans, 2005). 

The vegetation communities of blanket peat are amongst the most susceptible to trampling (Shimwell, 

1981), exposing bare peat and causing compaction, with effects lasting up to 7 years (Bayfield, 1979). 

Wet and Sphagnum-covered areas are particularly susceptible (Slater & Agnew, 1977), with severe 

damage to pool margins and subsequent loss of Sphagnum. However, sheep usually avoid the wettest 

areas affording them some protection (Rodwell, 1991). On the wettest of sites other factors, such as 

atmospheric pollution, may be more important drivers of degradation. 

In the mid-1990s, a reduction in sheep numbers was advocated (Marrs & Welch, 1991; Thompson et 

al., 1995) and realised through changes in agricultural policy and the introduction of Environmentally 

Sensitive Areas scheme (Holden et al., 2007b). Improvements in vegetation could be seen following 10 

years of grazing exclusion (Anderson et al., 1997), with reduced trampling of benefit to Sphagnum. 

 

 

Drainage 

During the 1960s and 1970s, government subsidies encouraged the digging of drainage ditches across 

1.5 million ha of blanket peat in upland Britain in an attempt to improve grazing and game production 

(Lindsay et al., 1988). This process, known as gripping, did little to enhance productivity (Stewart & 

Lance, 1983) but did cause hydrological and ecological changes in blanket bogs, favouring dwarf shrub 

communities (Van der Wal et al., 2011). These channels cause a lowering of the water table (Stewart & 

Lance, 1991) and increased export of carbon from the system in fluvial (Holden et al., 2007b; Worrall 

et al., 2003) and dissolved organic form (Worrall et al., 2011). The altered hydrology causes a reduction 

in typical blanket bog vegetation communities, with the reduction of Sphagnum. This effect is 

exacerbated by the roots of dwarf shrubs, which act to further dry the peat through transpiration 

(Shepherd et al., 2013). The drying of peat can lead to physical changes, such as drying and cracking, 
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with consequences for the hydrology and ecology of affected areas (Holden & Burt, 2002a; b). However, 

it would appear that these effects are reversible in some instances, with more typical vegetation returning 

with increased water table height (Komulainen et al., 1998). 

 

 

1.4.5 Climate change 

Due to increased anthropogenic emissions of greenhouse gases, changes in global temperature and 

climate are taking place and likely to continue (Houghton, 2004; IPCC, 2007). Climate models predict 

warming and changes in patterns of precipitation (Meehl et al., 2007; Sweeney & Fealy, 2002). In the 

north and west of Britain, precipitation is expected to increase but with greater distinction between 

winter and summer (Burt et al., 1998). This is thought to lead to an increase in the frequency and/ or 

severity of summer droughts, interspersed with intense storm events (Meehl et al., 2007; Worrall et al., 

2006). On bare blanket peat, such periods of drought followed by intense rainfall can remove significant 

quantities of peat (Hulme & Blyth, 1985). In the northern Pennines, at least 80 % of total peat loss 

occurred in only 3 % of the time period (Crisp & Robson, 1979). 

Temperatures in the uplands are expected to increase by 0.8 – 2 oC by 2050 (Tallis et al., 1997). Higher 

summer temperatures may cause a range of effects in peatlands: e.g. accelerated mineralisation and 

cycling of nutrients by microbes; increased plant growth (Emmett et al., 2004); acidification and release 

of phytotoxic metals (Tipping et al., 2003); additional fire risk from greater fuel loads and increased 

visitor numbers (Albertson et al., 2009). Increases in temperature and changes in precipitation are 

thought to alter species composition and distribution in peatlands, affecting their functioning (Bragazza, 

2006; Dorrepaal et al., 2003; Mauquoy et al., 2002; Moore, 2002). The impact of such environmental 

changes may depend upon the species composition of the ecosystem (Robroek et al., 2007b).  

The Peak District and southern Pennines represent the south-east limit of modelled climatic envelope of 

blanket bog in the UK (Clark et al., 2010a), making the region especially susceptible to the effects of 

climate change. The accumulation and maintenance of peat is controlled by the vegetation community, 

temperature, hydrology and peat chemistry (Holden et al., 2007b). Given the atypical, species-poor plant 

communities of the southern Pennines, severely eroded state and legacy of pollution, changes in 

temperature and precipitation will have grave consequences for the blanket bogs of the region as 

functional ecosystems. This effect is not limited to the southern Pennines; under the most extreme 

climate models, peat formation and occurrence in the UK is expected to decline by up to 84 % (Clark et 

al., 2010a; 2010b; Gallego-Sala et al., 2010), indicating even intact, high quality bogs are at risk of 

degradation. 
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Stratigraphic records illustrate both the sensitivity and resilience of bog vegetation to climate change, 

documenting shifts in vegetation according to prevailing climatic conditions (Tallis, 1997a). Sphagnum 

austinii (previously S. imbricatum (Andrus, 1987)) was once abundant across the peatlands of northwest 

Europe but began to disappear during the late Holocene (Barber, 1981; Barber et al., 2003; Dickson, 

1973; Godwin & Conway, 1939; Green, 1968; Langdon & Barber, 2005; Mauquoy & Barber, 1999; 

Mauquoy et al., 2002; Overbeck, 1975; Smith, 1985; Stoneman et al., 1993; Van Geel & Middeldorp, 

1988; Wimble, 1986). This has been linked to increased surface wetness at many sites (Barber, 1981; 

Mauquoy & Barber, 1999; Mauquoy et al., 2002; Stoneman, 1993), typically occurring between AD 

1030 and AD 1730 (Barber et al., 2003; Mauquoy & Barber, 1999; Van Geel & Middeldorp, 1988). 

Peat profiles record a shift towards S. magellanicum, S. papillosum, section Cuspidata or section 

Acutifolia, sometimes occurring abruptly over only a few decades (Mauquoy & Barber, 1999; Van Geel 

& Middeldorp, 1988). Human disturbance may also have had a role to play (e.g. Pearsall, 1956; Piggot 

& Piggot, 1963) and may go some way to explain the abrupt changes at some sites. However, S. affine 

and S. austinii are known to be able to withstand such effects (e.g. Chapman & Rose, 1991; Lindsay et 

al., 1988; Slater & Slater, 1978). The loss of these species from peatlands across northwest Europe 

indicates localised human influence was not the main cause, although may have accelerated their decline 

at some sites. 

 

 

1.5 Blanket bog recovery and restoration 

1.5.1 Environmental improvements 

Pollution 

A reduction in industrial activity, clean air legislation, alternative fuel sources and clean fuel technology 

has led to the reduction in emissions of a range of pollutants. The major controls on national emissions 

of sulphur and nitrogen have been a number of agreements under the UN Economic Commission for 

Europe Convention on Long Range Transboundary Air Pollution and the European Union National 

Emissions Ceiling Directive, that came into force in 1991 (Van der Wal et al., 2011). The 1999 

Gothenburg Protocol set emissions limits for 2010 for sulphur, oxidised nitrogen, volatile organic 

compounds and ammonia, and the 1998 Aarhus Protocol committed the UK to the reduction of heavy 

metal deposition to below 1990 levels (Holden et al., 2007b). 

The onset of the Industrial Revolution saw anthropogenic emission of SO2 increase ten-fold between the 

1880s and 1970s (Mylona, 1996), reducing by 87 % between 1970 and 2004 (Caporn & Emmett, 2009; 

Lee, 1998). From 1986 to 1997, emissions of sulphur fell by 57 %, matched by a reduction in deposition 

of 52 %. These figures do hide considerable variation, with more than 70 % reduction in the east 
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Midlands whilst the west coast showed little evidence of reduction (Beswick et al., 2003). Despite the 

variability, deposition in most rural areas of the UK is now below critical loads (NEGTAP, 2001). Levels 

of sulphur in the southern Pennines, both gaseous and deposited, have fallen dramatically over the last 

30 years (Figure 2 & Figure 3) to below critical levels established for the protection of vegetation 

(UKCLAG, 1996). However, elevated levels of sulphur can still be found in Sphagnum and bog water 

samples from polluted areas (Bottrell & Novak, 1997; Thompson & Bottrell, 1998), suggesting a legacy 

of pollution accumulation. However, the responses of organisms to such low levels of sulphur are 

difficult to predict or measure (Lee, 1998). 

Acidic deposition has fallen by over 50 % in the last two decades, largely due to reductions in sulphur 

deposition (Van der Wal et al., 2011). Atmospheric nitrogen is now a greater source of deposited acidity 

in the southern Pennines (Evans & Jenkins, 2000). Increases in pH and base cations are expected in 

response to the reduction in deposition, however, this is an extremely slow process in deep peat soils, 

with more mineral soils quicker to recover (Evans et al., 2014; Evans & Jenkins, 2000; Morecroft et al., 

2009). 

Between 1988 and 2008, emissions of nitrogen in the UK have also fallen, with both oxidised and 

reduced nitrogen falling by 50 % and 18 %, respectively. Despite this, total nitrogen deposition for the 

UK has only fallen by 13 % over the same period (RoTAP, 2012). This may be due to the complexity 

of chemical transformations of atmospheric pollutants, therefore cuts in emissions may not necessarily 

result in the expected reduction in atmospheric concentrations (Fowler et al., 2005). Emissions of 

oxidised nitrogen (NOx), produced by transport and energy generation, have fallen slower than those of 

sulphur (Figure 2). Improvements in combustion technology were the main cause of this reduction 

(Beswick et al., 2003). Emissions of reduced nitrogen (NHy) from agricultural sources are set to follow 

a modest decline (RoTAP, 2012). However, the southern Pennines lie close to sources of NOx and NHy, 

and rates of nitrogen deposition in the region have fallen little over the last 30 years (Figure 3). In the 

UK, over 50 % of bogs (of all types) exceeded the critical load for nitrogen deposition in 2006 – 2008, 

representing a slight increase from 1986 – 1988 (RoTAP, 2012). 

 Ozone (O3) is another pollutant of current concern, causing reduced growth and productivity in plants 

(Ashmore, 2005). Concentrations of O3 are increasing across nearly all populated regions of the world 

(Bell & Treshow, 2002; RoTAP, 2012), a trend not necessarily reflected in the southern Pennines (Figure 

2). Rising levels of ozone are a particular concern for the uplands (Hayes et al., 2006), however, 

interactions with other atmospheric gases means ecosystem effects are difficult to predict (e.g. Gedney 

et al., 2006; Harmens et al., 2007). 
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Figure 2 – Mean annual gaseous concentration (µg m-3) of ozone (O3), nitrogen dioxide (NO2) and 

sulphur dioxide (SO2), recorded at Ladybower monitoring station, Derbyshire (data from uk-

air.defra.gov.uk). 

 

 

Figure 3 – Mean annual concentration (mg l-1) wet deposition of nitrate (NO3–N), ammonium (NH4–N) 

and sulphate (SO4–S), recorded at Wardlow monitoring station, Derbyshire (data from uk-

air.defra.gov.uk). 
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Land management 

Farming in the uplands operates at the margin of financial viability and is heavily reliant upon 

agricultural subsidies (Dougill et al., 2006), thus subsidies provide an effective means of managing 

entire landscapes. A move away from production-based subsidies has resulted in reduced grazing in 

some upland regions (RSE, 2008) and land managers are rewarded for environmentally beneficial 

practices (Lowe et al., 2002). Higher Level Stewardship (HLS) and Environmentally Sensitive Areas 

(ESAs) are examples of such agri-environment schemes. ESAs were introduced in 1986, allowing 

damaged areas to recover (Anderson et al., 1997; Whitby, 1994). The Water Framework Directive is 

another legislative driver of environmental improvement in the uplands, prioritising water quality. 

However, over the short term it is difficult to assess the ecological benefit of such schemes 

(Whittingham, 2007), and the appropriate management required to maintain Sphagnum-rich bog 

vegetation is still far from clear (Tallis, 1998).  

 

 

1.5.2 Natural recovery 

Amid the devastated and eroding landscape of the southern Pennines, natural revegetation of bare peat 

surfaces occurs frequently (Clements, 2005; Crowe, 2007). Eriophorum angustifolium and E. vaginatum 

are important species in the regeneration of peatlands (Lavoie et al., 2005a; Tuitilla et al., 2000). E. 

angustifolium has a preference for wetter conditions whilst E. vaginatum has a greater tolerance for drier 

areas. E. vaginatum can produce favourable conditions for the colonisation of Sphagnum (Rochefort, 

2000) through the provision of microclimate and nutrients (Chapin et al., 1979), whilst forming peat 

itself. In the Peak District, revegetation of gullies has been shown to significantly reduce the amount of 

fluvial peat lost from an eroding catchment (Evans & Warburton, 2005), with vegetation increasing the 

surface roughness of these channels leading to deposition of material carried in suspension. From 

stratigraphic evidence, it appears pioneer species rapidly recolonise and stabilise the bare peat gully 

floor, providing a suitable microhabitat for less resilient species (Crowe, 2007). Successive gradual 

shifts in community composition of slower establishing species follow (Evans et al., 2005), resulting in 

either Sphagnum-dominated communities (Lindsay & Freeman, 2008) or dry heath assemblages, 

depending on the prevailing hydrological conditions (Crowe et al., 2008). 

Improvements in air quality and land management have been beneficial for Sphagnum and other 

bryophytes, with increased abundance and diversity in the southern Pennines (Caporn et al., 2006; 

Carroll et al., 2009). Despite these improvements, cover and frequency of Sphagnum in the region is 

still lower than more northerly sites, such as the Forest of Bowland (Carroll et al., 2009). Minerotrophic 

species are by far the most common (e.g. S. fallax, S. fimbriatum, S. subnitens), reflecting the nutrient-

enriched conditions (Smith, 2004) and selection pressure exerted by pollution in the past (Crowe et al., 
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2008). Recolonisation by Sphagnum is a slow process, and appears to be limited to cotton grass-

dominated areas with high water tables (Caporn et al., 2006) and gullies (Crowe et al., 2008). The legacy 

of industrial pollution deposition has been suggested as a factor limiting Sphagnum recovery (Tallis, 

1995b), along with a lack of propagules, disrupted hydrology and severity of degradation.  

 

 

1.5.3 Managed revegetation of blanket bog 

Despite observed incidences of spontaneous revegetation in the southern Pennines, landscape-scale 

regeneration of these bare peat areas is unlikely to occur naturally due to continued erosion, removing 

the viable seed bank and uprooting seedlings. Until such areas are stabilised, peat will continue to be 

lost, with reduced provision of ecosystem services from these upland areas. Restoration of blanket bog 

in this region has focused on revegetation of bare peat to limit further erosion and provide a baseline for 

further ecological improvements (Anderson et al., 1997). International legislation such as the Kyoto 

agreement and EC Habitats Directive, has led to efforts to restore peatlands to active, functioning 

ecosystems (Gorham & Rochefort, 2003). 

Since 2003, the Moors for the Future Partnership have carried out landscape-scale restoration works in 

the Peak District and southern Pennines, scaling up methods developed in the 1980s (Anderson et al., 

1997; Anderson et al., 2011; Tallis & Yalden, 1983). Lime is applied to temporarily raise the pH of 

these very acidic peats to ~ pH 4, and fertiliser (N:P:K) is added to enhance the establishment of the 

subsequently applied grass seed. A suite of lowland amenity grass species (e.g. Agrostis, Festuca and 

Lolium spp.) are sown to act as a nurse crop, helping to bind the peat surface together and improve 

microclimatic conditions. Heather brash (harvested and chopped Calluna vulgaris) is applied, providing 

a physical covering to exposed peat whilst containing large quantities of heather seed and propagules of 

many other moorland species. The combined lime, fertiliser, grass seed and brash forms a superficial 

surface crust where the peat is held together by nurse crop roots and twigs of the heather brash. On 

steeper, more rapidly eroding slopes, geotextiles are used to physically restrain the peat, allowing seed 

to germinate, take root and stabilise the area. Grazing is excluded from treated areas since fertilised 

vegetation is known to be particularly attractive to sheep for some time after application (Lunt et al., 

2010). More typical moorland species, such as Empetrum nigrum, Eriophorum angustifolium, E. 

vaginatum, Rubus chamaemorus and Vaccinium myrtillus, are able to recolonise these stabilised areas, 

spreading by seed or vegetatively from remnant patches of intact vegetation. Where this process is slow 

due to poor surrounding diversity, plug plants are used. These are propagated from locally sourced 

individuals and produced on a large scale to meet the quantities required. The use of these species in 

bare peat restoration is well established, and they respond positively to additions of lime and fertiliser 

(Bridges, 1985; Caporn et al., 2007; Richards et al., 1995; Skeffington et al., 1997; Sliva & Pfadenhauer, 



1. Introduction

 

 

 28  

1999). After about 5 years, the grass nurse crop is expected to die out (Anderson et al., 1997) as the 

effects of lime and fertiliser dissipate and bog species increase their cover. Bog species are deeper 

rooting than the grass nurse crop and so help to more securely bind and anchor the peat. 

The revegetation of bare peat is successful, with an average of 45 % vegetation cover 3 years after 

treatment, whilst control areas have remained bare (Anderson et al., 2009). The establishment of grasses 

and Calluna reduce the loss of particulate organic carbon (POC) by up to an order of magnitude, 

however, levels of dissolved organic carbon (DOC) are not reduced by this new growth (Worrall et al., 

2010; 2011). Following application of restorative treatments, revegetated areas show increased activity 

and abundance of soil microbes, which can result in greater CO2 emissions (Caporn et al., 2007; Worrall 

et al., 2011). Restoration is, however, an expensive process, due in part to the transportation and 

application of materials by helicopter. To treat an area of bare peat costs £11,000 ha-1 for capital works 

for a 3 year restoration project, plus additional associated management and monitoring costs (Moors for 

the Future, 2008). Over larger expanses of degraded bog, encompassing a range of degraded features, 

costs were £2,900 ha-1 (Van der Wal et al., 2011). 

Gully blocking was developed in the Peak District in the 1990s as a means of reducing erosion and 

improving the hydrology of degraded areas. Heather bales, plastic piling, stone and wood are used to 

construct dams which trap peat sediment which can then be colonised by plants, especially E. 

angustifolium (Anderson et al., 2011; Burtt & Hawke, 2008; Evans et al., 2005). Whilst the impact of 

gully blocking on sediment export can be clearly demonstrated, the hydrological effect is yet to be 

quantified (Shepherd et al., 2013). 

The recovery of active blanket bog vegetation is anticipated to take 15 – 20 years, conditional upon the 

re-establishment of bog hydrology, a functional acrotelm layer and the presence of Sphagnum 

(Chambers et al., 2007b; Gunnarson et al., 2008; Proctor, 2003; Van der Wal et al., 2011). The 

ecological and hydrological restoration of degraded blanket peatlands has the potential to deliver a 

number of ecosystem services, such as the maintenance of carbon stores (Lindsay, 2010; Worrall et al., 

2009), reduced wildfire risks (McMorrow et al., 2009) and enhanced biodiversity. Van Der Wal et al. 

(2011) provides a detailed summary of ecosystem services provided by areas of degraded blanket peat 

before, during and after restoration. However, it is thought in some cases irreversible changes in peat 

chemistry and hydrological properties may prevent active blanket bog from being established (Holden, 

2005a; b; Holden et al., 2004).  

 

 

  



1. Introduction

 

 

 29  

1.6 Sphagnum reintroduction 

1.6.1 Reintroduction on raised bog 

The recovery or reintroduction of Sphagnum is essential to return degraded ombrotrophic peatlands to 

an active, functional state (Rochefort, 2000; Van Breemen, 1995a). The majority of research on 

Sphagnum restoration has been conducted on lowland raised bogs following commercial exploitation 

for peat extraction, forestry plantation and agriculture. After the cessation of such activities, these areas 

are not readily recolonised by typical peatland vegetation (Lavoie et al., 2003; 2005b; Money, 1995; 

Poulin et al., 2005; Rowlands & Feehan, 2000; Salonen, 1992). The surface peat is modified to such an 

extent that it no longer represents a suitable substrate for Sphagnum and other bog species to recolonise 

(Groeneveld & Rochefort, 2005; Poschlod, 1990; Price, 1996; 1997; Tomassen, 2004; Van Seters & 

Price, 2001). Active intervention is required to re-establish a functioning peatland, capable of 

sequestering carbon, cycling nutrients and resisting species invasion within the timescale of decades 

(Gorham & Rochefort, 2003; Rochefort, 2001; Wheeler & Shaw, 1995). 

Propagules of Sphagnum and associated vegetation are harvested, applied and covered by a protective 

mulch to reduce desiccation, whilst ditch blocking and surface reprofiling improve hydrological 

conditions (Blankenburg & Tonnis, 2004; Bugnon et al., 1997; Price et al., 2000; Rochefort et al., 2003; 

Tuitilla et al., 2003; Wheeler & Shaw, 1995). Bog vegetation from nearby intact areas is harvested to a 

depth of 10 cm, shredded and applied to the peat surface using agricultural machinery at a ratio of 1:15 

donor to receptor surface area (Rochefort et al., 2003). In Canadian post-vacuum mined peatlands, this 

was a required step as naturally dispersed propagules are too small or too few to enable regeneration 

(Rochefort, 2000). Straw mulch is then applied at 3000 kg ha-1, improving the microclimate of the 

introduced propagules. Soil moisture and surface humidity are increased, whilst temperature extremes 

and evaporation are reduced (Chirino et al., 2006; Price, 1997; Price et al., 1998; Rochefort, 2000; 

Rochefort et al., 2003). The final step is rewetting of  the site by blocking drainage systems, improving 

the water level and humidity of the peat, both of which are beneficial to Sphagnum (Campeau & 

Rochefort, 1996; Campeau et al., 2004; Grosvernier et al., 1997a; Karofeld & Toom, 1999; Lindholm 

& Vasander, 1990; Rochefort et al., 2002; Wheeler & Shaw, 1995). However, water levels must be 

carefully managed to avoid inundation which can be detrimental to Sphagnum establishment (Tuitilla et 

al., 2003). 

Vascular plants and other mosses can provide similarly beneficial microclimatic conditions, in particular 

Eriophorum spp. and Polytrichum strictum, whilst also stabilising the peat surface (Boudreau & 

Rochefort, 1999; Ferland & Rochefort, 1997; Groeneveld & Rochefort, 2005; Grosvernier et al., 1995; 

Sliva, 1998). Addition of phosphorus improves the establishment and performance of such nurse 

species, accelerating the recolonisation process (Sliva & Pfadenhauer, 1999; Sottocornola et al., 2007). 

Sphagnum species vary in their suitability for use in restoration. Those of the section Acutifolia are 

better able to colonise bare peat, with section Sphagnum performing poorly (Campeau & Rochefort, 
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1996; Chirino et al., 2006; Rochefort & Bastien, 1998). Hummock-forming species are favoured, with 

a view to rapidly establishing an acrotelm (Sliva & Pfadenhauer, 1999). Once Sphagnum plant size and 

cover surpass a threshold, a positive feedback loop will be established where limitation by water 

availability and retention, substrate instability and humidity levels is continually reduced (Rochefort, 

2000). 

 

 

1.6.2 Reintroduction on blanket bog 

There is a dearth of literature regarding the reintroduction of Sphagnum to blanket bog, with no recorded 

attempts at landscape-scale Sphagnum restoration. From within the upland community of land 

managers, owners and conservation organisations, it is evident that there have been many small-scale 

attempts at Sphagnum reintroduction, however, these are almost entirely on an ad hoc basis. As such, 

there is little in the way of any rigorous protocol or monitoring, and any reported results, however 

informal, are likely to be skewed in favour of successful trials. Common methods include the use of 

Sphagnum turves and the application of liquidised Sphagnum. Anecdotally, success varies considerably, 

but without accurate records of methods, environmental variables and long term monitoring, there is 

little chance of establishing which factors are of importance. 

In 1979, Ferguson & Lee (1983a) transplanted Sphagnum cores from Cumbria to an area of blanket bog 

at Holme Moss, in the Peak District. The experiment was thought to have failed so was repeated in 1981, 

but this was believed to have suffered a similar fate. In the short term only S. fallax survived, but ~ 25 

years later numerous transplanted bog species were found (Caporn et al., 2006), indicating the potential 

for successful reintroduction of Sphagnum. Bayfield (1976) successfully grew moorland bryophytes 

from liquidised material, albeit not Sphagnum nor in the field. 

In parts of the Peak District and southern Pennines, Sphagnum has been inadvertently reintroduced 

during the process of revegetating bare peat. Heather brash is harvested from a number of regional sites, 

some of which contain wet heath vegetation, including Sphagnum. Brash can provide a source of 

Sphagnum propagules, although the quantity of material and species contained is entirely dependent 

upon the donor site. Thus heather brash is an inconsistent source of Sphagnum and considered unsuitable 

for landscape-scale reintroduction. 
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1.7 Knowledge gaps 

Degradation of the southern Pennine blanket bogs has occurred as the combined result of atmospheric 

pollution, poor land management and wildfire, with natural recovery slow due to the legacy of these. 

The restoration and/or recovery of Sphagnum is essential to return these peatlands to an active, peat-

forming state. Given the slow rates of natural recolonisation, it is clear that active intervention is required 

to restore widespread Sphagnum cover within the timespan of several decades. The techniques 

developed and shown to be successful on lowland raised bogs may be relevant. However, translation to 

success in these highly degraded landscapes cannot be assumed. Raised bog restoration requires 

consistent and high water availability and the provision of a humid microclimate, whilst on blanket bog, 

peat stabilisation is essential. Restoration treatment is a lengthy and expensive process, with 

considerable timescales required to develop vegetation approaching that of high quality blanket bog 

communities. The potential for Sphagnum reintroduction to these previously bare areas has yet to be 

established. Additions of lime and fertiliser may prove incompatible with Sphagnum growth. Remaining 

areas of typical bog vegetation may therefore represent a more appropriate substrate for propagule 

introduction. 

Contemporary analysis of peat and bog water shows the southern Pennine region still contains elevated 

levels of sulphur, nitrogen and heavy metals. Whilst current rates of atmospheric deposition have 

declined markedly and are now below toxic levels, there remains substantial pools of pollutants within 

the peat and vegetation. These remain a concern; drought-induced acidification can release acute flushes 

of toxic metals, whilst the effects of chronic exposure are poorly understood. Elevated levels of nitrogen 

and acidity, disrupted hydrology and harsh climate persist, make these degraded blanket peats 

immensely complex with frequent instances of interactions between these factors, both beneficial and 

detrimental. Whilst comparisons with bogs of better condition reveal these raised levels of pollutants 

(e.g. Caporn et al., 2006; Carroll et al., 2009), it is not known to what extent they currently affect 

Sphagnum growth and its subsequent recovery.  
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1.8 Research objectives 

The southern Pennines provide the opportunity to pioneer restoration methods in some of the most 

degraded upland landscapes within the UK. With legislative drivers highlighting the ecosystem services 

provided by peatlands, it is likely that the methods trialled here will form the basis of restorative works 

to be carried out in other regions of the UK. Methods and understanding gained from this work may also 

be more broadly applicable to lowland raised bogs following exploitation. Thus, from the literature and 

conservation community it is apparent there is a need to fill those knowledge gaps identified in Section 

1.7. The aims of this research are therefore: 

1. Evaluate the potential for Sphagnum reintroduction on degraded blanket bog 

2. Elucidate those biogeochemical factors affecting the natural recovery and performance of 

Sphagnum 

Restorative works on blanket bog are carried out by a number of land owners and managers, such as 

utility companies and conservation agencies. Development of best practice guidelines for Sphagnum 

reintroduction will undoubtedly benefit these efforts, helping to improve efficiency and inform decision 

making, reducing the amount of trial-and-error experimentation. This work provides an examination of 

experimental Sphagnum reintroduction, within the existing framework of wider restoration measures, 

for the benefit of applied conservation. As such, best practice guidelines should be continually updated 

and amended in line with feedback from practitioners, making use of invaluable and often unrecorded 

expertise. 

The success of Sphagnum is critical for the renewed formation of active blanket bog. It is imperative to 

understand those factors which influence the growth and performance of these species. This work 

identifies those biogeochemical variables which continue to exert influence upon Sphagnum. This 

understanding will provide the scientific basis to inform and direct conservation measures both in the 

southern Pennines and further afield. 
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Chapter 2 – Reintroduction of Sphagnum to 

degraded blanket bog 
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2.1 Introduction 

Over the last 30 years, land managers and scientists in the Peak District and southern Pennines have 

been at the forefront of ecological restoration on blanket peat. Methods developed in the 1980s 

(Anderson et al., 1997) have been modified and scaled up to successfully revegetate large swathes of 

previously bare and eroding peat (Anderson et al., 2009). However, the revegetation of bare peat is only 

the first step in restoring active blanket bog vegetation. Sphagnum provides the form and function of 

blanket bogs, with its widespread dominance required to confer a suite of ecosystem services (Lindsay, 

2010; Rydin & Jeglum, 2013). Improvements in land management and reduced levels of atmospheric 

pollution have seen an increase in bryophyte diversity and frequency (Caporn et al., 2006), 

demonstrating that environmental conditions are no longer preventing the growth of Sphagnum. 

However, legacy effects of this pollution, such as metals, acidity and nitrogen, may still be influencing 

success (Caporn & Emmett, 2009). Recent surveys (e.g. Carroll et al., 2009) and personal observation 

revealed there has been no widespread recolonisation of the bog surface, with Sphagnum seemingly 

limited to radial, vegetative expansion of existing patches. This makes the process of recolonisation 

extremely slow due to the low number and dispersed nature of these foci. The application of Sphagnum 

propagules has the potential to generate new growth, as demonstrated on degraded raised bog (Rochefort 

et al., 2003; Sliva & Pfadenhauer, 1999). On blanket bog there are fewer published reports of successful 

Sphagnum application (e.g. Hinde, 2009). Transplanting Sphagnum into the bog surface of the southern 

Pennines 35 years ago initially met with only limited success (Ferguson & Lee, 1983a) but better results 

in the longer term (Caporn et al., 2006)  

Following commercial peat extraction, Sphagnum cover can be successfully restored to lowland raised 

bog (Gaudig et al., 2014). However, the methods employed raise a number of questions regarding its 

applicability to degraded blanket peatlands, particularly in the southern Pennines. The process requires 

nearby areas of intact bog to act as donor sites from which Sphagnum can be harvested but such areas 

do not exist in the region. Material would need to be gathered from parts of the country which have not 

suffered the same level of degradation, such as Cumbria and north Wales, increasing operational costs 

whilst raising concerns of sustainability and biosecurity. Many sites with Sphagnum-dominated 

vegetation are designated Sites of Special Scientific Interest (SSSI) and protected from such activities, 

leading to potential over exploitation of other suitable donor sites. Transferring vegetation from one site 

to another may also inadvertently introduce pest species and pathogens; e.g. heather beetle (Lochmaea 

suturalis), bulgy eye (Cryptosporidium baileyi) (Baines et al., 2014) and parasitic fungi (Lyophyllum 

palustre) (Limpens et al., 2003b). Further to this, the harvesting, shredding and application of bog 

vegetation is a mechanised process, utilising heavy machinery, with surfaces prepared by levelling and 

creation of bunds to retain surface water. On drained, compacted peat surfaces following extraction and 

exploitation, this is less of a problem. However, blanket peat is generally much more inaccessible and 

unstable, where even light vehicles can cause significant damage (Shepherd et al., 2013).  
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To address these challenges, an alternative source of Sphagnum was developed by Micropropagation 

Services (EM) Ltd. BeadaMoss (Micropropagation Services, 2015) is a gel pellet containing growing 

fragments of locally sourced Sphagnum. A small quantity is collected, identified and then propagated 

under sterile conditions to produce sufficient biomass, before being shredded, encapsulated and 

incubated. Exact details are not discussed for reasons of commercial sensitivity. BeadaMoss 

(subsequently referred to as Sphagnum beads) has a number of potentially beneficial features for its use 

in blanket peat restoration. The small initial sample eliminates any concerns of sustainability, whilst the 

local provenance may help to retain any adaptive traits. Sphagnum beads provide a convenient and 

quantifiable means of handling material of a known quantity, origin and species; issues likely to be 

critical in landscape scale reintroduction of Sphagnum. 

 

 

2.2 Experimental aim 

The potential for Sphagnum reintroduction has been indicated through both deliberate and accidental 

addition of propagules.  However, unlike raised bog restoration, there has been little in the way of 

research to inform and direct such works on blanket bog. The development of best practice guidelines 

based on sound experimental design and scientific understanding is essential, hence the overall aim: 

Evaluate the potential for Sphagnum reintroduction on degraded blanket bog 

Such an aim is expansive and could cover a range of practical management considerations. Therefore, 

the scope will be limited to provide the fundamental knowledge required for successful Sphagnum 

reintroduction; namely, what source of Sphagnum and species to use, when and where to apply 

propagules, and which revegetation practices are compatible with reintroduction. A series of pilot 

studies, both in the field and under controlled conditions, were established to provide answers to these 

questions, broadly split into two categories: Sphagnum source trials and Sphagnum bead trials. 
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2.3 Sphagnum source trials 

2.3.1 Rationale 

Three potential sources of Sphagnum propagules were identified from literature, preliminary trials and 

field observations: heather brash, chopped Sphagnum (subsequently referred to as Sphagnum mulch) 

and Sphagnum beads. Whilst each method is known to be a viable source of Sphagnum growth (Hinde, 

2009; Moors for the Future, unpublished data; Rochefort et al., 2003), their comparative success and 

relevance to landscape scale restoration of degraded blanket bog is yet to be assessed. 

Sphagnum beads contain multiple fragments of Sphagnum, each with the potential to develop into a new 

plant. The small size of these fragments will mean development into sizeable plants may be lengthy, 

although excellent results were observed over 18 weeks in glasshouse trials (pers. comm., N. Wright, 

Micropropagation Services Ltd.). Sphagnum mulch may therefore provide a better source of propagules, 

with larger initial fragment sizes helping to speed establishment of plants. Increased propagule size may 

also have implications for drought tolerance, with larger pieces better able to retain moisture and 

therefore resist drought. However, Sphagnum mulch is likely to be more difficult to apply, the contents 

will be determined by the donor site, and issue of sustainability and biosecurity remain. Heather brash 

has proven to be effectively a free source of Sphagnum, where propagules have been inadvertently 

harvested, applied and established during initial revegetation works. The Sphagnum content of this 

material is variable depending upon the donor site so this too offers little control in the way of species 

choice and application rates.  

There is uncertainty surrounding the reintroduction of Sphagnum within the current framework of 

revegetation measures. The application of lime and fertiliser are thought to be detrimental to the growth 

of Sphagnum propagules (Hinde, 2009), a genus typically of acidic, nutrient-poor environments. 

Conversely, additions of phosphorus have been shown to improve Sphagnum establishment (Rochefort 

et al., 2003). These chemical additions are required for the successful establishment of nurse vegetation 

and stabilisation of peat (Anderson et al., 2009; Caporn et al., 2007). Without prior stabilisation, any 

Sphagnum propagules applied are vulnerable to the effects of erosion and burial. The nurse vegetation 

may also afford other benefits, such as improved microclimate, helping to reduce desiccation of the 

Sphagnum added. However, other vegetation, such as Calluna, may lead to drying of the peat and 

development of drainage features (Holden, 2005c; Shepherd et al., 2013). Establishing beneficial 

association between vegetation and successful Sphagnum growth will help to focus larger reintroduction 

works. 

Research conducted on lowland raised mires provides clues to these issues, however, the harsh 

conditions of southern Pennine blanket peatlands means direct relevance cannot be assumed. Severe 

climatic conditions, disturbed hydrology, variable topography, and a legacy of industrial pollution 

confound individual challenges. 
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2.3.2 Objectives 

Field and indoor trials were established to provide experimental evidence for the following aim: 

Evaluate different sources of propagules for use in landscape-scale Sphagnum reintroduction to 

degraded blanket bog 

A series of objectives were identified for the field trials: 

- Compare Sphagnum establishment between Sphagnum beads, Sphagnum mulch, and heather 

brash 

- Compare establishment of Sphagnum propagules on bare and revegetated substrates 

- Establish associations between successful Sphagnum establishment/ growth and the 

surrounding vegetation 

A concurrent indoor trial was also established to provide results over a much shorter timescale. 

Sphagnum growth is known to be very slow in the southern Pennines due to harsh climatic conditions, 

exacerbated by poor hydrological and biogeochemical environment (e.g. Carroll et al., 2009). This trial 

was designed to complement the field trial, with the objectives of: 

- Identify species present in Sphagnum mulch and heather brash 

- Determine the impact of polluted substrate upon the growth of Sphagnum 

 

 

2.3.3 Methods 

Field trials 

Trials were established in May 2010 on Holme Moss, a high level plateau (524 m above sea level) in 

the northern Peak District (SE 095040). The site has been extensively studied since the 1970s (e.g. 

Anderson et al., 1997; Ferguson & Lee, 1983a; Tallis, 1997a), and is noted for the severity, variety and 

extent of degradation features present (Tallis, 1987). Bare peat, gullies and species-poor vegetation are 

widespread whilst Sphagnum is largely absent, thought to be the combined result of wildfire, over-

grazing and atmospheric pollution. Holme Moss has a history of pioneering ecological restoration. 

Construction of a replacement radio transmitter in 1982 – 83 devastated 8 – 10 ha of blanket bog, 

providing the opportunity to develop methods of revegetation (Anderson, 1997b). It is these methods 

which have been modified, scaled up and employed since 2003, when Holme Moss was one of the first 

sites to be subjected to landscape-scale restoration measures. Much of the once bare peat has now been 

revegetated with a nurse crop of lowland amenity grasses and significant cover of Calluna vulgaris, 

Eriophorum angustifolium and E. vaginatum. Areas of continuous vegetation cover broadly fall into one 
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of three types: dwarf shrub, cotton grass, and Deschampsia/ Nardus dominated, broadly approximating 

NVC communities M19 and M20a (Rodwell, 1991). 

Trials consisted of three replicate blocks each on bare peat and treated surfaces (previously bare, now 

revegetated following treatment). Replicate blocks were located near one another to ensure the substrate 

was similar in each of the three, and were searched for Sphagnum before proceeding to ensure its 

absence. Blocks consisted of four treatment strips, dimensions 12.5 m × 2 m separated by 0.5 m gap 

between each strip (total block dimensions 12.5 m × 9.5 m). The four treatments were control, heather 

brash only (brash only), Sphagnum beads and heather brash (beads and brash), and Sphagnum mulch 

and heather brash (mulch and brash). Sphagnum beads were applied at a rate of 400 m-2, with equal 

proportions of S. fallax and S. palustre, before being covered with brash. Sphagnum mulch was applied 

until the surface was covered (< 1 cm depth), before being covered with heather brash. Brash was spread 

in all cases to a depth of 1 cm until the surface was covered, and no additions were made to the control 

strip. Brash was added to each treatment to ensure the Sphagnum material applied was not removed by 

wind or rain, and to enhance microclimatic conditions for Sphagnum establishment (Price et al., 1998). 

The Sphagnum mulch was harvested from an unknown donor site in Cumbria and double chopped to 

produce the mulch (provided by Barker and Bland Ltd.), which appeared to contain S. capillifolium and 

S. papillosum. Sphagnum beads contained equal proportions of S. fallax and S. palustre and were 

provided by Micropropagation Services (EM) Ltd. Heather brash was provided by the Moors for the 

Future Partnership; standard material used in peat stabilisation works. 

The experimental blocks were visited annually and established Sphagnum marked using small canes. 

Final plot monitoring and recording of Sphagnum took place in August 2013, 39 months after 

establishment. Treatment strips were searched intensively for all visible Sphagnum plants, and when 

found, a record of the species, size and associated vegetation was made. Sphagnum size was measured 

as the diameter of individual plants, or dimensions of simple polygons for clumps, allowing the area to 

be calculated. This method was used as it was very difficult to count individual plants or capitula, which 

may have originated from a single bead. A record of the vegetation associated with the Sphagnum was 

also made, using a 25 cm × 25 cm quadrat. Any additional features of the treatment strip or experimental 

block as a whole were also recorded. Trampling of the plots was minimised by surveying from the 

treatment strip edges. 
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Indoor trial 

Twelve half-trays were filled with peat to a depth of 3 cm, six with commercial peat (horticultural 

Sphagnum peat: Growmoor Irish moss peat), and the other six with peat from an unvegetated area of 

Holme Moss. Triplicates of Sphagnum mulch and heather brash (same material used in field trials) were 

added separately to each of the two peat types, to a depth of 1 cm. The trays were randomly arranged in 

a 3 × 4 configuration and covered with clear plastic sheeting to maintain high levels of humidity. Trays 

were left to grow in an artificially lit room (150 µmol m-2 s-1, 16 hour day length), mean temperature ~ 

20 oC, and watered weekly with deionised water using a spray bottle. After 12 months, all species were 

identified and their percentage cover estimated. 

 

 

Statistical analyses 

Univariate statistical analyses were carried out in Minitab v.16 (Minitab Inc., 2010). Multivariate 

analyses were implemented in the R software environment (R Core Team, 2013), using RStudio 

(RStudio Team, 2013), lattice (Sarkar, 2008), MASS (Venables & Ripley, 2002), permute (Simpson, 

2013) and vegan (Oksanen et al., 2013) packages. 

  

 

2.3.4 Results and analysis 

Field trials 

No Sphagnum growth was recorded on the bare peat substrate for any of the treatments across all three 

replicate blocks. Consequently, it is excluded from further analysis. Similarly, no Sphagnum was found 

on control treatments (i.e. no brash, beads or mulch) on the vegetated substrate and so they have been 

omitted from the following results. 

On the revegetated surface, the greatest total numbers of Sphagnum plants/ clumps were found where 

mulch and brash had been applied, with S. capillifolium being most common. Sphagnum beads and brash 

produced the next highest number of plants, predominantly S. capillifolium and S. papillosum. Brash 

only treatments produced a low number of Sphagnum plants, except for in a single replicate (rep. 3), 

where numbers were much higher. Table 3 provides full details of plant counts and species 

identification. 
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Table 3 – Identity and number of Sphagnum plants/ clumps across replicates of the three field treatments 

Treatment Replicate S. capillifolium S. fallax S. palustre S. papillosum Total 

Brash only 1 1    1 

 2 3   1 4 

 3 30 17  20 67 

Beads and brash 1 15   6 21 

 2 12 1 1 9 23 

 3 12   11 23 

Mulch and brash 1 285   165 450 

 2 177 2  74 253 

 3 283   86 369 

 

 

 

Figure 4 – Total Sphagnum cover (mm2) of four species across three replicates of the treatments. 
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Figure 4 clearly shows Sphagnum cover was much greater on treatments of mulch and brash, with S. 

capillifolium consistently higher in cover than S. papillosum. Both S. capillifolium and S. papillosum 

were found in variable quantities across replicates of the beads and brash treatments. There was 

negligible cover of S. fallax and S. palustre. Brash only treatments generated little Sphagnum cover, 

except for in the case of replicate 3; S. capillifolium, S. fallax and S. papillosum were found in 

considerable quantity here. 

 

Figure 5 – Non-metric multidimensional scaling (NMDS) ordination of vegetation composition from 

25 cm × 25 cm quadrats containing Sphagnum, separated by the three treatments. Species abbreviations 

can be found in Appendix 1. The most abundant species are added first and where species labels overlap, 

they have been omitted and the locations marked (+); all species labels are displayed in Appendix 2.  
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Non-metric multidimensional scaling (NMDS) was used to characterise the vegetation composition, and 

to detect positive associations between Sphagnum establishment and small-scale species composition. 

NMDS maps observed community dissimilarity nonlinearly onto ordination space, using Bray-Curtis 

index in this case. Rare species (single occurrences) were removed from the vegetation cover data, 

before being log10 (x+1) transformed (Alday et al., 2011). 

 

Figure 6 – Non-metric multidimensional scaling (NMDS) ordination of vegetation composition from 

25 cm × 25 cm quadrats containing Sphagnum, separated by % cover of Sphagnum. Species 

abbreviations can be found in Appendix 1. The most abundant species are added first and where species 

labels overlap, they have been omitted and the locations marked (+); all species labels are displayed in 

Appendix 2. 
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Figure 5 and Figure 6 shows NMDS ordinations of vegetation recorded from 25 cm × 25 cm quadrats 

containing Sphagnum. Figure 5 distinguishes between Sphagnum source treatments, whilst Figure 6 

separates by differences in Sphagnum cover within quadrats. Vegetation was found to be different 

between Sphagnum source treatments (Figure 5), using permutational analysis of variance 

(PERMANOVA, P = 0.001). Brash only quadrats appear to be associated with Campylopus flexuosus 

and occupy a different region of the ordination, compared to the mulch and brash quadrats. The region 

occupied by beads and brash quadrats is almost entirely contained within that of mulch and brash, with 

common associations of Campylopus introflexus, Aulacomnium palustre and Eriophorum vaginatum. 

Vegetation composition was found to be significantly different between varying levels of Sphagnum 

cover (PERMANOVA, P = 0.006, Figure 6). 

 

 

Indoor trial 

 

Figure 7 – Heather brash (top) and Sphagnum mulch (bottom) growth on commercial (left) and Holme 

Moss peat (right) after ~ 3 months. 
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After 12 months, species identity and cover were recorded. Heather brash grown on commercial peat 

produced substantial cover of Sphagnum papillosum (> 40 %) and Trichodon cylindricus, with lesser 

amounts of Calluna vulgaris and Vaccinium oxycoccos. When grown on Holme Moss peat, the brash 

trays were dominated by C. vulgaris, with S. papillosum and T. cylindricus forming a much smaller 

component. S. capillifolium was present in two of the trays, along with Polytrichum commune. 

Sphagnum mulch grown on commercial peat produced a high cover of S. capillifolium (~ 30 %) and S. 

papillosum (70 %), with minor contributions from C. vulgaris, Odontoschisma sphagni, S. cuspidatum, 

T. cylindricus and V. oxycoccos. When grown on peat from Holme Moss, the Sphagnum mulch produced 

an even higher cover of S. papillosum (~ 90 %) at the expense of S. capillifolium (~ 10 %). P. commune 

and T. cylindricus were also present in notable quantity (see Figure 7). Table 4 gives full details of the 

vegetation for each of the 12 trays. 

 

 

Table 4 – Vegetation composition of the indoor trial, with additions of heather brash (Brash) and 

Sphagnum mulch (Mulch) grown on commercial and Holme Moss peat. 
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Substrate Addition Replicate 

Commercial Brash 1 - 5 - 1 1 - - - 40 60 1 

Commercial Brash 2 - 10 - - 1 - - - 40 60 5 

Commercial Brash 3 - 10 - - 2 - - - 70 15 5 

Commercial Mulch 1 - 3 - - 1 - 25 5 70 0.5 1 

Commercial Mulch 2 - 5 - - 1 - 30 0.5 70 1 1 

Commercial Mulch 3 - 2 - - 1 - 30 - 70 5 1 

Holme Moss Brash 1 - 90 - - - 10 0.5 - 5 10 - 

Holme Moss Brash 2 - 30 15 - - 15 5 - 25 20 - 

Holme Moss Brash 3 15 90 - - - -  - 5 10 - 

Holme Moss Mulch 1 - 1 - 10 - 10 10 - 80 10 5 

Holme Moss Mulch 2 - - - - - 1 5 - 95 1 - 

Holme Moss Mulch 3 - - 2 - - 2 15 - 85 2 - 
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2.3.5 Discussion 

Field trials 

Following application of materials to bare peat, there was no Sphagnum growth found on any of these 

plots, thought to be the result of heavy erosion they suffered. Initially, Sphagnum fragments could be 

found on the mulch treated strips, appearing hydrated and in contact with the peat surface, indicating 

their potential for establishment and growth. However, with successive field visits, the amount of 

material remaining on the peat surface decreased until only the heaviest heather stems remained (Figure 

8). During periods of drought Sphagnum fragments became visibly desiccated, whilst propagules were 

thought to be washed off and/or buried in fluvial peat during subsequent rainfall events. The greatest 

losses in surface material occurred over winter, presumably due to increased precipitation, wind and the 

effects of snow cover, despite the inclusion of heather brash in each of the treatments intended to reduce 

this (Caporn et al., 2007). No Sphagnum beads were found during any visits to the plots. However, the 

beads are known to shrivel and all but disappear before establishing into plants (Hinde, 2009). The 

application of heather brash to the plots did appear to reduce erosion, with the surface of treatment strips 

standing slightly proud of the control treatments and surrounding bare peat, which displayed a uniform 

surface pattern of erosion. The plots were located on a sloping area of bare peat, estimated to be a 

gradient of ~ 6.5° from GPS recorded data, although this does not include smaller scale variations in 

topography. This is considerably less than the 18° suggested to be sensitive to disturbance (JNCC, 2009), 

but this is likely to relate to vegetated slopes. However, slopes > 4° were found to produce continued 

erosion in drainage channels (Holden et al., 2007a), demonstrating the slight gradient required for 

erosion to continue.  

Despite the complete failure of these experimental plots, it serves to support the current revegetation 

and surface stabilisation works currently employed. Without this, the application of Sphagnum 

propagules directly to sloping and erosion prone bare peat is likely to fail. Flatter areas not susceptible 

to such rapid rates of erosion may prove more suitable substrates for propagule application directly to 

bare peat. 

Sphagnum reintroduction treatments were more successful on the revegetated substrate, with no 

Sphagnum found on any of the control strips, giving a clear indication that all plants found were a result 

of the treatments applied. Plots were intentionally established in areas with no Sphagnum present. The 

Sphagnum mulch and heather brash treatment generated the greatest number of plants and cover, with 

S. capillifolium accounting for > 60 % of plants in each replicate. The unknown and likely variable 

proportions of S. capillifolium and S. papillosum contained in the Sphagnum mulch makes it difficult to 

offer any meaningful assessment of their relative performance. From the indoor trial, it appears S. 

papillosum was the most frequent species present, yet in the field trials S. capillifolium was dominant. 

This may be due to the variability in the harvested material, or perhaps be the result of selective 

pressures, such as desiccation and pollution tolerance, including the additions of lime and fertiliser used 
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in revegetation works. Donor material is inherently variable, with inter-site differences likely to be 

largest, but with significant intra-site variation as the harvester passes over various microtopographical 

niches. 

 

  

 

Figure 8 – Establishing the Sphagnum propagule trial, May 2010 (left). Note the density of material 

applied to the peat surface. Monitoring of the same experimental block, July 2012 (right). Erosion has 

removed nearly all the material applied. 

 

 

From the brash only results, it is likely that the contribution to Sphagnum plant numbers is low; replicates 

one and two produced only 1 and 4 plants, respectively. Replicate three appears to have been 

inadvertently inoculated with Sphagnum mulch from the adjacent treatment strip; this is probably the 

result of wind during application of the material. However, heather brash should not be ignored as an 

important, if inconsistent, potential source of Sphagnum. Some areas subjected to restorative works in 

the Peak District have seen increases in Sphagnum cover (Moors for the Future, unpublished data). 

These can be explicitly linked to applications of heather brash from particular donor sites. Whilst 

undoubtedly a viable source of propagules, issues of sustainability would arise if Sphagnum-rich areas 

were repeatedly targeted for cutting. As with the Sphagnum mulch, inter- and intra- donor site variation 

could be considerable within heather brash material. 

The results from Sphagnum bead and brash treatments are more difficult to interpret. The species sown, 

S. fallax and S. palustre, show almost no establishment across the replicates, in contrast to S. 

capillifolium and S. papillosum which show a low but consistent presence. This is problematic since in 

the brash only treatments, Sphagnum occurrence was very low, indicating only a small amount of 
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propagules were present in the brash. However, on the beads and brash treatments, a greater number of 

plants were found. This could be attributed to: 

a) The dispersed and variable quantities of Sphagnum propagules within the heather brash, reflecting 

the heterogeneous vegetation of the donor site. From the indoor trial, it is known that the heather 

brash contained a quantity of S. capillifolium and S. papillosum, but more importantly is the variable 

amount of each (Table 4). 

b) The misidentification of Sphagnum. Identification of individuals can be problematic, exacerbated in 

this scenario by their small size, the non-destructive method used, and the atypical growth and 

colouration displayed. S. palustre and S. papillosum are notoriously difficult to distinguish, with 

microscopy often required for a diagnostic assessment. Small, green S. capillifolium could easily be 

confused with S. fallax too. Identification in the field usually relies upon the observation of stem 

leaves under a hand lens, along with noting the prevailing environmental conditions; e.g. habitat type, 

hydrological conditions. However, the very nature of these trials seeks to reintroduce Sphagnum to 

an atypical habitat over the course of several years. Thus, plants could not be removed to assist 

identification, nor would the environment provide any cues. Plants grown from beads look very alike 

in their early growth stages, with none of the features used to differentiate between species yet 

evident. Further to this, Sphagnum mulch grown indoors was observed to take on a brown, sickly 

appearance with uncharacteristic growth form. 

c) The variable success in Sphagnum establishment between the strips. This seems unlikely given the 

fairly constant level of S. capillifolium and S. papillosum found across the beads and brash replicates, 

and that experimental blocks were chosen for their surface homogeneity. 

The apparent poor establishment of the Sphagnum beads may be due to the considerable period of lag 

between application and establishment as a sizeable plant (Hinde, 2009), due to the small initial 

propagule size and challenging environmental conditions. Indeed, the lag can be such that plots are 

written off as failures only to be revisited several years later, with significant Sphagnum cover present 

(Figure 9). Hence, a lack of presence should not be considered a failure until many (> 5) years later. 

This apparent failure, or perhaps dormancy, has also been observed in transplanted Sphagnum material 

(Caporn et al., 2006; Ferguson & Lee, 1983a). Time, it appears, may be one of the greatest factors 

influencing the success of Sphagnum reintroduction. 

The vegetation associated with successful Sphagnum establishment was found to be different between 

treatments. Mulch and brash, and beads and brash treatments shared similar vegetation compositions, as 

shown by their over-lying regions on the NMDS ordination, whilst brash only displayed some separation 

(Figure 5). This difference is more than likely due to the material applied to the treatment strips; 

Hylocomium splendens, Kindbergia praelonga and Pleurozium schreberi are locally uncommon, 

supporting this conclusion. Propagules of additional heathland and bog species will always be present 

in any material harvested, however, it is difficult to apportion origin in this trial, nor does the indoor 
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growth trial offer any insight either. It would be expected that beads and brash, and brash only treatments 

would be the most similar in species composition, since they have received the same source of material. 

This was not the case, and may once again be an indication of the variable nature of harvested material.  

 

 

 

Figure 9 – Preliminary Sphagnum bead trial being established in June 2008 (left). Resulting Sphagnum 

cover in August 2012 (right), following presumed failure in the intervening years. 

 

 

There appeared to be no such distinction in vegetation between levels of Sphagnum cover. From the 

NMDS ordination, there does appear to be a narrowing focus towards the centre of the plot but not to 

any statistically significant degree (Figure 6). 

The successful experimental plots were established on a revegetated area, treated some 4/5 years earlier 

with lime, fertiliser, grass seed and heather brash. At the time of the Sphagnum trial set up, the plot 

vegetation was well established with numerous small breaks in the surface cover, exposing the 

underlying peat. These gaps were observed to be preferentially colonised by Sphagnum, indicating that 

contact with the underlying substrate was beneficial (Figure 10). 
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Figure 10 – Set up of the Sphagnum propagule trial on the revegetated surface, May 2010 (left). Note 

the gaps in vegetation through to the peat below. New Sphagnum plants found and marked with canes, 

August 2012 (right). Note the unvegetated area covered by the quadrat where Sphagnum was found. 

 

 

It was not possible to quantify this relationship from the data collected, however, there were indicators 

from the vegetation associated with successful Sphagnum establishment. Both S. capillifolium and S. 

papillosum share close association with Campylopus introflexus, C. pyriformis and Hypnum jutlandicum 

(Figure 5, Sph.cap label obscures Sph.pap); these three mosses being well-known pioneer species able 

to rapidly colonise bare ground (Atherton et al., 2010; Smith, 2004). This was thought to be due to the 

underlying peat remaining moist for a greater proportion of time, compared to the vegetated surface, 

hence the greater establishment in these locations. The revegetation of bare peat is necessary to limit 

further erosion (Worrall et al., 2011), however, the resulting surface crust of heather brash and nurse 

crop appears to be somewhat hostile, rapidly drying out after exposure to heat and wind. Any Sphagnum 

propagules caught in this layer are likely to succumb to desiccation. With increasing vegetation cover 

microclimatic conditions improve as more moisture is trapped, movement of air is reduced and shading 

increases (Groeneveld et al., 2007; Rochefort et al., 2003). Furthermore, vegetation increases surface 

roughness and intercepts occult precipitation increasing the amount of water made available to plants 

(Herckes et al., 2002). Thus, it would appear there is a need to balance surface stabilisation with the 

provision of suitable niches for Sphagnum to establish. 

From the results collected, it would seem clear that Sphagnum mulch and heather brash was the most 

successful treatment at establishing Sphagnum plants. However, comparing establishment of the 

different Sphagnum sources is not simple; both measures presented here (counts and cover) are not 

directly comparable between treatments. The amount of Sphagnum found should increase proportionally 

with the number of propagules applied. However, depth of Sphagnum mulch, number of beads, and 

depth of heather brash are not comparable measures. The number of propagules applied is not known in 
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all cases, hence a direct comparison cannot be drawn. Assessment of Sphagnum cover suffers from a 

similar drawback, since cover will be related to the number of plants present. Furthermore, cover based 

measures will be skewed in favour of larger initial fragment size. Sphagnum mulch and heather brash 

contained entire capitula and stems up to 20 mm, whereas the beads contain fragments no bigger than a 

few mm. 

The fundamental requirements for successful Sphagnum reintroduction appear to be a stable substrate 

and the provision of sufficient moisture (Quinty & Rochefort, 2003; Rochefort et al., 2003). On mobile 

surfaces, Sphagnum propagules are exposed to environmental extremes. Desiccation, erosion and burial, 

effectively destroy any recolonisation potential. On revegetated substrates, the surface is sufficiently 

stabilised to avoid burial and the nurse vegetation acts to improve microclimatic conditions. However, 

the surface of this vegetation is still a hostile environment where propagules can become trapped and 

succumb to desiccation. Sphagnum only successfully established where propagules were able to make 

contact with the peat surface. Whilst the upper layers of vegetation readily dry out, the underlying peat 

remains moist for greater proportion of the time. Intact bog systems provide this moisture through a high 

and stable water table, helping to mitigate periods of drought. On Holme Moss, and indeed many other 

areas of the Peak District and southern Pennines, the hydrology is severely disturbed with very low 

water tables (Allott et al., 2009). This exacerbates the effects of drought periods, with severe 

consequences for Sphagnum propagules. Smaller propagules will be most severely affected, with larger 

fragments better able to regulate their moisture content and therefore resist desiccation (Gaudig et al., 

2014; Rochefort et al., 2003). This may be a critical factor in the performance difference between 

Sphagnum mulch and Sphagnum beads. 

 

 

Indoor trial 

After only a short period of growth, there were obvious differences in the growth of both Sphagnum 

mulch and heather brash on the two substrates. Sphagnum establishment occurred more rapidly on 

commercial peat than Holme Moss peat, for both treatments. This growth also appeared to be healthier, 

with Sphagnum plants appearing chlorotic or discoloured when grown on Holme Moss peat. Given the 

shared growing conditions, the chemical properties of the substrate are potentially exerting an influence 

(see Chapter 3 for assessment of Holme Moss peat). 

Early growth of Sphagnum mulch on Holme Moss substrate was typified by the dominance of algae and 

smaller mosses, such as Trichodon cylindricus and Polytrichum commune, thought to be caused by 

elevated levels of nutrients (Atherton et al., 2010; Corradini & Clément, 1999). However, with passing 

time, the balance of vegetation shifted in favour of Sphagnum. By the end of the 12 month growing 

period, mulch applied to both commercial and Holme Moss peat had resulted in almost complete 



2. Reintroduction of Sphagnum to degraded blanket bog

 

 

 51  

Sphagnum cover. Whilst levels of cover were similar between the substrate types, the species 

composition was not. S. papillosum was dominant on both peat types. However, S. capillifolium made 

up at least 25 % of cover on commercial peat, with this value being closer to 10 % on Holme Moss peat. 

This difference in vegetation included other species (e.g. Vaccinium oxycoccos and Odontoschisma 

sphagni), and may be the result of selection pressure caused by the biogeochemistry of the southern 

Pennine peat (see Chapter 3). The apparent lag in growth of Sphagnum could be caused by a shift in 

competitive ability, as the more rapidly growing species make use of the available nutrients and they 

become depleted (Bates, 1992; 2000). The early growth of Sphagnum may also have served to improve 

the chemical conditions of the peat by accumulating pollutant ions (Clymo, 1963), hence giving rise to 

the poor initial growth but facilitate subsequent development. Once these were bound or otherwise 

depleted, Sphagnum growth became healthy. Analysis of peats from the southern Pennines and Peak 

District has shown levels of nutrients and heavy metals to be elevated, when compared with references 

sites in the UK (e.g. Caporn et al., 2006; Carroll et al., 2009; Rothwell et al., 2005a). 

The growth of heather brash was markedly different on the two substrates. Initially, Calluna vulgaris 

and Sphagnum grew well on commercial peat. S. papillosum remained a significant component (at least 

40 %) of the vegetation, however, C. vulgaris formed only a minor part (maximum 10 %). On Holme 

Moss peat, initial growth was dominated by T. cylindricus with little in the way of C. vulgaris. However, 

by 12 months, C. vulgaris was dominant in all cases and had very high cover (90 %) in two of the 

replicates. Again, this was attributed to the presence of increased nutrients. The occurrence of S. 

papillosum from brash appears to be variable, in both the indoor and field trials, suggesting the brash 

material itself is highly variable in Sphagnum content. 

Indoor experiments, under controlled conditions, are a useful means of rapidly answering very specific 

questions. Some of the challenging environmental conditions of the field are removed, with increased 

water availability, humidity and temperature allowing establishment and growth at an increased rate. 

Similarly, the effects of polluted substrate can be seen more rapidly because of this. However, care must 

be taken when interpreting the results; they cannot simply be extrapolated into the field scenario. Indoor 

trials are extremely simple and lack the complexity of their in situ equivalents. Conversely, the immense 

complexity of field trials in such polluted and environmentally challenging conditions may render field 

results extremely difficult to interpret. Thus, the use of indoor experiments provides a rapid means with 

which to aid the understanding of their concurrent field trial.  
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2.3.6 Conclusion 

These preliminary trials serve to illustrate the potential for successful Sphagnum reintroduction to 

degraded blanket bog, and highlight critical factors. In the field, surface stability and contact with the 

peat surface were implicated as being significant for Sphagnum to establish. To prevent propagules 

being buried or washed off, unstable bare peat areas must first be revegetated. Contact with the 

underlying bare peat in these revegetated conditions was thought to be beneficial because of increased 

moisture availability. Sphagnum mulch was found to produce a high number of established plants on 

revegetated substrate. The real measure of success will only be known in years to come, with continued 

monitoring of these plots required to assess increases in Sphagnum cover. Heather brash was confirmed 

as an inconsistent source of Sphagnum propagules, whilst the establishment of Sphagnum beads proved 

disappointing. The polluted peat substrate of Holme Moss, and perhaps much of the southern Pennine 

region, was found to influence the growth of Sphagnum, but not prevent it. Water availability was 

thought to be the critical in the establishment of Sphagnum from small propagules, as found by others 

(Price, 1997; Sagot & Rochefort, 1996). Sustainability and biosecurity issues were raised regarding the 

use of Sphagnum mulch, in addition to transport and handling difficulties. Given the vast tracts of 

degraded blanket peatland targeted for reintroduction, such operational issues become extremely 

important. The micropropagation of Sphagnum may be the only viable means of obtaining the quantities 

required, whilst providing the greatest number of options; e.g. species selection, method of delivery. To 

this end, these preliminary trials serve to validate alternative methods of Sphagnum reintroduction, 

providing practitioners with a toolbox of tested techniques for use in different degradation scenarios. 

For example, small peat pans on level ground are not prone to erosion, as on larger, sloping expanses. 

These areas could be more intensively targeted with Sphagnum mulch and heather brash applications 

directly, potentially bypassing the many years required for typical revegetation measures (lime, 

fertiliser, seed and brash).  
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2.4 Sphagnum bead trials 

2.4.1 Rationale 

The development of Sphagnum beads provides a convenient means with which to experimentally 

introduce propagules of known species identity at quantifiable rates. The southern Pennines provide the 

ideal setting for such trials, with a range of degradation types and features, combined with on-going 

restoration works of various ages. This provides a unique opportunity to investigate Sphagnum 

reintroduction as part of pioneering ecological restoration works. 

Sphagnum species occupy distinct niches, separated by hydrological and biogeochemical tolerances. 

However, these niches are typically governed by their competitive ability rather than preference 

(Robroek et al., 2007a). Thus, species selection for use in restoration works should not be limited by 

typical niche characteristics. Given the polluted nature of these peatlands, and additions of nutrients and 

lime as part of revegetation works, tolerance of these is likely to be a defining feature of Sphagnum 

species used in landscape scale reintroduction. Similarly, the often disturbed hydrology of degraded 

blanket peatlands means there is a balance to be addressed in species choice. Sphagnum species typical 

of hollows and lawns are highly productive under optimal conditions but are susceptible to periods of 

drought, whilst hummock-forming species are less productive but have a greater capacity for 

withstanding drought (Robroek et al., 2007b; Wagner & Titus, 1984). 

The revegetation of bare peat is a lengthy and expensive process requiring many years to restore typical 

bog vegetation where there is little, if any, Sphagnum present. If Sphagnum could be successfully 

introduced during or early in the revegetation process, it may be possible to shorten the pathway to 

restoring active bog vegetation. It may also be possible to identify priority areas for reintroduction based 

on the vegetation types associated with successful Sphagnum reintroduction. 

Research on lowland raised bogs shows a high and stable water table is required for successful 

Sphagnum restoration (Quinty & Rochefort, 2003; Wheeler & Shaw, 1995). However, it has also been 

noted that with sufficient precipitation or cloud cover (e.g. upland areas), conditions could easily be wet 

enough to support Sphagnum (Grosvernier et al., 1995). Given the lower temperatures and reduced rates 

of evaporation, higher levels of precipitation and regular occult inputs, Sphagnum growth on degraded 

blanket bog may be less influenced by the prevailing hydrological conditions. 

In areas of compromised hydrology, Sphagnum beads will be vulnerable to the prevailing climatic 

conditions. Propagules are likely to be susceptible to drought (Glime, 2007; Rochefort et al., 2003), thus 

making the annual timing of application relevant. Autumn and winter months represent greater water 

availability but a reduced capacity for growth and possible exposure to frost, whilst spring and summer 

months present a greater opportunity for growth but a greater risk of drought and desiccation. 
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Establishing the what, where and when of Sphagnum reintroduction will provide the fundamental 

knowledge and understanding required to make landscape scale blanket bog restoration successful. This 

will provide the foundation for best practice guidelines and further refinement through additional 

manipulations and stakeholder feedback. 

 

 

2.4.2 Objectives 

Field and indoor trials were established to provide experimental evidence for the following aim: 

Evaluate the potential for landscape-scale Sphagnum reintroduction to degraded blanket bog 

This Section aims to provide the fundamental knowledge required for successful Sphagnum 

reintroduction; namely, which species to use, what substrate to apply propagules to, and when to apply 

propagules in terms of both the season and stage of the revegetation process. 

A series of objectives were identified for the field trials: 

- Compare performance of Sphagnum species used in reintroduction 

- Compare establishment of Sphagnum beads on bare and revegetated substrates, and existing 

vegetation substrates 

- Establish associations between successful Sphagnum establishment/ growth and surrounding 

vegetation 

- Identify the characteristics of areas with successful Sphagnum establishment 

- Establish compatibility of Sphagnum reintroduction with current revegetation methods 

A concurrent indoor trial was also established to provide results over a much shorter timescale. This 

trial was designed to complement the field trial, with the objectives of: 

- Compare growth of Sphagnum beads between species 

- Determine the impact of polluted substrate upon the growth of Sphagnum 
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2.4.3 Methods 

Field trials 

Numerous pilot field trials were established between November 2009 and August 2012 on Holme Moss 

and Black Hill (Figure 12). Black Hill (SE 070040, 582 m a.s.l.) is adjacent to Holme Moss (SE 078046), 

on the same high level, peat covered plateau. Heyden Clough separates the two sites, with Black Hill to 

the west, and Holme Moss to the east. Black Hill has suffered a similar fate to Holme Moss, with 

extensive erosion and degradation and has subsequently received the same revegetation treatments. The 

site is typified by bare peat, large areas of nurse crop vegetation, peat hags topped with Empetrum 

nigrum and Vaccinium myrtillus, and extensive gullies both bare and naturally revegetated, comprising 

grass and sedge mixtures. 

 

 

 

Figure 11 – Typical plot configuration, showing 4 m × 1 m treatment strips separated by 0.5 m gap. 
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Trials consisted of replicate blocks on a number of substrate types, broadly categorised as bare (no 

vegetation), treated (revegetated following applications of lime, fertiliser, grass seed and heather brash), 

or vegetated (natural, original, continuous vegetation). Replicate blocks were chosen for their similar 

substrates and nearby locations. The experimental blocks consisted of a number of 4 m × 1 m treatments 

strips, separated by at least 0.5 m gap between each strip (Figure 11). Treatments were sown with a 

range of individual Sphagnum bead species at a rate of 400 m-2, provided as required by 

Micropropagation Services (EM) Ltd. Across various trials S. capillifolium, S. cuspidatum, S. fallax, S. 

fimbriatum, S. palustre and S. papillosum were used; species naturally present in the region (Carroll et 

al., 2009). Appendix 3 gives full details of dates, substrate and species of each trial.  

The experimental blocks were visited annually and established Sphagnum was marked using small 

canes. Monitoring and recording of Sphagnum was completed in August 2013. Treatment strips were 

searched intensively for all visible Sphagnum plants, and when found, a record of the species, size and 

associated vegetation was made. Sphagnum size was measured (to the nearest mm) as the diameter of 

individual plants, or dimensions of simple polygons for clumps, allowing the area to be calculated. A 

record of the vegetation associated with the Sphagnum was also made, using a 25 cm × 25 cm quadrat. 

Any additional features of the treatment strip or experimental block as a whole were also recorded. 

Monitoring made use of the spacer strips to avoid trampling of treatment areas, whilst allowing for 

thorough searching. 

 

 

Indoor trial 

Ten half-trays were filled with peat to a depth of 3 cm, five with commercial peat (horticultural 

Growmoor Irish moss peat), and the other five with peat from an unvegetated area of Holme Moss. To 

each of the trays five rows of six Sphagnum beads were added, with each row containing a different 

Sphagnum species. The species used were S. cuspidatum, S. fallax, S. fimbriatum, S. palustre and S. 

papillosum (S. capillifolium beads were still under development at this stage); rows were randomly 

assigned. Trays were randomly arranged in a 2 × 5 configuration and covered with clear plastic sheeting 

to maintain high levels of humidity. Trays were left to grow in an artificially lit room (150 µmol m-2 s-1 

16 hour day length), mean temperature ~ 20 oC, and watered weekly with deionised water using a spray 

bottle. After six months, all plants were harvested, cleaned of all peat and dried at 40 °C for 48 hours. 

Dry mass of plants originating from individual beads was recorded using a four-point balance. Great 

care was taken to ensure all peat was removed, and there was no loss of plant tissue during the process.  



 

 

 

Figure 12 – Location and date of experimental trials established on Holme Moss and Black Hill. 
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2.4.4 Results and analysis 

Field trials 

No Sphagnum growth was recorded on any of the control treatments strips (i.e. no Sphagnum applied) 

and so they are omitted from further analysis. Trials established in August 2010 were the most successful 

(Figure 13), with 3.05 % of all Sphagnum beads sown establishing successfully. November 2009 was 

the next most successful month (0.33 %), followed by April 2010 (0.03 %), May 2011 (0.02 %), 

September 2010 (< 0.01 %) and finally August 2012 (0 %). Growth of Sphagnum beads on bare peat 

was very poor, with a successful establishment rate of 0.004 % across all trials plots. Vegetated and 

treated (revegetated) substrates proved more successful, with rates of 0.299 % and 0.507 %, respectively. 

Statistical analyses are not reported due to the nested and irregular experimental design.  

 

 

Table 5 – Summary of % (and number) of successfully established Sphagnum beads across the field 

trials. Percentages are calculated from the initial number of Sphagnum beads applied. No data (-) 

indicates that species was not used as part of the trial. Substrate types are broad categories and not 

comparable between establishment dates. Species abbreviations can be found in Appendix 1. 

Date Substrate Sph.cap Sph.cus Sph.fal Sph.fim Sph.pal Sph.pap 

2009/11 bare - 0 0.02 (1) 0 0 0 

 vegetated - 3.75 (60) 1.79 (86) - - - 

 treated - 0 0.02 (1) 0.08 (4) 0.29 (14) 0.25 (12) 

2010/04 bare - 0 0 0.04 (2) 0 0 

 vegetated - 0 0 0.06 (1) 0.44 (7) 0 

 treated - 0.04 (2) 0 0 0.06 (3) 0.06 (3) 

2010/08 bare - - 0 - 0 - 

 treated - - 12.19 (585) - 0 - 

2010/09 bare - 0 0 0 0 0 

 vegetated - - 0.06 (3) - 0.02 (1) - 

 treated - 0 0 0 0 0 

2011/05 vegetated - - 0 - 0 - 

 treated 0 0 0.19 (9) 0 0 0 

2012/08 vegetated 0 - 0 0 0 - 

 treated 0 - 0 0 - - 
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Across all trials, S. fallax was the most successful species, with an overall establishment rate of 0.996 

%, followed by S. cuspidatum (0.168 %), S. papillosum (0.043 %), S. palustre (0.042 %), S. fimbriatum 

(0.016 %), and S. capillifolium which failed to grow. Combined Sphagnum bead establishment was 

0.306 %. Table 5 provides a summary of establishment rates across the trial plots; full details can be 

found in Appendix 3. 

S. fimbriatum had the largest mean plant/ clump size (92.43 mm2), followed by S. papillosum and S. 

palustre which were similar (75.27 mm2 and 70.03 mm2, respectively), with S. cuspidatum (52.48 mm2) 

and S. fallax the smallest (38.83 mm2). 

Non-metric multidimensional scaling was used to examine relationships between Sphagnum growth and 

surrounding vegetation. Figure 14 shows NMDS ordination of vegetation (using Bray-Curtis 

dissimilarity index) recorded from 25 cm × 25 cm quadrats taken on experimental plots sown with 

Sphagnum beads. Cover data were improved by removing rare species (single occurrences), before being 

log10 (x+1) transformed (Alday et al., 2011). Quadrats were grouped by number of new Sphagnum 

plants/ clumps found; vegetation composition was found to be different between these groups 

(PERMANOVA, P < 0.001). Those quadrats containing the highest numbers of Sphagnum plants/ 

clumps were associated with atypical bog vegetation: algae, Agrostis stolonifera and Juncus squarrosus. 

There is a dense clustering of records associated with more typical bog vegetation (Eriophorum spp., 

Empetrum nigrum and Vaccinium myrtillus). 

 

 

 

Figure 13 – Sphagnum fallax beads from 2010/08 trial on treated substrate. Canes indicate successfully 

established Sphagnum plants.  
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Figure 14 – Non-metric multidimensional scaling (NMDS) ordination of vegetation composition 

recorded from experimental plots sown with Sphagnum beads. Records are coloured according to the 

number of individual plants/ clumps per 25 cm × 25 cm quadrat (top left). Where no Sphagnum was 

found, the overall plot vegetation was recorded. Species abbreviations can be found in Appendix 1. The 

most abundant species are added first and where species labels overlap, they have been omitted and the 

locations marked (+); all species labels are displayed in Appendix 4. 
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To examine the relationship between Sphagnum success and climatic conditions, weather data from June 

2009 – December 2012 was gathered from Pole Moor weather station (Weather Underground, 2013), ~ 

10 km north of Black Hill. This site was chosen for its location and complete set of records. Monthly 

total rainfall and mean temperature were calculated from daily measurements (Figure 15).  Success of 

Sphagnum bead applications were assessed for associations with the climatic data relating to: a) the 

sowing month; b) three-month mean rainfall and temperature, using sowing month and the pre- and 

proceeding months; and c) cumulative total of these three-months. Spearman’s rank correlation 

coefficients were calculated between Sphagnum establishment success and these climatic measures 

(Table 6). No significant correlations were found between Sphagnum success and any of these measures.  

 

 

 

Figure 15 – Mean monthly temperature (°C) and total monthly rainfall (mm) from June 2009 – 

December 2012 (Weather Underground, 2013). Dates of Sphagnum bead applications have been 

marked. 
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Table 6 – Spearman’s rank correlation coefficient (rs) of Sphagnum bead rate of establishment and 

climatic variables. 

Measure Climatic variable rs P 

Sowing month Temperature -0.429 0.397 

 Rainfall -0.143 0.787 

Three-month average Temperature -0.143 0.787 

 Rainfall -0.371 0.468 

Three-month total Temperature -0.143 0.787 

 Rainfall -0.371 0.468 

 

 

Indoor trial 

Growth of all Sphagnum species was found to be greater on commercial peat than on Holme Moss peat 

(Figure 16). S. cuspidatum had the greatest mass on both substrates and S. fallax the least, although not 

significantly so on Holme Moss peat. Rank ANOVA was used to assess the significance of peat used 

and Sphagnum species; both peat and species were highly significant (P < 0.001) however, the 

interaction term was not. 

 

  

 

Figure 16 – Mean (± 1 SE) dry mass (mg) of Sphagnum plants of the five species, grown on commercial 

and Holme Moss peat for 6 months. Columns which do not share a letter are significantly different (Rank 

ANOVA, Bonferroni-corrected pairwise comparisons). 
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2.4.5 Discussion 

Field trials 

No Sphagnum was found on any of the control strips across all plots, giving a clear indication that plants 

found on treatment strips were the result of the Sphagnum beads applied. Sphagnum beads applied to 

bare peat substrate performed very poorly, with very low rates of establishment; 0.004 % across all 

trials. This was thought to be due to the mobile peat surface which would allow the propagules to be 

easily moved and/ or buried. The bare peat surface would also be totally exposed, offering no shelter to 

the drying effects of the sun and wind. Sphagnum beads would then be susceptible to desiccation and 

death. 

The results of these preliminary trials suggest S. fallax applied to treated surfaces in August will result 

in the greatest success rates. However, the irregular structure of the experimental trials makes direct 

comparison between the various sowing months, substrate types and Sphagnum species impossible. 

Plots were established on an ad hoc basis, using Sphagnum beads and space available at that time. Trials 

on bare substrate were omitted in later trials as it became apparent they were a fruitless endeavour. This 

resulted in an unbalanced experimental design with nested results, which could lead to incorrect 

conclusions being drawn. For example, August 2010 was the most successful sowing month, however, 

this is more than likely due to the influence of a few highly successful plots (2010/08, Treated, S. fallax; 

Table 5). Climatic parameters were found to not be related to Sphagnum success (Table 6), thus making 

any assessment based on sowing month invalid. Assessment based on substrate type was also 

problematic; substrate categories were arbitrary terms which often encompassed considerable variation. 

For example, vegetated surfaces included distinct areas dominated by Eriophorum spp. and others by 

Deschampsia flexuosa. 

Analysis of Sphagnum success is more meaningful when considered alongside the surrounding 

vegetation community. From the NMDS ordination (Figure 14), the highest levels of success were 

associated with algae, Agrostis stolonifera and Juncus squarrosus. This is undoubtedly due to the 

influence of highly successful S. fallax plots sown in August 2010. This suite of species is atypical of 

blanket bog and provides useful cues which may help to explain the high success rate in these plots. A. 

stolonifera is indicative of elevated nutrient and pH conditions (Hill et al., 1999), with J. squarrosus 

and algal growth supporting this assessment. These plots were established on what appeared to be a 

flush or drainage channel between revegetated peat dunes. The soil here was very thin (> 5 cm) with 

much greater mineral content than the surrounding peat. This was due to the extent of erosion, exposing 

underlying gritstone in some places, and the deposition of fine gritstone sediment carried from further 

upstream. This channel was thought to collect and concentrate levels of moisture, nutrients and other 

solutes, such as lime and fertiliser from surrounding revegetation works. Whilst it is not possible to 

determine which, if any, of these inputs contributed to the success of S. fallax beads in this location, it 

is worth noting the much poorer performance of S. fallax on treated substrates in other experimental 
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plots. These surfaces will also have been subjected to inputs of lime and fertiliser, and yet did not see 

comparable rates of establishment. Thus, moisture availability is suggested as a key factor. It should be 

noted that S. palustre sown in these August 2010 plots failed to establish, potentially a result of 

differential desiccation tolerance between the species (see Section 2.6), or simply a poor batch of S. 

palustre beads. 

On the ordination, a cluster of points were associated with Eriophorum angustifolium, E. vaginatum, 

Empetrum nigrum and Vaccinium myrtillus. These species are typical components of blanket bog 

vegetation and their relative abundances are indicative of the prevailing hydrological conditions.  Dwarf 

shrub cover is generally associated with drier areas, whilst E. angustifolium is indicative of wetter 

environments (Hill et al., 1999). These wetter conditions appear to be the greatest influence in the 

establishment of Sphagnum beads. The successful plots of November 2009 were established on an area 

of blanket bog exhibiting little in the way of erosion features. The vegetation was dominated by E. 

angustifolium and the water table appeared high and stable; small, infrequent patches of Sphagnum were 

also present. Both S. cuspidatum and S. fallax established well, although without replicate plots for both 

species, it is difficult to compare their performance. Sphagnum species of lawns and hollows, such as S. 

cuspidatum and S. fallax, are productive under favourable conditions (Clymo & Reddaway, 1971, 1974), 

with water availability considered a major limiting factor in restoring active peatland vegetation 

(Robroek et al., 2007b; Rochefort et al., 2003).  

Following larger scale application of Sphagnum beads, monitoring was required to assess their 

effectiveness. The Moors for the Future Partnership proposed criteria based on suggested rates of 

Sphagnum bead application (Table 7). When expressed as a percentage, these values appear very low; 

aiming for establishment of 0.5 – 0.8 %. However, when considering the quantities involved, the 

potential impact becomes clear; to date, 1.5 billion propagules have been applied (Moors for the Future, 

2015). If the criteria were met, this equates to 7,500,000 – 12,000,000 new Sphagnum plants. 

From the summary of results (Table 5), these criteria were only met on three occasions: S. cuspidatum 

and S. fallax sown on vegetated substrate in November 2009, and S. fallax sown on treated substrate in 

August 2010. These summary values do hide some variation in the performance of individual plots. 

From a potential 162 treatment strips (excluding controls), 10 were found to meet or exceed the criteria, 

the majority of these being sown with S. fallax. Full details of individual plots and treatments, and their 

performance relative to these criteria can be found in Appendix 3.  

These criteria were exceeded by ten treatment strips across all experimental trials. Of these, seven were 

located in areas of high water availability; four on original blanket bog vegetation with a stable water 

table, and three were located in a shallow channel which appeared to be gathering water from the 

immediate surrounding area.  
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Table 7 – Proposed Moors for the Future Partnership Sphagnum application rates and success criteria. 

Success criteria: 1 new Sphagnum plant in 80 % of 4 m2 quadrats 

Sphagnum bead sowing density: 25 – 40 m-2 

Sphagnum beads per 4 m2: 100 – 160 

Establishment required to satisfy criteria: 0.625 – 1 % 

Corrected for 80 % incidence: 0.5 – 0.8 % 

Lower success threshold: 0.5 % 

Upper success threshold: 0.8 % 

 

 

Plots where no Sphagnum could be found were also plotted on the NMDS ordination (Figure 14), and 

showed an association with vegetation species typical of drier habitats, such as Campylopus spp. and 

Hypnum jutlandicum. Whilst it is not impossible for Sphagnum beads to establish on such substrates, it 

is a much less frequent occurrence than in the wetter communities, as is clearly visible on the ordination. 

This is thought to be directly related to the availability of water; preliminary trials using Sphagnum 

beads showed success was greatest in the wettest sites (Hinde, 2009). Areas typified by these mosses 

are usually revegetated peat dunes, where the water table is thought to be extremely low (Allott et al., 

2009). 

Of the species trialled, S. fallax appeared the best suited for reintroduction, with the greatest overall 

establishment rate (0.996 %). However, S. fallax also had the smallest plant/ clump size (38.83 mm2). 

Conversely, S. fimbriatum and S. papillosum had the largest mean plant/ clump sizes (92.43 mm2 and 

75.27 mm2, respectively) but much lower rates of establishment (0.016 % and 0.043 %, respectively). 

S. fimbriatum and S. papillosum may only be able to grow in the most equable of conditions. Thus, when 

beads do establish, they perform well, producing larger plants and clumps. Alternatively, those plots 

where S. fimbriatum and S. papillosum managed to grow were established in November 2009 and April 

2010, and so have had the greatest period of time to grow. Since S. fimbriatum and S. papillosum did 

not establish on any later plots, the mean plant/ clump size was not reduced by smaller, younger plants. 

The inverse of these arguments may also help to explain the smaller plant/ fragment size of S. fallax: 

perhaps this species is better able to establish under poorer conditions (Buttler et al., 1998), albeit 

growing less vigorously in these locations, and with S. fallax beads establishing on plots from November 

2009, August 2010 and May 2011, younger plants/ clumps are likely to reduce the mean size. 

Ten treatment strips across all experimental plots exceeded the success criteria, of which seven of these 

were sown with S. fallax. Due to the complex experimental structure, as discussed earlier, it is difficult 

to attribute these successes solely to species choice. The remaining three successful treatment strips are 

also the oldest, indicating time since application may be a significant factor. Some of the most consistent 

performing, successful trials were established in November 2009 on an area of bog with good hydrology. 
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Further plots were established nearby in August 2012, however, with only a year since bead application 

before monitoring took place, no plants were found. The difficulty in monitoring the success of 

Sphagnum bead applications is the significant time lag between application and visible growth (18 – 24 

months was not uncommon during this work), and the presumed failure in the interim period (e.g. Figure 

9). Sphagnum beads shrivel, bleach and all but disappear, however, the viability of these propagules has 

been shown through removal from the field and subsequent growth in the glasshouse (N. Wright, pers. 

comm.). 

The climatic variables assessed showed no relation to the success of Sphagnum bead growth, indicating 

that the season of application was much less important than where they were applied. The climatic data 

does serve to illustrate extended periods of snow cover in the winter of 2009/10 and 2010/11, and 

drought in spring 2010 and 2011 (Figure 15), and more importantly, the ability of Sphagnum beads to 

withstand such conditions and continue growing. 

 

 

Indoor trial 

The growth of Sphagnum beads was significantly better on commercial peat than on Holme Moss peat. 

This difference in performance was attributed to the adverse biogeochemical characteristics of the peat 

from the southern Pennines (Carroll et al., 2009; Linton et al., 2007); potentially damaging levels of 

nutrients, sulphur and heavy metals remain as a legacy of industrial pollution and continued rates of 

deposition (see Chapter 3). On commercial peat, S. cuspidatum produced significantly greater biomass 

than any other species. Under ideal field conditions, this species is known to be highly productive 

(Clymo & Reddaway, 1971, 1974). All species produced significantly less biomass on Holme Moss peat 

than their commercial peat counterpart, with all species producing similar amounts of biomass. 

Whilst these results show differential rates of productivity, the conditions must be considered. These 

results cannot be extrapolated into a field scenario, since these equable conditions are rarely found or 

sustained in degraded peatlands. Where water availability is high, S. cuspidatum has demonstrated its 

high levels of productivity, however, these trials are extremely simple and convey none of the complex 

interactions of in situ trials. For example, climatic conditions were eliminated along with the continued 

deposition and input of pollutants (e.g. N).  Artificial lighting within the growth room was noted to be 

particularly weak, with readings of 150 µmol m-2 s-1 in contrast to > 800 µmol m-2 s-1 in the glasshouse 

on an overcast day. Humidity was maintained by covering trays with transparent plastic sheeting. During 

a visit to the production facility of Micropropagation Services Ltd., Sphagnum was observed growing 

vigorously in naturally lit glasshouses, with misting units maintaining humidity levels. 
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2.4.6 Conclusion 

Sphagnum beads have been shown to be a viable method of reintroducing Sphagnum to areas of 

degraded blanket bog. They provide a convenient means of applying propagules of a known identity 

and provenance at quantifiable and controllable rates. The beads can generate significant new Sphagnum 

cover, however, a number of influential factors have been implicated in this work; namely, water 

availability, substrate stability, time, and the legacy of effects of industrial pollution. The wider 

implications of these preliminary trials was, however, limited due to a lack of replication. 

Sphagnum beads require sufficient moisture to prevent desiccation. These conditions were met in 

obvious locations such as areas of bog with high and stable water tables, but also in less apparent 

channels and simply by remaining in contact with the underlying peat surface. Surrounding vegetation 

serves to improve microclimatic conditions and prevent erosion of the peat surface, which would 

otherwise bury and remove such propagules. However, revegetation measures can result in the 

development of extensive Hypnum mats which prevent the Sphagnum beads from reaching the peat 

surface. Thus, sowing location will be critical. 

Concerns regarding the additions of lime and fertiliser appear to be unfounded, with Sphagnum 

establishing in treated areas and in channels draining these areas. The continuing negative impacts of 

historic industrial pollution in southern Pennine peats was clearly demonstrated and may help to explain 

the very slow rates of Sphagnum growth. Time is and will clearly be a major factor in the establishment 

of significant Sphagnum cover. 
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2.5 Molinia grassland trials 

2.5.1 Rationale 

The southern Pennines, and indeed the UK as a whole, exhibits a range of blanket bog degradation types. 

The most obvious of these are the bare peat surfaces and extensive gullies of eroded areas, currently the 

subject of intensive restoration efforts. However, there are more subtle forms of degradation, such as 

shifts in vegetation away from typical bog communities. Molinia caerulea is perennial grass, and natural 

component of numerous NVC mire communities (Rodwell, 1991), thought to contribute towards peat 

formation (Chambers et al., 2007b). Excessive grazing, burning and N deposition can lead to areas 

becoming dominated by Molinia, resulting in reduced biodiversity (Shepherd et al., 2013; Stoneman & 

Brooks, 1997; Ward et al., 1972). The ability of Molinia to withstand these pressures and exploit 

increased nutrient availability, allows it to expand at the expense of other species; potentially including 

Sphagnum (Shepherd et al., 2013; Taylor et al., 2001). Some success has been achieved in diversifying 

such swards although this has been limited to heathland species (Marrs et al., 2004). Many of these 

Molinia dominated areas are on deep peat and therefore a return to more typical bog communities would 

be more appropriate. Hence, the return of Sphagnum and a diversity of bog vegetation is required.  

These areas represent a new set of challenges to overcome, and may require completely different 

methods to do so. Bare and eroding peat surfaces present the problems of mobile substrate and severely 

disrupted hydrological regimes. Peatlands currently dominated by Molinia are less likely to have 

suffered severe erosion because of their continued vegetation cover. Instead, it is likely the vigorous 

growth and competitive ability of Molinia which need to be addressed, alongside long term management 

of such sites to ensure the continued growth and expansion of Sphagnum. 

 

 

2.5.2 Objectives 

Field trials were established to: 

Evaluate the potential for Sphagnum reintroduction to Molinia grassland 

A series of objectives were identified for the field trials: 

- Compare establishment of Sphagnum beads between different species on Molinia dominated 

grassland 

- Establish associations between successful Sphagnum establishment/ growth and the 

surrounding vegetation 

- Compare Sphagnum establishment between Molinia flailing regimes 
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2.5.3 Methods 

Butterly Hill (SE 0409) forms part of the Marsden Moor estate, a large expanse (~ 2,500 ha) of moorland 

at the most northerly extent of the Peak District National Park. Three trials were established at Butterly 

(Figure 17) in October 2010, with final monitoring completed in September 2013. Sphagnum beads were 

applied at the standard experimental rate of 400 m-2, and monitoring followed the methods outlined in 

Section 2.4. At the time of establishment, Molinia litter covered the site as flailing was being conducted. 

 

 

Trial 1 – Sphagnum species on flailed Molinia 

Three replicate blocks (8.5 m × 4 m) were established on flailed Molinia at the foot of Butterly hill, each 

consisting of five 4 m × 1 m treatment strips separated by a 0.5 m gap, sown with an individual species 

of Sphagnum beads, plus an additional control strip which received no treatment. S. cuspidatum, S. 

fallax, S. fimbriatum, S. palustre and S. papillosum were the species used. 

 

 

Trial 2 – Sphagnum on flailed and unflailed Molinia 

Beads of S. fallax were sown into two 3 m × 3 m plots of dense Molinia, adjacent to the plots of trial 1. 

One of these was immediately flailed whilst the other remained unflailed. 

 

 

Trial 3 – Sphagnum in dense tussocks of Molinia 

To the north of trials 1 and 2, Molinia growth had resulted in a far greater number of tussocks, resulting 

in a network of channels and islands. Three experimental plots were established in this unflailed Molinia, 

consisting of 3 m × 1 m strips sown with S. fallax. 
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Figure 17 – Butterly and surrounding areas, with the locations of experimental plots marked.  

 

 

2.5.4 Results and analysis 

Trial 1 – Sphagnum species on flailed Molinia 

No Sphagnum growth was recorded on any of the control treatment strips and so were omitted from 

further analysis. S. fallax was found close to the experimental plots meaning plants of this species could 

not be reliably identified as originating from the Sphagnum beads. Therefore, S. fallax was excluded 

from any further analysis. Statistical analysis was not included due to inconsistency in subsequent 

flailing between the plots.  

The performance of Sphagnum beads was found to vary widely between the experimental plots, in terms 

of both the rate of successful establishment (Table 8) and cover (Figure 18). S. cuspidatum performed 

very strongly in plot 1, but only moderately and then poorly in plots 2 and 3, respectively. Conversely, 

S. fimbriatum performed poorly on plot 1, but at an improved and consistent level on plots 2 and 3. S. 

palustre was the worst performing species, failing to establish on one plot, and having low establishment 

    Trial 1 & 2 

    Trial 3 
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and cover on the remaining two. S. papillosum performed the most consistently across all three plots, 

with moderate cover recorded in each replicate. Despite the apparent low number of S. papillosum beads 

established in plot 3, their cumulative cover surpasses that of the 20 plants/ clumps found in plot 2. 

 

 

 

Figure 18 – Total cover (cm2) of Sphagnum species across treatment plots. 

 

 

Table 8 – Percentage (and number) of successfully established Sphagnum beads in flailed Molinia plots. 

Plot S. cuspidatum S. fimbriatum S. palustre S. papillosum 

1 6.13 (98) 0.44 (7) 0 3.88 (62) 

2 1.56 (25) 2.13 (34) 1.00 (16) 1.25 (20) 

3 0.25 (4) 1.31 (21) 0.25 (4) 0.88 (4) 
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Figure 19 – Non-metric multidimensional scaling (NMDS) ordination of vegetation composition from 

25 cm × 25 cm quadrats on flailed Molinia containing Sphagnum, separated by experimental plot. 

Species abbreviations can be found in Appendix 1. The most abundant species are added first and where 

species labels overlap, they have been omitted and the locations marked (+). 

 

 

Non-metric multidimensional scaling (NMDS) was used to examine relationships between Sphagnum 

growth and associated vegetation. Figure 19 shows NMDS ordination of vegetation (using Bray-Curtis 

dissimilarity index) recorded from 25 cm × 25 cm quadrats taken on experimental plots sown with 

Sphagnum beads. Cover data were improved by removing rare species (single occurrences), before being 
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log10 (x+1) transformed (Alday et al., 2011). Quadrats have been grouped according to the plot in which 

they were found; vegetation composition was found to be different between these groups 

(PERMANOVA, P < 0.001). Plot 1 appears to have a distinct association with S. cuspidatum, S. fallax 

and bare ground. Plot 2 has the greatest variation in vegetation composition, occupying the largest area 

on the ordination, including species typical of blanket bog, such as Eriophorum angustifolium and 

Vaccinium oxycoccos. Plot 3 appears to share associations with bryophyte species, including 

Campylopus introflexus, Polytrichum commune and P. strictum. Molinia caerulea can be found on the 

ordination where all three plots overlap, demonstrating its occurrence across the trial plots.  

 

 

Trial 2 – Sphagnum on flailed and unflailed Molinia 

Sphagnum was only found in the flailed plot, with 28 plants/ clumps found generating a cumulative 

cover of 24.41 cm2 (mean plant/ clump size 2.03 cm2). 

 

 

Trial 3 – Sphagnum in dense tussocks of Molinia 

When monitored, extensive Sphagnum cover was noted in this area. Thus, Sphagnum found on these 

experimental plots could not be reliably attributed to having originated from beads. 

 

 

2.5.5 Discussion 

Trial 1 – Sphagnum species on flailed Molinia 

Searching experimental plots for Sphagnum was difficult in most cases due to the density of Molinia. 

No Sphagnum was found on any of the control strips across all plots, giving a clear indication that plants 

found on treatment strips were the result of the Sphagnum beads applied.  However, S. fallax and S. 

subnitens were present in considerable quantity and close proximity to the plots, hence S. fallax 

treatments were excluded from analysis. The natural presence of these species at Butterly suggests 

conditions were suitable for the reintroduction of Sphagnum.  

There was significant variation in vegetation composition of the trial plots, thought to be due to varying 

levels of water availability and as a result of the flailing regime in particular areas. Consequently, the 

response of Sphagnum was highly variable between the experimental plots. S. cuspidatum was most 
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successful in plot 1, with reducing amounts of cover and plants in plots 2 and 3. This was thought to 

reflect the decreasing levels of water availability from plot 1 through to 3. However, under conditions 

of greatest water availability, and in the absence of competition, all Sphagnum species would be 

expected to perform well. S. papillosum demonstrates this, growing best in plot 1, but S. fimbriatum 

displays the opposite trend (Figure 18).  

The flailing management of Molinia at Butterly was thought to offer further explanation of the results 

observed. These possible distinctions in both water availability and Molinia flailing can be seen between 

the plots on the NMDS ordination (Figure 19). Plot 1 was the wettest, with the greatest levels of S. 

cuspidatum and S. fallax, however, this plot only received the initial flailing and therefore has relatively 

limited floristic diversity, as demonstrated by the small region it occupies on the ordination. This was 

due to the rapid regrowth and continued dominance of Molinia. Similarly, plot 3 had limited species 

diversity and was only flailed at the start of the trial. This plot was driest, however, this only appeared 

to impact upon the success of S. cuspidatum. Plot 2 was reflailed during the course of the trial, with 

apparently beneficial effects on the floristic diversity. The shortened sward height and breaks in canopy 

allowed other species to establish (Figure 20); Vaccinium oxycoccos, Eriophorum angustifolium and E. 

vaginatum were found almost exclusively on this plot. S. cuspidatum, S. fimbriatum and S. papillosum 

were all able to grow moderately under these conditions. S. palustre performed poorly across all plots. 

From Figure 20 it is also possible to identify a possible flush across the site, which corresponds with the 

location of Plot 1. At the time the plots were established, the heavy Molinia litter and growth effecetively 

hid these features, hence they were not originally accounted for. 

 

 

 

 

Figure 20 – Plot 2 showing Molinia reflailed since plot setup (left); and Molinia regrowth on plot 1, 

two years after original flailing (right). 
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Trial 2 – Sphagnum on flailed and unflailed Molinia 

Flailing appeared to be influential in the successful reintroduction of Sphagnum. In a separate study, 

cutting Molinia in summer was found to restore Sphagnum growth (Hogg et al., 1995). The density of 

Molinia and depth of litter severely restricted searching in the unflailed plot. It is possible Sphagnum 

was present in this treatment but it was not possible to find it. Equally, the density of Molinia may have 

proven too dense for the beads to find their way down to the peat surface and moisture below, causing 

them to succumb to desiccation (Figure 21). The results of trials 1 and 2 suggests the order of bead 

application and Molinia flailing is less important; beads were applied both before and after flailing with 

no great effect on success. Flailing before sowing was thought to be beneficial since Sphagnum beads 

would be better able to find their way through the dense vegetation canopy and standing litter layer. 

However, flailing may generate more litter, preventing the beads from making contact with the moist 

substrate leading to a risk of desiccation. Alternatively, flailing after sowing may prove beneficial by 

removing the problem of additional material generated during cutting, and may actually serve as a 

protective mulch, covering the beads and reducing desiccation. Concerns were raised about the 

potentially damaging effect of flailing upon beads. Indeed, shredded beads were easily found following 

application and flailing. However, this did not appear to have any detrimental effects on rates of 

successful establishment. In areas of compromised hydrology, where moisture availability is more 

variable, the order of flailing and sowing may become more important and the protective properties of 

Molinia mulch more apparent. These results and conclusions will require further verification in larger, 

replicated trials, due to the single treatment plots used. However, this pilot study demonstrates a 

potentially important management consideration. 

 

 

 

Figure 21 – Flags indicating Sphagnum establishment in the flailed plot (left); and Molinia density and 

litter depth in the unflailed plot.  
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Trial 3 – Sphagnum in dense tussocks of Molinia 

Extensive Sphagnum was present in the trials located at the base of the hill; this formed part of a much 

larger body of Sphagnum occupying the spaces between tussocks and in flushes. Sphagnum found in the 

plots here could not be verified as originating from the beads. However, it did provide an opportunity, 

albeit anecdotal, to look at potentially beneficial effects of grazing and flailing alongside natural 

Sphagnum recovery. Flailing undoubtedly breaks up the cover of Molinia, providing gaps in the canopy 

for Sphagnum to reach the peat substrate and establish. The flailing of Molinia-Sphagnum mixed 

vegetation may be beneficial by providing these gaps whilst simultaneously introducing new fragments 

of Sphagnum. The height and severity of such flailing would be critical; too high and no Sphagnum is 

spread and vegetation canopy breaks not achieved, too low and Sphagnum clumps could be severely 

damaged. This management requires sites to be accessible to agricultural machinery; on very wet or 

steep sites this may not be possible. Grazing appears to have a similar potential benefit. Sheep had 

reduced the sward length in some areas, also opening up the canopy. However, it appears to be the light 

trampling disturbance they create which is beneficial (Smith et al., 2003). Their hooves create small, 

wet, and often bare depressions and sheep will often transfer strands and fragments of Sphagnum from 

areas of establishment to previously uncolonised areas. Finding this favourable balance could prove 

crucial, not only to Molinia-dominated areas, but also on blanket bog for the benefit of Sphagnum. 

 

 

2.5.6 Conclusion 

These initial trials revealed Sphagnum grew successfully when Molinia was flailed prior to, or during, 

application of the beads. The presence of S. fallax on site made assessment of this species difficult as its 

origin could not be reliably attributed to the beads. S. papillosum performed consistently across replicate 

plots, whilst S. cuspidatum performed best in a single replicate. 

Flailing was thought to allow the beads to reach the peat surface and moisture required to grow, although 

these result require verification through further trials. Both flailing and grazing of areas already 

containing Sphagnum could prove beneficial, opening up the vegetation canopy and allowing fragments 

of Sphagnum to establish. Finding the correct balance between disturbance and benefit will be crucial. 

Following such management, vegetation changes should be monitored to track the progress not only of 

Sphagnum, but a wider range of bog species, and warn of reversion to Molinia dominance. 
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2.6 Drought trial 

2.6.1 Rationale 

Despite the lack of a protective cuticle and epidermal layer, desiccation tolerance is a common feature 

amongst bryophytes (Glime, 2007), although it has been demonstrated that mosses recover more slowly 

with increasing duration of desiccation up to a point, beyond which they are unable to recover (Dilks & 

Proctor, 1976). Desiccation tolerance of Sphagnum is thought to vary between taxonomic sections, 

reflecting the typical niches of those species (Wagner & Titus, 1984), however, there is some 

disagreement. Hummock-forming species are considered desiccation-avoiders, by holding and 

transporting water more effectively within their tissues, allowing them to maintain photosynthetic 

activity (Glime, 2007; Hájek & Vicherová, 2014). Species of lawns and pools are likely to be subjected 

to more frequent and more severe periods of desiccation, due to reduced precipitation and lowered water 

tables. Thus, species of wet hollows are physiologically more desiccation-tolerant than their hummock-

dwelling counterparts (Wagner & Titus, 1984). However, this has only been demonstrated in a single 

study (Sagot & Rochefort, 1996), with others indicating the contrary (Hájek & Beckett, 2008; 

Schipperges & Rydin, 1998). Therefore, it could be concluded there are no general differences in 

desiccation tolerance (survival and recovery) between hummock and hollow species (Rydin et al., 

2006). 

Desiccation has been repeatedly suggested as a major limiting factor in the successful establishment of 

Sphagnum propagules (see Sections 2.3, 2.4 & 2.5). The resilience of Sphagnum beads was brought to 

the forefront following extended periods of severe weather. Snowfall in the winter of 2009/10 and 

2010/11 remained until late spring, followed by prolonged drought during early summer. Sphagnum 

beads are known to become shrivelled and dry before becoming established (Hinde, 2009), however, 

their tolerance to desiccation has yet to be quantified. The impact of desiccation upon Sphagnum 

propagules is of great concern in the restoration of degraded, hydrologically-compromised peatlands. 

Desiccation tolerance in some bryophytes, including Sphagnum, can be induced through a number of 

hardening treatments (e.g. Beckett, 1999; Hájek & Vicherová, 2014; Hellewege et al., 1994; Proctor & 

Pence, 2002). Such manipulations have the potential to improve survival and establishment of moss 

propagules, with beneficial implications for peatland restoration. 
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2.6.2 Objectives 

A range of physical and chemical treatments were developed by Micropropagation Services Ltd., in an 

attempt to improve Sphagnum bead desiccation tolerance. An indoor trial was established to provide 

experimental evidence for the following aim: 

Evaluate Sphagnum bead treatments to improve drought resistance. 

A series of objectives were identified: 

- Compare Sphagnum growth between bead treatments, drought periods and Sphagnum species 

 

 

2.6.3 Methods 

A range of treatments (Table 9) and were applied to Sphagnum beads of S. fallax and S. palustre. 

Concentrations of chemical treatments were not revealed due to commercial sensitivity. Half trays were 

half filled with peat from a bare area of Holme Moss, and the treated beads applied. Five beads of each 

treatment were added in an X configuration, with the treatments arranged randomly on each tray (Figure 

22). Trays were then subjected to drought for 0, 7, 14 and 28 days of drought in replicates of three. This 

process was followed for both bead species, producing a total of 24 trays (2 species × 4 drought lengths 

× 3 replicates). Trays were placed in a growth cabinet (20 °C day temperature, 800 µmol m-2 s-1 light, 

16 hour day length) during both drought and growing phases. Following drought, trays were watered 

with deionised water from a spray bottle and covered with plastic to improve moisture conditions. After 

3 months growth, Sphagnum plants were individually harvested, dried at 40 °C for 48 hours, and their 

dry mass recorded. Peat was cleaned from the Sphagnum using a mounted needle and forceps, whilst 

submerged in water. Great care was taken to ensure no Sphagnum tissue was lost during the process and 

all peat was removed. 
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Table 9 – Sphagnum bead treatments used in the drought trial. 

Treatment Description 

Standard Standard beads, incubated following production 

PEG 100 Standard beads treated with polyethylene glycol 100 

PEG 100 + Wax Standard beads treated with PEG 100, coated with wax 

PEG 50 Standard beads treated with PEG 50 

PEG 25 Standard beads treated with PEG 25 

ABA Standard beads treated with abscisic acid 

ABA + Dry to 50 % + 

Wax 
Standard beads treated with ABA, dried to 50 % of mass, and coated  

 with wax 

Dry to 50 % × 3 Standard beads dried to 50 % mass three times, rehydrated between 

Dry to 50 % Standard beads dried to 50 % mass 

Dry to 50 % + Wax Standard beads dried to 50 % mass, coated with wax 

Dry to 50 % + Wiltpruf Standard beads dried to 50 % mass, treated with anti-transpirant  

 (aqueous terpene emulsion) 

Fresh Standard beads, no incubation period 

 

 

Figure 22 – Arrangement of Sphagnum bead treatments on experiment trays. Treatments form an X 

configuration in a 4 × 3 matrix. 
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2.6.4 Results and analysis 

Sphagnum beads were severely affected by 7 days of drought, leading to reduced growth and, ultimately, 

the death of propagules. After 14 days drought, all beads had succumbed to desiccation, hence they are 

excluded from further analysis. 

Rank ANOVA was used to assess the effects of species, drought length and bead treatment, and all 

interaction terms. All were found to be highly significant (Table 10). S. fallax produced greater dry mass 

than S. palustre across almost all bead treatments and both drought durations. Drought reduced the dry 

mass across all treatments in both species. The significant interaction effect terms indicate the varying 

differences in Sphagnum growth between the Sphagnum species, bead treatments and drought durations. 

Bonferroni-corrected pairwise comparisons were used to identify the worst performing of all the bead 

treatments. The mean dry Sphagnum mass of these treatments was calculated to be 1.4 mg and assumed 

to represent the quantity of Sphagnum contained within each bead. This value has been added to Figure 

23 to enable visual comparison between bead treatments; a Sphagnum bead treatment with mean dry 

mass above this threshold was presumed to indicate growth of the propagule. 

With no drought, S. fallax produced greater biomass than S. palustre across all bead treatments. Indeed, 

there are numerous treatments where S. palustre dry mass was only marginally greater than the 1.4 mg 

threshold. These were treatments including wax which may explain their slightly greater mass over non-

waxed beads. Fresh S. palustre beads were the only treatment which grew with any success. S. fallax 

also grew largest from Fresh beads, but unlike S. palustre, growth occurred from nearly all other bead 

treatments. Standard beads were the only exception to this, performing poorly in both species. S. fallax 

bead growth was negatively affected by the treatments, with drying treatments producing the least 

biomass, except for ABA + Dry to 50 % + Wax treatments. 

 

 

Table 10 – Effect of species, drought length and bead treatment upon Sphagnum dry mass. Significance 

of effects analysed using Rank ANOVA (F). 

Terms                   F                   P 

Species 296.88 < 0.001 

Drought length 351.99 < 0.001 

Bead treatment 36.00 < 0.001 

Species * Drought length 125.30 < 0.001 

Species * Bead treatment 6.91 < 0.001 

Drought length * Bead treatment 12.32 < 0.001 

Species * Drought length * Bead treatment 6.17 < 0.001 
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Figure 23 – Mean (± 1 SE) dry mass (mg) of plants grown from a range of treated Sphagnum beads. S. 

fallax and S. palustre were subjected to drought for 0 and 7 days. The threshold value of 1.4 mg has 

been added. 

 

 

Following 7 days of drought, Sphagnum growth was severely affected in both species and across all 

treatments. Very little S. palustre growth was recorded following drought; Dry to 50 % + Wax was the 

only treatment which realistically represented any growth. Those S. palustre treatments with mass above 

the 1.4 mg threshold contain wax, as described above. S. fallax growth was also strongly influenced by 

drought, with numerous treatments succumbing to desiccation. Many treatments which performed well 

when not subject to drought were unable to grow, with Fresh beads displaying the most striking contrast. 

Only those treatments which included wax provided any protection against desiccation. Indeed, these 

were the only beads to show convincing signs of growth following drought. 
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2.6.5 Discussion 

Sphagnum beads were strongly affected by drought, with reductions in growth across all treatments. 

Drought conditions indoors were thought to be more severe than in the field, with both increased 

temperature and reduced humidity levels. These two measures dictate the speed at which water is 

depleted from the surface of the plant tissue, and therefore the severity of the desiccation experienced 

(Oliver et al., 2005). However, evidence of Sphagnum recovery following drought is unclear. 

Desiccation at high humidity has proven fatal (Abel, 1956; Clymo, 1973), whilst recovery from drying 

at much lower levels of humidity has also been reported (e.g. Sagot & Rochefort, 1996). Further to this, 

beads contain shredded fragments of tissue with a proportionally high surface area, and so are vulnerable 

to desiccation. In the field, the substrate is unlikely to become totally dehydrated due to their larger size 

and water contained within the peat body. Hydraulic conductivity within the peat and transpiration 

stream of vegetation prevents all but the upper most layers from drying out.  

The Sphagnum tissue contained in the beads is grown under equable conditions to stimulate growth and 

therefore the greatest amount of biomass. However, under these optimal conditions, any desiccation 

tolerance present in the initial sample taken from the field is lost (Hájek & Vicherová, 2014). This may 

explain the severe effect of 7 day drought on Fresh beads of both species. 

The effect of desiccation in bryophytes is thought to be related to the frequency of hydration/ 

dehydration, the duration of hydration/ dehydration, and the degree and rate of water loss (Glime, 2007; 

Norris, 1990). Sphagnum is considered to be one of the least desiccation tolerant mosses (Abel, 1956), 

however, tolerance can be induced. Species typical of lawns and hollows are thought to be more 

physiologically desiccation tolerant (Wagner & Titus, 1984) than hummock species, which avoid 

desiccation by having higher water retention and conductivity (Robroek et al., 2009). Thus, it is likely 

that S. fallax has greater potential for desiccation tolerance being induced than S. palustre, and hence 

grew better following drought and responded to some bead treatments. The physiological adaptations of 

S. palustre, and other hummock-forming species, would be irrelevant in their shredded state within the 

beads. 

The difference in performance between the two species may also be simply a result of a poor batch of 

beads; a known occurrence in previous trials. Due to the small scale and manual nature of bead 

production, there is considerable opportunity for variation in quality, and may also explain the lack of 

growth of either species from Standard beads without exposure to drought. 

The growth of Sphagnum was negatively affected by the treatments applied to the beads when compared 

to fresh beads, presumably as a direct consequence of the physiological stress exerted upon them. 

Polyethylene glycol (PEG) induces osmotic stress (Marschall & Borbély, 2011), abscisic acid induces 

cellular protection mechanisms (Proctor et al., 2007), whilst drying removes water from the plants, and 

application of wax and anti-transpirant affect water movement in to and out of plants. 
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Following 7 days drought, the greatest growth of S. fallax came from ABA + Dry to 50 % + Wax and 

Dry to 50 % + Wax bead treatments. Drying by itself did not produce any beneficial effects and so we 

can conclude the application of wax was the beneficial treatment. However, PEG 100 + Wax did not 

grow as successfully as the aforementioned treatments, indicating a potential interaction effect. No 

information from the manufacturer was available on the treatment of the beads; i.e. time taken to dry to 

50 %, strength of ABA applied, order of treatments in multi-treated beads. Drying is known to induce 

desiccation tolerance in bryophytes, but its efficacy is dependent upon several factors, including drying 

rate. Thus, if beads were dried to 50 % slowly, this may have proved beneficial. If wax treatments were 

applied before drying then this would help to limit the amount of water lost, also increasing the drying 

period. ABA has been demonstrated to increase desiccation tolerance in bryophytes, including 

Sphagnum (Marschall & Borbély, 2011; Oliver et al., 2005), however, this effect was not observed. 

Again, the interactive effects of ABA, drying and wax were greater than their individual effects. 

 

 

2.6.6 Conclusion 

Drought was found to be a critical factor in the successful establishment of Sphagnum from beads. A 

drought period of 7 days in indoor growth cabinets was sufficient to greatly reduce, or in many cases 

prevent, Sphagnum growth. Tolerance to drought was increased by treating propagules with wax, 

thought to be due to reduced water loss. These treatments illustrate the potential for increasing resistance 

of beads, with numerous other possibilities to try; e.g. increased bead size, or increased tissue fragment 

size. Whilst this indoor trial cannot replicate the complexities of in situ experiments, it clearly 

demonstrates the acute effect of drought upon Sphagnum beads and their requirement for moisture.  

 

 

2.7 General discussion 

2.7.1 Success 

The success of Sphagnum reintroductions appeared to be strongly influenced by moisture availability, 

surface stability, and species used. Moisture availability was strongly implicated despite not being 

measured in any of the experimental work, and was thought to be highly influential as the propagules of 

Sphagnum are prone to desiccation due to their small size. In some field plots, the availability of water 

was evident in the form of a high and stable water table, at or just below the peat surface. Examples 

included plots at Holme Moss on original bog vegetation, and plots at Butterly around the foot of the 

hill. In these locations, Sphagnum established and grew well compared to drier areas of the experimental 
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sites. The vegetation of these areas also indicated hydrological conditions were likely to be suitable; e.g. 

dominated by Eriophorum angustifolium (Hill et al., 1999). However, moisture availability was not 

always so obvious. The most successful plots were located on very shallow peat (~ 2 cm), unlikely to 

sustain a water table, vegetated by atypical bog species. The success of Sphagnum here was thought to 

be due to a gentle channel in which these plots were situated. The topography evidently gathered water 

from the surrounding area, hence the lack of remaining peat due to erosional losses. Nutrients were also 

thought to be concentrated here, giving rise to the minerotrophic species found here.  

Sphagnum reintroduction was found to be almost impossible on areas of eroding, bare peat. Without 

vegetation, the peat surface is prone to rapid erosion (Worrall et al., 2011), and subsequent removal and/ 

or burial of Sphagnum propagules, whilst the sun and wind causes the surface to dry rapidly. Many of 

these eroded areas have severely disrupted hydrological regimes, amplifying the risk of desiccation. 

Vegetation helps to mitigate these effects by stabilising the peat substrate and improving microclimatic 

conditions, with taller vegetation, such as grasses and dwarf shrubs, reducing air movement, increasing 

shading and interception of occult precipitation. Hence, on revegetated substrates Sphagnum was able 

to establish and grow, although this seemed to only occurred where propagules could make contact with 

the underlying peat substrate, which retained moisture longer than the vegetated surface. Whilst 

Sphagnum is able to establish and grow in these hydrologically-compromised conditions, propagules 

are undoubtedly more successful where moisture levels and water availability are higher (e.g. Hinde, 

2009). 

Following restorative treatments (lime, fertiliser, heather brash and grass seed), previously bare areas 

can become completely covered with a carpet of Hypnum moss, preventing the Sphagnum from making 

this contact. Propagules held on the surface of vegetation will be vulnerable to desiccation, as on bare 

peat surfaces. This was observed across many trial plots, dominated by Hypnum, Deschampsia and 

Molinia. Trials on Molinia provided the most striking illustration of the detrimental impact that dense 

vegetation can have on the success of Sphagnum reintroduction. Flailing improved establishment, 

thought to be a result of breaks in cover of both plants and litter, allowing access to the moist, underlying 

substrate. Repeated cutting to a very short sward also improved the species diversity of plots without 

affecting the stability of the substrate. Such management may prove beneficial to Sphagnum 

establishment in other areas, such as those dominated by dense Eriophorum angustifolium. 

The disrupted hydrology of many areas of degraded blanket bog means that much of the Sphagnum 

reintroduced is likely to experience some degree of drought and/ or desiccation, both as propagules and 

established plants. Simulated drought in an indoor experiment was found to severely affect the success 

of Sphagnum, although this effect was reduced through hardening treatments. Sphagnum species 

responded differently to both drought and hardening treatments, with S. fallax outperforming S. palustre. 

The legacy of industrial pollution contained within the peat appears to continue to influence the 

performance of Sphagnum. Peat taken from Holme Moss had a significantly negative impact on the 
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growth of Sphagnum propagules. Initial growth from Sphagnum mulch was slow, discoloured and 

sickly. However, over time much healthier plants developed, including typical ombrotrophic species, 

such as S. capillifolium and S. papillosum. The early Sphagnum tissue appeared to isolate the newer 

growth from the polluted substrate, potentially also binding and immobilising harmful ions to its tissues. 

The presence of any Sphagnum species will undoubtedly improve conditions through increased moisture 

availability (Van Breemen, 1995a). In the field, mulch propagules established well on revegetated 

substrates, although concerns of sustainability, application and possibly biosecurity rendered them 

second choice to Sphagnum beads. Mulch may provide a more rapid means of generating Sphagnum 

cover on small areas, where erosion and desiccation risks are considered lower. Smaller amounts would 

therefore be needed, increasing the chances of local sources meeting the quantity requirements. The 

combination of challenging environmental conditions proved to have differential effects on the 

Sphagnum species under test. S. fallax performed better than S. capillifolium, S. fimbriatum, S. palustre 

and S. papillosum, with S. cuspidatum only gaining an advantage in the wettest of conditions. The 

combination of desiccation and pollution tolerance exhibited by S. fallax resulted in the best 

performance of the species under test, and therefore would be suggested for future reintroduction works. 

Conversely, S. palustre performed consistently poorly.   

The success of any Sphagnum reintroduction will only accurately be determined over the years to come. 

However, there are several uncertainties regarding the persistence and expansion of reintroduced 

Sphagnum. Whilst Sphagnum was able to establish on some of the revegetated, yet hydrologically-

compromised areas, the longer term potential of these propagules to generate significant cover is unclear. 

Occult precipitation and irregular rainfall may or may not be sufficient to sustain increased Sphagnum 

cover and growth. The increased presence of Sphagnum may further improve conditions and promote 

growth, forming a positive feedback loop (Clymo & Hayward, 1982; Van Breemen, 1995a). The 

application of Sphagnum propagules is likely to occur alongside on-going revegetation works, with 

continued applications of lime and fertiliser required to maintain the stabilised peat surfaces. These 

additions are known to adversely affect Sphagnum growth (Clymo, 1963; Hinde, 2009), raising 

questions of longer term compatibility. The impact of these treatments upon reintroduced Sphagnum is 

currently under investigation, using some of the field plots established for this research. 

 

 

2.7.2 Monitoring 

The work presented here is intended to illustrate the potential for Sphagnum reintroduction to degraded 

peatlands, hence the amplified rates of propagule application and intensive monitoring regime 

employed. As part of landscape scale Sphagnum reintroduction, application rate of propagules will be 

an order of magnitude lower due to cost, whilst treatment areas will be vast compared to the trials 
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surveyed; > 1000 ha have been targeted for application, compared with 648 m2 total area of the trials of 

Section 2.4). Monitoring of areas treated with Sphagnum propagules is essential to assess the success of 

these reintroductions. However, monitoring effort, in terms of time and energy expended, must be 

balanced against the diminishing number of new Sphagnum plants found. The small experimental plots 

established were searched intensively, with the aim of finding all Sphagnum plants successfully 

established from the propagules applied. From monitoring experimental plots with dense vegetation, it 

is clear that a 100 % discovery rate is not possible without spending a grossly disproportionate amount 

of effort on the task. Sphagnum growth can vary from miniscule young plants (< 2 mm in diameter), to 

much larger (> 60 cm2) patches of multiple plants, with obvious implications when assessing the 

successful establishment of Sphagnum within an effective monitoring framework. Thus, the need to 

develop an efficient but accurate monitoring strategy is crucial, allowing the success of Sphagnum 

propagule applications to be assessed. 

Two monitoring methods were considered, along with their impact on perceived success, using data 

from Section 2.4 and criteria prescribed by the Moors for the Future Partnership (Table 7, Section 2.4.5). 

The two scenarios considered here were used to demonstrate the effect of reduced monitoring effort on 

assessment accuracy (Table 11). Sphagnum plant size was used as a proxy for monitoring effort in these 

examples, with larger plants being easier to find therefore representing reduced effort. 

Reduced monitoring effort will inevitably lead to fewer Sphagnum plants being found, however, the 

scale of this reduction is striking (Figure 24). Data collected from experimental plots in Section 2.4 was 

used to demonstrate this. Plots were searched intensively, recording plants as small as 2 mm in diameter, 

producing a total of 795 individual records. From this, the size and number of records were plotted, 

demonstrating the rapid decrease in records with increasing Sphagnum size. Thus, the impact of reduced 

monitoring effort could be severe. In this scenario, increasing the minimum noticeable Sphagnum size 

to 10 mm has the effect of reducing the number of records by 77 %, and at 30 mm more than 95 % will 

be ignored (Table 11). 

 

 

Table 11 – Comparison of three monitoring scales on Sphagnum discovery, using data from Section 

2.4. 

Monitoring 

scale 

Size of Sphagnum 

to notice (mm) 

Area covered 

(mm2) 

Records exceeding 

noticeable size 

Percentage of 

total records (%) 

Intensive 2 3.14 795 100 

Hands and 

knees 
10 78.54 182 22.9 

2 pence piece 30 706.86 36 4.5 
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Figure 24 – Number of Sphagnum records with increasing noticeable size, used as a proxy for reduced 

monitoring effort. Points represent % of Sphagnum found at a given minimum diameter, and histogram 

of number of plants at each size. Data from field trials results of Section 2.4. 

 

 

Using success criteria established by the Moors for the Future Partnership (Table 7), 10 experimental 

application strips (out of 162) were categorised as successful when including Sphagnum records of all 

sizes. By including only Sphagnum of 10 mm or greater, the number of successful treatment strips falls 

to 3, and at 30 mm or greater there would be none. 

Vegetation type and time elapsed since application were found to strongly influence the amount of effort 

required to find Sphagnum, and therefore have the greatest potential to affect accuracy of monitoring. 

An open canopy made Sphagnum easier to find, as did a contrasting colour of the substrate or 

surrounding vegetation. Sphagnum was often found within stands of dense vegetation, such as 

Eriophorum angustifolium, which may have further consequences for monitoring. Increased time since 

application allowed Sphagnum plants to become well established, larger, and therefore easier to find. 

However, given the need to qualify and quantify the success of such restoration treatments, time frames 

are likely to restrictive. The need for long term monitoring was clearly illustrated when resurveying 

plots established by Hinde (2009). Established in 2008 on Holme Moss, Sphagnum covered ~ 80 % with 

little indication of this success in the intermediate years (Figure 9, Section 2.3.5). The survey methods 

employed will vary according to the features of a given restoration site, taking into account the factors 
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discussed. Early surveys (< 1 year since sowing) are likely to yield few results, but may prove an ideal 

opportunity to identify areas likely to support significant Sphagnum growth. Other areas should not be 

excluded from future surveys since atypical areas may prove to be extremely successful, as was the case 

in this work. To avoid expending unnecessary time and resources, subsequent surveys should be made 

no more frequent than annually as growth rates are likely to be slow, even in the most equable of field 

conditions. 

 

 

2.8 Conclusion 

Sphagnum can be successfully reintroduced to areas of degraded blanket bog, producing significant 

cover in some instances, within the space of three years. The primary constraints on successful 

establishment and growth of propagules were thought to be moisture availability and surface stability. 

The small pieces of Sphagnum tissue which comprised the beads and mulch were vulnerable to 

desiccation and required high levels of moisture availability. Successful propagules were all found in 

contact with the underlying peat substrate, thought to be a crucial source of moisture in areas of 

compromised hydrology. Sphagnum application was a complete failure on areas of bare peat, where 

rapid rates of erosion and harsh microclimatic conditions removed, buried or otherwise killed propagules 

applied. Sphagnum beads were considered well suited propagule for landscape scale reintroduction, 

offering a sustainable source of material whilst giving control over application rates and choice of which 

species to use. S. fallax was the best performing species, appearing tolerant to the legacy effects of 

industrial pollution and desiccation (Grosvernier et al., 1997a). Crucially, Sphagnum reintroduction is 

compatible with revegetation measures currently employed. The application of lime and fertiliser did 

not appear to severely affect the performance of reintroduced Sphagnum, with successful establishment 

and growth recorded on previously bare peat. Succession and diversification of Sphagnum could follow 

on a longer time scale, moving towards more typical ombrotrophic species (Buttler et al., 1998; Wheeler 

& Shaw, 1995). Increased experimental scales and replication, accompanied by long term monitoring 

will provide a more accurate assessment of success, as Sphagnum propagules are known to appear 

dormant before beginning to grow. As in their formation, time will prove critical in the restoration of 

blanket bogs.
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Chapter 3 – Biogeochemical influences on 

Sphagnum: a comparison of some UK bogs 
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3.1 Introduction 

The southern Pennines are the most degraded blanket bogs in the UK, due, in part, to the deposition of 

industrial pollution over the last c. 250 years. As a habitat, blanket bog is particularly susceptible to the 

effects of air pollution (see Chapter 1), with the southern Pennines especially so given its proximity to 

major conurbations of northern England. The effects of individual pollutants upon bog vegetation, and 

Sphagnum in particular, have been well demonstrated through experimental applications, with trials 

conducted in situ (e.g. Sheppard et al., 2014) and under controlled conditions (e.g. microcosm 

experiments (Ferguson et al., 1978)). Over the last 50 years or so, there have been vast improvements 

in air quality, and subsequent reductions in deposition of most pollutants to these areas. Concentrations 

of these contaminants are now below levels known to be toxic to blanket bog vegetation communities 

(Press et al., 1986), including the most vulnerable species, such as Sphagnum and other bryophytes 

(Ferguson et al., 1978). 

Sphagnum mosses were all but eradicated from much of the southern Pennines, with their demise 

generally attributed to increases in air pollution. However, in sheltered pockets across the region, 

fragments of Sphagnum managed to persist, with minerotrophic species being the most common (Tallis, 

1964), and occasional ombrotrophic species found (Studholme, 1989). Improvements in air quality and 

concurrent land management reforms have resulted in increased Sphagnum cover (Caporn et al., 2006; 

Carroll et al., 2009), although some may be due to introduced material in heather brash used in 

restoration works (see Chapter 2). However, this appears to be occurring very slowly and only in some 

instances. Increases in cover seem limited to expansion of remnant patches by asexual, vegetative 

reproduction, or through physical disturbance and subsequent dispersal of plant fragments (e.g. foraging 

birds/ mammals, overland water flows), both known methods of propagation (Andrus, 1986; Cronberg, 

1993). Sphagnum produces vast numbers of spores (Sundberg, 2005) which can be dispersed over long 

distances, demonstrating the potential for widespread recolonisation following disturbance (Clymo & 

Duckett, 1986; Jones, 1986; Sjörs, 1949; Soro et al., 1999), as recorded in areas affected by summer 

drought and fire (Andrus, 1986; Popov, 2000). Vegetative propagation is thought to be the most 

important means of both maintaining and increasing presence at a site (Andrus, 1986; Cronberg, 1993). 

The continued lack of Sphagnum prevalence and cover in the southern Pennines indicates limiting 

factors are still influencing the establishment, growth and reproduction of these species. Whilst there 

are large swathes of blanket bog in poor condition, actively eroding with severely disrupted hydrological 

regimes, there are also areas where the higher plant vegetation and hydrology approaches that of good 

quality bogs. If hydrology were the only constrain on Sphagnum success, these areas should prove 

suitable. However, with only infrequent and small patches of Sphagnum to be found, it seems these areas 

are extremely slow to be colonised. The presence of appropriate conditions yet widespread absence of 

Sphagnum suggests biogeochemical conditions may be influential. The widespread absence of 
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Sphagnum may therefore represent a legacy effect of the intense air pollution, and subsequent 

deposition, these areas suffered. 

Air pollution is widely accepted as a major driver of degradation in numerous ecosystems, particularly 

bogs (e.g. Bobbink et al., 1998; Lee, 1998). Acute effects of pollution upon bog vegetation species have 

been well documented, but rarely in real world scenarios. Pollutants are generally applied as high 

concentration, individual treatments to vegetation over short durations (e.g. Brown & Wells, 1990; 

Ferguson et al., 1978), with far fewer long-term experimental manipulations (e.g. Evans et al., 2006a; 

Sheppard et al., 2014). Whilst useful in understanding the effect of a given pollutant, their wider 

relevance is questionable. A raft of additional, compounding factors found in the field may reduce the 

broader applicability of any conclusions. Bogs are unlikely to receive input of a single pollutant in 

isolation, but rather a cohort of pollutants from a particular source, or several transported long distances 

from multiple sources. The effect of a given pollutant will depend upon a range of biotic and abiotic 

factors. Whilst an experiment in controlled conditions may serve to remove some of this abiotic 

variation, in doing so, it is likely to reduce the relevance of such a trial to natural scenarios. Similarly, 

in situ experiments may fail to unpick the myriad of abiotic and biotic factors at play, leading to 

inaccurate conclusions being drawn. 

Chemical elements of interest in such studies include essential plant nutrients, balances of which can be 

affected by perturbations to natural nutrient cycling by anthropogenic activities, such as industrial 

processes and release of reactive chemical species into the environment. Emissions of substances 

hazardous to human and environmental health, such as numerous heavy metals are also studied 

extensively (e.g. Harmens et al., 2013; RoTAP, 2012). Table 12 provides a summary of elements of 

potential ecological significance in ombrotrophic peatland vegetation, their roles and effects as nutrients 

or pollutants. Broadly speaking, elements can be separated into essential macro- and micro-nutrients, 

and contaminants/ pollutants. Macronutrients are required in large quantities, whilst only small amounts 

of micronutrients are needed. In excess, both macro- and micro-nutrients are capable of becoming toxic, 

whilst pollutants, such as heavy metals are frequently potent toxins. 



 

 

Table 12 – Summary of elements of potential ecological significance in ombrotrophic peatlands. 

Element Nutrient role Details Source 

Aluminium No Can stimulate plant growth, although it has no beneficial action in plant metabolism; causes 

suppressed nutrient uptake and translocation. 

(Blamey et al., 2015; Foy, 1988; 

Raynal et al., 1990) 

Arsenic No Inhibits essential metabolic enzymes and is moderately toxic to plants; toxicity depends 

upon speciation, with inorganic forms more toxic than organic. 

(Harmens et al., 2008) 

Barium No Phytotoxic, causing reduced growth and photosynthetic activity. Ba, Ca and Sr have similar 

biogeochemical behaviour in some ecosystem processes. Concentrations in ombrotrophic 

peat mirror the concentrations of other lithogenic  elements and can be used as a surrogate 

for the abundance of mineral matter. 

(Baes & Bloom, 1988; Krachler & 

Shotyk, 2004; Suwa et al., 2008) 

Cadmium No Has a medium, direct toxicity, but is a cumulative poison. Can replace other essential 

metals in biological systems, where it binds more strongly 

(Harmens et al., 2008) 

Calcium Macro Functions in cell signalling, membranes and walls, activation of some enzymes. Displaced 

by increased soil acidity, causing accumulating on surface and eventually killing 

Sphagnum. 

(Kilham, 1982; White, 2015) 

Cobalt No Toxic to plants at high concentrations, affecting growth and metabolism. (Nagpal, 2004; Palit et al., 1994) 

Copper Micro Involved in many enzyme systems and proteins. Causes oxidative stress at higher 

concentrations and is toxic to vascular plants, and very toxic to algae; highly phytotoxic 

above micro-molar concentrations 

(Harmens et al., 2008; Marschner, 

2012; Yruela, 2005, 2008, 2015) 

 



 

 

Element Nutrient role Details Source 

Iron Macro Role in enzymatic reactions. Fe toxicity has been recorded, but as an element is less potent 

than Mn or Al. 

(Allen, 1989; Barker & Stratton, 

2015) 

Lead No Replaces other biologically important metals, such as Ca, Fe and Zn in enzymatic 

reactions, impairing their function. Pb in soluble ionic form is toxic to most organisms. 

(Harmens et al., 2008) 

Magnesium Macro Used in metabolic processes and growth. Displacement through increased acidity can lead 

to accumulation on Sphagnum surface and subsequent death. 

(Grzebisz, 2015; Kilham, 1982) 

Manganese Micro Involved in proteins, enzyme function and plant growth, including some of the reactions 

required for photosynthesis and nitrogen metabolism. 

(Allen, 1989; Eaton, 2015) 

Molybdenum Micro Catalyses certain enzymatic reactions, particularly nitrate reductase. (Allen, 1989; Kopsell et al., 2015) 

Nickel Micro Used in enzymes and proteins. At higher concentrations, Ni is toxic to most plants and 

fungi.  

(Harmens et al., 2008; Wood, 2015) 

Nitrogen Macro Used for proteins and nucleic acids. Compounds of N at high concentrations have 

detrimental effect on Sphagnum; e.g. NH3 is toxic, and NH4
+ reduces growth. 

(Pilbeam, 2015a; Rudolph et al., 

1987; Sheppard et al., 2013) 

Phosphorus Macro Key role in cell metabolism, particularly in ATP-ADP cycling. Has significant interactions 

with micronutrient metals in soil. 

(Bieleski & Ferguson, 1983; Hopkins, 

2015) 

Potassium Macro Used in enzyme activation, protein synthesis and osmotic function. (Fageria, 2015) 

 



 

 

Element Nutrient role Details Source 

Sodium No Role in plants by replacing K in some instances, but smaller ionic diameter prevents it from 

being used in critical systems; e.g. charge balance, enzyme activation and osmotic effects. 

(Schubert, 2015) 

Strontium No Uptake by plants may compete with Ca, Mg, K and Na, due to similar ionic radius. (Dawson, 1985; Kabata-Pendias, 

2010) 

Sulphur Macro Used for growth and physiological functioning of plants, and is contained in a range of 

lipids proteins and other compounds. Products of sulphur (HSO3
- especially) are toxic to 

Sphagnum. 

(Allen, 1989; Ferguson & Lee, 1980; 

Grant & Hawkesford, 2015) 

Tin No Phytotoxic in solution culture to higher plants. (Cohen, 1940) 

Titanium No Induces chlorosis, necrosis and stunting in higher plants.. (Wallace et al., 1977) 

Vanadium No High rates of supply are harmful to plants, and can induce Fe deficiency. Products of V 

(vanadate) can inhibit ATPases. 

(Arnon & Wessel, 1953; Pilbeam, 

2015b) 

Zinc Micro Role in metabolic function and enzyme structure; required for maintaining biomembranes. 

At high concentrations it is moderately toxic to plants, and excessive uptake can induce 

deficiencies in other metals, such as Cu, Fe and Mg. 

(Barker & Eaton, 2015; Harmens et 

al., 2008) 
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3.2 Aim and objectives 

3.2.1 Aim 

The southern Pennines represent an extremely complex combination of biotic and abiotic factors, thanks 

to extensive anthropogenic impact. These degraded blanket bogs are identified as polluted when 

compared to reference sites. These reference sites typically contain significant areas of high quality 

vegetation (as defined by Common Standards Monitoring (JNCC, 2009)) including a large proportion 

of Sphagnum cover (e.g. Carroll et al., 2009). Biogeochemical analysis revealed the southern Pennine 

region to be higher in a number of pollutant elements and chemical species. However, the relationship 

between these measures and present vegetation is unclear. The presence of a pollutant in the environment 

cannot automatically be categorised as detrimental; there are instances of synergistic effects where 

benefits are conferred (e.g. Baxter et al., 1989, 1991). Similarly, the biogeochemistry of high-quality 

sites is likely to be varied and may contain elevated levels of any number of pollutant elements, without 

apparent ill effects on the ecosystem. Some upland areas of the UK with good quality blanket bog receive 

high levels of nitrogen and acidic deposition exceeding critical loads for blanket bog (RoTAP, 2012). 

The chemistry of these degraded Pennine peatlands has changed but the effect on Sphagnum is unknown, 

therefore the influential biogeochemical drivers of bog vegetation must be identified in order to 

understand their role in limiting Sphagnum performance. Thus, this Chapter aims to: 

Elucidate those biogeochemical factors affecting the natural recovery and performance of Sphagnum 

 

 

3.2.2 Objectives 

Vegetation, biogeochemistry and environmental gradients 

By comparing reference sites from across the UK to degraded sites of the southern Pennines, vegetation 

and biogeochemical differences can be illustrated, providing context at the national scale. Significant 

biogeochemical drivers of vegetation composition can be identified and Sphagnum species responses 

modelled along those gradients.  

Observing variation in vegetation and biogeochemistry between reference and Pennine sites can help to 

illustrate those differences between obviously good and poor condition habitats. However, there is likely 

to be considerable difference in the plant communities of geographically distinct sites, along with their 

biogeochemistry, perhaps due to geological and climatic differences or anthropogenic influences of their 

own. There is likely to be variation between degraded sites, in their biogeochemical characteristics and 

plant communities. Of perhaps greater interest is the contrast between areas with natural Sphagnum 

growth, whether remnant patches or more recent expansion, and those areas without Sphagnum. How, 
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or indeed if, the biogeochemistry of these patches differ from nearby Sphagnum-less vegetation may 

help to unpick the reason for their continued existence and lack of widespread recolonisation. 

Thus, the objectives are: 

- Assess differences in vegetation: a) at the national scale between reference sites and degraded 

Pennine sites, and b) within the Pennine sites only, separated by site and presence/ absence of 

Sphagnum 

- Assess differences in the biogeochemistry of the sites, using the subsets a) and b), as outlined 

above 

- Identify biogeochemical drivers of the vegetation for a) and b) 

- Model the response of Sphagnum species along these gradients 

 

 

Vegetation, peat total, and comparative chemistry 

The southern Pennines were exposed to high levels of air pollution for over two centuries, resulting in 

acidic deposition and subsequent leaching of base cations, enrichment by atmospheric N inputs, and the 

accumulation of heavy metals (Holden et al., 2007b). Whilst current atmospheric concentrations and 

rates of deposition are much lower, these peat-covered landscapes represent substantial stores of 

pollutants. Erosion and biogeochemical processes can mobilise these contaminants, with implications 

for the vegetation communities of these ecosystems. The presence of toxic chemical elements and ions, 

and disturbances in nutrient availability, can lead to adverse effects in Sphagnum performance (e.g. Li 

& Glime, 1990). Differences in the nutritional status of Sphagnum from the southern Pennines and 

reference sites may help to explain their relatively poorer performance, and may also illustrate which 

are influential limitations. 

Individual assessment of peat extractable, total and vegetation chemistry is useful in describing the 

prevailing chemical conditions of individual sites and differences between them. By combining these 

data, the behaviour of chemical elements and ions at the survey sites can be better understood, further 

helping to identify potential limitations to Sphagnum performance. 
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Thus, the objectives are: 

- Assess differences in elemental concentrations and ratios of Sphagnum species from the sample 

sites 

- Identify possible causes of reduced Sphagnum performance 

- Assess differences in peat total biogeochemical concentrations and elemental ratios of the 

sample sites 

- Identify potential future biogeochemical issues of these stored pollutants 

- Compare peat extractable, total and Sphagnum chemistry between the survey sites 

- Compare the behaviour of chemical elements and ions between the survey sites, across peat 

extractable, total and vegetation chemistry data 

 

 

3.3 Materials and methods 

3.3.1 Site descriptions 

All sites sampled, are categorised as, or form part of, Special Areas of Conservation (SAC) or Sites of 

Special Scientific Interest (SSSI). Relevant site and vegetation descriptions have mainly been gathered 

from the Joint Nature Conservation Committee (JNCC), the statutory body which designates such areas. 

Sites were selected to incorporate a range of severity of anthropogenic impacts, whilst taking into 

consideration practical issues, such as access and permissions to conduct this research. 

 

 

Reference sites 

“Reference site” in this context is used to describe sites containing a significant quantity of high quality, 

active ombrotrophic bog; i.e. the presence of substantial amounts of Sphagnum and actively peat-

forming. Whilst these sites are in comparatively better condition than those of the degraded southern 

Pennines, it would be incorrect to refer to them as pristine due to past and current anthropogenic 

influences, as mentioned in each site descriptions below. The reference sites include several raised bogs 

and whilst these habitats differ from blanket bog in a number of ways, they are ecologically analogous 

habitats (Shepherd et al., 2013). Indeed, raised bogs can, in some cases, coalesce to become blanket 

bogs. 

Borth Bog (also known as Cors Fochno (JNCC, 2014a)) is a c. 650 ha SAC, located in Ceredigion, 

Wales and forms part of the Dyfi Biosphere reserve. Although a substantial part of the former peatland 
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complex has been taken for agriculture, the surviving core area supports the largest expanse of primary 

near-natural raised bog in an estuarine context within the UK. Extensive areas of patterned mire include 

occasional hummocks of Sphagnum fuscum and, more rarely, S. austinii, with hollows and lawns 

supporting extensive S. pulchrum, greater sundew (Drosera anglica), white beak sedge (Rhynchospora 

alba) and bog rosemary (Andromeda polifolia). Areas of domestic peat cutting peripheral to the dome 

are now actively regenerating and support a significant area of active bog vegetation. There are also a 

range of vegetation types in which peat formation has ceased as a consequence of intensive drainage 

followed in places by peat removal and/ or agricultural management. 

Glasson Moss, along with Wedholme Flow, Bowness Common and Drumburgh Moss, make up the 

South Solway Mosses SAC (JNCC, 2014f); an estuarine complex of nearly 2000 ha in Cumbria, 

England. Although affected by past drainage and peat cutting, much of these sites support typical bog 

vegetation, including bog rosemary, cranberry (Vaccinium oxycoccos) and greater sundew. The central 

part of Glasson Moss displays some of the most diverse raised bog vegetation in the UK today, with 

Sphagnum species, including abundant S. pulchrum as well as S. fuscum. 

Whim Bog is a SSSI of around 90 ha, located in Peeblesshire, Scotland. It is an example of a transitional 

bog between lowland raised bog and blanket bog (Sheppard et al., 2013). The vegetation is classified as 

NVC M19 Calluna vulgaris-Eriophorum vaginatum blanket mire community, dominated by varying 

ages of C. vulgaris occurring as mosaics with hummocks of Sphagnum capillifolium and S. subnitens, 

and hollows containing S. fallax, S. magellanicum and S. papillosum with occasional E. angustifolium. 

Other common species include Erica tetralix, Empetrum nigrum, Hypnum jutlandicum, Pleurozium 

schreberi, Polytrichum spp. (Central Environmental Surveys, 2006; Sheppard et al., 2013). 

Whixall Moss forms part of Fenn’s, Whixall, Bettisfield, Wem and Cadney Mosses SAC (JNCC, 

2014b), a large (950 ha) lowland raised bog that straddles the England-Wales border in Shropshire and 

Wrexham. It is amongst the largest and most southerly raised bogs in the UK. Although much of the site 

has been subject to peat extraction, areas of partially cut and uncut mire still remain, in areas formerly 

subject to commercial peat-cutting, recent conservation management has led to the regeneration of bog-

forming vegetation. Mire vegetation includes Sphagnum papillosum, S. magellanicum, S. pulchrum, all 

three species of sundew (Drosera spp.), cranberry, bog asphodel (Narthecium ossifragum), royal fern 

(Osmunda regalis), white beak sedge and bog rosemary, together with the nationally scarce moss 

Dicranum affine. 

Migneint is an area of upland blanket bog, forming part of the Migneint-Arenig-Dduallt SAC (JNCC, 

2014c) which covers nearly 20,000 ha in Conwy and Gwynedd, Wales. Two vegetation types define the 

SAC: blanket bog and European dry heath. Migneint and Dduallt mark the limits of a large upland block 

located along the eastern fringe of Snowdonia National Park. The site supports the largest area of blanket 

bog in north Wales after Berwyn and is particularly significant for the extent and quality of 

comparatively Sphagnum-rich M19 Calluna vulgaris-Eriophorum vaginatum blanket mire. M18 Erica 
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tetralix-Sphagnum papillosum blanket mire is also widespread, with localised representation of S. 

magellanicum and, rarely, S. affine. The significant representation of more degraded vegetation types, 

including M20 Eriophorum vaginatum blanket mire, attests to a long history of anthropogenic 

modification including burning, grazing and drainage – significant parts of the site were formerly 

managed as grouse moor. Large areas of dry and wet heath are also present, while soligenous mire 

communities feature as widespread and extensive components of the blanket mire. Upland European 

dry heath at Migneint-Arenig-Dduallt is predominantly of NVC type H12 Calluna vulgaris-Vaccinium 

myrtillus heath. Other forms of heath present include H18 Vaccinium myrtillus-Deschampsia flexuosa 

heath, H21 Calluna vulgaris-Vaccinium myrtillus-Sphagnum capillifolium heath in damp north to north-

east facing cliffs, and H8 Calluna vulgaris-Ulex gallii heath at lower altitudes.  

Moidach More (JNCC, 2014d) is an SAC located in Moray and Highland regions of Scotland, covering 

just over 900 ha. Although it lies at 300 m, it is a low-altitude example of blanket bog in the eastern 

Highlands. Of major interest on this site is the surface patterning, which consists of soft, low hummocks 

and shallows or water-filled pools, and is not known to occur elsewhere in Grampian. While the 

hummocks contain Sphagnum fuscum and S. austinii, the hollows are dominated by S. cuspidatum. Other 

species include small cranberry (Vaccinium microcarpum) and the rare moss Dicranum undulatum. 

Areas of wet and dry heath are also found, particularly on the adjacent hill slopes. 

These sites are subsequently referred to as Borth, Glasson, Whim, Whixall, Migneint and Moidach, 

respectively. 

 

 

Pennine sites 

Alport Moor, Black Hill, Bleaklow and Holme Moss are all part of the vast (~ 65,000 ha) South Pennine 

Moors SAC (JNCC, 2014e), reaching from Staffordshire in the south to Lancashire and Yorkshire in 

the north, and from Cheshire in the west to Derbyshire in the east. The SAC represents blanket bog in 

the south Pennines; the most south-easterly occurrence of the habitat in Europe. The bog vegetation 

communities are botanically poor: hare’s-tail cottongrass (Eriophorum vaginatum) is often 

overwhelmingly dominant and Sphagnum mosses are scarce. Where the blanket peats are slightly drier, 

heather, crowberry (Empetrum nigrum) and bilberry (Vaccinium myrtillus) become more prominent. 

The uncommon cloudberry (Rubus chamaemorus) is locally abundant in bog vegetation. Bog pools 

provide diversity and are often characterised by common cottongrass (E. angustifolium). Substantial 

areas of the bog surface are eroding, and there are extensive areas of bare peat. In some areas, erosion 

may be a natural process reflecting the great age (9,000 years) of the south Pennine peats. Upland dry 

heaths are found at the southern end of the Pennine range; the habitat’s most south-easterly upland 

location in the UK. Dry heath covers extensive areas, occupying the lower slopes of the moors on 
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mineral soils or where peat is thin, and occurs in transitions to acid grassland, wet heath and blanket 

bog. The upland heath of the south Pennines is strongly dominated by C. vulgaris. Its main NVC types 

are H9 Calluna vulgaris-Deschampsia flexuosa heath and H12 Calluna vulgaris-Vaccinium myrtillus 

heath. More rarely H8 Calluna vulgaris-Ulex gallii heath and H10 Calluna vulgaris-Erica cinerea heath 

are found. On the higher, more exposed ground H18 Vaccinium myrtillus-Deschampsia flexuosa heath 

becomes more prominent. 

 

 

3.3.2 Vegetation surveying and sample collection 

At each of the survey sites, ten 0.5 m × 0.5 m quadrats containing Sphagnum were selected. Effort was 

made to gather data on replicates of Sphagnum species; e.g. several quadrats containing S. capillifolium. 

Species identity and percentage cover were recorded for all vegetation, including lichens and liverworts, 

where possible. Location (12-figure British National Grid format) and elevation of the sample quadrats 

were recorded using a GPS unit (Garmin GPSmap 62). Table 13 provides a summary of the survey sites 

and their characteristics.  

From within the quadrat, a sample core was taken (65 mm diameter × 95 mm depth), passing through 

the vegetation and into the peat. Porewater (~ 30 ml) was collected using Rhizon samplers (a narrow 

cylindrical probe made of a porous hydrophilic polymer with 0.15 µm pore size, supplied by Van Walt, 

UK) and syringes to generate a vacuum, before transferring to a universal tube. All material gathered 

was stored at < 5 oC upon returning to the laboratory. 

Sampling at the Pennine sites followed the same protocol, with the addition of a further ten quadrats and 

samples collected. These were non-Sphagnum samples, immediately adjacent (< 3 m away) to those 

samples with Sphagnum, giving a total of twenty samples per Pennine site (reference sites n = 10, 

Pennine sites n = 20). 
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Figure 25 – Location of bog survey sites, with inset showing the southern Pennine sites (© 2013 

Google Earth). 
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Table 13 – Survey site characteristics. Numeric values are means of quadrats sampled at each site. 

Site Date sampled Easting Northing Elevation (m) Bog type 

Alport Moor 08/05/2012 411151 393479 539 blanket 

Black Hill 06/10/2011 408302 404599 577 blanket 

Bleaklow 19/06/2012 409588 395154 587 blanket 

Borth 23/05/2011 263578 291271 12 raised 

Glasson 25/05/2011 323557 560607 23 raised 

Holme Moss 02/08/2011 409344 404376 530 blanket 

Migneint 24/05/2011 278029 345555 457 blanket 

Moidach 27/05/2011 302420 841471 281 blanket 

Whim 26/05/2011 320260 653259 294 transitional 

Whixall 08/06/2011 348249 335561 94 raised 

 

 

3.3.3 Laboratory analysis 

Porewater samples were filtered to 0.2 µm before any subsequent analysis. Nutrient analysis was 

conducted using ion chromatography (IC, Dionex ICS-2000) for anions and cations, and metals were 

analysed using inductively coupled plasma optical emission spectrometry (ICP-OES, Thermo Scientific 

iCAP 6000 series). pH was determined using an electronic pH meter (Sartorius PB-20 with KCl-filled 

electrode) after the other analyses to avoid contamination. 

Vegetation was removed from the core samples and the fresh peat was homogenised prior to analysis. 

Moisture content of the peat samples was determined by drying at 40 oC to a constant mass. All values 

reported for peat chemistry were adjusted for moisture content and expressed on a dry weight basis. pH 

of the peat was measured using a peat and deionised water slurry (1:2.5 ratio (Allen, 1989)), stirring 

with a glass rod for 30 seconds before measuring using the pH meter as before. 

Extractable nutrients and metals were measured by adding a 5 g sample of fresh peat to 20 ml of 1 % 

KCl and 0.1 M EDTA, respectively. The samples were mixed on an orbital shaker for 30 min before 

being centrifuged at 4000 rpm for 5 min. The supernatant was then filtered to 0.2 µm before analysis 

using IC and ICP-OES. 

Total metals, phosphorus and sulphur were measured by acid digestion of dried, ground peat samples. 

10 ml conc. HNO3 (> 70 %) was added to 0.5 g peat in a PTFE digestion vessel. Samples were sealed 

and left to cold-digest overnight, before being heated to 165 oC for 30 min using a microwave digester 

(CEM Mars 5; adapted from EPA 3051A (Moore, 1993)). Once cool, the samples were vacuum filtered 

through Whatman #3 cellulose papers and diluted to 50 ml with deionised water, before being analysed 
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using ICP-OES. Total carbon and nitrogen were measured on a Leco Truspec elemental analyser, using 

0.2 g samples of dried, ground peat. 

Vegetation was dried at 40 oC to a constant weight before being ground. Total metals, P, S, C and N 

were measured using the methods outlined above using 0.5 g and 0.1 g of plant material for acid digest 

and Leco, respectively. 

Table 14 provides a summary of the biogeochemical analyses outlined above.  

 

 

3.3.4 Statistical analyses 

Univariate statistical analyses were carried out in Minitab v.16 (Minitab Inc., 2010). Multivariate 

analyses and hierarchical logistic regression were implemented in the R software environment (R Core 

Team, 2013), using RStudio (RStudio Team, 2013), and packages eHOF (Jansen & Oksanen, 2013), 

lattice (Sarkar, 2008), MASS (Venables & Ripley, 2002), mgcv (Wood, 2004, 2006, 2011), nlme 

(Pinheiro et al., 2013), permute (Simpson, 2013) and vegan (Oksanen et al., 2013). 

 

 

Vegetation 

Vegetation cover data of quadrats were improved by removing grouped taxa (e.g. liverwort and lichen) 

and rare species occurring in single samples, to avoid undue influence on subsequent analysis. Values 

were then log10 (x+1) transformed (Alday et al., 2011). Multivariate exploratory analysis was carried 

out to visualise the plant community composition using non-metric multidimensional scaling (NMDS) 

and Bray-Curtis dissimilarity matrices. Differences in vegetation were then analysed using 

permutational multivariate analysis of variance (PERMANOVA). 

 

 

Unconstrained environmental calibration 

Environmental variables can be considered alongside the ordination of sites and species by calculating 

correlation values between the ordination and environmental variables. These can then be displayed on 

the ordination plots as vectors; their length being proportional to the strength of the correlation, and 

direction governed by a weighted average of the values. Some caution must be used in interpreting the 

results since not all responses will be linear.  



3. Biogeochemical influences on Sphagnum

 

 

104 

Table 14 – Summary of laboratory biogeochemical analyses. 

Variable Symbol Analysis by Porewater 
Peat 

extractable 
Peat total 

Vegetation 

total 

Moisture content MC Balance     

Acidity pH pH meter     

Ammonium NH4
+ IC     

Calcium Ca2+      

Magnesium Mg2+      

Nitrate NO3
-      

Phosphate PO4
3-      

Potassium K+      

Sodium Na+      

Sulphate SO4
2-      

Aluminium Al ICP-OES     

Arsenic As      

Barium Ba      

Cadmium Cd      

Calcium Ca      

Cobalt Co      

Copper Cu      

Iron Fe      

Lead Pb      

Magnesium Mg      

Manganese Mn      

Molybdenum Mo      

Nickel Ni      

Phosphorus P      

Potassium K      

Sodium Na      

Strontium Sr      

Sulphur S      

Tin Sn      

Titanium Ti      

Vanadium V      

Zinc Zn      

Carbon C Leco     

Nitrogen N      
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Surface fitting 

Generalised additive models (GAMs) can be used to surface fit contour lines onto the ordination, in 

order to test if the response of a vector is linear. This may provide an additional opportunity to explain 

the distribution of points on the ordination, which would otherwise be missed using the linear 

representation of vectors. Figure 26 gives an example of a vector describing a linear trend, and Figure 

27 shows a non-linear gradient and its associated vector; its direction and magnitude calculated by a 

weighted average value. 

 

Figure 26 – Non-metric multidimensional scaling (NMDS) ordination of the vegetation composition 

data of the sample sites, with fitted copper (Cu) vector and contour lines showing a linear relationship. 
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Figure 27 – Non-metric multidimensional scaling (NMDS) ordination of the vegetation composition 

data of the sample sites, with fitted manganese (Mn) vector and contour lines showing a non-linear 

relationship. 

 

 

The reason for this apparent lack of linearity is due to the unconstrained nature and multi-axis approach 

of non-metric multidimensional scaling. NMDS generates values across numerous axes, which are 

impossible to visualise simultaneously, and even three dimensions can prove unclear and confusing. 

Hence, from NMDS ordination plots, there is more certainty in concluding that two distant points are 

dissimilar, rather than two points close together are similar (they may be close in terms of the first two 

axes, but be quite different along subsequent axes). 
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Constrained ordination 

In unconstrained ordination, the major compositional variation is found and then related to observed 

environmental variation. In constrained ordination, only the variation explained by those environmental 

variables of interest, or the constraints, is shown. Constrained ordination is akin to multivariate linear 

models; with no a priori judgments made on the environmental variables, model building is used to 

reduce the number of constraints and identify the most important environmental factors. Automatic 

stepwise model building was performed for constrained ordination, using forwards and backwards 

stepwise model selection based on permutation tests. 

 

 

Species-gradient modelling 

The response curves of individual species can be used for a range of ecological applications, such as 

predicting site conditions or species co-occurrence (Jansen & Oksanen, 2013); their purpose being to 

model the realised niche of species for any gradient type (Huisman et al., 1993). Even if the 

physiological niche of a species is simple to describe (e.g. unimodal or with a specific threshold), it 

cannot be expected that its realised niche will be equally as simple to describe (Jansen, 2013). Given the 

usually large number of hidden, unmeasured gradients in field data, it is unwise to use unrestricted 

modelling techniques, but limit results to a set of conservative and interpretable model types. In this 

way, hierarchical logistic regression models (also known as Huisman-Olff-Fresco (HOF) models) have 

been shown to perform better than other methods, such as general linear models (GLM) or beta functions 

(Lawesson et al., 2003; Oksanen & Minchin, 2002). More flexible modelling shapes provided by general 

additive models (GAM) have also been used (Heikkinen & Mäkipää, 2010) but suffer from problems of 

over and under-fitting; resulting in lack of ecological interpretability with limited transferability 

(McCune et al., 2002), or reduced flexibility than other methods, respectively (Jansen & Oksanen, 

2013). HOF models are particularly suited to data with an upper bound (M), such as % cover. The arcsin 

(√[x/100]) transformation is used to improve the homoscedasticity of the data (Miller, 1986; Sokal & 

Rohlf, 1981); with M = 90.  

In HOF modelling, the best model is chosen from a set of predetermined models using statistical 

information criteria, i.e. a balance between model fit to the data and the simplicity of the model, with 

bootstrapping used to safeguard model stability (Jansen & Oksanen, 2013). Originally, five HOF models 

were described (Huisman et al., 1993), with an additional two bimodal responses added later (Jansen & 

Oksanen, 2013) (Figure 28); the seven models are of increasing complexity. Model I is a flat response, 

indicating there is no significant trend along the gradient for that species. It represents the null hypothesis 

and ensures that only species with a clear response will be modelled with one of the further model types. 

Model II is monotone sigmoid with a maximum at one end of the gradient; model III is monotone 



3. Biogeochemical influences on Sphagnum

 

 

108 

sigmoid with a plateau below the maximal upper abundance value. Model IV is the canonical form of 

species response, a unimodal symmetric model; V is a unimodal skewed model and models VI and VII 

have two optima, with maxima being equal in VI but not in VII (Jansen, 2013). 

In short, HOF models can be used to model species responses along particular environmental gradients. 

By restricting the shape of these models to a series of predefined models, based on ecological niche 

concepts, the resulting output should be applicable to a wider range of scenarios. 

 

 

 

Figure 28 – Examples of the seven HOF models types: Model I (red), Model II (orange), Model III 

(yellow), Model IV (green), Model V (aqua), Model VI (blue), Model VII (purple) (after Jansen, 2013). 
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3.3.5 Method development 

Rationale 

Nutrient analysis of peat varies between authors, employing individual modification of methods 

developed for vegetation or mineral soil analysis. Since peat forms a continuum from easily 

distinguishable plant material to amorphous soil-like mass, its analysis as either vegetation or soil could 

be considered as valid. Nutrient status of vegetation is typically measured through acid digestion of 

dried material or by combustion, returning a total value for a given element. Whilst useful in some 

applications, a total measure of nutrients is less useful than that of an extractable value; i.e. that which 

is available to plants. To this end, peat must be treated as a soil to determine plant-available nutrients. 

However, protocols developed for the assessment of soils are mainly based on agricultural systems (e.g. 

Rowell, 1994) and substrates containing significantly more mineral and less organic matter than peat. 

Thus, the nutrient analysis of peat has been somewhat open to interpretation, influenced by the analytical 

equipment available and main nutrient(s) of interest. 

An efficient, single extraction method was required to allow the determination of peat nutrients using 

ion chromatography (IC). From the literature, three extraction reagents were identified as potentially 

suited: deionised water (H2O (e.g. Van der Paauw, 1971)), barium chloride (BaCl2 (e.g. Hendershot & 

Duquette, 1986)) and potassium chloride (KCl (e.g. Allen, 1989)). H2O might be considered the ideal 

reagent since it contains no additional anions or cations, allowing a full range to be measured from a 

sample. Additionally, there is no large influx of reagent ions into the IC column which can mask the 

detection of other ions. However, H2O may not give an accurate measure of potential available nutrients. 

The use of a chemical reagent to measure exchangeable nutrient aims to achieve a more accurate 

representation of plant-available nutrients. The concentration of an extractant is critical in IC analysis; 

a higher concentration will recover a greater proportion of nutrients within a given sample, but can 

saturate the detection mechanism and produce poor results. Such samples would require diluting before 

analysing, a potentially time-consuming and unnecessary step. 

 

 

Methods 

A comparison of extractant reagent and concentration was conducted using H2O, and BaCl2 and KCl at 

1 % and 6 % concentrations. The nutrient extraction and analysis procedure outlined in Section 3.3.3 

was followed, using peat samples from an earlier glasshouse growth trial (Section 2.4). Each extraction 

method was replicated 5 times.  
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Results and Analysis 

Table 15 provides a summary of the results; mean values and standard error were calculated and the 

data then tested for normality (Anderson-Darling test). Significance of the extractants was assessed 

using rank ANOVA, with Bonferroni-corrected pairwise comparisons used to establish differences 

between extractants. 

 

 

Table 15 – Mean (and SE) of nutrient anions and cations in peat using a range of extractants. Rank 

ANOVA results (F) and Bonferroni-corrected pairwise comparisons are reported. Means which do not 

share a letter are significantly different. (* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001) 

Nutrient H2O
 BaCl2 1 % BaCl2 6 % KCl 1 % KCl 6 % F  

Ca2+ 15.65 c 117.22 b 135.63 b 521.15 a 122.82 b 50.77 *** 

 (0.44)  (9.17)  (9.60)  (19.22)  (9.19)    

K+ 35.38 a 0.00 b 36.39 a     103.47 *** 

 (1.67)  (0.00)  (1.58)        

Mg2+ 5.24 b c 0.00 c 39.44 b 216.85 a 56.80 b 17.61 *** 

 (0.09)  (0.00)  (1.25)  (7.58)  (0.67)    

Na+ 22.12 b 17.01 c 19.51 b 166.36 a 13.82 c 271.32 *** 

 (0.94)  (0.68)  (0.56)  (2.15)  (1.18)    

NH4
+ 23.72 b 18.56 b 25.32 b 101.31 a 18.85 b 135.31 *** 

 (1.75)  (1.67)  (0.37)  (6.41)  (0.41)    

NO3
- 36.06 a 0.28 d 1.93 c 48.01 a 5.02 b 84.38 *** 

 (2.86)  (0.13)  (0.55)  (1.69)  (0.53)    

PO4
3- 0.00 b 0.00 b 0.07 a 0.34 a b 0.44 a 12.63 ** 

 (0.00)  (0.00)  (0.05)  (0.21)  (0.10)    

SO4
2- 195.51 a 42.78 c 49.26 b 224.73 a 49.25 b c 30.63 *** 

 (3.92)  (0.72)  (1.64)  (4.11)  (2.69)    
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Discussion and conclusion 

KCl 1 % yielded the greatest value for each nutrient ion with the exception of PO4
3-; H2O produced the 

greatest value, however, it was not significantly greater than that returned by extraction in KCl 1 %. It 

was not possible to measure K+ using this extractant as the detection mechanism would be saturated by 

the influx of reagent ions. This is of little concern since K can be measured by ICP-OES following 

extraction in Na2EDTA. All other reagents performed poorly as extractants. H2O was found to be of use 

in determining NO3
-, SO4

2-, and K+ for the reason given above. BaCl2 1 % was out-performed in all 

cases, whilst at 6 % concentration it proved suitable for K+ and PO3
4-. KCl 6 % would appear to be of 

less use than its weaker 1 % counterpart, being less effective across all ions except PO4
3-. This may be 

due to problems encountered during IC analysis, where the influx of reagent ions in higher concentration 

extractants caused such complete saturation of the IC column that detection of other nutrient ions 

became difficult, or indeed, impossible. Bearing this in mind, in terms of performance and suitability, 

KCl 1 % would appear to be the extractant of choice for analysis of nutrients by ion chromatography. 

 

 

3.3.6 Quality control 

The methods outlined in Section 3.3.3 were tested for accuracy and reproducibility. A sample of peat (~ 

500 g) collected from Holme Moss was homogenised and analysed for moisture content, pH, extractable 

nutrients, total carbon and nitrogen, and extractable and total metals. Ten replicates of each measure 

were obtained, and a mean value and relative standard deviation (RSD) calculated (Appendix 5). In 

general, extractable measures had higher RSD values than total measures. Across 25 variables, RSD 

values for the extractable measures ranged from 4.21 – 62.77 %, with 19 variables having an RSD > 10 

%. For the total measurements, of a potential 24, 19 variables had an RSD < 10 %, and an overall RSD 

range of 0.36 – 29.01 %. Thus, it would appear that total values of soil nutrients and metals are more 

reliable than extractable values. This may be due to incomplete suspension of the peat during extraction; 

a problem unlikely to be faced in microwave digestion using ground material. Degradation of samples 

during storage may represent another factor; e.g. the formation of precipitate; another occurrence 

unlikely to affect acid digest samples. Despite these differences within the measurements of nutrients 

and metals, the methods outlined are more than sufficient to capture the scale of differences expected 

between regional sites and those of the southern Pennines. The combination of porewater, extractable 

and total measurements will enable a critical assessment of these values and erroneous data will be 

quickly and easily identified. 
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3.4 Results and analyses 

3.4.1 Vegetation 

National comparison 

 

Figure 29 – Non-metric multidimensional scaling (NMDS) ordination of vegetation composition from 

the sample sites (n = 100), overlain with their bivariate SE ellipses. Species abbreviations can be found 

in Appendix 1. The most abundant species are added first and where species labels overlap, they have 

been omitted and the locations marked (+); all species labels are displayed in Appendix 6. 
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Vegetation cover data of quadrats containing Sphagnum from the ten sample sites (n = 100) was assessed 

using NMDS (Figure 29). The different sites were fitted onto the NMDS ordination, with their class 

centroids and bivariate standard error ellipses drawn. Species composition was found to be significantly 

different between the sites (PERMANOVA, P < 0.001). From the ordination and SE ellipses, it is 

apparent there is a marked distinction between the reference and Pennine sites. Samples from Borth and 

Glasson showed similar species composition, with Moidach also closely related. Migneint and Whim 

shared similarities, whilst samples from Whixall appeared more distinct. Samples from the Pennine sites 

had greater levels of variability, as shown by their larger standard error ellipses. Species composition of 

samples from Alport Moor and Black Hill were similar, with Bleaklow appearing distinct and Holme 

Moss intermediary between them.  

 

 

Pennine sites 

Vegetation cover data of quadrats from the four Pennine sites, both with and without Sphagnum (n = 

80), were assessed using NMDS, as for the national comparison. Vegetation composition was found to 

be significantly different between quadrats containing Sphagnum (with) and those which did not 

(without) (PERMANOVA, P < 0.001), as was clearly visible from the ordination (Figure 30). Despite 

considerable overlap in ordination space, both quadrats with and without Sphagnum occupied some 

regions exclusively. Quadrats containing Sphagnum appeared to have the largest variation in vegetation 

composition, occupying the largest region of the ordination space. 
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Figure 30 – Non-metric multidimensional scaling (NMDS) ordination of the vegetation composition 

data, separated by samples with and without Sphagnum present. The most abundant species are added 

first and where species labels overlap, they have been omitted and the locations marked (+); all species 

labels are displayed in Appendix 7. 
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3.4.2 Biogeochemistry 

Selection of biogeochemical variables 

Biogeochemical data were collected from the 10 survey sites; porewater, extractable and total peat 

values were recorded, generating a substantial number of environmental variables. Spearman’s rank 

correlation coefficients were calculated for each chemical variable measured, comparing porewater, 

extractable and total values (Table 16). The highlighted results indicate a significant positive correlation. 

For comparison with total values, ions were correlated with their total elemental measurement. 

There were 10 significant positive correlations between porewater and extractable chemistry, and 9 with 

total peat chemistry, out of a potential 26 and 28, respectively (Table 16). These values were based on 

all of the data collected. This compares poorly with the 23 (out of 26) significant positive results between 

extractable and total peat chemistry (Table 17). 

It was thought that this may be due to the influence of the Pennine sites upon the complete dataset. The 

Pennine sites are severely eroded with extremely disturbed hydrological regimes, characterised by flashy 

responses to precipitation events (e.g. Holden et al., 2008); i.e. rainfall passes quickly through these 

systems and is not held for any significant period of time due to the free-draining nature of these sites. 

This would give the water insufficient time to take on the chemical characteristics of the peat, and thus 

be reflected in porewater chemistry. 

To test this, correlations were recalculated for subsets of the data: reference sites and Pennine sites, 

separately (Table 16). An increase in positively correlated variables was expected from the reference 

sites, with fewer in the Pennine sites, given the reasons outlined. Whilst significant positive correlations 

were indeed greater in the reference sites (9 with extractable values, 9 with totals) compared to the 

Pennine sites (6 with extractable values, 4 with totals), these results are still way short of the maximum 

possible (26 with extractable and 28 with total) and much fewer than the significant correlations between 

extractable and total values, as outlined earlier (23 of 26, Table 17). 

The difference between reference and Pennine sites was thought to be exacerbated through the one-off 

sampling scheme. This would make all porewater measurements from Pennine sites highly influenced 

by the amount of precipitation immediately preceding sampling. It is interesting to note that the reference 

sites show correlations with base cations (Ca2+, Mg2+ and Na+), whilst the Pennine sites do not. This 

may be a reflection on the acidification and subsequent leaching of these ions from southern Pennine 

sites. Aluminium (Al), manganese (Mn), titanium (Ti) and vanadium (V) are also well represented in 

the porewater from reference sites. Pennine sites appear to have strong relationships with phosphorus 

(P) and phosphate (PO4
3-), perhaps due the additions of fertilisers as part of the restoration process. 

Despite a few observable trends, it would appear evident that porewater chemistry is of little use as a 

biogeochemical measure in this case. It inadequately describes differences observed in the peat 
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chemistry and is influenced by the hydrological condition of the site. For the purposes of further analysis, 

porewater chemistry was not used. There was no such notable difference in the extractable/ total 

chemistry correlations in the Pennine and reference sites (23 of 26 and 21 of 26, respectively; see Table 

17). 

With porewater data effectively eliminated from the analysis, environmental variables were reduced to 

extractable and total peat chemistry. Further analysis made use of extractable peat chemistry as this was 

deemed to be plant-available (Rowell, 1994), and therefore influence the vegetation. Total values 

include quantities of elements locked up in plant tissue or peat, bound in complexes, and so not available 

to affect the vegetation. Extractable magnesium (Mg/ Mg2+) values collected were either incomplete or 

considered to be unreliable due to problems in IC and ICP-OES analysis so were not used. However, 

due to the importance of magnesium as a plant nutrient it was not excluded entirely. 

Total Mg was used as a proxy due to its very high correlation with extractable Mg; Mg2+ values (IC) 

were considered reliable but incomplete for all samples, whilst Mg values (ICP-OES) were thought to 

be erroneous and showed no relation to other Mg measures.  

Table 18 provides a summary of the biogeochemical measures assessed here and the analytical methods 

used. 
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Table 16 – Spearman’s rank correlation coefficients of porewater chemistry with extractable and total 

values. Subsets have been used for comparisons; all the data (All, n = 140), data from the reference sites 

only (Reference, n= 60), and data from the Pennine sites only (Pennine, n = 80). Significant positive 

correlations have been highlighted. (* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001) 

Variable 
Extractable Total 

All Reference Pennine All Reference Degraded 

pH 0.125  0.229  0.096        

Al 0.300 *** 0.342 ** 0.181  0.333 *** 0.381 ** 0.209  

Ba -0.264 ** 0.252  -0.199  0.354 *** -0.161  0.307 ** 

Ca2+ 0.089  0.340 ** -0.098  0.022  0.234  -0.034  

Ca 0.189 * 0.148  0.241 * 0.133  0.051  0.179  

Cd 0.024  0.192  -0.252 * 0.063  0.209  -0.086  

Co -0.094  -0.163  -0.101  0.088  0.082  -0.018  

Cu 0.139  0.014  -0.006  0.162  0.134  -0.002  

Fe 0.140  -0.082  0.262 * 0.150  0.095  0.225  

K+       0.135  0.321 * 0.172  

K 0.105  -0.093  0.336 ** 0.127  0.115  0.193  

Mg2+ 0.494 *** 0.277 * 0.238  0.431 *** 0.274 * 0.100  

Mg -0.404 *** 0.504 *** -0.148  0.488 *** 0.071  0.200  

Mn 0.300 *** 0.374 ** 0.219  0.268 ** 0.282 * 0.260 * 

Mo 0.034  -0.113  0.055  -0.065  -0.173  -0.080  

Na+ -0.263 ** 0.420 *** -0.287 ** 0.192 * 0.325 * -0.099  

Na       0.011  0.546 *** -0.194  

NH4
+ 0.150  -0.067  0.120  0.073  -0.085  0.127  

Ni -0.238 ** -0.175  -0.121  -0.149  0.196  -0.018  

NO2
-       0.055  -0.022  0.155  

NO3
- 0.449 *** 0.248  0.253 * 0.105  0.173  -0.020  

P 0.301 *** -0.100  0.442 *** 0.174  -0.063  0.277 * 

Pb 0.241 ** 0.276 * -0.062  0.316 *** 0.324 * 0.081  

PO4
3- 0.323 *** -0.170  0.547 *** 0.173 * -0.071  0.339 ** 

SO4
2- -0.007  -0.074  -0.090  0.132  -0.188  -0.116  

Sr -0.249 ** -0.074  0.195  -0.034  -0.103  0.184  

Ti 0.247 ** 0.419 ** 0.219  0.258 ** 0.457 *** 0.193  

V 0.049  0.284 * 0.122  0.140  0.293 * 0.213  

Zn 0.301 *** 0.239  0.211  0.041  0.226  0.098  

Total 10  9  6  9  9  4  
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Table 17 – Spearman’s rank correlation coefficients of extractable and total chemistry values. Subsets 

have been used for comparisons; all the data (All, n = 140), data from the reference sites only (Reference, 

n= 60), and data from the Pennine sites only (Pennine, n = 80). Significant positive correlations have 

been highlighted. (* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001) 

 Variable  All  Reference  Pennine  

 Al  0.828 ***  0.751 ***  0.757 ***  

 Ba  0.124   0.148   0.345 **  

 Ca2+  0.847 ***  0.781 ***  0.902 ***  

 Ca  0.754 ***  0.662 ***  0.835 ***  

 Cd  0.842 ***  0.896 ***  0.735 ***  

 Co  0.620 ***  0.578 ***  0.457 ***  

 Cu  0.780 ***  0.675 ***  0.614 ***  

 Fe  0.647 ***  0.801 ***  0.717 ***  

 K  0.688 ***  0.644 ***  0.728 ***  

 Mg2+  0.762 ***  0.806 ***  0.570 ***  

 Mg  -0.215 *  0.250   0.477 ***  

 Mn  0.824 ***  0.846 ***  0.821 ***  

 Mo  0.732 ***  0.383 **  0.557 ***  

 Na+  0.862 ***  0.509 ***  0.769 ***  

 NH4
+  0.361 ***  0.489 ***  0.356 ***  

 Ni  0.301 ***  -0.108   0.263 *  

 NO3
-  0.147   0.111   0.105   

 P  0.708 ***  0.723 ***  0.585 ***  

 Pb  0.898 ***  0.886 ***  0.808 ***  

 PO4
3-  0.565 ***  0.416 ***  0.509 ***  

 S  0.255 **  0.321 *  -0.083   

 SO4
2-  0.660 ***  -0.027   -0.003   

 Sr  0.695 ***  0.590 ***  0.756 ***  

 Ti  0.729 ***  0.669 ***  0.556 ***  

 V  0.788 ***  0.603 ***  0.645 ***  

 Zn  0.666 ***  0.782 ***  0.626 ***  

 Total  23   21   23   
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Table 18 – Summary of biogeochemical variables and methods of analysis. 

Variable Symbol Measure Reagent Analysis by 

Moisture content MC - - Balance 

Acidity pH - H2O pH meter 

Ammonium NH4
+ Extractable KCl (1 %) IC 

Nitrate NO3
-    

Phosphate PO4
3-    

Sodium Na+    

Sulphate SO4
2-    

Aluminium Al Extractable Na2 EDTA (0.1 M) ICP-OES 

Arsenic As    

Barium Ba    

Cadmium Cd    

Calcium Ca    

Cobalt Co    

Copper Cu    

Iron Fe    

Lead Pb    

Manganese Mn    

Molybdenum Mo    

Nickel Ni    

Phosphorus P    

Potassium K    

Strontium Sr    

Sulphur S    

Tin Sn    

Titanium Ti    

Vanadium V    

Zinc Zn    

Magnesium Mg Total HNO3 (> 70 %) ICP-OES 

 

 

  



3. Biogeochemical influences on Sphagnum

 

 

120 

National comparison 

Bar charts of mean biogeochemical values (± 1 SE error bars) across the ten sample sites can be found 

(in alphabetical order) in Figure 31 and Figure 32. A table of mean values (with standard errors), rank 

ANOVA and Bonferroni-corrected pairwise comparisons can be found in Appendix 8.  

Black Hill and Holme Moss peats were significantly higher across a range of nutrient elements and ions 

than the other sites. Black Hill and Holme Moss had significantly higher levels of nitrate (NO3
-) and 

phosphate (PO4
3-) than almost all of the other sites, with Holme Moss also having higher levels of 

ammonium (NH4
+), and Black Hill elevated levels of phosphorus (P). 

Base cations trends were less distinct. Calcium (Ca) levels at Black Hill were significantly higher than 

those of five other sites. Potassium (K) was found to be lower at Whixall than six of the other survey 

sites. Magnesium (Mg) was lower at the Pennine sites and Whixall, with Alport Moor and Holme Moss 

having the lowest levels. Sodium (Na+) was significantly lower at Alport Moor and Bleaklow than all 

of the reference sites, except for Whim. Strontium (Sr) was found to be higher at four of the reference 

sites than in the Pennines. Barium concentrations were found to be different, but pairwise comparisons 

between sites were unable to determine where this lay. 

Sulphate (SO4
2-) was significantly higher at Holme Moss than six other sites, whilst three of the Pennine 

sites were higher in sulphur (S) than four of the reference sites.  

A number of pollutant elements were found at significantly higher levels in the Pennines compared to 

the reference sites. Aluminium (Al), arsenic (As), cobalt (Co), copper (Cu), molybdenum (Mo), nickel 

(Ni), lead (Pb), tin (Sn), vanadium (V) and zinc (Zn) are all found at elevated levels across the Pennine 

sites, compared to levels found at the reference sites. 

Heavy metal pollution was not limited to the Pennine sites. Cadmium (Cd) levels at Migneint and Whim 

were higher than three of the other reference sites, but not significantly higher than most of those found 

in the Pennines. Whim and Migneint had greater levels of iron (Fe) than most other sites, and Migneint 

along with Borth had significantly raised levels of manganese (Mn). Higher titanium (Ti) levels were 

found at Whim and most of the Pennine sites, compared with four of the other sites. 

Moisture content (MC) and pH were not found to be significantly different between the sites. 
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Figure 31 – Mean (± 1 SE) biogeochemical variables of quadrats containing Sphagnum from the survey 

sites (see Table 18 for more details). Values in µg g-1 dry weight unless indicated otherwise.  
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Figure 32 – Mean (± 1 SE) biogeochemical variables of quadrats containing Sphagnum from the survey 

sites (see Table 18 for more details). Values in µg g-1 dry weight unless indicated otherwise. 
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Pennine sites 

Holme Moss was found to have higher levels of NH4
+, Na+ and Fe, and lower levels of Mn than the 

other Pennine sites. Black Hill had the highest levels of Ca and Sr, but the lowest levels of Mo and Sn. 

Al, As and SO4
2- were greater at Holme Moss than Alport Moor and Black Hill, whilst Zn was 

significantly lower. Ti and V were higher at Holme Moss than Bleaklow, and Ba greater than at Black 

Hill. Black Hill and Holme Moss had greater levels of NO3
- and PO4

3- than Alport Moor and Bleaklow. 

Alport Moor had significantly more Cu than Black Hill, and levels of Pb were higher than Black Hill 

and Holme Moss. Black Hill and Bleaklow had higher levels of S than Alport Moor, and Mg levels were 

greater at these sites than Alport Moor and Holme Moss. Black Hill had greater levels of P than Alport 

Moor and Bleaklow, and K levels were lower at Bleaklow than Black Hill. Levels of MC, As, K, Mn, 

Mo, Na+, NO3
+, P, PO4

3-, S and SO4
2- were significantly greater in samples containing Sphagnum than 

without, whilst V was found to be significantly lower. Interaction effects were recorded for Al, Ba and 

Co, showing the response was not consistent between sites or the presence of Sphagnum. Table 19 

provides details of mean values and statistical analysis. 

  



 

 

Table 19 – Mean (and standard error) and rank ANOVA test of biogeochemical variables from the Pennine sample sites (* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001). 

Values in µg g-1 dry weight, unless indicated otherwise. 

 Alport Moor Black Hill Bleaklow Holme Moss Rank ANOVA F 

Variable With Without With Without With Without With Without Site Sphagnum Site*Sphagnum 

MC (%) 91.66 87.92 92.29 86.43 92.20 80.86 91.73 87.58 0.21  46.72 *** 0.69  

 (0.87) (1.13) (0.91) (1.04) (1.34) (5.57) (1.13) (1.01)       

pH 4.06 4.34 4.52 3.99 4.08 3.91 3.98 4.26 0.56  0.11  2.80 * 

 (0.19) (0.09) (0.24) (0.12) (0.12) (0.08) (0.16) (0.16)       

Al 195.48 202.02 148.40 180.92 720.21 196.90 336.68 381.32 8.88 *** 0.40  3.24 * 

 (27.15) (29.58) (17.28) (19.46) (242.29) (32.87) (50.63) (56.53)       

As 1.14 1.45 0.82 0.78 4.17 1.07 2.44 2.21 12.79 *** 4.50 * 1.87  

 (0.21) (0.56) (0.12) (0.11) (1.37) (0.28) (0.24) (0.31)       

Ba 5.27 4.48 6.21 4.52 18.33 3.44 11.11 7.60 2.93 * 3.67  3.03 * 

 (0.82) (0.57) (2.84) (0.81) (5.42) (0.63) (4.28) (1.48)       

Ca 242.25 203.77 1988.88 726.67 292.31 253.75 313.53 258.79 12.85 *** 1.84  0.18  

 (25.95) (17.26) (568.44) (134.95) (51.36) (37.88) (34.01) (22.86)       

Cd 0.70 0.66 1.27 0.72 0.77 0.64 0.62 0.59 0.66  1.28  0.15  

 (0.10) (0.08) (0.60) (0.14) (0.07) (0.09) (0.06) (0.06)       

Co 0.52 0.66 0.59 0.46 1.70 0.50 0.73 0.57 2.90 * 2.36  2.76 * 

 (0.08) (0.10) (0.20) (0.08) (0.49) (0.08) (0.08) (0.02)       

Cu 9.16 8.19 5.10 4.69 9.39 7.00 5.87 6.22 3.82 * 2.52  0.40  

 (1.32) (1.86) (0.68) (0.70) (1.18) (1.32) (0.82) (1.44)       

Fe 434.86 422.22 259.44 214.16 329.79 231.26 797.35 515.52 12.12 *** 2.26  0.03  

 (101.98) (147.67) (38.32) (31.99) (97.89) (52.81) (148.63) (53.77)       

K 198.49 188.20 425.07 205.28 235.38 72.56 278.93 105.78 3.91 * 10.26 ** 1.42  

 (56.80) (35.32) (96.03) (39.60) (68.26) (42.83) (69.26) (25.34)       

Mg 478.15 464.02 643.88 718.30 731.71 620.36 456.03 413.29 12.65 *** 0.39  0.09  

 (24.51) (39.95) (42.90) (92.90) (103.97) (46.72) (36.44) (53.48)       

Mn 3.91 2.78 4.81 4.59 6.76 2.88 2.15 1.48 6.28 *** 6.97 ** 0.16  

 (0.52) (0.32) (1.15) (1.45) (1.99) (0.62) (0.26) (0.37)       

 



 

 

  Alport Moor Black Hill Bleaklow Holme Moss Rank ANOVA F 

Variable With Without With Without With Without With Without Site Sphagnum Site*Sphagnum 

Mo 1.03 1.10 0.46 0.22 0.80 1.01 0.75 0.58 12.68 *** 8.25 ** 0.32  

 (0.11) (0.26) (0.11) (0.03) (0.11) (0.55) (0.07) (0.08)       

Na+ 199.91 127.55 317.52 163.42 190.26 146.83 385.47 192.35 8.39 *** 26.08 *** 0.57  

  (23.09) (7.28) (71.94) (20.73) (15.24) (18.74) (50.24) (10.01)       

NH4
+ 384.13 341.25 403.03 262.66 226.35 122.80 1301.08 594.27 9.50 *** 0.68  0.50  

  (153.88) (85.54) (143.37) (77.91) (69.07) (37.79) (260.36) (81.79)       

Ni 2.19 2.61 1.61 2.27 3.13 2.21 2.09 2.16 0.60  0.25  0.84  

  (0.50) (0.59) (0.45) (0.54) (0.69) (0.41) (0.33) (0.19)       

NO3
- 446.02 20.82 1368.45 519.65 250.56 111.90 1996.13 169.91 10.32 *** 18.44 *** 1.98  

  (213.89) (12.18) (257.85) (181.79) (165.19) (74.17) (430.46) (102.09)       

P 3.77 3.27 18.37 7.89 6.20 4.26 13.37 3.78 14.78 *** 9.04 ** 1.04  

  (0.73) (0.68) (2.81) (1.11) (3.15) (2.94) (3.03) (0.79)       

Pb 184.69 161.06 88.08 79.20 224.50 100.50 108.20 97.14 3.62 * 2.34  1.24  

  (33.89) (36.42) (13.84) (11.50) (54.25) (26.49) (28.11) (21.70)       

PO4
3- 25.37 25.89 207.22 106.27 11.41 7.98 186.34 92.21 40.81 *** 7.37 ** 1.08  

  (6.51) (16.89) (40.75) (21.61) (6.27) (3.78) (46.19) (55.03)       

S 9.99 6.58 18.36 7.68 20.30 9.14 16.39 7.64 3.90 * 43.07 *** 1.35  

  (1.72) (1.04) (2.11) (0.76) (3.80) (1.75) (1.49) (1.18)       

Sn 0.05 0.06 0.01 0.01 0.07 0.03 0.09 0.05 9.84 *** 2.71  1.05  

  (0.02) (0.03) (0.00) (0.00) (0.02) (0.01) (0.03) (0.01)       

SO4
2- 90.92 47.20 209.02 75.58 285.85 134.87 545.32 173.79 12.28 *** 21.92 *** 0.74  

  (19.62) (12.49) (57.32) (16.35) (74.07) (29.83) (78.51) (42.87)       

Sr 2.07 1.70 4.49 3.47 2.63 2.19 2.37 2.30 10.87 *** 0.72  0.30  

  (0.28) (0.23) (0.61) (0.36) (0.56) (0.33) (0.29) (0.20)       

Ti 0.77 1.83 1.03 0.85 0.67 0.41 1.59 1.69 6.30 *** 0.60  0.43  

  (0.14) (0.86) (0.25) (0.20) (0.21) (0.13) (0.30) (0.43)       

V 0.55 0.99 0.59 0.81 0.38 0.43 0.67 1.37 3.86 * 4.01 * 0.48  

  (0.13) (0.30) (0.11) (0.13) (0.12) (0.15) (0.18) (0.33)       

Zn 67.24 59.47 78.21 67.79 46.81 53.34 42.39 32.86 9.60 *** 0.02  0.91  

  (8.46) (5.00) (14.85) (7.19) (4.09) (6.70) (6.21) (4.88)       
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3.4.3 Biogeochemical drivers of vegetation 

Unconstrained environmental calibration 

Nineteen (of 28 measured) environmental variables were found to be significantly correlated with the 

vegetation composition data ordination (Table 20). The most significantly correlated vectors (P ≤ 0.001) 

were plotted onto the ordination (Figure 33), since adding all significant vectors (P ≤ 0.05) would 

produce an extremely congested figure. Even at this highest significance level there were still 15 drawn. 

The reference sites appeared to be associated with magnesium and strontium, whilst the Pennine sites 

were associated with nutrients and a number of metal pollutants. 

 

Figure 33 – Non-metric multidimensional scaling (NMDS) ordination of vegetation composition from 

the sample sites, overlain with the most significantly correlated (P ≤ 0.001) environmental variables.  
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Table 20 – Correlations of environmental variables with the vegetation and site ordination (Figure 33). 

(* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001) 

 Vector  NMDS1  NMDS2  r2   

 MC  0.8532  0.5216  0.0010   

 pH  -0.5017  -0.8651  0.0133   

 Al  0.9855  0.1695  0.2841 ***  

 As  0.9564  0.2919  0.2553 ***  

 Ba  0.0998  -0.9950  0.0351   

 Ca  -0.5852  -0.8109  0.0067   

 Cd  0.8331  0.5532  0.0237   

 Co  0.9986  0.0536  0.1509 ***  

 Cu  1.0000  -0.0031  0.2159 ***  

 Fe  -0.5294  0.8484  0.0536   

 K  -0.3127  -0.9498  0.0490   

 Mg  -0.9797  -0.2005  0.4528 ***  

 Mn  -0.8740  0.4859  0.0868 *  

 Mo  0.9808  -0.1950  0.4098 ***  

 Na+  -0.9805  -0.1966  0.0952 **  

 NH4
+  0.9075  0.4201  0.1421 **  

 Ni  0.9961  -0.0888  0.1815 ***  

 NO3
-  0.9998  0.0215  0.2142 ***  

 P  0.9601  0.2797  0.2225 ***  

 Pb  0.9990  0.0452  0.3185 ***  

 PO4
3-  0.9978  0.0665  0.1975 ***  

 S  0.9865  0.1636  0.2551 ***  

 Sn  0.9731  0.2305  0.0988 **  

 SO4
2-  0.8666  0.4989  0.1534 ***  

 Sr  -0.9658  -0.2591  0.4552 ***  

 Ti  0.9501  0.3118  0.0121   

 V  0.9265  -0.3762  0.2258 ***  

 Zn  0.9698  -0.2440  0.0181   
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National comparison 

Using the procedure outlined above using data from all the sites, the model selected was: 

Log10 (veg+1) ~ Mg + Al + Ba + Cd + NO3
- + MC + SO4

2- + V + Fe + Mo + Zn 

Significance of the terms in the model were assessed using permutations (P ≤ 0.031 for all terms), and 

only terms which reduced the Akaike information criterion (AIC) value were included (model AIC = 

347.56, Appendix 9). The constrained model was plotted (Figure 34), and the constraining variables 

checked for linearity using GAMs (see Surface fitting). Most of the plotted vectors were found to be 

linear, with the exception of SO4
2- and V. This was thought to be due to the strong influence of a small 

number of samples, as clearly visible on the ordination, causing elongation of the CCA axes and 

distortion of these vectors. 

There was a general separation between the Pennine and reference sites at CCA1 ≈ -0.5. Magnesium 

displayed a strong gradient, along which both the reference and Pennine sites were aligned, with Borth 

and Glasson showing positive associations. Barium and moisture content were most closely associated 

with samples from Moidach and S. cuspidatum. Whixall, Whim and Migneint demonstrated a 

relationship with iron, albeit one of the weaker influences, as denoted by the shorter arrow drawn on the 

ordination (Figure 34). The Pennine sites were characterised by a number of pollutant metals and ions: 

aluminium, sulphate, molybdenum, vanadium, nitrate, cadmium and zinc. A number of samples from 

Bleaklow appeared to have a strong influence on the ordination, showing a strong relationship with 

aluminium. Mo, V, NO3
-, Cd and Zn demonstrated close associations with the majority of samples from 

the Pennine sites, forming a narrow “wedge” in ordination space. SO4
2- appeared to form a more general 

gradient, helping to separate the reference and Pennine sites. 

Variance inflation factor (VIF) values were calculated for the terms of the model to assess levels of 

covariance with the other constraints (Table 21). As a general rule, VIF > 10 indicates that a variable is 

strongly dependent upon another and does not contribute any independent information (Montgomery & 

Peck, 1992; Oksanen, 2013). The VIF values, all < 2.4, indicate the significance of each constraint, even 

when compared to a more stringent threshold of 3 (Zuur et al., 2010). 
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Figure 34 – Canonical correspondence analysis (CCA) ordination of the vegetation composition data 

and species distribution of the sample sites, constrained by those environmental variables selected in the 

model building process (Mg + Al + Ba + Cd + NO3
- + MC + SO4

2- + V + Fe + Mo + Zn). The most 

abundant species are added first and where species labels overlap, they have been omitted and the 

locations marked (+); all species labels are displayed in Appendix 10. 

 

 

Table 21 – Variance inflation factor (VIF) values of the model terms for the national comparison. 

Mg 2.069 Al 1.756 Ba 1.966 Cd 1.625 

NO3
- 1.607 MC 1.371 SO4

2- 1.675 V 2.070 

Fe 1.183 Mo 2.343 Zn 1.968   
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Pennine sites 

The process was repeated for the Pennine sites, generating the model: 

Log10 (veg+1) ~ Ba + Al + P + Mg + Mo + Pb + Fe + S 

Significance of the terms in the model were assessed using permutations (P ≤ 0.04 for all terms) and 

only terms which reduced the AIC value were included (model AIC = 247.78, Appendix 11). The model 

was plotted (Figure 35), and the constraining variables checked for linearity using GAMs. The plotted 

vectors were found to be linear, with the exception of Mo and S. As in the national comparison, a small 

number of samples appeared to be highly influential, which may explain these non-linear gradients. 

The majority of samples were distributed along CCA2, between 0 and -1 on CCA1. A small number of 

samples formed a separate group, located between 2.5 and 4 on CCA1. All but one of these samples 

were collected from Bleaklow, and most were those which contained Sphagnum. There were numerous 

strong gradients associated with these isolated samples. Pb, Al, Ba and Mg displayed strong gradients, 

separating the two groups of samples on the ordination (Figure 35). The main group of samples showed 

strong association with P and Fe, determining their position along CCA2. There was considerable 

overlap in the regions occupied by samples with and without Sphagnum on the ordination. Most samples 

containing Sphagnum were found at higher values on CCA2 than samples without Sphagnum. 

Variance inflation factor (VIF) values were calculated for the terms of the model to assess levels of 

covariance with the other constraints (Table 22). All values were < 2.4 indicating that each constraint 

added independent information to the model (Zuur et al., 2010). 

 

 

Table 22 – Variance inflation factors (VIF) values for the model terms for the Pennine sites. 

Ba 2.336 Al 2.338 P 1.389 Mg 1.363 

Mo 1.631 Pb 2.394 Fe 1.395 S 1.922 
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Figure 35 – Canonical correspondence analysis (CCA) ordination of the vegetation composition data 

and species distribution of the Pennine sites, constrained by those environmental variables selected in 

the model building process (Ba + Al + P + Mg + Mo + Pb + Fe + S). The most abundant species are 

added first and where species labels overlap, they have been omitted and the locations marked (+); all 

species labels are displayed in Appendix 12. 
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3.4.4 Species-gradient modelling 

National comparison 

Performance of the most abundant Sphagnum species (occurring in at least 5 quadrats) were examined 

over those environmental gradients shown to be significant in the CCA (Mg + Al + Ba + Cd + NO3
- + 

MC + SO4
2- + V + Fe + Mo + Zn). Species responses were assessed using HOF models; cover data were 

transformed (arcsin[√(x/100)]) and a Gaussian error structure was used (Huisman et al., 1993). The 

results can be found in Appendix 13. Table 23 provides a summary of the HOF models describing the 

response of Sphagnum along those significant environmental gradients. 

 

 

Table 23 – Summary of HOF model selected (bold) and gradient concentration (µg g-1 unless otherwise 

indicated) at which modelled Sphagnum species maxima occur, for the national comparison. Species 

abbreviations can be found in Appendix 1.  

Gradient 

(Range) 
Sph.cap Sph.cus Sph.fal Sph.mag Sph.pal Sph.pap Sph.pul Sph.subn Sph.ten 

Mg 7 7 7 4 4 7 5 7 7 

(250 – 1750) 1600 750 500 1100 350 300 1250 500 1750 

Al 2 7 7 3 4 5 3 7 4 

(0 – 2500) 0 1200 400 0 750 200 0 200 0 

Ba 7 5 7 7 4 7 7 3 4 

(0 – 60) 15 55 15 35 5 0 25 0 10 

Cd 7 7 7 2 4 7 4 7 2 

(0 – 7) 2 0 2.5 0 0 0 0.25 7 0 

NO3
- 7 2 7 2 2 7 7 5 2 

(0 – 3500) 0 0 2400 0 3400 1750 250 1250 0 

MC (%) 7 5 5 4 4 7 5 7 5 

(84 – 97) 90.5 95.5 95.5 92 92 91 94 84 91 

SO4
2- 7 7 7 3 4 7 7 4 4 

(0 – 900) 50 700 900 100 400 450 0 0 150 

V 7 7 7 2 4 7 7 5 2 

(0 – 2) 0 0.5 2 0 0.4 1.5 0.6 0.9 0 

Fe 7 7 7 4 4 7 5 2 7 

(0 – 5000) 5000 250 3500 800 800 900 500 0 600 

Mo 7 7 7 2 4 7 7 5 7 

(0 – 2) 0.1 0.4 1.2 0 0.5 2 0.1 0.9 0 

Zn 7 7 7 4 4 7 5 7 3 

(0 – 200) 80 0 60 140 25 40 25 200 0 



3. Biogeochemical influences on Sphagnum

 

 

133 

When the HOF models were inspected (Appendix 13), it was noted that they appeared to suffer from 

over-fitting of the data, and were unduly influenced by extreme values. Whilst some models appeared 

realistic (e.g. S. capillifolium response to aluminium), many more models seemed erratic and unrealistic 

(e.g. S. palustre response to aluminium, S. fallax response to molybdenum). Therefore, HOF models 

were thought to be unsuitable for modelling responses of Sphagnum to influential environmental 

gradients in this instance.  

 

 

3.4.5 Vegetation, peat total, and comparative chemistry 

Vegetation chemistry 

Differences in vegetation chemistry between survey sites were assessed using rank ANOVA and 

Bonferroni-corrected pairwise comparisons (see Table 24 for full details). Vegetation from Borth 

contained higher levels of Sn than any other site, whilst C, Mg and Sr were greater than a number of 

reference and Pennine sites. Glasson and Borth had significantly higher N:P than most other sites. 

Migneint had greater levels of Mn than Alport Moor, Holme Moss and Moidach. Ni was significantly 

greater at Moidach and Black Hill than Holme Moss, whilst C:N ratio was higher at three of the reference 

sites than most of the Pennine sites. Vegetation from Alport Moor contained higher levels of Cu than 

any reference sites, with Alport Moor and Bleaklow having significantly greater amounts of Mo and Pb. 

Bleaklow was higher in Co than the reference sites, whist N was higher at Holme Moss, and P was 

greater at Holme Moss and Black Hill. Levels of As, S, Ti, V and Zn were greatest at Alport Moor, 

significantly higher than many of the reference sites. Black Hill had the greatest Ca levels, whilst 

Bleaklow had the highest levels of Al, Ba, Cd and Fe. Holme Moss and Bleaklow contained the highest 

levels of K, greater than four reference sites, and Na was higher at Holme Moss than Moidach and Alport 

Moor.   



 

 

Table 24 – Mean (and standard error) of vegetation chemistry variables from samples containing Sphagnum. Values in µg g-1 dry weight, unless indicated otherwise. Rank ANOVA 

(F) and Bonferroni-corrected pairwise comparisons are reported; sites which do not share a letter are significantly different. (* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001) 

Variable Alport Moor Black Hill Bleaklow Borth Glasson Holme Moss Migneint Moidach Whim Whixall F 

Al 464.97 a b c 268.49 c d 1492.75 a 173.06 d e 186.74 d e 440.96 b c d 194.90 d e 74.30 f 502.45 a b 111.05 e f 23.95 *** 

 (60.21)  (39.86)  (365.99)  (12.52)  (16.04)  (113.88)  (35.80)  (9.77)  (41.54)  (11.42)    

As 1.75 a 0.47 b c d e 1.39 a b 1.83 a b c 0.05 d e 1.13 a b 0.78 b c d 0.04 e 0.14 c d e 0.20 b c d e 11.48 *** 

 (0.28)  (0.18)  (0.38)  (0.90)  (0.02)  (0.24)  (0.37)  (0.01)  (0.08)  (0.04)    

Ba 19.83 a b 13.05 b c d 139.84 a 5.89 d 9.08 c d 12.02 b c d 8.31 c d 18.23 a b c 13.82 a b c 16.61 a b c 7.59 *** 

 (2.09)  (1.93)  (36.97)  (0.42)  (1.18)  (1.45)  (1.02)  (3.82)  (1.42)  (3.88)    

C (%) 48.61 a b c 47.37 d 46.09 d 50.95 a 50.36 a b 50.86 a b c 48.09 c d 48.49 b c d 50.35 a b 48.11 b c d 8.72 *** 

 (1.82)  (0.21)  (1.08)  (0.43)  (0.46)  (1.42)  (0.41)  (0.35)  (0.36)  (0.56)    

Ca 2337.14 a b 14832.17 a 1698.50 b 2318.52 a b 2126.59 a b 1584.83 b 1540.28 b 1633.11 b 2464.24 a b 3297.96 a b 3.33 ** 

 (621.43)  (3778.41)  (217.93)  (534.41)  (337.03)  (278.56)  (193.79)  (272.67)  (548.76)  (814.32)    

Cd 0.48 a b 0.33 b c d 0.65 a 0.16 d e 0.32 
b c d 

e 
0.44 a b c d 0.60 a b c 0.07 e 0.17 c d e 0.25 b c d e 9.16 *** 

 (0.06)  (0.08)  (0.05)  (0.03)  (0.10)  (0.08)  (0.18)  (0.01)  (0.03)  (0.04)    

Co 0.45 a b 0.37 b c d 2.16 a 0.11 e 0.17 d e 0.21 c d e 0.15 d e 0.08 e 0.36 b c 0.16 d e 18.91 *** 

 (0.05)  (0.12)  (0.44)  (0.01)  (0.04)  (0.03)  (0.03)  (0.01)  (0.04)  (0.06)    

Cu 9.79 a 6.28 a b c 8.64 a b 5.92 b c 4.19 c d 5.78 b c 4.58 c d 2.72 d 4.58 c d 2.96 d 14.16 *** 

 (0.95)  (0.60)  (1.30)  (0.65)  (0.31)  (0.66)  (0.36)  (0.28)  (0.33)  (0.53)    

Fe 911.28 a 537.38 a b c 1376.52 a 304.15 b c 350.03 b c 819.70 a 879.96 a b c 264.47 c 668.74 a b 281.90 c 7.83 *** 

 (131.41)  (138.53)  (356.80)  (36.42)  (67.44)  (103.32)  (341.75)  (69.39)  (59.46)  (57.50)    

K 2300.21 b c 2965.34 a b 4192.93 a 2361.01 b c 2017.87 b c 5416.80 a 1782.43 c 2020.83 b c 2528.10 a b c 2822.02 a b c 6.60 *** 

 (401.66)  (253.00)  (590.00)  (358.69)  (193.16)  (968.14)  (117.42)  (149.95)  (242.82)  (333.87)    

 



 

 

Variable Alport Moor Black Hill Bleaklow Borth Glasson Holme Moss Migneint Moidach Whim Whixall F 

Mg 758.26 c d 981.13 a b c d 1092.68 a b c 1344.14 a 912.12 b c d 834.25 c d 1187.99 a b 1250.07 a b 1055.01 a b c 689.70 d 9.25 *** 

 (67.84)  (73.25)  (126.08)  (63.88)  (65.42)  (57.86)  (41.56)  (91.87)  (68.82)  (44.26)    

Mn 44.15 b c 80.72 a b c 64.74 a b c 118.23 a b c 95.91 a b c 43.51 b c 163.46 a 46.02 c 130.99 a b 124.83 a b c 3.60 *** 

 (5.87)  (18.92)  (12.83)  (53.03)  (24.73)  (9.02)  (26.17)  (17.67)  (28.60)  (34.96)    

Mo 4.15 a 1.23 a b 3.05 a 0.08 c d 0.05 c d 0.09 d 0.06 d 0.18 b c 0.18 c d 0.23 c d 28.99 *** 

 (0.59)  (0.31)  (0.63)  (0.02)  (0.02)  (0.09)  (0.04)  (0.03)  (0.09)  (0.17)    

N (%) 1.38 a b 1.08 b c 1.45 a b 1.03 b c 1.07 b c 1.77 a 1.04 b c 0.92 c 1.11 b c 0.77 c 10.03 *** 

 (0.12)  (0.11)  (0.15)  (0.05)  (0.07)  (0.13)  (0.08)  (0.09)  (0.05)  (0.04)    

Na 517.49 b 761.18 a b 745.89 a b 847.35 a b 790.96 a b 1191.71 a 747.62 a b 617.01 b 778.17 a b 739.79 a b 2.72 ** 

  (86.33)  (110.23)  (120.12)  (71.59)  (92.41)  (130.72)  (112.17)  (66.26)  (91.17)  (117.96)    

Ni 0.67 a b 4.70 a 4.76 a b 3.97 a b 2.54 a b 0.67 b 2.71 a b 5.70 a 4.03 a b 2.49 a b 3.18 ** 

 (0.29)  (1.25)  (1.84)  (1.21)  (1.06)  (0.67)  (0.70)  (1.06)  (1.23)  (1.12)    

P 388.76 b c d 988.62 a 711.59 a b 248.82 d 226.19 d 1128.50 a 430.21 b c 384.97 b c d 450.00 b c 316.43 c d 18.33 *** 

 (49.20)  (105.55)  (182.35)  (37.08)  (18.88)  (222.71)  (45.08)  (51.80)  (44.13)  (27.34)    

Pb 82.51 a 22.54 b c 159.77 a 8.41 c 9.57 c 58.98 a b 18.51 b c 5.41 c 9.20 c 8.80 c 15.40 *** 

 (17.12)  (8.69)  (41.76)  (1.65)  (3.05)  (19.72)  (7.02)  (1.61)  (2.91)  (2.28)    

S 1357.06 a 1222.80 a b 1365.17 a b 968.94 a b c 933.34 a b c 1193.21 a b 854.95 c 785.32 c 912.13 b c 798.62 c 6.81 *** 

 (101.21)  (95.28)  (170.82)  (59.29)  (72.77)  (70.67)  (69.49)  (69.44)  (53.48)  (32.87)    

Sn 0.00 b 0.00 b 0.07 b 0.26 a 0.00 b 0.00 b 0.00 b 0.00 b 0.00 b 0.18 b 4.93 *** 

 (0.00)  (0.00)  (0.07)  (0.15)  (0.00)  (0.00)  (0.00)  (0.00)  (0.00)  (0.18)    

 

  



 

 

Variable Alport Moor Black Hill Bleaklow Borth Glasson Holme Moss Migneint Moidach Whim Whixall F 

Sr 12.34 a b c 16.92 a b c 18.78 a b 13.42 a 10.47 a b c 7.27 b c 12.16 a b c 14.92 a b 10.43 a b c 6.81 c 3.83 *** 

 (1.20)  (3.75)  (3.62)  (0.84)  (1.16)  (0.87)  (1.17)  (1.98)  (1.28)  (1.05)    

Ti 14.74 a 8.08 a b c 12.62 a 1.45 e 3.19 d e 5.21 c d 2.09 e 5.18 b c d 9.57 a b 2.97 d e 24.43 *** 

 (1.92)  (1.34)  (2.96)  (0.29)  (0.42)  (0.86)  (0.46)  (0.53)  (0.78)  (0.44)    

V 3.66 a 1.55 a b 3.25 a 0.47 b c 0.56 b c 1.93 a 0.56 b c 0.20 c 1.28 a b 0.21 c 11.73 *** 

 (0.68)  (0.46)  (0.80)  (0.11)  (0.16)  (0.41)  (0.24)  (0.08)  (0.28)  (0.11)    

Zn 64.94 a 54.61 a b 56.02 a b 35.48 b c 58.17 a b 64.51 a 53.55 a b 21.61 c 35.80 b c 62.87 a 7.95 *** 

 (3.94)  (8.73)  (4.35)  (2.31)  (8.81)  (5.73)  (10.06)  (2.89)  (3.74)  (5.20)    

C:N 36.68 b c d 47.49 a b c 34.42 c d 50.58 a 49.85 a b 30.00 d 48.30 a b 56.07 a 46.13 a b 64.47 a 11.98 *** 

 (1.92)  (4.25)  (3.15)  (2.16)  (5.18)  (2.24)  (3.21)  (4.39)  (1.83)  (3.56)    

N:P 37.68 a b 11.34 d 25.29 b c 45.25 a 48.73 a 20.66 c d 25.19 b c 25.56 b c 26.11 b c 25.42 b c 15.73 *** 

 (3.23)  (0.88)  (3.37)  (3.65)  (2.90)  (3.13)  (1.45)  (1.69)  (1.93)  (2.14)    
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Peat total chemistry 

Differences in peat total chemistry between survey sites were assessed using rank ANOVA and 

Bonferroni-corrected pairwise comparisons. Table 25 provides full details. 

Peat from Borth had the highest levels of C, greater than Black Hill, Moidach and Bleaklow, whilst 

levels of Mg were higher than all sites except Migneint and Glasson. Similarly, Na was highest at Borth 

and was significantly greater than all sites but Glasson. N:P ratio was highest at Borth and Glasson. The 

values at these sites were higher than all other sites. Migneint has greater level of Cd than Holme Moss, 

Black Hill, Glasson, Borth and Moidach, whilst Mn was also greater than at Whixall, Holme Moss and 

Moidach. Migneint was found to have the greatest levels of N, more so than Bleaklow, Moidach and 

Whixall. Sr levels were higher at Migneint, Moidach, Borth, Whim and Black Hill than Alport Moor, 

Whixall and Holme Moss. Moidach and Glasson were significantly greater in K than Whixall, whilst 

Whim and Alport Moor had greater levels of Ti than four of the reference sites. Whixall had higher 

levels of Zn than five of the sites, including three Pennine, whilst C:N ratios were higher than Alport 

Moor, Whim, Holme Moss and Migneint. 

Peat from Alport Moor had significantly greater levels of total Mo than all of the reference sites and 

Black Hill, and was higher in Sn than four of the reference sites and Bleaklow. Cu was greater at Alport 

Moor, Bleaklow and Holme Moss than five of the reference sites, whilst V was greater at Alport Moor 

and Holme Moss than all but one of the reference sites. Alport Moor, Migneint, Bleaklow and Holme 

Moss had higher levels of As than Glasson and Moidach. Black Hill was characterised by Ca levels 

greater than Holme Moss and Alport Moor, and Ni was higher than at Glasson and Migneint. Al was 

significantly higher at Bleaklow than all sites but Holme Moss, Alport Moor and Whim, whilst Ba was 

greater at Bleaklow than four of the reference sites. Bleaklow and Alport Moor had greater levels of Pb 

than all sites except for Holme Moss and Whim, whilst Co was greater at Bleaklow and Whim than all 

sites but Alport Moor and Holme Moss. P levels were highest at Holme Moss, more so than all sites 

except Migneint, Black Hill and Whim. Fe was found at the greatest levels at Holme Moss, Migneint 

and Whim, and was significantly greater than the remaining four of the reference sites.  



 

 

Table 25 – Mean (and standard error) of total peat chemistry variables from samples containing Sphagnum. Values in µg g-1 dry weight, unless indicated otherwise. Rank ANOVA 

(F) and Bonferroni-corrected pairwise comparisons are reported; sites which do not share a letter are significantly different. (* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001) 

 Variable Alport Moor Black Hill Bleaklow Borth Glasson Holme Moss Migneint Moidach Whim Whixall F 

Al 1051.84 a b c d 933.33 b c d e 2892.48 a 746.23 c d e 531.74 e 1754.36 a b 853.18 c d e 530.70 e 1149.33 a b c 629.30 d e 11.40 *** 

 (74.84)  (123.45)  (630.52)  (83.16)  (54.82)  (206.69)  (86.80)  (161.06)  (91.51)  (104.43)    

As 5.13 a 2.47 a b c 5.31 a b c 5.75 a b 1.26 b c 5.35 a 5.19 a 0.62 c 3.30 a b 5.75 a b 8.31 *** 

 (0.48)  (0.50)  (0.71)  (2.02)  (0.23)  (0.98)  (0.66)  (0.16)  (0.92)  (2.16)    

Ba 24.15 a b 19.46 a b c 135.02 a 7.24 d 16.25 b c 13.46 b c d 14.86 c d 25.08 a b 21.70 a b c 17.13 b c d 8.33 *** 

 (2.52)  (2.87)  (42.09)  (1.31)  (1.55)  (1.34)  (3.34)  (3.35)  (1.93)  (3.45)    

C (%) 51.75 a b c 50.07 b c 48.32 c 53.39 a 50.49 a b c 52.16 a b c 53.09 a b 50.34 b c 53.13 a b 50.79 a b c 4.48 *** 

 (0.65)  (0.79)  (1.32)  (0.41)  (0.39)  (1.67)  (0.33)  (0.62)  (0.44)  (0.74)    

Ca 1186.79 c 9328.25 a 1590.10 a b c 1984.35 a b 1575.02 a b c 1270.70 b c 1845.04 a b 1379.74 a b c  1501.34 a b c 1396.80 a b c 3.96 *** 

 (63.33)  (2639.77)  (249.27)  (194.25)  (97.30)  (152.98)  (83.54)  (158.07)  (176.12)  (119.51)    

Cd 0.98 a b c 0.85 b c d 1.21 a b c 0.54 d e 0.76 c d e 0.93 b c d 2.00 a 0.30 e 1.66 a b 1.28 a b c 12.63 *** 

 (0.10)  (0.09)  (0.15)  (0.07)  (0.14)  (0.08)  (0.33)  (0.04)  (0.22)  (0.20)    

Co 1.01 a b 0.86 b c 2.63 a 0.40 e 0.61 c d e 1.07 a b 0.52 d e 0.52 d e 1.71 a 0.80 b c d 19.39 *** 

 (0.07)  (0.09)  (0.58)  (0.05)  (0.07)  (0.12)  (0.03)  (0.06)  (0.18)  (0.09)    

Cu 23.59 a 14.48 a b 26.55 a 12.46 b c 4.29 c 25.39 a 6.60 b c 3.91 c 13.05 a b 10.53 b c 12.38 *** 

 (2.60)  (1.83)  (6.52)  (4.63)  (0.58)  (5.60)  (0.96)  (0.61)  (2.17)  (3.59)    

Fe 2942.18 a b 2322.61 a b c  3137.00 a b 1294.89 c 1709.53 b c 4567.09 a 3936.36 a 1632.66 b c 4266.09 a 1195.15 c 10.00 *** 

 (410.81)  (358.07)  (600.24)  (235.88)  (244.88)  (743.66)  (502.47)  (243.97)  (799.11)  (269.42)    

K 500.38 a b 610.22 a b 798.63 a b 745.20 a b 801.71 a 752.36 a b 475.19 a b 799.43 a 466.24 a b 412.69 b 4.11 *** 

 (63.62)  (83.25)  (164.20)  (102.84)  (76.13)  (87.69)  (55.28)  (62.76)  (44.61)  (69.54)    

  



 

 

 Variable Alport Moor Black Hill Bleaklow Borth Glasson Holme Moss Migneint Moidach Whim Whixall F 

Mg 478.15 e 643.88 d e 731.71 c d 1391.57 a 1075.62 a b 456.03 e 1112.52 a b 1070.87 b 927.18 b c 618.54 d e 31.63 *** 

 (24.51)  (42.90)  (103.97)  (50.81)  (51.61)  (36.44)  (29.99)  (80.23)  (35.21)  (34.27)    

Mn 24.82 a b c 31.90 a b c 35.53 a b c 76.44 a b c 39.79 
a b 

c 
18.13 b c 83.98 a 16.83 c 41.70 a b 25.64 b c 4.21 *** 

 (3.13)  (6.80)  (7.74)  (36.04)  (7.85)  (1.09)  (12.81)  (3.36)  (6.12)  (3.17)    

Mo 24.01 a 6.18 b c 13.01 a b 1.71 d e 0.69 d e 16.24 a b 6.93 b c 0.72 e 8.59 b c d 3.00 c d e 16.73 *** 

 (1.92)  (2.06)  (1.92)  (1.29)  (0.34)  (2.33)  (2.47)  (0.41)  (3.56)  (1.44)    

N (%) 1.66 a b 1.44 a b c  1.36 b c 1.54 a b 1.44 
a b 

c 
1.73 a b 1.84 a 1.37 b c 1.72 a b  1.05 c 6.20 *** 

 (0.09)  (0.09)  (0.08)  (0.09)  (0.06)  (0.11)  (0.09)  (0.08)  (0.09)  (0.10)    

Na 163.53 d 247.99 c d 174.91 d 449.56 a 324.39 a b 266.85  271.83 b c 257.25 b c 240.53 b c d 221.29 c d 13.15 *** 

  (15.20)  (48.56)  (7.76)  (13.43)  (18.63)  (27.90)  (19.45)  (11.08)  (19.90)  (11.40)    

Ni 3.55 a b 7.34 a 6.57 a b 5.42 a b 1.80 b 4.86 a b 1.12 b 2.22 a b 3.01 a b 2.96 a b 3.59 *** 

 (1.21)  (1.16)  (1.58)  (0.80)  (0.76)  (1.14)  (0.61)  (0.97)  (1.34)  (0.83)    

P 588.90 b 702.80 a b 559.84 b c 320.35 d 337.86 d 1085.98 a 741.57 a b 584.72 b 694.70 a b 373.34 c d 20.61 *** 

 (40.44)  (52.61)  (65.10)  (27.85)  (25.70)  (76.80)  (62.98)  (34.98)  (39.97)  (46.44)    

Pb 238.57 a 100.30 b c 324.33 a 31.67 d e 45.95 
c d 

e 
167.12 a b 93.94 b c 21.84 e 140.35 a b 70.36 c d 20.00 *** 

 (37.14)  (19.58)  (75.82)  (6.08)  (6.88)  (29.27)  (13.14)  (2.78)  (17.73)  (15.08)    

S 2466.94  2234.00  2985.56  2326.34  2073.19  3091.88  2232.42  1817.02  2518.15  3835.64  1.68  

 (159.02)  (204.75)  (436.83)  (274.62)  (215.54)  (362.02)  (286.04)  (227.96)  (353.81)  (998.95)    

Sn 1.56 a 0.86 a b 1.82 b c d 0.06 d 0.02 d 0.90 a b c d 0.16 d 0.05 c d 0.61 a b c 0.86 a b 9.09 *** 

 (0.19)  (0.21)  (1.55)  (0.05)  (0.02)  (0.39)  (0.15)  (0.04)  (0.21)  (0.32)    

  



 

 

 Variable Alport Moor Black Hill Bleaklow Borth Glasson Holme Moss Migneint Moidach Whim Whixall F 

Sr 12.13 b c d 20.67 a 19.55 a 21.51 a 16.64 a b c 9.35 d 21.64 a 21.47 a 19.51 a 10.53 c d 11.33 *** 

 (1.01)  (2.50)  (3.38)  (1.98)  (1.06)  (0.54)  (0.74)  (1.63)  (1.16)  (1.25)    

Ti 41.26 a 34.08 a b c 40.86 a b 20.71 a b c 15.69 c 41.50 a b c 16.43 c 22.28 b c 51.79 a 18.68 b c 6.18 *** 

 (3.66)  (5.97)  (9.15)  (3.32)  (2.30)  (10.01)  (2.87)  (7.20)  (8.67)  (4.53)    

V 12.23 a 8.63 a b c 10.71 a b 4.10 d 4.69 b c d 13.49 a 4.31 c d 1.87 d 8.48 a b 4.16 d 14.93 *** 

 (1.44)  (1.30)  (2.72)  (0.82)  (0.59)  (2.60)  (0.39)  (0.35)  (0.97)  (1.06)    

Zn 77.75 a b c 57.89 c d e 56.27 c d e 47.41 d e 92.49 a b 95.27 b c d 71.61 a b c d 32.75 e 87.58 a b c 123.07 a 11.14 *** 

 (6.14)  (4.98)  (5.34)  (4.29)  (9.45)  (37.29)  (10.65)  (5.06)  (8.22)  (17.64)    

C:N 31.97 b 35.79 a b 36.56 a b 35.67 a b 35.66 a b 31.56 b 29.49 b 37.65 a b 31.46 b 50.91 a 5.06 *** 

 (1.45)  (1.88)  (1.99)  (2.01)  (1.43)  (2.72)  (1.30)  (2.05)  (1.33)  (3.22)    

N:P 28.69 b 21.19 c d 26.92 b c 49.86 a 43.74 a 16.60 d 25.78 b c 23.73 b c d 25.01 b c 29.41 b 18.48 *** 

 (1.60)  (1.58)  (3.39)  (3.12)  (1.92)  (1.48)  (1.72)  (0.99)  (0.84)  (1.91)    
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Comparative peat extractable, total and vegetation chemistry 

Relationships between peat extractable, total and vegetation chemistry were assessed using Spearman’s 

rank correlation coefficient (Table 26). Peat extractable and total values were found to be highly 

significantly correlated (P ≤ 0.001) in all but four of the measured elements and ions. Extractable and 

total levels of Ba and Ni were less significantly correlated (P ≤ 0.05), whilst NO3
- (N) and SO4

2- (S) 

values showed no correlation. Relationships between peat extractable and vegetation chemistry were 

more variable; 15 variables were highly significantly correlated (P ≤ 0.001), Fe and S were less so (P ≤ 

0.01), and Na+ (Na), NO3
- (N) and Sr less so again (P ≤ 0.05). Ba, K, Sn and SO4

2- (S) were not 

significantly correlated, and Ni was significantly negatively correlated. Vegetation chemistry and total 

peat values were significantly correlated in 23 of the chemistry variables; 20 of these were highly 

significant (P ≤ 0.001), whilst C:N (P ≤ 0.01), and N and S were less so (P ≤ 0.05). K, Ni and Sn were 

not significantly correlated. 

Peat extractable, total and vegetation chemistry values were compared, both within and between the 

sites (Figure 36 and Figure 37). Cd, Co and Pb behaved similarly, with peat total values greater than 

extractable, and vegetation values the lowest. This pattern was consistent across most of the site and 

appeared proportional; i.e. there was a direct relationship between the three chemical measures. Sn and 

Zn were also followed the general pattern of values: peat total > extractable > vegetation, however, this 

was not consistent across all the sites nor were changes proportionally represented across the three 

measures. Al, Ba, Cu, Mo, S, Sr, Ti and V exhibited generally consistent and proportional of the order 

peat total values > vegetation > extractable. P displayed inconsistent results, with seven of the survey 

sites following the same pattern, but with the remaining three showing higher vegetation values. Both 

C and N levels were generally higher in peat total than vegetation; no extractable values were collected. 

C:N ratio was higher in vegetation than peat total, whilst N:P ratio was broadly similar in vegetation 

and peat total at each site. Ni behaved in neither a consistent nor proportional fashion between measures 

or sites. As and Fe were similarly variable, albeit with total peat values highest across all sites. Ca, K 

and Mn were in general consistently and proportionally represented across the three measures in the 

following order: vegetation > peat total > extractable. Mg followed this pattern but with the absence of 

extractable values. Na displayed a different order; vegetation > total peat, but was also consistently and 

proportionally represented between sites and measures. 
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Table 26 – Spearman’s rank correlation coefficient of peat extractable, vegetation and peat total values 

of biogeochemical variables. Ions are correlated against their elemental counter parts, as shown in 

brackets. (* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001) 

Variable extractable/ total extractable/ vegetation vegetation/ total 

Al 0.840 *** 0.604 *** 0.658 *** 

As 0.601 *** 0.525 *** 0.716 *** 

Ba 0.202 * 0.167   0.512 *** 

C     0.291 *** 

Ca 0.743 *** 0.325 *** 0.351 *** 

Cd 0.851 *** 0.442 *** 0.480 *** 

Co 0.678 *** 0.468 *** 0.618 *** 

Cu 0.805 *** 0.528 *** 0.568 *** 

Fe 0.673 *** 0.269 ** 0.553 *** 

K 0.648 *** -0.040   0.028   

Mg     0.649 *** 

Mn 0.831 *** 0.586 *** 0.733 *** 

Mo 0.728 *** 0.516 *** 0.362 *** 

N     0.244 * 

Na+ (Na) 0.767 *** 0.240 * 0.311 *** 

NH4
+ (N) 0.377 *** 0.351 ***   

Ni 0.226 * -0.216 * -0.077   

NO3
- (N) 0.146  0.242 *   

P 0.774 *** 0.751 *** 0.684 *** 

Pb 0.907 *** 0.648 *** 0.662 *** 

PO4
3- (P) 0.563 *** 0.619 ***   

S 0.325 *** 0.269 ** 0.253 * 

Sn 0.330 *** -0.194   0.009   

SO4
2- (S) 0.132  0.077     

Sr 0.687 *** 0.238 * 0.501 *** 

Ti 0.734 *** 0.523 *** 0.511 *** 

V 0.745 *** 0.583 *** 0.508 *** 

Zn 0.683 *** 0.437 *** 0.493 *** 

C:N     0.288 ** 

N:P     0.662 *** 
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Figure 36 – Mean (± 1 SE) peat extractable (blue), peat total (orange) and vegetation (green) measures 

of biogeochemical variables. Values in µg g-1 unless indicated otherwise. 



3. Biogeochemical influences on Sphagnum

 

 

144 

 

Figure 37 – Mean (± 1 SE) peat extractable (blue), peat total (orange) and vegetation (green) measures 

of biogeochemical variables. Values in µg g-1 unless indicated otherwise. 
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3.5 Discussion 

3.5.1 Vegetation 

National comparison 

Non-metric multidimensional scaling revealed a clear distinction in the vegetation composition of the 

reference and Pennine sites (Figure 29). The reference sites were characterised by species typical of high 

quality ombrotrophic bog, such as Andromeda polifolia, Drosera spp., Myrica gale, Narthecium 

ossifragum, Rhynchospora alba, Scirpus cespitosus (syn. Trichophorum cespitosum) and Vaccinium 

oxycoccos. Sphagnum was consistent a major component of the recorded vegetation, the species of 

which varied between sites. The presence of Sphagnum, amongst other species of vascular plants and 

bryophytes, defines these sites as high quality examples of active blanket and raised bog habitats; i.e. 

peat-forming (JNCC, 2004, 2009). Species such as S. capillifolium and S. papillosum were prevalent, 

along with smaller amounts of S. tenellum, and locally abundant S. magellanicum and S. pulchrum. 

In contrast, the Pennine sites contained few of these indicator species; their absence in the southern 

Pennine and Peak District regions has been conspicuous in the past (Lee, 1998). Vegetation was species-

poor, with quadrats usually dominated by one or two of only a few vascular plants; e.g. D. flexuosa, E. 

angustifolium, E. vaginatum and V. myrtillus. The bryophyte flora was more diverse, including some 

Sphagnum. However, these species are more typical of minerotrophic conditions, such as S. fallax and 

S. fimbriatum (Hill et al., 2007). There were also a number of atypical species present, indicative of 

disturbance, elevated nutrient conditions and raised soil pH, such as Epilobium angustifolium (syn. 

Chamerion angustifolium) and Galium aparine (Hill et al., 1999). Such species are likely to occur due 

to applications of lime and fertiliser as part of the revegetation process. Indeed, many of these non-bog 

species are found in channels and gulley floors which act to gather and concentrate run-off from treated 

areas. Propagules may arrive as seed carried by the wind, or be inadvertently introduced when applying 

materials such as lime, fertiliser, heather brash or geotextiles. More typical moorland species, such as 

Deschampsia flexuosa and Hypnum jutlandicum, indicate conditions are somewhat drier than reference 

blanket bog would be (Atherton et al., 2010; Hill et al., 1999; 2007). 
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Pennine sites 

Non-metric multidimensional scaling illustrated the significant difference in vegetation composition 

between samples with and without Sphagnum from the Pennine sites (Figure 30). This is perhaps 

unsurprising given that samples were distinguished by the presence or absence of Sphagnum. Indeed, 

with the exception of S. cuspidatum, all Sphagnum species were found outside the “without” region of 

the ordination. The region occupied by samples with Sphagnum was larger than that of samples without, 

indicating a greater diversity of species associated with Sphagnum presences. However, the cause of this 

diversity may be due to the atypical bog species found in the southern Pennines, arising from the 

application of lime and fertiliser in revegetation works, as discussed. 

S. cuspidatum and S. fallax were closely associated on the ordination, and close to E. angustifolium, 

indicative of wet conditions. S. fimbriatum was most closely linked with Campylopus pyriformis and 

Brachythecium rutabulum, suggesting its locations had suffered disturbance and were drier. S. subnitens 

was most closely associated with Aulacomnium palustre and Epilobium angustifolium, reflecting the 

nutrient enriched conditions. S. papillosum was found close to Galium aparine on the ordination; a 

surprising relationship given their contrasting nutrient requirements (Atherton et al., 2010; Hill et al., 

1999; 2007). S. denticulatum was isolated on the ordination, demonstrating the dominance of this species 

in samples where it occurred. 

 

 

3.5.2 Biogeochemistry 

National comparison 

Nutrient ions and elements (NH4
+, NO3

-, P, PO4
3-) were elevated at some or all of the degraded sites. 

These sites have been subjected to, and continue to be influenced by, increased rates of deposition due 

to both their altitude and proximity to sources of emissions from major conurbations of northern 

England; NO3
- from fossil fuel combustion and NHy intensive agriculture (Manninen et al., 2011). In 

addition to this, the application of NPK fertiliser used in revegetation works is also a likely contributor 

to these higher levels. This is supported by the high levels of NO3
-, P and PO4

3- recorded at Holme Moss 

and Black Hill, where samples came from areas continuing to receive fertiliser applications. Whilst parts 

of Alport Moor and Bleaklow were also under-going restoration works, samples collected at these sites 

were not taken from areas under such management. NH4
+ was greatest at the Pennine sites, however, 

levels from Migneint were similar, thought to be due to nearby agriculture and high levels of wet 

deposition (RoTAP, 2012). Concentrations of these elements were significantly higher than those found 

in comparable studies (Elliott et al., 2015; Nwaishi, 2010; Rosenburgh et al., 2013), with the exception 
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of P which was similar to other UK values, and considerably lower than industrial areas (e.g. Salemaa 

et al., 2001). 

Ca levels appear to further reflect restoration activity; evidence of recent lime application was found at 

Black Hill, but not the three other Pennine sites. Ca was noted to be very variable, both in this study and 

others (e.g. Basiliko & Yavitt, 2001; Stevens et al., 2009). Mg and Na+ were found to be lower at the 

Pennine sites than the reference sites, thought to be due to acidification and subsequent leaching of 

cations from the peat (Curtis et al., 2005; Daniels et al., 2008, 2012; Evans et al., 2000). K followed a 

similar pattern, although concentrations were raised at Black Hill, thought to be a further effect of 

fertiliser application. Whixall was shown to be lower than the other reference sites in a number of these 

cations; Ca, K and Mg were at similar concentrations to the Pennine sites. Sr conforms to the same 

pattern as other group 2 elements, with lower levels found across the Pennine sites and at Whixall. Ca, 

Sr and Ba are known to have similar biogeochemical behaviours in some ecosystem processes 

(Watmough, 2014). However, Ba did not exhibit the same site differences and similarities as observed 

in Ca and Sr. Atmospheric Ba levels, and therefore peat Ba levels, are not affected by anthropogenic 

activities, but rather can be used as a surrogate measure of mineral matter and soil-derived mineral dust 

(Krachler & Shotyk, 2004; Shotyk et al., 2014). Ba is the 21st most abundant element in the lithosophere, 

with quantities varying considerably between rock types (Dawson, 1985). 

The legacy of severe atmospheric pollution was evident in the biogeochemistry of the Pennine sites. 

When compared to the least polluted survey sites, all the Pennine sites showed elevated levels of As, 

Cd, Cu, Mo, Ni, Pb, Sn, Ti and V, whilst most had raised levels of Al, Co, Fe and Zn. Intensive industrial 

activity in the surrounding conurbations generated emissions on an unprecedented scale, depositing vast 

quantities of pollutants on the Peak District and southern Pennines. Consequently, the blanket bogs of 

the region contain high levels of heavy metals (Hutchinson, 1995; Jones & Hao, 1993; Lee & Tallis, 

1973; Livett et al., 1979; Markert & Thornton, 1990). Despite large reductions in atmospheric heavy 

metal and sulphur concentrations over the last 40 years (Cawse et al., 1994; UKRGAR, 1997), and 

subsequent rates of deposition (e.g. Pb reduced by 74 % from 1990 to 2010 (Harmens et al., 2013)), the 

peat still contains a substantial pool of these pollutants (Tipping et al., 2003).  

All of the reference sites surveyed showed elevated levels of a number of heavy metals and/ or sulphur. 

Moidach appeared the least polluted site, perhaps unsurprising, as it was the most northerly site 

surveyed. S and SO4
2- levels were found to be comparable with the Pennine sites, however, this was the 

case for most of the reference sites, indicating concentrations of extractable S and SO4
2- were not always 

due to legacy effects of pollution; most likely to be of marine origin. In contrast, Whim was found to be 

the most polluted of the reference sites, with concentrations of all heavy metals analysed greater than or 

equal to the Pennine sites, with the exception of Mo.  Whim is situated close to Edinburgh (~ 20 km) 

and Glasgow (~ 60 km), major industrial centres for the last ~ 200 years. The similarities in terms of 

pollutant metals present and their concentrations found at Whim and in the southern Pennines suggests 
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they are also the result of industrial pollution. This is further supported by the prevalence and intensity 

of coal burning and metallurgy, and its associated emissions, in the two regions.  

Borth, Glasson, Whixall and Migneint were each found to contain elevated levels of at least some of 

this suite of industrial pollutants found in the southern Pennines. Migneint had concentrations of Al, As, 

Cd, Co, Cu, Fe, Mn, Ni and Zn similar to those of the Pennine sites. This was thought, in part, to be due 

to the altitude of this site, resulting in high levels of precipitation along with orographic enhancement, 

increasing the overall input of pollutants. Whilst Migneint suffered increased rates of pollution 

deposition, the elevated levels of some of these pollutants (e.g. Cd and Zn) at low lying sites, such as 

Glasson and Whixall, indicates additional, localised inputs. Supporting this hypothesis, Mn was found 

at the highest concentrations at the reference sites, with levels at Migneint and Borth an order of 

magnitude greater than in the southern Pennines. Although these enrichments are evident in this study, 

concentrations of such metals are considerably lower than sites affected by activities, such as smelting 

(Salemaa et al., 2001). 

Historically, the Peak District and southern Pennines were an important metal producing region; Cu, Fe, 

Mn, Pb and Zn having all been mined (Ford, 2002). The Peak District represented a key source of Pb 

for the Romans, whilst extensive mining and smelting occurred in the medieval period, peaking in the 

17th and 18th centuries (Barnatt, 1999; Barnatt & Penny, 2004). Such activities would have generated 

localised pollution from small-scale extraction and processing. Similarly, historic metal extraction and 

processing has been recorded at Borth (e.g. Mighall et al., 2009; Poucher, 2009) and Migneint (e.g. 

Mighall et al., 2002; Rhind & Jones, 2003), which may explain the presence of heavy metals in areas of 

low atmospheric deposition. For example, Mn was conspicuously high at Borth and Migneint; levels 

were an order of magnitude higher than the Pennine sites despite receiving high loads of industrial 

pollution. Thus, it is likely the presence of Mn, and presumably other pollutants, is the localised effects 

of historic metal works. Metallurgy, manufacturing, power generation and vehicle use are important 

contemporary sources of heavy metal emissions (Harmens et al., 2013). Localised effects can also be 

observed from these sources. Elevated levels of Mo observed at Alport Moor, Bleaklow and Holme 

Moss were thought to be due to a Mo smelter in the nearby town of Glossop (BNG SK 029942), a known 

source of pollution (2000; Miller, 1993). The comparable levels of other heavy metals at Whim, but 

significantly lower Mo concentrations supports this conclusion. 

Moisture content and pH were similar between the samples sites, with values falling well within the 

ranges found in regional studies (Lindsay, 2010; Tipping et al., 2003). Indeed, values from the Pennine 

sites for both variables were akin to those from reference sites, rather than those affected by industry 

and associated degradation. 

Table 27 compares peat extractable values from this study with available literature. Where possible, 

means or medians have been reported. Care must be taken in comparing values when different analytical 

processes and reagents have been used. 



 

 

Table 27 – Summary values of peat extractable variables (mean ± SD, ppm) for reference (R) and Pennine (P) sites, and those from literature for comparison. 

Variable   Study sites Literature values Details 

MC (%) R: 92.16 ± 2.29 80 – 98 General range, including UK blanket peats (Lindsay, 2010; Tipping et al., 2003) 

 P: 91.97 ± 3.30 44 – 98 Holme Moss (Elliott et al., 2015; Nwaishi, 2010) 

pH R: 4.12 ± 0.29 4.1 – 4.8 UK blanket peats (Tipping et al., 2003) 

 P: 4.16 ± 0.60 2.87 – 3.86 North Pennines, affected by mining (Chenery et al., 2012) 

     3.00  – 4.42 Peak District and southern Pennines (Elliott et al., 2015; Linton et al., 2007; Nwaishi, 2010; Rosenburgh 

et al., 2013) 

     3.31 – 4.48 Canadian smelting region (Barrett & Watmough, 2015) 

Al R: 127.6 ± 98.7 380 Blanket peat in Scotland, using 0.1 M HCl (Cuttle, 1983) 

 P: 350.2 ± 442.2     

As R: 0.79 ± 1.18 0.9 Range of soils from Chile, using H2O (Flynn et al., 2002) 

 P: 2.14 ± 2.53 0.86  – 2.11 Former tin mining catchment, Malaysia, using MgCl2 (Ashraf et al., 2012) 

Ba R: 9.97 ± 7.21 3 – 157 UK national study on acid grasslands, using 1 M KCl (Stevens et al., 2009) 

 P: 10.23 ± 12.56     

Ca R: 656.6 ± 346.9 970  – 6,180 North American peats, using EDTA (Basiliko & Yavitt, 2001) 

 P: 709 ± 1,147 28  – 3,547 UK national study on acid grasslands, using 1 M KCl (Stevens et al., 2009) 

Cd R: 0.70 ± 0.57 1.09  – 4.74 Forest in Finland near to smelter, using EDTA (Salemaa et al., 2001) 

 P: 0.84 ± 0.97     

Co R: 0.46 ± 0.31 0.18 – 50.10 North American peats, using EDTA (Basiliko & Yavitt, 2001) 

 P: 0.89 ± 0.95     

Cu R: 3.25 ± 2.68 0 – 3 UK national study on acid grasslands, using 1 M KCl (Stevens et al., 2009) 

 P: 7.38 ± 3.69 19.2 Southern Pennines, using EDTA (Livett et al., 1979) 

 



 

 

Variable   Study sites Literature values Details 

Fe R: 859 ± 1,159 420 Blanket peat in Scotland, using 0.1 M HCl (Cuttle, 1983) 

 P: 455.4 ± 380.1 250  – 2,440 North American peats, using EDTA (Basiliko & Yavitt, 2001) 

K R: 259.8 ± 184.9 320 North Pennines, using ammonium acetate (Allen, 1989) 

 P: 284.5 ± 241.1 110  – 790 North American peats, using EDTA (Basiliko & Yavitt, 2001) 

Mg (total) R: 1,033 ± 278 447 – 697 Italian Alps (Bragazza & Gerdol, 2002) 

 P: 577.4 ± 217.2 346  – 1,015 Southern Pennines (Rothwell et al., 2009) 

Mn R: 16.78 ± 24.68 2  – 195 UK national study on acid grasslands, using 1 M KCl (Stevens et al., 2009) 

 P: 4.41 ± 3.98 12.5 – 148.7 Forest in Finland near to smelter, using EDTA (Salemaa et al., 2001) 

Mo R: 0.12 ± 0.12 0.12 Rice paddy, southern China (Jiang et al., 2015) 

 P: 0.76 ± 0.37 0.31 Irish pastures, using ammonium oxalate (Brogan et al., 1973) 

Na+ R: 371.6 ± 128.2 46   – 610 UK national study on acid grasslands, using 1 M KCl (Stevens et al., 2009) 

 P: 273.3 ± 162.5 10   – 400 North American peats, using EDTA (Basiliko & Yavitt, 2001) 

NH4
+ R: 579.0 ± 673.0 15.9 Canadian raised bog, using 2 M KCl (Andersen et al., 2013) 

 P: 97.5 ± 150.0 3.3  – 25.5 Peak District and southern Pennines (Elliott et al., 2015; Nwaishi, 2010; Rosenburgh et al., 2013) 

Ni R: 1.11 ± 0.83 0 – 18 UK national study on acid grasslands, using 1 M KCl (Stevens et al., 2009) 

 P: 2.25 ± 1.64 0.1 – 43.4 North American peats, using EDTA (Basiliko & Yavitt, 2001) 

NO3
- R: 1,015 ± 1,123 6.8 Canadian raised bog, using 2 M KCl (Andersen et al., 2013) 

 P: 29.74 ± 77.25 7.38 Holme Moss (Elliott et al., 2015; Nwaishi, 2010) 

P R: 1.21 ± 2.11 10 North Pennines, using ammonium acetate (Allen, 1989) 

 P: 10.43 ± 9.89 196 – 845 Forest in Finland near to smelter, using EDTA (Salemaa et al., 2001) 

Pb R: 39.21 ± 34.98 737 North Pennines, affected by mining (Chenery et al., 2012) 

 P: 151.4 ± 121.9 232 Southern Pennines, using EDTA (Livett et al., 1979) 

 



 

 

Variable   Study sites Literature values Details 

PO4
3- R: 107.6 ± 131.1 0.2  – 0.8 South German peatlands (Waughman, 1980) 

 P: 5.53 ± 7.63     

S R: 8.00 ± 5.93 170 – 402 Forest in Finland near to smelter, using EDTA (Salemaa et al., 2001) 

 P: 16.26 ± 8.42     

Sn R: 0.01 ± 0.05 11.87 – 15.88 Former tin mining catchment, Malaysia, using MgCl2 (Ashraf et al., 2012) 

 P: 0.06 ± 0.06     

SO4
2- R: 282.8 ± 252.7 25.6 – 26.1 Organic soil, New Zealand (Sinclair, 1973) 

 P: 138.5 ± 134.5     

Sr R: 6.69 ± 2.49 101 – 146 Inorganic soil, Greece, using ammonium acetate (Veresoglou et al., 1995) 

 P: 2.89 ± 1.70     

Ti R: 0.54 ± 1.57 1.3 – 18 Scotland, using EDTA (Berrow et al., 1978) 

 P: 1.02 ± 0.79     

V R: 0.08 ± 0.18 2.14 German soils, using EDTA (Gäbler et al., 2009) 

 P: 0.55 ± 0.44 0.41 – 0.89 Scotland, using EDTA (Berrow et al., 1978) 

Zn R: 45.73 ± 20.08 82 – 308 Forest in Finland near to smelter, using EDTA (Salemaa et al., 2001) 

 P: 58.66 ± 31.97 66.4 Southern Pennines, using EDTA (Livett et al., 1979) 
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Pennine sites 

Differences between Pennine sites were generally unchanged from the national comparison, with small 

changes in significance between sites resulting from reduced ranges of biogeochemical values. Perhaps 

of greater interest are the differences between samples containing Sphagnum and those which did not. 

MC, As, K, Mn, Mo, Na+, NO3
-, P, PO4

3-, S and SO4
2- were all significantly higher in plots containing 

Sphagnum, whilst V was higher in plots without. The eroded state of the southern Pennines effectively 

limited Sphagnum occurrence to remnant patches of blanket bog with stable, near-surface water table, 

and water collecting depressions and channels, such as gullies. The greater moisture content (MC) levels 

associated with Sphagnum presence was unsurprising for a hydrophilic genus, although its role as a 

cause or consequence of Sphagnum occurrence is unclear. There is likely to be considerable positive 

feedback between the two. Channels and gullies gather water and solutes from the surrounding peat 

surface. For example, the application of fertiliser for revegetation works, and run off generated, is 

concentrated in channels, often producing plant communities typical of more minerotrophic conditions. 

Thus, Sphagnum sampled in these locations will be similarly enriched; the elevated levels of K, NO3
-, P 

and PO4
3- may reflect these inputs. Similarly, Na+ concentrations were greater where Sphagnum was 

present, which could be attributed to a concentrating effect of precipitation, of which Na+ is the dominant 

cation (Beswick et al., 2003). Some pollutant elements (As, Mn and Mo) were also greater in samples 

with Sphagnum. These concentrations may be elevated due to the store of pollutants in the peat beneath 

Sphagnum patches. Areas without Sphagnum cover may have suffered increased rates of erosion, 

thereby reducing the store of pollutants in the peat. This eroded material is transported along channels 

and gullies, where it may be intercepted and deposited, leading to an accumulation of contaminated peat. 

Unlike the other elements and ions, V was found to have greater concentrations where Sphagnum was 

not present, suggesting a potential limiting effect.  

pH, Al, Ba and Co were found to have significant interaction effects when considering sample site and 

presence of Sphagnum. These results were difficult to interpret but served to illustrate the myriad of 

confounding factors influencing biogeochemical variables in relation to Sphagnum presence; e.g. 

hydrology, erosional process and history. 
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3.5.3 Biogeochemical drivers of vegetation 

National comparison 

Automatic model building revealed magnesium, aluminium, barium, cadmium, nitrate, moisture 

content, sulphate, vanadium, iron, molybdenum and zinc to be significant drivers of the vegetation 

composition, using data from all the survey sites. These 11 biogeochemical variables represent a 

reduction from the 19 which were significantly correlated with the unconstrained species ordination 

(Table 20). Constrained ordination and model building serves to focus on the important dimensions 

within a data set, helping to avoid (mis)interpreting noise within the data (Gauch, 1982). Spatial 

variables, including altitude, were not included as they are likely to represent deposition gradients, and 

therefore be covariables of the biogeochemical measurements (e.g. Caporn & Emmett, 2009; Lovett & 

Kinsman, 1990; RoTAP, 2012; Zechmeister, 1995). The terms of the model were ordered according to 

which variables significantly improved the fit of the model; i.e. the largest, significant reductions in AIC 

(Appendix 9). 

Variance inflation factor (VIF) values were calculated for the terms of the model (Table 21), indicating 

that each variable contributed independent information, improving the explanatory power of the model. 

However, when ecological signals are weak, even VIF values of 2 may not be sufficient to safeguard 

against collinearity of variables (Zuur et al., 2010). The constrained ordination model explained 28.98 

% of the total variance of the data, giving a clear indication that additional, unquantified factors influence 

the species composition of these peatlands. However, it has been noted that the result of such 

calculations may not be meaningful as much of the variance may simply be random noise (Oksanen, 

2013). 

From the constrained ordination, there was a clear distinction between the reference and Pennine sites 

(Figure 34). Many of the reference sites displayed strong associations with magnesium, the most 

influential of the constraints. As coastal sites, Mg at Borth and Glasson would be expected to be elevated 

compared with other sites, but alongside this was the negative association with the Pennine sites, where 

cations are depleted due to acidification and leaching. Species indicative of high quality bog showed 

positive associations with this gradient; e.g. Cladonia portentosa, Drosera rotundifolia, Sphagnum 

magellanicum and S. tenellum. The correlation between Sphagnum cover and Mg concentration has been 

noted previously, and thought to reflect its role as an essential plant nutrient (Carroll et al., 2009; Rydin 

& Jeglum, 2013). Mg can limit Sphagnum growth when there is insufficient deposited in precipitation, 

or recycled from senescing tissue (Gerdol et al., 2006; Pakarinen, 1978). Whilst a reduction in Mg can 

have consequences for photosynthetic activity, there are often a number of concurrent processes also at 

work. Roberts et al. (1989) proposed a mechanism for type I decline in Norway spruce, with a striking 

number of similarities to conditions in the southern Pennines and Peak District (Figure 38). Thus, whilst 

Mg concentrations have their own physiological effect upon the growth of Sphagnum, they also serve 
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as a proxy measure for cation leaching, soil acidification, and potentially phytotoxic heavy metal 

availability, each of which exert their own selection pressures.  

 

 

 

Figure 38 – Proposed mechanism for type I forest decline in Norway spruce trees, as seen in parts of 

central Europe in the 1980s (after Caporn, 2013; Roberts et al., 1989). 

 

 

The relationship exhibited by barium was more difficult to interpret, demonstrating positive associations 

with samples from both Moidach and Bleaklow. From biogeochemical analysis, Ca displays the opposite 

relationship to Ba; levels are highest at Black Hill due to ongoing revegetation works, and significantly 

lower at Moidach. Ba can be displaced by Ca (Dawson, 1985), which may explain the response 

observed. Sphagnum denticulatum and Polytrichum commune showed a strong connection with Ba. 

These samples were taken from within an erosion gully, containing large amounts of fluvial mineral 

material, of which Ba can be used as a surrogate measure (Krachler & Shotyk, 2004; Shotyk et al., 

2014). As a non-essential nutrient in plants, a direct role in Sphagnum success was less apparent. Ba can 

have biogeochemical behaviour similar to other cations, such as calcium and strontium (Baes & Bloom, 

1988). Thus, it might be expected for the lowest Ba concentrations to be associated with Sphagnum 
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species found in regions affected by acidic deposition and subsequent cation leaching. Indeed, S. 

subnitens, S. palustre and S. fallax, species typical of the southern Pennine sites, were at their most 

abundant at lower Ba concentrations. However, the results were confounded by S. cuspidatum and S. 

papillosum displaying their greatest cover at higher Ba concentrations; species found at numerous sites 

including within the Pennines. Additionally, Ba can be locally enriched in peat deposits (Dawson, 1985), 

suggesting a spatial element within and between sites may help to unpick the relationship between Ba 

concentration and Sphagnum success. There are unlikely to be any direct effects caused by excessive 

Ba at the concentrations recorded (< 57 ppm); green algae (Scendesmus obliquus, Ankistrodesmus 

falcatus and Chlorella kessleri) treated with 100 ppm showed no toxic effects (Havlík et al., 1980). 

Moisture content displayed a weaker association with the ordination, as denoted by the shorter arrow. 

The MC vector drawn corresponded to the different topographical niches of Sphagnum species; e.g. S. 

subnitens and S. fimbriatum from the drier hummocks, and S. cuspidatum and S. pulchrum from wet 

pools and lawns. Sphagnum are highly dependent upon water availability, due to their limited ability to 

control water loss (Titus & Wagner, 1984), affecting their ability to photosynthesise (McNeil & 

Waddington, 2003; Silvola, 1991; Titus et al., 1983). 

Several of the reference sites displayed a positive, albeit weak, association with Fe. This was thought to 

be caused by the legacy effects of metal extraction at these sites, combined with their similar floristic 

composition. Whilst Fe toxicity has been suggested as a cause of poor growth (Aerts et al., 1992), 

Sphagnum appeared unaffected at these sites with dominant cover of typical ombrotrophic species, and 

tolerance demonstrated in S. fallax (Hájek et al., 2014). 

The Pennine sites were associated with a number of pollutant gradients: Al, SO4
2-, Mo, V, NO3

-, Cd and 

Zn. The biogeochemical drivers associated with the Pennine sites largely reflect the concentrations of 

elements and ions summarised in Section 3.4.2. However, interpretation of these influential gradients 

was confounded by the non-linear responses of some vectors (SO4
2- and V) and strong influence of a 

small number of Bleaklow samples (Figure 34). This caused species and samples to be clustered around 

the plot origin. Despite this, it was still possible to distinguish vegetation communities of these degraded 

Pennine sites, and the biogeochemical characteristics associated with them; e.g. S. denticulatum and Al, 

and S. fimbriatum and S. subnitens and NO3
-. 

There is a wealth of literature covering the adverse effects of enhanced nitrogen deposition on Sphagnum 

(e.g. Berendse et al., 2001; Bobbink & Hettelingh, 2011; Bragazza et al., 2004; Gunnarsson et al., 2004; 

Gunnarsson & Rydin, 2000; Limpens & Berendse, 2003; Paulissen et al., 2004). In intact conditions, 

bogs are able to mitigate small increases in N availability by retaining and storing substantial amounts 

of N in Sphagnum biomass and peat (Lamers et al., 2000; Moore et al., 2005). This prevents N 

availability increasing in the soil layers (Fritz et al., 2014) and becoming available to other plant species. 

However, there is a limit to how much N Sphagnum can filter in this way, beyond which N will become 

available to more vigorously growing species (Aerts, 1990; Steubing & Fangmeier, 1991). This can 
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result in competition for light from vascular plants (Berendse et al., 2001; Hautier et al., 2009) or other 

mosses (Mitchell et al., 2002), and subsequent reduced water availability (Fritz et al., 2014). The critical 

load for Sphagnum in bog vegetation is 10 kg N ha-1 yr-1 (Gunnarsson, 2005). 

Sphagnum can also be more directly affected by increased nitrogen deposition. Atmospheric N is 

absorbed by Sphagnum capitula (Williams et al., 1999). However, like most plant species, Sphagnum 

has finite capacity to use N and a limited ability to control its uptake (Sheppard et al., 2011), leading to 

N saturation (Lamers et al., 2000; Rudolph et al., 1993). This can cause a reduction in growth and 

productivity of Sphagnum and other bryophytes (Arroniz-Crespo et al., 2008; Baxter et al., 1992; 

Gunnarsson & Rydin, 2000), linked to increasing Sphagnum tissue N content (Limpens et al., 2011). 

Other effects observed include adverse physiology and growth due to nutrient imbalances (Bragazza et 

al., 2004; Gerdol et al., 2007; Pearce et al., 2003), and increased sensitivity to pests and pathogens 

(Wiedermann et al., 2007). Additional factors further confound the responses observed in Sphagnum, 

such as temperature (Gunnarsson et al., 2004), summer droughts (Carroll et al., 1999; Gerdol et al., 

2007; Sheppard et al., 2008a; 2008b), and P limitation (Aerts et al., 2001). 

Nitrate is known to have detrimental effects on Sphagnum species, including S. capillifolium (Sheppard 

et al., 2011), S. cuspidatum (Press et al., 1986), S. fallax and S. magellanicum (Twenhöven, 1992). 

However, responses are not always consistent, with positive effects recorded at NO3
- concentrations 

greater than those which induced negative effects (e.g. Baker & Boatman, 1990; Rudolph & Voight, 

1986). Under pristine conditions, Sphagnum obtains N from rainwater using the inducible enzyme, 

nitrate reductase (Press & Lee, 1982; Woodin et al., 1985). Enzyme activity increases proportionally 

with NO3
- concentration (Press et al., 1986; Woodin & Lee, 1987a; Woodin et al., 1985), which can 

lead to the accumulation of toxic NH4
+ ions under high levels of N deposition (Limpens & Berendse, 

2003). However, when exposed to long-term raised N deposition this association is lost, indicating 

Sphagnum can adapt to such conditions by limiting further N uptake (Jauhiainen et al., 1998; Press & 

Lee, 1982; Press et al., 1986; Woodin & Lee, 1987a; Woodin et al., 1985). Thus, it would appear S. 

fallax and S. papillosum from the Pennine sites have successfully adapted to elevated concentrations of 

nitrate; concentrations which may have contributed to the initial failure of transplant experiments 

(Caporn et al., 2006; Ferguson & Lee, 1983a). 

Pollutant sulphur and its products are thought to have been a major cause of Sphagnum decline in 

northern England (Ferguson & Lee, 1983b; Lee & Woodin, 1988), affecting species directly through 

phytotoxicity, or indirectly by soil acidification (Lee, 1998). However, the apparent resistance of S. 

fallax to sulphur pollutants has been observed both experimentally and as the result of atmospheric 

pollution (Ferguson & Lee, 1980; Tallis, 1973). These effects are confounded by the different toxicity 

of sulphur products (sulphate vs. bisulphite (Ferguson & Lee, 1980)), and the ability of Sphagnum 

species to withstand their effects. The atmospheric deposition of transition metals in the southern 

Pennines and Peak District helped to reduce the effects of sulphur deposition, by catalysing the oxidation 
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of highly toxic bisulphite (HSO3
-) to the much less toxic sulphate (SO4

2-), as observed in S. fallax and S. 

cuspidatum (Baxter et al., 1991). Short exposure to low concentration (< 1 mM) sulphate was not 

thought to cause any damaging effect upon ombrotrophic Sphagnum. However, 5 mM produced marked 

reductions in Sphagnum growth (Ferguson & Lee, 1979). 

Heavy metals have well known impacts upon vegetation, although most research has focused on 

vascular plants (e.g. Harmens et al., 2013). Sphagnum is known to accumulate high levels of heavy 

metals (Brown, 1984), which can cause chlorosis, brown tips, and plasmolysis (Glime & Keen, 1984). 

Bryophyte protonemal growth can be inhibited by heavy metals, including Al and Zn (Kapur & Chopra, 

1989). The phytotoxicity of metals in soil varies depending upon their oxidation state and mobility, as 

governed by properties such as redox potential, organic matter and pH (Blamey et al., 2015; Rydin & 

Jeglum, 2013). For example, aluminium is most toxic as Al3+ in solution of pH < 4.5 (Parker et al., 1988; 

Pavan & Bingham, 1982; Tanaka et al., 1987). Thus, the behaviour of heavy metals in peatlands is 

complex, and therefore effects are difficult to predict (Ashmore et al., 2007). Cadmium is known to be 

directly toxic to Sphagnum at low concentrations; 0.1 mM in S. nemoreum, and 112 ppm in S. fimbriatum 

(Simola, 1977a; Simola, 1977b). Vanadium is usually bound tightly to soil organic matter, hence little 

is known about its ecological effects (Harmens et al., 2008; Poledniok & Buhl, 2003). At high rates of 

supply (10 – 20 mg l-1), it is harmful to plants (Arnon & Wessel, 1953). Molybdenum phytotoxicity is 

rarely exhibited in the field, but can be induced experimentally, with wide variation in critical values 

between species; e.g. 135 mg kg-1 leaf tissue in barley, and > 600 mg kg-1 in Brassica and Allium without 

symptoms (Adriano, 1986; Davis et al., 1978; Gupta et al., 1978). Zinc caused reduced growth in 

Marchantia polymorpha; ~ 50 % at 100 ppm, and ~ 75 % at 500 ppm (Coombes & Lepp, 1974). 

Thus, it appears the environmental tolerance of Sphagnum, and indeed the wider vegetation community, 

is dependent upon past exposure history, and current interacting factors, within the constraints of 

genetically controlled traits, as demonstrated in other bryophytes (Glime, 2007; Shaw, 1987). The 

biogeochemical gradients discussed here represent both direct physiological factors, and complex, 

indirect environmental factors (sensu Austin, 1980; Jansen & Oksanen, 2013). 

 

 

Pennine sites 

Barium, aluminium, phosphorus, magnesium, molybdenum, lead, iron and sulphur were identified as 

significant biogeochemical drivers of the vegetation at the Pennine sites. Variance inflation factors 

indicated that each variable was independent, with all values < 2.4. This constrained model accounted 

for 24.99 % of the variation, representing a reduction compared to the national comparison model. 

Despite fewer sample sites, highly variable vegetation composition in the Pennine samples, and fewer 

constraining variables could explain this reduction. 
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The ordination displayed some level of distinction between samples containing Sphagnum and those 

which did not. Samples without Sphagnum were generally found at lower values on CCA2, and those 

with Sphagnum at higher values (Figure 35). Most samples were located around -0.5 on CCA1, with the 

exception of 8 samples at ~ 3 or more. Of these, all but one were from Bleaklow and had significant 

influence upon the ordination. Indeed, of the eight constraining environmental variables, six 

demonstrated strong relationships with these samples. These samples originated from water-gathering 

features, such as pools and gullies, which act to collect and concentrate local solutes and fluvial matter. 

S. cuspidatum and S. denticulatum were found most frequently and at their greatest cover in these 

locations, reflecting their ecological niche (Atherton et al., 2010; Hill et al., 2007). Al, Pb and Ba 

demonstrated the strongest relationship with these outlying samples. Al is mobile in acidic conditions 

(Büscher et al., 1990; Holden et al., 2007b; NEGTAP, 2001), whilst Pb is known to be transported in 

eroded sediment from these peatlands (Rothwell et al., 2005a, 2007a; 2008b), hence their elevated 

concentrations. This assessment was supported by the co-occurrence of Ba, which can be interpreted as 

a proxy measure for disturbance, as discussed in the national comparison. Mg, Mo and S were also 

associated with the outlying samples. These gradients may represent further examples of concentrated 

solutes and particulate matter, with Mg thought to be contained within the mineral additions applied 

during revegetation works (Caporn et al., 2007). Interpretation of S and Mo vectors was confounded by 

their non-linear nature. Both Pb and S are known to have direct toxic effects upon Sphagnum; 207 ppm 

Pb retarded growth in S. nemoreum (Simola, 1977a; 1977b), whilst products of S can be potently 

phytotoxic (Ferguson & Lee, 1980).   

The majority of the samples, including both those with and without Sphagnum, were arranged virtually 

parallel to CCA2. Vectors of Fe and P related almost directly to this arrangement of samples on the 

ordination. Some forms of Fe are relatively soluble (Tipping, 2002) and so would be expected to be 

higher in areas of water movement and accumulation; areas frequently colonised by Sphagnum. 

Similarly, P is more soluble at lower pH (Verhoeven et al., 1988), which could explain the similar 

behaviour of these gradients. Sphagnum is a highly efficient scavenger of nutrients and ions from its 

environment (e.g. Brown, 1984; Carpi et al., 1994; Fritz et al., 2014), thus it will retain elements and 

compounds to which it is exposed. Increased availability of Fe and P can also help Sphagnum to 

outcompete other species, however the mechanism is not known (Hájek et al., 2002; Hájek et al., 2014; 

Kooijman, 2012). In nature, P occurs almost exclusively as PO4
3- (Allen, 1989), which in acid soils, is 

readily precipitated as highly insoluble Fe or Al phosphates (Boström et al., 1982). This contradicts the 

behaviour of Fe and P in this study, perhaps due to the interacting effects of other metals and nutrients 

present (Barker & Pilbeam, 2015). 
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3.5.4 Vegetation, peat total, and comparative chemistry 

Bryophytes, including Sphagnum, have much the same mineral requirements as higher plants in terms 

of essential elements. These can be separated into macronutrients (C, Ca, Fe, H, K, Mg, N, O, P and S) 

and micronutrients (Bo, Cl, Cu, Mn, Mo, Ni and Zn), derived from five main sources: soil, stream, water, 

atmospheric dust, precipitation and litter (Babb & Whitfield, 1977; Frego & Carelton, 1995; Parker, 

1983). Within the plant cells, macronutrients are maintained at a relatively high and consistent 

concentrations, with any differences arising from what is bound to the cell surface (Glime, 2007). This 

uptake occurs through the use of cation exchange sites (Bates, 1997; Clymo, 1964; Craigie & Maass, 

1966; Wells & Brown, 1990), of which Sphagnum is highly efficient due to the high concentrations of 

polyuronic acids within the cell walls (Clymo, 1963; Craigie & Maass, 1966). Under pristine conditions, 

this enables Sphagnum to grow in very nutrient poor conditions, where it can out compete other species 

by creating intense nutrient impoverishment, binding available nutrients (Van Breemen, 1995b). 

However, in polluted conditions, this can result in the accumulation of heavy metals because Sphagnum 

lacks the selectivity in binding and uptake of these pollutants (Brown, 1984; Brown & Bates, 1990). 

This is reflected in the concentrations of almost all heavy metals measured, which were significantly 

correlated with peat extractable values (Table 26). Within this relationship, there was considerable 

variation in the proportions of peat extractable and vegetation values. For example, peat extractable and 

vegetation concentrations of aluminium displayed a consistent pattern across most of the sites, with the 

vegetation displaying some level of Al accumulation (Figure 36). However, at Whixall, Migneint and 

Moidach, this pattern was different with Al concentrations broadly equal between peat extractable and 

vegetation values. This may be due to a number of potential interacting factors; namely, species 

composition, microtopography, and biogeochemical conditions. Sphagnum species have different cation 

exchange capacities, which correlates with their microtopographical niches (Clymo, 1963; Spearing, 

1972). Those of drier locations, such as hummock species, have more exchange sites than those of wetter 

locations, found in hollows and pools (Brown, 1982). Biogeochemical conditions can influence the 

uptake of metals, with some being pH dependent; e.g. Zn and Cd (Gjengedal & Steinnes, 1990), whilst 

the presence of other elements may produce interferences by forming complexes. Sphagnum itself 

demonstrates preferences, such as accumulating Al and Mn, but excluding Cu and Zn (Glime, 2007). 

This preference is based on concentration, ionic radius and valency of the chemical species (Bates, 

2000). Samples of Sphagnum from the Pennine sites have accumulated concentrations of pollutants 

similar to, or exceeding, those found in areas of intense industrial activity; e.g. As (Arafat & 

Glooschenko, 1982) and V (Shotyk et al., 2014). 

In pristine conditions, N is the primary limiting nutrient in bogs, with Sphagnum acquiring N, P and K 

in the upper parts of the plant through active uptake (Wojtun, 1994), where they are efficiently 

translocated to growing tissues (Aldous, 2002; Gerdol, 1990; Rydin & Clymo, 1989). In the presence of 

increased N availability, this uptake continues and tissue concentrations increase proportionally with 

deposition rates (Caporn, 1997; Woodin & Farmer, 1993); a relationship clearly demonstrated in the 
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results (Table 26). Differences in N input are not the only source of variation in tissue N concentrations. 

Sphagnum species of wetter conditions are likely to have greater concentrations due to their contact with 

bog water containing nitrate and ammonium ions (Carroll et al., 2009). These increases in tissue N can 

have implications for peat formation and carbon sequestration as Sphagnum with lower C:N ratio 

decomposes more rapidly (Aerts et al., 1992; Clymo & Hayward, 1982; Coulson & Butterfield, 1978; 

Luken & Billings, 1983).  

Prolonged N deposition can cause a shift to P limitation (e.g. Aerts et al., 1992; Limpens et al., 2004). 

Over time, high N levels of N deposition will increase the N:P ratio until phosphorus will become the 

primary limiting nutrient (Aerts et al., 1992; Lee & Woodin, 1988; Malmer, 1988, 1990). Eventually, 

severe growth reduction and mortality of Sphagnum can occur (Ferguson et al., 1984; Press et al., 1986; 

Woodin & Lee, 1987b). Low N:P ratios (< 10 – 14) indicate N limitation, whilst high ratios (> 14 – 16) 

indicate P limitation (Aerts & Berendse, 1988; Lajtha & Klein, 1988; Rundel, 1982; Verhoeven & 

Schmitz, 1991; Vermeer, 1986a; b), and have been successfully used in the assessment of bryophytes 

(Aerts et al., 1992; Bragazza et al., 2004; Jiroušek et al., 2011). Sphagnum tissue N:P ratio can be used 

to indicate N saturation as Sphagnum growth is thought to be limited by phosphate (Clymo & Hayward, 

1982; Koerselman & Meuleman, 1996). The effect of N deposition on N:P ratio was found to be similar 

across Sphagnum species, with differences found to be regional, corresponding to differences in rates of 

N deposition (Malmer, 1988, 1990). Black Hill was the only site to demonstrate potential N limitation, 

with N:P ratio of 11.34, with the remaining sites > 20, indicating P limitation (Table 24). A critical N 

deposition threshold of 10 kg N ha-1 yr-1 was established, above which, Sphagnum growth shifted from 

N limited to co-limitation by P or K (Bragazza et al., 2004; Gunnarsson & Rydin, 2000). Many areas of 

the UK receive inputs exceeding this threshold (RoTAP, 2012) and is reflected in N:P ratios. In northern 

Europe, where N deposition rates are 5 – 60 kg N ha-1 yr-1 (Wedin & Tilman, 1996), shifts from N to P 

limitation have also been observed (Aerts et al., 1992; Bragazza et al., 2004; Gunnarsson & Rydin, 

2000; Jiroušek et al., 2011). Concurrent increases in P input can buffer such increases in N:P ratio, as 

appears to be the case at Black Hill, thought to be the effect of fertiliser addition as part of revegetation 

works. P limitation may also have implications for the reproductive success of Sphagnum, with 

protonemata growth of several species limited by P availability (Boatman & Lark, 1971). 

The upper layers of peatlands subjected to atmospheric pollution can contain significant quantities of 

deposited nutrients and heavy metals. In the southern Pennines and Peak District, this has been well 

documented (Hutchinson, 1995; Jones & Hao, 1993; Lee & Tallis, 1973; Livett et al., 1979; Markert & 

Thornton, 1990), with Pb concentrations some of the highest in European peatlands (Rothwell et al., 

2005b). Problems arise when these stored pollutants become mobilised and therefore available to 

organisms. Heavy metals availability is influenced by a range of parameters, including pH and organic 

matter content of the substrate (Linton et al., 2007). Metals such as Cd, Ni and Zn are weakly-sorbed to 

organic matter, whereas Al, Cu and Pb are strongly-sorbed (Tipping et al., 2003). These relationships 

can be observed in the comparative assessments of extractable and total peat concentrations. For 
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example, extractable Cu concentrations were considerably lower than total, whilst the difference 

between extractable and total Cd was noticeably less (Figure 36). There are two well defined 

mechanisms of releasing this store of pollutant metals: 1) erosion and transportation of contaminants in 

fluvial systems (e.g. Dawson and Macklin, 1998; Horowitz et al., 2001; Blake et al., 2003); a particular 

problem in the southern Pennines (Tallis, 1997b); and 2) mobilisation of contaminants at low pH, such 

as those generated by drought induced acidification (e.g. Lucassen et al., 2002; Tipping et al., 2003). 

Peatlands are also able to retain large amounts of nitrogen, with the peat itself acting as the major N sink 

(Chapman & Edwards, 1999; Nadelhoffer et al., 1994). Whilst this may help to slow the rate of N 

saturation in these ecosystems, with such a store of N, the impacts are long-lived, with effects of 

experimental additions lasted for 20 years (Lee, 1998). Sphagnum is able to obtain N from soil depths 

of 3 – 8 cm, and thus able to access and be influenced by this nutrient store (McKane et al., 1993). 

Despite a long history of N deposition, concentrations measured in both the Pennine and reference sites 

were not drastically different from isolated European reference sites (Bragazza & Gerdol, 2002). Whilst 

the Pennine sites demonstrate elevated concentration of numerous pollutants when compared to the 

reference sites, they are still considerably (sometimes orders of magnitude) lower than sites close to 

industrial activity, such as smelting; e.g. Cu, Fe and Ni (Barrett & Watmough, 2015; Juckers & 

Watmough, 2014). 

Table 28 and Table 29 compares vegetation, and peat total values, respectively, from this study with 

available literature. Where possible, means or medians have been reported. 

 



 

 

Table 28 – Summary values (mean ± SD, ppm) of vegetation chemistry variables for reference (R) and Pennine (P) sites, and those from literature for comparison. 

Variable   Study sites Literature values Details 

Al R: 207.1 ± 158.7 378 ± 167 North and south regions of Finland (Malmer, 1988) 

 P: 667.0 ± 768.0 430 S. magellanicum from Sweden (Damman, 1978) 

As R: 0.51 ± 1.37 0.11  – 0.25 Canadian smelting region (Arafat & Glooschenko, 1982) 

 P: 1.18 ± 0.97     

Ba R: 11.99 ± 8.55 6.02  – 13.00 Germany (Shotyk et al., 2014) 

 P: 46.20 ± 78.60 21.4 ± 10.4 Oil sands region, Canada (Shotyk et al., 2014) 

C (%) R: 49.39 ± 1.78 43.08  ± 0.13 S. capillifolium, north Italy (Vingiani et al., 2004) 

 P: 48.23 ± 4.27     

Ca R: 2,230 ± 1,612 1,400 S. fallax from north Pennines (Coulson & Butterfield, 1978) 

 P: 3,590 ± 5,956 1,783  ± 1,230 Northern Finland (Pakarinen & Tolonen, 1977) 

Cd R: 0.26 ± 0.32 0.1  – 0.5 Northern Finland, Germany, and Sudety mountains, Poland (Pakarinen & Tolonen, 1976; Shotyk et al., 

2014; Wojtuń et al., 2013) 

 P: 0.47 ± 0.24 200 Near Pb-Zn smelter, UK (Cameron & Nickless, 1977) 

Co R: 0.17 ± 0.14 0.70  ± 0.34 New England, USA (Gotelli et al., 2008) 

 P: 0.80 ± 1.06     

Cu R: 4.16 ± 1.70 2.3 – 22.2 Finland, and Sudety mountains, Poland (Malmer, 1988; Pakarinen & Tolonen, 1976; Wojtuń et al., 2013) 

 P: 7.62 ± 3.26 47 Near industrial area, UK (Goodman & Roberts, 1971) 

Fe R: 458.2 ± 510.1 230.9  ± 88.2 Northern Finland (Pakarinen & Tolonen, 1976) 

 P: 911.0 ± 704.0 451.4 ± 398.5 Finland (Pakarinen & Tolonen, 1977) 

 



 

 

Variable  Study sites Literature values Details 

K R: 2,255 ± 833 3,276 ± 1,822 Finland (Pakarinen & Tolonen, 1977) 

 P: 3,719 ± 2,224 3,500 S. magellanicum from Sweden (Damman, 1978) 

     2,762 – 4,928 S. capillifolium (rubellum) from Germany and Belgium (Kempter & Frenzel, 2007) 

Mg R: 1,073 ± 296 490 S. magellanicum from Sweden (Damman, 1978) 

 P: 916.6 ± 290.9 1,197 ± 463 Finland (Pakarinen & Tolonen, 1977) 

Mn R: 113.2 ± 105.7 10 – 250 Finland, and Sudety mountains, Poland (Malmer, 1988; Pakarinen & Tolonen, 1976; Wojtuń et al., 2013) 

 P: 58.28 ± 41.48 35.1 – 137.0 S. capillifolium (rubellum) from Germany and Belgium (Kempter & Frenzel, 2007) 

Mo R: 0.13 ± 0.26 0.49 ± 0.57 Northern Finland (Pakarinen & Tolonen, 1976) 

 P: 2.13 ± 2.12 0.31 – 0.39 Germany (Shotyk et al., 2014) 

N (%) R: 0.99 ± 0.23 0.67 S. fallax from North Pennines (Coulson & Butterfield, 1978) 

 P: 1.42 ± 0.46 0.67 ± 0.14 Finland (Pakarinen & Tolonen, 1977) 

Na R: 753.5 ± 292.7 1,537 ± 533 Finland (Pakarinen & Tolonen, 1977) 

 P: 804.1 ± 423.0 590 S. magellanicum from Sweden (Damman, 1978) 

Ni R: 3.57 ± 3.46 1.21 ± 0.54 Northern Finland (Pakarinen & Tolonen, 1976) 

 P: 2.70 ± 4.11 4.85 – 5.86 Germany (Shotyk et al., 2014) 

P R: 342.8 ± 146.3 656.0 ± 248.1 Finland (Pakarinen & Tolonen, 1977) 

 P: 804.4 ± 551.9 800 – 1,000 S. fallax from northern Pennines (Coulson & Butterfield, 1978) 

Pb R: 9.98 ± 11.61 37.3 ± 37.3 Finland (Malmer, 1988) 

 P: 81.00 ± 91.50 10.9 – 13.7 S. papillosum from southern Pennines (Livett et al., 1979) 

S R: 875.5 ± 197.2 930 ± 353 Finland (Malmer, 1988) 

 P: 1,285 ± 360 852 – 967 S. capillifolium (rubellum) from Germany and Belgium (Kempter & Frenzel, 2007) 

 



 

 

Variable   Study sites Literature values Details 

Sn R: 0.07 ± 0.31 < 0.3 Hylocomium splendens, Washington (Wiersma et al., 1987) 

 P: 0.02 ± 0.11     

Sr R: 11.37 ± 4.71 25 Hylocomium splendens, Washington (Wiersma et al., 1987) 

 P: 13.83 ± 9.39     

Ti R: 4.07 ± 3.14 16.9 – 43.3 S. capillifolium (rubellum) from Germany and Belgium (Kempter & Frenzel, 2007) 

 P: 10.16 ± 6.99     

V R: 0.55 ± 0.65 0.65 – 1.29 Germany (Shotyk et al., 2014) 

 P: 2.60 ± 2.04 2.67 Oil sands region, Canada (Shotyk et al., 2014) 

Zn R: 44.58 ± 23.97 33.79 ± 6.95 Northern Finland (Pakarinen & Tolonen, 1976) 

 P: 60.02 ± 18.82 11.4  – 37.7 S. papillosum from southern Pennines (Livett et al., 1979) 

C:N R: 52.57 ± 12.48 25.3  ± 3.6 S. fallax from the Netherlands (Harpenslager et al., 2015) 

 P: 37.15 ± 11.28     

N:P R: 32.71 ± 12.57 23   – 31 P limited sites (Boeye et al., 1997) 

 P: 23.74 ± 12.93 8 – 15 N limited sites (Boeye et al., 1997) 

     11.19 ± 3.78 Finland (Pakarinen & Tolonen, 1977) 

 

  



 

 

Table 29 – Summary values (mean ± SD, ppm) of peat total variables for reference (R) and Pennine (P) sites, and those from literature for comparison. 

Variable   Study sites Literature values Details 

Al R: 740.1 ± 378.2 375  – 1,960 Italian Alps (Bragazza & Gerdol, 2002) 

 P: 1,658 ± 1,299 4,100 – 24,100 Canadian smelting region (Barrett & Watmough, 2015; Juckers & Watmough, 2014) 

As R: 3.65 ± 4.46 0.96 Jura Mountains (Steinmann & Shotyk, 1997) 

 P: 4.57 ± 2.45 4.46 – 12.4 Southern Pennines (Rothwell et al., 2008a; Rothwell et al., 2009) 

Ba R: 17.04 ± 9.81 5.2 ± 2.6 Natural background for continental Europe (Krachler & Shotyk, 2004) 

 P: 48.00 ± 82.00 86  – 107  Background concentration for western Siberia (Vodyanitskii et al., 2012) 

C (%) R: 51.87 ± 2.05 50 North Pennines (Allen, 1989) 

 P: 50.58 ± 3.90 12.4 – 46.2 Canadian smelting region (Barrett & Watmough, 2015; Juckers & Watmough, 2014) 

Ca R: 1,614 ± 492 1,600 – 4,753 Italian Alps (Bragazza & Gerdol, 2002) 

 P: 3,344 ± 5,344 1,100 – 6,600 Canadian smelting region (Barrett & Watmough, 2015; Juckers & Watmough, 2014) 

Cd R: 1.09 ± 0.84 ~ 1 Sweden (Pakarinen & Tolonen, 1976) 

 P: 0.99 ± 0.36 1.19 – 1.31 Southern Pennines (Elliott et al., 2015; Rothwell et al., 2008a) 

Co R: 0.76 ± 0.53 0.54 Jura Mountains (Steinmann & Shotyk, 1997) 

 P: 1.39 ± 1.17 5.1 – 28.2 Canadian smelting region (Barrett & Watmough, 2015; Juckers & Watmough, 2014) 

Cu R: 8.47 ± 8.72 6  – 20  Low background UK sites (Livett et al., 1979) 

 P: 22.50 ± 14.73 147 – 1,553 Canadian smelting region (Barrett & Watmough, 2015; Juckers & Watmough, 2014) 

Fe R: 2,339 ± 1,832 819 – 4,514 Italian Alps (Bragazza & Gerdol, 2002) 

 P: 3,242 ± 1,867 7,040 ± 3,910 Canadian smelting region (Barrett & Watmough, 2015) 

 

  



 

 

Variable   Study sites Literature values Details 

K R: 616.7 ± 273.1 258 – 753 Italian Alps (Bragazza & Gerdol, 2002) 

 P: 665.4 ± 345.8 750 ± 190 Canadian smelting region (Barrett & Watmough, 2015) 

Mg R: 1,033 ± 278 447 – 697 Italian Alps (Bragazza & Gerdol, 2002) 

 P: 577.4 ± 217.2 346 – 1,015 Southern Pennines (Rothwell et al., 2009) 

Mn R: 47.40 ± 55.12 7 – 115 Italian Alps (Bragazza & Gerdol, 2002) 

 P: 27.60 ± 17.78 56.9 ± 35.0 Canadian smelting region (Barrett & Watmough, 2015) 

Mo R: 3.61 ± 6.66 0.08 ± 0.02 Jura Mountains (Krachler & Shotyk, 2004) 

 P: 14.86 ± 9.03 1.28  ± 0.47 Southern Pennines (Rothwell et al., 2008a) 

N (%) R: 1.49 ± 0.36 0.4 – 1.5 Italian Alps (Bragazza & Gerdol, 2002) 

 P: 1.55 ± 0.32 0.76 – 2.12 Canadian smelting region (Barrett & Watmough, 2015; Juckers & Watmough, 2014) 

Na R: 294.1 ± 91.2 52 – 184 Italian Alps (Bragazza & Gerdol, 2002) 

 P: 213.3 ± 99.8 610 ± 190 Canadian smelting region (Barrett & Watmough, 2015) 

Ni R: 2.76 ± 3.08 17  – 32 Background concentration for western Siberia (Vodyanitskii et al., 2012) 

 P: 5.58 ± 4.18 153 – 1,304 Canadian smelting region (Barrett & Watmough, 2015; Juckers & Watmough, 2014) 

P R: 508.8 ± 214.3 155 – 622 Italian Alps (Bragazza & Gerdol, 2002) 

 P: 734.4 ± 280.6 780 ± 187 Canadian smelting region (Barrett & Watmough, 2015) 

Pb R: 67.35 ± 53.85 0.28 ± 0.05 Natural background (Shotyk et al., 1998) 

 P: 207.6 ± 162.5 263 – 1,230 Southern Pennines (Elliott et al., 2015; Jones & Hao, 1993; Rothwell et al., 2008a; Rothwell et al., 2009) 

S R: 2,467 ± 1,591 1,410 Jura Mountains (Steinmann & Shotyk, 1997) 

 P: 2,695 ± 1,014 2,300 – 9,300 Canadian smelting region (Barrett & Watmough, 2015; Juckers & Watmough, 2014) 

 

  



 

 

Variable   Study sites Literature values Details 

Sn R: 0.29 ± 0.61 2.42 – 2.55 Snowy Mountains, Australia (Marx et al., 2010) 

 P: 1.28 ± 2.50     

Sr R: 18.55 ± 5.77 7.6 Jura Mountains (Steinmann & Shotyk, 1997) 

 P: 15.42 ± 8.21 114 – 129 Background concentration for western Siberia (Vodyanitskii et al., 2012) 

Ti R: 24.26 ± 20.54 96 Jura Mountains (Steinmann & Shotyk, 1997) 

 P: 39.42 ± 23.39 145 ± 32.3 Southern Pennines (Rothwell et al., 2008a) 

V R: 4.60 ± 3.00 1.66 – 8.33 Forested catchment, Ontario, Canada (Landre et al., 2010) 

 P: 11.26 ± 6.69 29.7 ± 4.44 Southern Pennines (Rothwell et al., 2008a) 

Zn R: 75.82 ± 43.10 85  – 161 Low background UK sites (Livett et al., 1979) 

 P: 71.79 ± 60.67 119.7  – 139.0 Holme Moss (Elliott et al., 2015; Rothwell et al., 2008a) 

C:N R: 36.81 ± 9.22 21.8 ± 5.40 Canadian smelting region (Barrett & Watmough, 2015) 

 P: 33.97 ± 6.65 29.2 – 33.9 Peak District (Rosenburgh et al., 2013) 

N:P R: 32.92 ± 11.72 24 – 28 S. magellanicum, Scotland (Williams & Silcock, 1997) 

 P: 23.35 ± 8.17     
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3.6 Conclusion 

This chapter aimed to elucidate those biogeochemical factors affecting the natural recovery of 

Sphagnum on degraded bog. A number of good quality sites with abundant Sphagnum were compared 

to highly degraded sites, where Sphagnum was scarce. By characterising differences in vegetation and 

biogeochemistry, influential biogeochemical drivers of the vegetation composition were identified, and 

the responses of Sphagnum species modelled along those environmental gradients. There was a stark 

contrast in vegetation composition between the reference and Pennine sites, representative of high 

quality bog vegetation, and severely modified, nutrient-enriched conditions, respectively. Within these 

reference sites, there was floristic distinction between sites, demonstrating the natural variability of even 

good quality bog habitats. The Pennine sites were characterised by species typical of enriched 

conditions, along with atypical species due to the application of lime and fertiliser as part of revegetation 

works. 

Biogeochemical characteristics revealed the Pennine sites to be highly polluted, with elevated 

concentrations of a range of heavy metals and nutrients, reflecting their close proximity to the past 

industrial centres of northern England. Perhaps more surprising was the presence of some of these 

pollutants at a number of the reference sites, often exceeding levels found at the Pennine sites, as a result 

of historic local inputs, and atmospherically transported industrial pollution. Biogeochemical drivers of 

the vegetation were highlighted, providing a clear distinction between reference and Pennine sites. In 

general, reference sites were associated with base cation drivers, whilst Pennine sites were related to a 

number of pollutant metals and nutrients. Separate assessment of the reference sites revealed more subtle 

differences. Omitting the Pennine sites allowed these weaker gradients to be uncovered. The distinction 

between the Pennine sites was less well defined, however, there was some differentiation between 

samples containing Sphagnum and those which did not, reflecting the biogeochemical distinction 

between samples with and without Sphagnum. 

Modelling Sphagnum responses to these gradients revealed several instances of tolerance, presumably 

the result of prolonged exposure to elevated pollutant levels. The mechanisms of this tolerance and 

adaptation is well established for some contaminants, such as nitrogen. However, species typical of high 

quality site, typically absent from Pennine sites, have also demonstrated their ability to persist and 

indeed flourish in the presence of potentially toxic heavy metals and nutrients. Thus, it would appear 

Sphagnum is regionally adapted to its local biogeochemical conditions, based on its past and current 

exposure to pollutants. The near eradication of Sphagnum from the Peak District and southern Pennines 

shows the effects of atmospheric pollution were greater than the sum of their individual parts, and that 

additional factors, such as erosion, over grazing and wildfire, played a pivotal role. This was supported 

by the relatively low proportion of variance accounted for by the explanatory biogeochemical models. 

The combined ecological stress of direct toxic effects from pollutant inputs, competition due to nutrient 

enrichment, and drought caused by erosion and hydrological disturbance, led to its widespread loss from 
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the region. Where these stressors were less severe or reduced, such as in permanent pools, sheltered 

cloughs, and minerotrophic flushes, Sphagnum was able to survive. Therefore, it is likely that Sphagnum 

is able to tolerate moderate biogeochemical stress without succumbing, provided significant additional 

environmental stressors are not also present. 

This study assessed the influence of biogeochemical variables upon Sphagnum, and so included no 

additional environmental factors, such as hydrology, and current and past management. Water 

availability was implicated as a potential driver of bog vegetation, despite moisture content only being 

chosen as an explanatory variable to differentiate between microtopographical niches (e.g. hummock 

and hollow). Similarly, Ba concentrations were considered a potential proxy measure for erosion. 

Without measurement of these additional, physical characteristics, considerable interpretation and 

ambiguity was involved. The addition of such data would require a longer term monitoring, not 

compatible with the one-off sampling procedure employed here. The sampling process itself could be 

improved by the inclusion of “intermediate” sites, such as those similar to Whim which have good 

quality bog vegetation but have been exposed to some level of pollution. The large differences in flora 

and biogeochemical characteristics between the reference and Pennine sites may have masked more 

subtle trends. A larger number of sample sites would provide data on Sphagnum species in a range of 

biogeochemical conditions, rather than some species only being found at one type of site, thus skewing 

any results. As with any modelling approach, the confidence placed in the conclusion will only match 

the quality of data being entered. 

In summary, some Sphagnum species appear capable of developing tolerance to polluted 

biogeochemical condition, brought about by long-term exposure. In the presence of additional 

environmental stress, these pollutants can cause the regional loss of Sphagnum. In the past, atmospheric 

pollution was so severe that it was major factor in the near eradication of Sphagnum. However, whilst 

current biogeochemical conditions clearly reflect this legacy of industrial pollution, the wider success 

of Sphagnum is more likely to be limited by physical characteristics, such as water availability and 

erosion. 
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4.1 General discussion and conclusions 

The work presented here demonstrates both the opportunities for, and challenges facing blanket bog 

restoration in the Peak District and southern Pennines. These results and conclusions will contribute to 

the quantitative and qualitative underpinnings of best practice guidelines for the reintroduction of 

Sphagnum to degraded blanket peatlands. 

This work was necessitated by the widespread absence of Sphagnum from the degraded blanket bogs of 

northern England. Following severe atmospheric pollution and poor land management, Sphagnum was 

all but eradicated from the region. Air quality was considered the primary driver of Sphagnum decline, 

therefore, commensurate increases in Sphagnum cover may have been expected in response to 

improvements in air quality. However, natural recolonisation by Sphagnum has been slow, appearing 

limited to expansion of remnant patches. Revegetation by other species, such as Eriophorum spp. and 

Calluna vulgaris, has occurred both naturally and as a result of restoration works. Comparative 

biogeochemical assessment of these degraded peatlands reflected their history of pollution deposition, 

when compared to better quality bogs from across the UK. This legacy was suggested as a limiting factor 

in the recolonisation and wider success of Sphagnum. Indeed, indoor trials of Sphagnum propagules 

grown on peat from Holme Moss demonstrated the detrimental effect of this polluted substrate. Analysis 

revealed which biogeochemical variables were significant drivers of vegetation composition, however, 

these accounted for a low proportion (< 30 %) of the observed variation. Both water availability and 

erosion status were implicated as additional significant factors, however, it was not possible to quantify 

these. The altered peat biogeochemistry of the degraded sites may be exerting a greater effect on the 

ability of Sphagnum to recolonise the region by preventing spores from establishing. The key limitation 

of Sphagnum dispersal by spore is the failure to establish rather than their production (Campbell et al., 

2003), with biogeochemical conditions proving critical (Sundberg & Rydin, 2002). Considerable 

quantities of pollutants are stored in both the vegetation and peat of the Peak District and southern 

Pennine region, making this is an issue which is likely to persist, resulting in the continued slow rate of 

Sphagnum recolonisation. 

Thus, the introduction of vegetative propagules of Sphagnum is required to generate significant new 

cover. The recent development of a new propagule, BeadaMoss, allowed easy and accurate manipulation 

of Sphagnum material, including species identity and application rates. The tissue contained in these 

propagules was sourced locally, before being bulked up using micropropagation techniques, eliminating 

any concerns of sustainability and biosecurity associated with the use of harvested material. Field trials 

revealed Sphagnum could be successfully introduced to a range of substrate types, including vegetation 

communities significantly different from those where natural recolonisation had occurred. Non-metric 

multidimensional scaling (NMDS) was used to characterise the vegetation communities associated with 

Sphagnum in reintroduced and naturally occurring locations. Figure 39 shows NMDS ordination of 

vegetation data (using Bray-Curtis dissimilarity index) from Sphagnum bead field trials (Section 2.4), 
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and survey data from Holme Moss and Black Hill (Section 3.4.1). Points have been grouped according 

to the Sphagnum present; from bead trials (“reintroduced”), or from the national survey data (“present” 

and “absent”). 

 

 

Figure 39 – Non-metric multidimensional scaling (NMDS) ordination of vegetation data from 

Sphagnum bead field trials (“reintroduced”), and survey data from Holme Moss and Black Hill 

(“present” and “absent”). Species labels can be found in Appendix 1. The most abundant species are 

added first and where species labels overlap, they have been omitted and the locations marked (+); all 

species labels are displayed in Appendix 14. 
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Vegetation composition was found to be different between these groups (PERMANOVA, P = 0.001), 

demonstrating that Sphagnum can be reintroduced to a wider range of substrate types than where it has 

managed to recolonise naturally. Propagule availability and dispersal can therefore be considered a 

limiting factor. 

Almost all experimental plots failed to establish on bare peat, due to the harsh microclimatic conditions 

and mobility of the substrate. The success of vegetated plots appeared related to moisture availability, 

with successfully established Sphagnum found either in contact with the underlying peat, located in 

channels and depressions, or areas of near-surface water table. Concurrent research found natural 

Sphagnum recolonisation on a nearby degraded site (Bleaklow) was limited to gullies and other water 

gathering depressions (Rogers, 2014). Vegetation density was also thought to influence the success of 

Sphagnum for two reasons. Dense vegetation and a closed canopy prevented propagules from reaching 

the peat surface beneath, leading to desiccation and death, and where Sphagnum had established, plants 

appeared adversely affected by heavy shading and smothering. Mowing of the sward was suggested to 

be effective at reducing this effect. Whilst Sphagnum was able to establish on a range of substrate types, 

including previously bare peat, there were concerns surrounding the long term viability of such 

reintroductions. Many areas of the southern Pennines are characterised by lenses of revegetated bare 

peat, likely to be hydrologically isolated from the surrounding peat body. Despite high inputs from both 

rain and occult precipitation (Figure 40), it may be insufficient to support the growth and expansion of 

individual Sphagnum plants. Larger clumps of Sphagnum may be better able to survive in these locations 

as they will be more able to maintain their own microclimatic conditions, thus reducing the likelihood 

of complete desiccation (Schipperges & Rydin, 1998).  

The ability of Sphagnum to improve its own conditions means that any success in reintroduction and 

natural recolonisation has the potential to generate more equable conditions and enhance the survival of 

further plants. This effect is not simply based around improved microclimatic conditions, and increased 

resilience to drought and/ or desiccation. Sphagnum is able to take up and retain large quantities of 

pollutant nutrients and heavy metals, whilst the successive growth of Sphagnum effectively isolates it 

further from the underlying substrate and any contaminants it may hold. However, the initial effect of 

this influx of pollutants is likely to have a considerable effect upon the growth of any Sphagnum 

propagules. These processes were observed in the indoor growth of chopped Sphagnum material. An 

initial phase of sickly growth with atypical Sphagnum morphology and colouration, followed by 

continued, substantial healthy growth by species characteristic of good quality bog. Field trials with 

transplanted material behaved similarly; originally thought to have failed, before becoming established 

and expanding significantly. 
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Figure 40 – Interception of occult precipitation by Campylopus spp. 

 

 

Sphagnum fallax was the most successful species used in reintroduction trials, and its natural prevalence 

in the region indicates its suitability to the local conditions. S. fallax has demonstrable ability to 

withstand the legacy effects of industrial pollution, and is tolerant of periodic desiccation caused by 

disturbed hydrology and harsh microclimatic conditions. Whilst S. fallax alone is not recognised as 

indicative of “good condition” when assessed using Common Standards Monitoring (JNCC, 2009), its 

presence and expansion will improve hydrological and biogeochemical conditions, facilitating further 

reintroduction, recolonisation, and potentially, diversification to more typical ombrotrophic species 

(Barrett & Watmough, 2015; Rydin & Jeglum, 2013). To this end, S. fallax could represent the primary 

stage of Sphagnum succession, leading to the establishment of more desirable ombrotrophic species, 

such as S. capillifolium and S. papillosum. Records of such species in the region demonstrate the 

potential for diversification (Carroll et al., 2009; Rogers, 2014), whilst surviving transplant experiments 

of regionally absent and/or scarce species have flourished in recent years (Caporn et al., 2006; Ferguson 

& Lee, 1983a). The regional eradication of the most sensitive species, such as S. austinii, will require 

the use of propagules to be reintroduced; a further role for BeadaMoss. 
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This research suggested that success of Sphagnum reintroduction appears to be influenced by four 

potential factors: substrate stability, water availability, shading/ smothering, and substrate 

biogeochemistry. It should be noted that of these, only substrate biogeochemistry was actually 

quantified; the remaining three were implicated from field observations and interpretation of results in 

the context of existing literature. Success seemed to depend upon the cumulative stress exerted upon 

Sphagnum by these factors. For example, Sphagnum with a ready water supply and no shading will be 

better able to cope with the effects of polluted substrate, compared with a partially desiccated, shaded 

plant. Thus, areas of greatest reintroduction success are likely to be those which have begun to naturally 

recolonise (Figure 41). Target of these “easy win” locations will provide benefits to the wider bog area 

through improvements in hydrology, raising water table in surrounding peat bodies. This approach may 

restrict application of propagules to areas typical of improved conditions, omitting those atypical areas 

also capable of sustaining Sphagnum growth, such as those found in this work. 

 

 

 

Figure 41 – Natural recolonisation of an erosion gully by Sphagnum. 
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4.2 Project impact 

The applied nature of this research, and involvement of the Moors for the Future Partnership, has led to 

continual dialogue with land owners and conservation practitioners throughout its duration. A regional 

technical advisory group was formed, providing a platform for discussion and the dissemination of 

research. Members included stakeholders, land owners and conservation groups from the Peak District 

and southern Pennine region, and further afield. This proved essential, with numerous separate parties 

conducting restoration works on land they manage or own. By sharing knowledge and experience, 

advice could be sought and exchanged, preventing wasted time, effort and resources – a considerable 

issue in conservation with land managed by independent bodies. This research played a central role in 

the advisory group, offering quantitative evidence to support the decisions made in Sphagnum 

reintroduction, and wider restoration works. Research reports were produced and made available via the 

Moors for the Future Partnership website; an interim report on Sphagnum reintroduction trials, and 

reintroduction trials on Molinia grassland. 

The Moors for the Future Partnership have since scaled up their landscape scale application of 

Sphagnum propagules, embracing new developments in the reintroduction of propagated moss. 

Sphagnum plug plants were developed by Micropropagation Services Ltd. to generate rapid cover, with 

increased resistance to desiccation because of their larger size. Another new product, SoluMoss™, 

incorporates longer Sphagnum strands suspended in solution. Over the past three years, Sphagnum beads 

have been applied to nearly 1000 ha over 6 different sites. In March 2015 alone, 400 ha worth of beads, 

80,000 Sphagnum plugs and 500 l of SoluMoss™ were applied {Moors for the Future, 2015 #1578}. 

The knowledge gained from this pioneering landscape-scale Sphagnum reintroduction will be made 

available through publication of the upcoming “Practitioners guide to Sphagnum reintroduction”. 

In response to growing interest from conservation agencies, an experimental protocol for field 

Sphagnum reintroduction trials was developed and distributed. This was produced to standardise the 

experimental approach, allowing results to be directly comparable. There is undoubtedly a wealth of 

knowledge surrounding blanket bog restoration, however, it is fragmented and not always formally 

recorded or accessible. Such a protocol was designed to address these issues and improve knowledge 

and understanding in the wider scientific and stakeholder community. The RSPB and National Trust 

adopted the protocol and have on going experimental trials. In an extension of this research and test of 

wider applicability, trials were established on cutover and previously forested raised bog in collaboration 

with Natural England. 

Conferences provided an ideal opportunity to engage with the wider scientific and stakeholder 

community, develop new connections, and develop a greater understanding of contemporary issues 

surrounding peatland restoration. Table 30 provides a summary of conferences attended and 

contributions made. 
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Table 30 – Summary of events attended. 

Date Event Contribution 

28 – 29/09/2010 IUCN Peatland Programme – Investing in Peatlands Poster 

15 – 16/11/2010 Moors for the Future MoorLIFE Conference Oral paper 

15/12/2010 Manchester Metropolitan University Research Day Poster 

27/01/2011 Manchester Metropolitan University Annual Research Student Poster 

 Conference  

27 – 28/04/2011 Association of Applied Biologists Vegetation Management  Delegate 

 Conference  

03 – 08/06 2012 International Peat Congress Poster 

17 – 20/12/2012 British Ecological Society Annual Meeting Oral paper 

25 – 27/03/2013 Committee on Air Pollution Effects Research Annual Meeting Oral paper 

02 – 04/09/2013 Society of Wetland Scientists European Chapter Meeting Oral paper 

10 – 12/09/2013 IUCN Investing in Peatlands Conference Poster 

11/06/2014 Moors for the Future Sphagnum Seminar Oral paper 

23 – 27/08/2015 Society of Ecological Restoration World Conference on  Delegate 

 Ecological Restoration  

 

 

4.3 Future research 

Further research into blanket bog restoration should focus on better understanding the limiting factors 

surrounding Sphagnum reintroduction, along with the impacts of successful reintroduction for the wider 

ecosystem. Many of the pilot studies undertaken here could be expanded to include additional replicates 

across multiple sites, increasing the confidence and applicability of conclusions drawn. As trials 

continue, and knowledge and experience increases within the scientific and stakeholder community, it 

is essential that an open dialogue exists between these two parties to enable maximum benefit and 

success to be achieved, with future objectives likely to evolve in the face of new challenges, as they 

arise. 

Moisture availability has been consistently implicated as a crucial factor in the success of Sphagnum 

reintroduction. However, this relationship remains to be quantified. Restoration of lowland raised bogs 

requires a stable water table at or near the surface of the peat. In the degraded blanket bogs of the Peak 

District and southern Pennines, both rainfall and occult precipitation are greater, and the network or 

erosion features can gather and channel available water. The presence of Sphagnum within areas of 

severely disturbed hydrology indicates water table, per se, may not be a constraining factor, but rather 

the availability of water. Assessment of such a relationship would require in situ monitoring of moisture 
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conditions, making use of numerous probes and data loggers. The results could help to inform a more 

targeted approach to Sphagnum reintroduction, by focussing on those areas most likely to support new 

growth. This could be extended to include remote sensing, such as LiDAR (light detection and ranging) 

and hydrological modelling, helping to predict where conditions will be wet enough to sustain 

Sphagnum. 

Long term monitoring of experimental plots is essential to determine their success and longevity. 

Realistically, regimes of five years or more are required to accurately assess the outcome of Sphagnum 

reintroductions. Vegetation cover data, along with fixed point quadrats, can be used to track the 

establishment, growth and expansion of reintroduced Sphagnum. These should include the wider bog 

surface, rather than just the immediate area targeted. Over longer time scales of decades, this will 

demonstrate the impact of significant Sphagnum cover on the wider vegetation community. Increases in 

water table will likely result in species shift from those typical of drier, heath-like, to those more typical 

of bog vegetation. Changes in the provision of ecosystem services are unlikely to occur in the short term, 

necessitating extended monitoring campaigns. Carbon sequestration and water quality are likely to be 

the greatest policy drivers of blanket bog restoration, both of which are readily quantifiable using 

existing methodologies.  
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Appendix 1 – Abbreviated species names 

 Agr.sto Agrostis stolonifera  Jun.squ Juncus squarrosus  

 Algae algae  Kin.pra Kindbergia praelonga  

 And.pol Andromeda polifolia  Lop.bid Lophocolea bidentata  

 Aul.pal Aulacumnium palustre  Mol.cae Molina caerulea  

 Bare bare ground  Myr.gal Myrica gale  

 Bet.pen Betula pendula  Nar.oss Narthecium ossifragum  

 Betula Betula spp.  Odo.sph Odontoschimsma sphagni  

 Bra.rut Brachythecium rutabulum  Pla.und Plagiothecium undulatum  

 Cal.vul Calluna vulgaris  Ple.sch Pleurozium schreberi  

 Cam.fle Campylopus flexuosus  Poh.nut Pohlia nutans  

 Cam.int Campylopus introflexus  Pol.com Polytrichum commune  

 Cam.pyr Campylopus pyriformis  Pol.str Polytrichum strictum  

 Cha.ang Chamerion angustifolium  Rhy.alb Rhynchospora alba  

 Cla.por Cladonia portentosa  Rhy.lor Rhytidiadelphus loreus  

 Des.fle Deschampsia flexuosa  Rhy.squ Rhytidiadelphus squarrosus  

 Dic.sco Dicranum scoparium  Rub.cha Rubus chamaemorus  

 Dro.ang Drosera anglica  Salix Salix spp.  

 Dro.rot Drosera rotundifolia  Sci.ces Scirpus cespitosus  

 Dry.fil Dryopteris filix-mas  Sph.cap Sphagnum capillifolium  

 Emp.nig Empetrum nigrum  Sph.cus Sphagnum cuspidatum  

 Epi.ang Epilobium angustifolium  Sph.den Sphagnum denticulatum  

 Eri.tet Erica tetralix  Sph.fal Sphagnum fallax  

 Eri.ang Eriophorum angustifolium  Sph.fim Sphagnum fimbriatum  

 Eri.vag Eriophorum vaginatum  Sph.mag Sphagnum magellanicum  

 Gal.apa Galium aparine  Sph.pal Sphagnum palustre  

 Gal.sax Galium saxatile  Sph.pap Sphagnum papillosum  

 Gym.inf Gymnocolea inflata  Sph.pul Sphagnum pulchrum  

 Hyl.spl Hylocomium splendens  Sph.subn Sphagnum subnitens  

 Hyp.cup Hypnum cupressiforme  Sph.ten Sphagnum tenellum  

 Hyp.jut Hypnum jutlandicum  Vac.myr Vaccinium myrtillus  

 Jun.eff Juncus effusus  Vac.oxy Vaccinium oxycoccos  

  



Appendix 2

 

 

181 

Appendix 2 – Non-metric multidimensional scaling (NMDS) ordination of the vegetation composition 

data for the Sphagnum source trial. Labels are arranged to minimise overlapping. 
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Appendix 3 – Details of all experimental Sphagnum bead plots 

 

Zero 

Greater than zero 

Lower threshold (0.5 %) 

Upper threshold (0.8 %) 

 

Date Substrate Replicate Treatment Sown N % Success 

Nov-09 Bare 1 S. fallax 1600 0 0 

Nov-09 Bare 1 S. fimbriatum 1600 0 0 

Nov-09 Bare 1 S. papillosum 1600 0 0 

Nov-09 Bare 1 S. cuspidatum 1600 0 0 

Nov-09 Bare 1 S. palustre 1600 0 0 

Nov-09 Bare 1 Control - - - 

Nov-09 Bare 2 S. fimbriatum 1600 0 0 

Nov-09 Bare 2 S. fallax 1600 0 0 

Nov-09 Bare 2 S. palustre 1600 0 0 

Nov-09 Bare 2 S. cuspidatum 1600 0 0 

Nov-09 Bare 2 S. papillosum 1600 0 0 

Nov-09 Bare 2 Control - - - 

Nov-09 Bare 3 S. cuspidatum 1600 0 0 

Nov-09 Bare 3 S. fimbriatum 1600 0 0 

Nov-09 Bare 3 S. papillosum 1600 0 0 

Nov-09 Bare 3 S. palustre 1600 0 0 

Nov-09 Bare 3 S. fallax 1600 1 0.0625 

Nov-09 Bare 3 Control - - - 

Nov-09 Treated 1 S. papillosum 1600 0 0 

Nov-09 Treated 1 S. fallax 1600 0 0 

Nov-09 Treated 1 S. cuspidatum 1600 0 0 

Nov-09 Treated 1 S. fimbriatum 1600 0 0 

Nov-09 Treated 1 S. palustre 1600 5 0.3125 

Nov-09 Treated 1 Control - - - 

Nov-09 Treated 2 S. palustre 1600 0 0 

Nov-09 Treated 2 S. papillosum 1600 0 0 

Nov-09 Treated 2 S. fimbriatum 1600 0 0 

Nov-09 Treated 2 S. fallax 1600 0 0 

Nov-09 Treated 2 S. cuspidatum 1600 0 0 

Nov-09 Treated 2 Control - - - 

Nov-09 Treated 3 S. fimbriatum 1600 4 0.2500 

Nov-09 Treated 3 S. palustre 1600 9 0.5625 

Nov-09 Treated 3 S. cuspidatum 1600 0 0 

Nov-09 Treated 3 S. papillosum 1600 12 0.7500 

Nov-09 Treated 3 S. fallax 1600 1 0.0625 

Nov-09 Treated 3 Control - - - 

Nov-09 Vegetated 1 S. cuspidatum 1600 60 3.7500 

Nov-09 Vegetated 1 S. fallax 1600 49 3.0625 

Nov-09 Vegetated 2 S. fallax 1600 17 1.0625 

Nov-09 Vegetated 3 S. fallax 1600 20 1.2500 
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Date Substrate Replicate Treatment Sown N % Success 

Apr-10 Bare 1 Control - - - 

Apr-10 Bare 1 S. fallax 1600 0 0 

Apr-10 Bare 1 S. papillosum 1600 0 0 

Apr-10 Bare 1 S. fimbriatum 1600 0 0 

Apr-10 Bare 1 S. palustre 1600 0 0 

Apr-10 Bare 1 S. cuspidatum 1600 0 0 

Apr-10 Bare 2 Control - - - 

Apr-10 Bare 2 S. fimbriatum 1600 0 0 

Apr-10 Bare 2 S. papillosum 1600 0 0 

Apr-10 Bare 2 S. cuspidatum 1600 0 0 

Apr-10 Bare 2 S. fallax 1600 0 0 

Apr-10 Bare 2 S. palustre 1600 0 0 

Apr-10 Bare 3 Control - - - 

Apr-10 Bare 3 S. fimbriatum 1600 2 0.1250 

Apr-10 Bare 3 S. fallax 1600 0 0 

Apr-10 Bare 3 S. palustre 1600 0 0 

Apr-10 Bare 3 S. cuspidatum 1600 0 0 

Apr-10 Bare 3 S. papillosum 1600 0 0 

Apr-10 Treated 1 S. cuspidatum 1600 2 0.1250 

Apr-10 Treated 1 S. palustre 1600 3 0.1875 

Apr-10 Treated 1 S. fimbriatum 1600 0 0 

Apr-10 Treated 1 S. papillosum 1600 3 0.1875 

Apr-10 Treated 1 S. fallax 1600 0 0 

Apr-10 Treated 1 Control - - - 

Apr-10 Treated 2 Control - - - 

Apr-10 Treated 2 S. fallax 1600 0 0 

Apr-10 Treated 2 S. cuspidatum 1600 0 0 

Apr-10 Treated 2 S. fimbriatum 1600 0 0 

Apr-10 Treated 2 S. papillosum 1600 0 0 

Apr-10 Treated 2 S. palustre 1600 0 0 

Apr-10 Treated 3 Control - - - 

Apr-10 Treated 3 S. fallax 1600 0 0 

Apr-10 Treated 3 S. cuspidatum 1600 0 0 

Apr-10 Treated 3 S. papillosum 1600 0 0 

Apr-10 Treated 3 S. palustre 1600 0 0 

Apr-10 Treated 3 S. fimbriatum 1600 0 0 

Apr-10 Vegetated 1 Control - - - 

Apr-10 Vegetated 1 S. fallax 1600 0 0 

Apr-10 Vegetated 1 S. cuspidatum 1600 0 0 

Apr-10 Vegetated 1 S. palustre 1600 7 0.4375 

Apr-10 Vegetated 1 S. papillosum 1600 0 0 

Apr-10 Vegetated 1 S. fimbriatum 1600 1 0.0625 

Aug-10 Bare 1 S. fallax 1600 0 0 

Aug-10 Bare 1 Control - - - 

Aug-10 Bare 1 S. palustre 1600 0 0 

Aug-10 Bare 2 S. palustre 1600 0 0 

Aug-10 Bare 2 S. fallax 1600 0 0 

Aug-10 Bare 2 Control - - - 
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Date Substrate Replicate Treatment Sown N % Success 

Aug-10 Bare 3 S. fallax 1600 0 0 

Aug-10 Bare 3 Control - - - 

Aug-10 Bare 3 S. palustre 1600 0 0 

Aug-10 Treated 1 S. fallax 1600 288 18.0000 

Aug-10 Treated 1 S. palustre 1600 0 0 

Aug-10 Treated 1 Control - - - 

Aug-10 Treated 2 S. palustre 1600 0 0 

Aug-10 Treated 2 Control - - - 

Aug-10 Treated 2 S. fallax 1600 264 16.5000 

Aug-10 Treated 3 Control - - - 

Aug-10 Treated 3 S. fallax 1600 33 2.0625 

Aug-10 Treated 3 S. palustre 1600 0 0 

Sep-10 Bare 1 S. fallax 1600 0 0 

Sep-10 Bare 1 S. papillosum 1600 0 0 

Sep-10 Bare 1 S. cuspidatum 1600 0 0 

Sep-10 Bare 1 S. palustre 1600 0 0 

Sep-10 Bare 1 S. fimbriatum 1600 0 0 

Sep-10 Bare 1 Control - - - 

Sep-10 Bare 2 S. fallax 1600 0 0 

Sep-10 Bare 2 S. cuspidatum 1600 0 0 

Sep-10 Bare 2 S. papillosum 1600 0 0 

Sep-10 Bare 2 S. fimbriatum 1600 0 0 

Sep-10 Bare 2 S. palustre 1600 0 0 

Sep-10 Bare 2 Control - - - 

Sep-10 Bare 3 Control - - - 

Sep-10 Bare 3 S. papillosum 1600 0 0 

Sep-10 Bare 3 S. fimbriatum 1600 0 0 

Sep-10 Bare 3 S. cuspidatum 1600 0 0 

Sep-10 Bare 3 S. palustre 1600 0 0 

Sep-10 Bare 3 S. fallax 1600 0 0 

Sep-10 Treated 1 Control - - - 

Sep-10 Treated 1 S. cuspidatum 1600 0 0 

Sep-10 Treated 1 S. fallax 1600 0 0 

Sep-10 Treated 1 S. fimbriatum 1600 0 0 

Sep-10 Treated 1 S. palustre 1600 0 0 

Sep-10 Treated 1 S. papillosum 1600 0 0 

Sep-10 Treated 2 S. papillosum 1600 0 0 

Sep-10 Treated 2 S. cuspidatum 1600 0 0 

Sep-10 Treated 2 S. fimbriatum 1600 0 0 

Sep-10 Treated 2 S. palustre 1600 0 0 

Sep-10 Treated 2 S. fallax 1600 0 0 

Sep-10 Treated 2 Control - - - 

Sep-10 Treated 3 Control - - - 

Sep-10 Treated 3 S. fimbriatum 1600 0 0 

Sep-10 Treated 3 S. cuspidatum 1600 0 0 

Sep-10 Treated 3 S. palustre 1600 0 0 

Sep-10 Treated 3 S. fallax 1600 0 0 

Sep-10 Treated 3 S. papillosum 1600 0 0 
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Date Substrate Replicate Treatment Sown N % Success 

Sep-10 Vegetated 1 Control - - - 

Sep-10 Vegetated 1 S. palustre 1600 1 0.0625 

Sep-10 Vegetated 1 S. fallax 1600 3 0.1875 

Sep-10 Vegetated 2 S. fallax 1600 0 0 

Sep-10 Vegetated 2 S. palustre 1600 0 0 

Sep-10 Vegetated 2 Control - - - 

Sep-10 Vegetated 3 S. palustre 1600 0 0 

Sep-10 Vegetated 3 S. fallax 1600 0 0 

Sep-10 Vegetated 3 Control - - - 

May-11 Treated 1 S. fallax 1600 0 0 

May-11 Treated 1 S. capillifolium 1600 0 0 

May-11 Treated 1 S. palustre 1600 0 0 

May-11 Treated 1 S. fimbriatum 1600 0 0 

May-11 Treated 1 S. cuspidatum 1600 0 0 

May-11 Treated 1 Control - - - 

May-11 Treated 1 S. papillosum 1600 0 0 

May-11 Treated 2 S. papillosum 1600 0 0 

May-11 Treated 2 Control - - - 

May-11 Treated 2 S. cuspidatum 1600 0 0 

May-11 Treated 2 S. fimbriatum 1600 0 0 

May-11 Treated 2 S. palustre 1600 0 0 

May-11 Treated 2 S. fallax 1600 9 0.5625 

May-11 Treated 2 S. capillifolium 1600 0 0 

May-11 Treated 3 S. palustre 1600 0 0 

May-11 Treated 3 S. papillosum 1600 0 0 

May-11 Treated 3 S. fallax 1600 0 0 

May-11 Treated 3 S. capillifolium 1600 0 0 

May-11 Treated 3 Control - - - 

May-11 Treated 3 S. cuspidatum 1600 0 0 

May-11 Treated 3 S. fimbriatum 1600 0 0 

May-11 Vegetated 1 Control - - - 

May-11 Vegetated 1 S. palustre 1600 0 0 

May-11 Vegetated 1 S. fallax 1600 0 0 

May-11 Vegetated 2 S. palustre 1600 0 0 

May-11 Vegetated 2 S. fallax 1600 0 0 

May-11 Vegetated 2 Control - - - 

May-11 Vegetated 3 S. palustre 1600 0 0 

May-11 Vegetated 3 Control - - - 

May-11 Vegetated 3 S. fallax 1600 0 0 

Aug-12 Vegetated 1 S. palustre 1600 0 0 

Aug-12 Vegetated 1 Control - - - 

Aug-12 Vegetated 1 S. capillifolium 1600 0 0 

Aug-12 Vegetated 1 S. fallax 1600 0 0 

Aug-12 Vegetated 1 S. fimbriatum 1600 0 0 
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Date Substrate Replicate Treatment Sown N % Success 

Aug-12 Vegetated 2 S. fallax 1600 0 0 

Aug-12 Vegetated 2 S. palustre 1600 0 0 

Aug-12 Vegetated 2 Control - - - 

Aug-12 Vegetated 2 S. fimbriatum 1600 0 0 

Aug-12 Vegetated 2 S. capillifolium 1600 0 0 

Aug-12 Vegetated 3 S. capillifolium 1600 0 0 

Aug-12 Vegetated 3 S. fallax 1600 0 0 

Aug-12 Vegetated 3 S. fimbriatum 1600 0 0 

Aug-12 Vegetated 3 S. palustre 1600 0 0 

Aug-12 Vegetated 3 Control - - - 

Aug-12 Treated 1 Control - - - 

Aug-12 Treated 1 S. capillifolium 1600 0 0 

Aug-12 Treated 1 S. fallax 1600 0 0 

Aug-12 Treated 1 S. fimbriatum 1600 0 0 

Aug-12 Treated 2 Control - - - 

Aug-12 Treated 2 S. capillifolium 1600 0 0 

Aug-12 Treated 2 S. fallax 1600 0 0 

Aug-12 Treated 2 S. fimbriatum 1600 0 0 

Aug-12 Treated 3 Control - - - 

Aug-12 Treated 3 S. capillifolium 1600 0 0 

Aug-12 Treated 3 S. fallax 1600 0 0 

Aug-12 Treated 3 S. fimbriatum 1600 0 0 
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Appendix 4 – Non-metric multidimensional scaling (NMDS) ordination of the vegetation composition 

data for the Sphagnum bead trials. Labels are arranged to minimise overlapping. 

 



 

 

Appendix 5 – Extractable (e) and total (t) biogeochemical values from Holme Moss reference material. Values in µg g-1 dry weight, unless indicated otherwise. 

Mean and relative standard deviation (RSD) reported for the 10 replicates. 

Sample MC (%) pH e Al e As e Ba e Ca2+ e Ca e Cd e Co e Cu e Fe e Mn e Mo e Na+ 

Ref 1 85.05 3.80 147.3 0.332 3.00 516.8 42.0 0.257 0.382 2.92 67.0 0.112 0.278 223.7 

Ref 2 84.28 3.79 277.5 2.190 23.86 463.8 124.6 0.373 0.294 6.70 226.0 0.553 0.349 159.4 

Ref 3 85.08 3.85 307.0 2.343 21.43 523.6 142.5 0.433 0.367 7.01 209.6 0.664 0.365 163.2 

Ref 4 85.25 3.82 292.2 2.585 19.52 501.5 135.8 0.426 0.361 6.72 256.8 0.658 0.389 163.1 

Ref 5 85.56 3.97 313.5 3.290 7.73 530.3 135.8 0.446 0.366 8.22 321.2 0.652 0.524 171.0 

Ref 6 86.15 3.95 333.8 2.520 13.00 554.9 148.3 0.490 0.383 7.49 221.5 0.697 0.403 182.5 

Ref 7 86.23 3.99 321.8 2.523 1.66 529.0 139.3 0.431 0.329 9.37 231.1 0.643 0.499 191.0 

Ref 8 86.35 3.94 333.9 2.923 23.81 517.6 136.7 0.459 0.375 10.84 272.9 0.663 0.576 169.6 

Ref 9 86.59 3.86 359.8 2.452 21.02 555.6 149.7 0.482 0.380 11.08 199.3 0.718 0.444 171.4 

Ref 10 85.50 3.93 310.7 2.336 19.86 530.2 134.8 0.419 0.315 7.79 220.8 0.636 0.390 165.1 

Mean 85.60 3.89 299.8 2.349 15.49 522.3 129.0 0.422 0.355 7.82 222.6 0.600 0.422 176.0 

RSD (%) 0.84 1.91 19.44 33.07 55.04 5.04 24.33 15.81 8.83 30.04 29.35 29.45 21.23 10.98 

 
 

Sample e NH4
+ e Ni e NO3

- e P e Pb e PO4
3- e S e Sn e SO4

2- e Sr e Ti e V e Zn 

Ref 1 139.4 1.481 126.2 0.306 111.6 3.138 3.06 0.000 181.7 0.316 0.000 0.000 13.28 

Ref 2 128.9 2.963 120.9 1.398 255.0 3.168 10.77 0.032 187.0 1.095 0.516 0.000 42.85 

Ref 3 139.2 3.372 132.1 1.058 269.8 3.284 9.91 0.035 185.5 1.294 0.624 0.149 48.29 

Ref 4 140.8 3.192 124.5 1.481 253.1 4.251 11.35 0.045 193.1 1.233 0.731 0.081 50.09 

Ref 5 141.4 3.426 139.6 2.272 290.2 3.659 12.36 0.068 210.5 1.151 1.338 0.080 52.58 

Ref 6 148.5 3.666 134.8 1.215 320.2 2.689 11.93 0.036 208.0 1.309 0.571 0.137 47.50 

Ref 7 145.5 3.609 126.8 1.378 310.4 2.652 11.01 0.048 213.1 1.188 0.885 0.104 48.11 

Ref 8 146.1 3.757 130.4 1.937 338.3 2.987 11.45 0.067 211.1 1.187 1.592 0.134 38.78 

Ref 9 151.8 4.172 127.6 1.214 360.2 3.320 10.95 0.033 222.7 1.307 0.514 0.191 38.35 

Ref 10 140.3 3.453 126.2 1.308 296.7 2.438 10.69 0.033 202.1 1.187 0.412 0.103 36.40 

Mean 142.2 3.309 128.9 1.357 280.5 3.159 10.35 0.040 201.5 1.127 0.718 0.098 41.62 

RSD (%) 4.44 21.79 4.21 38.30 24.51 16.72 25.62 48.86 6.89 26.03 62.77 27.32 5.70 



 

 

 

Sample t Al t As t Ba t C (%) t Ca t Cd t Co t Cu t Fe t K t Mg t Mn 

Ref 1 2618 12.30 22.44 53.05 690.0 0.919 1.996 84.03 5407 272.7 341.8 14.38 

Ref 2 3037 14.24 23.75 53.30 710.6 0.985 2.711 90.98 6736 393.8 391.0 18.23 

Ref 3 2754 12.51 23.66 53.17 721.6 0.933 2.211 85.35 5551 300.4 363.0 15.45 

Ref 4 2959 13.35 24.44 53.22 720.9 0.976 2.506 88.69 6403 348.1 377.2 16.34 

Ref 5 2804 12.39 23.54 53.04 709.1 1.048 2.265 87.69 5758 298.9 350.7 15.92 

Ref 6 2698 12.17 22.99 52.74 696.7 0.942 2.178 83.62 5666 287.7 347.4 15.23 

Ref 7 2992 13.22 24.45 52.87 711.9 0.965 2.554 89.69 6513 373.6 376.5 17.09 

Ref 8 2670 12.26 22.81 53.02 705.3 0.924 2.167 87.75 5849 307.2 357.3 15.01 

Ref 9 2584 11.93 22.46 52.75 692.4 0.904 1.976 84.58 5696 270.6 343.4 14.23 

Ref 10 2817 12.50 23.17 53.08 694.8 0.921 2.349 88.61 5893 346.3 366.3 16.03 

Mean 2793 12.69 23.37 53.02 705.3 0.952 2.291 87.10 5947 319.9 361.5 15.79 

RSD (%) 5.70 5.54 3.11 0.36 1.62 4.52 10.46 2.92 7.50 13.39 4.53 7.76 

 

 

Sample t Mo t N (%) t Na t Ni t P t Pb t S t Sn t Sr t Ti t V t Zn 

Ref 1 14.47 1.840 138.2 12.11 716.8 663.9 3987 3.684 8.352 163.0 31.98 57.28 

Ref 2 11.80 1.858 156.7 13.43 801.3 693.8 4227 6.377 9.159 214.9 34.85 60.25 

Ref 3 11.55 1.846 144.6 19.75 730.5 685.5 4050 3.837 8.871 178.1 32.09 59.31 

Ref 4 21.38 1.805 148.3 15.56 759.2 693.0 4231 5.480 9.207 198.7 34.25 57.41 

Ref 5 13.41 1.853 139.4 16.09 659.0 665.8 3837 4.461 9.120 176.6 31.50 53.75 

Ref 6 17.51 1.848 140.1 11.03 675.3 643.3 3827 4.237 8.804 175.3 31.36 55.34 

Ref 7 24.92 1.849 150.3 16.01 718.2 659.6 3933 6.316 9.337 206.9 33.91 57.80 

Ref 8 24.28 1.772 149.5 14.31 715.7 643.1 3855 4.045 8.736 179.3 31.39 54.86 

Ref 9 14.06 1.842 137.4 17.05 683.7 650.4 3759 3.893 8.556 163.5 30.98 52.30 

Ref 10 19.95 1.824 151.8 19.34 723.7 655.3 3859 4.688 8.864 196.5 33.69 56.21 

Mean 17.33 1.834 145.6 15.47 718.3 665.4 3956 4.702 8.901 185.3 32.60 56.45 

RSD (%) 29.01 1.46 4.57 18.40 5.74 2.89 4.20 21.46 3.47 9.66 4.36 4.35 
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Appendix 6 – Non-metric multidimensional scaling (NMDS) ordination of the vegetation composition 

data for the reference and Pennine sites. Labels are arranged to minimise overlapping. 
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Appendix 7 – Non-metric multidimensional scaling (NMDS) ordination of the vegetation composition 

data for the Pennine sites. Labels are arranged to minimise overlapping. 



 

 

Appendix 8 – Mean (and standard error) of biogeochemical variables from samples containing Sphagnum. Values in µg g-1 dry weight, unless indicated otherwise. Rank ANOVA 

(F) and Bonferroni-corrected pairwise comparisons are reported. Sites which do not share a letter are significantly different. (* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001) 

Variable Alport Moor Black Hill Bleaklow Borth Glasson Holme Moss Migneint Moidach Whim Whixall F  

MC (%) 91.65  92.29  92.20  92.32  92.44  91.73  92.65  92.80  90.19  92.54  0.93  

 (0.87)  (0.91)  (1.34)  (0.65)  (0.64)  (1.13)  (0.53)  (0.72)  (0.81)  (0.79)    

pH 4.06  4.52  4.08  4.27  4.18  3.98  4.18  4.18  3.90  4.00  1.65  

 (0.19)  (0.24)  (0.12)  (0.11)  (0.04)  (0.16)  (0.06)  (0.15)  (0.06)  (0.05)    

Al 195.5 a b c 148.4 b c d e 720.2 a 63.2 f 88.0 d e f 336.7 a 186.3 a b c d 106.0 e f 222.5 a b 99.5 c d e f 13.93 *** 

 (27.1)  (17.3)  (242.3)  (7.1)  (12.2)  (50.6)  (29.2)  (49.9)  (21.6)  (14.6)    

As 1.141 a b c d 0.820 b c d 4.169 a b 0.411 d e 0.117 e 2.443 a 1.238 a b c d 0.548 c d e 1.873 a b c 0.575 d e 13.19 *** 

 (0.210)  (0.123)  (1.371)  (0.097)  (0.034)  (0.243)  (0.302)  (0.142)  (0.704)  (0.258)    

Ba 5.27 a 6.21 a 18.33 a 11.32 a 12.01 a 11.11 a 5.32 a 12.14 a 9.15 a 9.90 a 3.18 ** 

 (0.82)  (2.84)  (5.42)  (3.08)  (2.88)  (4.28)  (1.30)  (1.78)  (1.00)  (2.59)    

Ca 242.2 c 1988.9 a 292.3 c 1058.3 a 710.8 a 313.5 b c 809.8 a 423.5 b c 565.6 a b 371.6 b c 15.50 *** 

 (25.9)  (568.4)  (51.4)  (151.0)  (41.5)  (34.0)  (63.7)  (53.6)  (96.6)  (35.2)    

Cd 0.698 a b 1.274 a b 0.774 a b 0.293 c 0.435 b c 0.623 a b 1.348 a 0.250 c 1.204 a 0.679 a b 12.14 *** 

 (0.097)  (0.598)  (0.071)  (0.039)  (0.091)  (0.062)  (0.210)  (0.036)  (0.136)  (0.139)    

Co 0.522 a b c 0.590 b c 1.699 a 0.266 c 0.309 c 0.729 a b 0.436 a b c 0.424 a b c 0.952 a 0.364 c 8.57 *** 

 (0.083)  (0.199)  (0.491)  (0.014)  (0.061)  (0.079)  (0.043)  (0.047)  (0.135)  (0.050)    

Cu 9.163 a 5.102 a b c 9.390 a 2.821 c d 2.637 b c d 5.868 a 4.260 a b c 1.545 d 6.203 a b 2.041 d 14.56 *** 

 (1.320)  (0.682)  (1.180)  (0.750)  (0.450)  (0.821)  (0.391)  (0.171)  (1.412)  (0.356)    

Fe 434.9 b c d e 259.4 d e 329.8 d e 362.3 c d e 587.8 a b c d 797.4 a b c 2099.5 a 312.7 c d e 1594.4 a b 195.9 e 9.46 *** 

 (102.0)  (38.3)  (97.9)  (66.6)  (97.7)  (148.6)  (435.5)  (65.8)  (569.1)  (24.6)    

K 198.5 b c d 425.1 a b 235.4 b c d 465.6 a 361.6 a b 278.9 a b c 293.4 a b c 289.7 a b c 114.0 c d 34.5 d 8.48 *** 

 (56.8)  (96.0)  (68.3)  (45.0)  (48.4)  (69.3)  (29.9)  (45.4)  (25.6)  (18.7)    

Mg 478.2 e 643.9 d e 731.7 c d 1391.6 a 1075.6 a b 456.0 e 1112.5 a b 1070.9 b 927.2 b c 618.5 d e 31.63 *** 

 (24.5)  (42.9)  (104.0)  (50.8)  (51.6)  (36.4)  (30.0)  (80.2)  (35.2)  (34.3)    

Mn 3.91 b c d 4.81 b c d 6.76 b c d 29.89 a b 10.52 a b c 2.15 d 45.71 a 2.42 c d 9.19 a b c 2.93 c d 8.04 *** 

 (0.52)  (1.15)  (1.99)  (11.53)  (3.19)  (0.26)  (9.06)  (0.63)  (2.52)  (0.52)    

 



 

 

Variable Alport Moor Black Hill Bleaklow Borth Glasson Holme Moss Migneint Moidach Whim Whixall F  

Mo 1.028 a 0.459 b c 0.800 a b 0.088 e f 0.021 g 0.753 a b 0.155 d e 0.145 c d e 0.245 c d 0.038 f g 48.24 *** 

 (0.114)  (0.105)  (0.110)  (0.007)  (0.007)  (0.071)  (0.027)  (0.011)  (0.069)  (0.010)    

Na+ 199.9 b 317.5 a b 190.3 b 434.2 a 372.2 a 385.5 a 303.2 a b 440.5 a 312.9 a b 366.9 a 7.00 *** 

 (23.1)  (71.9)  (15.2)  (35.5)  (25.0)  (50.2)  (35.8)  (63.2)  (31.7)  (27.3)    

NH4
+ 384.1 a b c 403.0 a b c 226.3 a b c 52.8 c d 30.6 d 1301.1 a 306.1 a b 28.5 d 33.7 c d 133.2 b c d 8.95 *** 

 (153.9)  (143.4)  (69.1)  (20.0)  (11.3)  (260.4)  (68.3)  (20.9)  (8.5)  (48.6)    

Ni 2.185 a b c 1.609 a b c d 3.125 a b 0.613 d e 0.944 c d e 2.085 a b c 1.054 b c d e 0.470 e 2.579 a 0.993 b c d e 9.73 *** 

 (0.499)  (0.451)  (0.687)  (0.039)  (0.105)  (0.331)  (0.084)  (0.047)  (0.324)  (0.084)    

NO3
- 446.0 a b 1368.5 a 250.6 b c 49.8 b c 3.9 b c 1996.1 a 2.7 c 2.3 b c 115.9 b c 3.9 c 11.77 *** 

 (213.9)  (257.8)  (165.2)  (32.1)  (1.4)  (430.5)  (1.9)  (0.5)  (41.1)  (2.4)    

P 3.772 b c 18.373 a 6.197 b c 0.109 e 0.138 e 13.365 a b 3.043 c 0.537 e 2.992 c d 0.463 d e 31.29 *** 

 (0.727)  (2.810)  (3.147)  (0.082)  (0.056)  (3.027)  (0.867)  (0.159)  (1.011)  (0.071)    

Pb 184.69 a 88.08 a b 224.50 a 13.55 e 28.72 c d e 108.20 a b 52.69 b c 14.26 d e 87.24 a b 38.79 c d 24.31 *** 

 (33.89)  (13.84)  (54.25)  (2.07)  (5.16)  (28.11)  (9.95)  (1.65)  (13.01)  (8.30)    

PO4
3- 25.37 a b 207.22 a 11.41 c d 1.73 c d 3.41 b c d 186.34 a 10.54 b c 4.93 d 8.42 b c d 4.15 d 17.78 *** 

 (6.51)  (40.75)  (6.27)  (0.39)  (0.45)  (46.19)  (2.54)  (3.29)  (2.65)  (2.74)    

S 9.99 a b c 18.36 a 20.30 a 5.88 c 5.15 c 16.39 a 4.99 c 7.48 b c 10.76 a b c 13.74 a b 10.81 *** 

 (1.72)  (2.11)  (3.80)  (0.69)  (0.61)  (1.49)  (0.45)  (1.25)  (2.85)  (2.31)    

Sn 0.050 a b c 0.014 c d 0.068 a b  0.000 e 0.000 e 0.090 a 0.000 e 0.017 b c 0.066 a b c 0.002 d e 26.32 *** 

 (0.017)  (0.004)  (0.016)  (0.000)  (0.000)  (0.029)  (0.000)  (0.004)  (0.036)  (0.001)    

SO4
2- 90.9 b c 209.0 a b c 285.9 a b c 96.5 b c 109.2 b c 545.3 a 68.5 c 183.5 b c 94.6 b c 278.8 a b 5.52 *** 

 (19.6)  (57.3)  (74.1)  (16.8)  (15.5)  (78.5)  (18.2)  (60.3)  (12.8)  (61.2)    

Sr 2.066 d 4.489 b c 2.626 c d 8.489 a 7.210 a 2.365 d 7.758 a 7.456 a 6.501 a b 2.752 c d 25.21 *** 

 (0.279)  (0.611)  (0.560)  (0.592)  (0.502)  (0.290)  (0.624)  (0.653)  (0.515)  (0.255)    

Ti 0.766 a 1.033 a 0.669 a b 0.218 b c 0.000 c 1.594 a 0.081 c 0.367 b c 2.584 a 0.000 c 20.66 *** 

 (0.140)  (0.247)  (0.214)  (0.094)  (0.000)  (0.297)  (0.055)  (0.264)  (0.988)  (0.000)    

V 0.547 a 0.591 a 0.380 a 0.148 b 0.000 b 0.673 a 0.000 b 0.000 b 0.342 a 0.000 b 27.44 *** 

 (0.133)  (0.113)  (0.121)  (0.071)  (0.000)  (0.180)  (0.000)  (0.000)  (0.065)  (0.000)    

Zn 67.24 a b 78.21 a b 46.81 a b c 30.68 c 58.94 a b 42.39 b c 41.71 a b c 27.74 c 52.77 a b 62.51 a 8.36 *** 

 (8.46)  (14.85)  (4.09)  (2.41)  (8.18)  (6.21)  (2.75)  (3.81)  (5.37)  (4.64)    
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Appendix 9 – Summary, permutation test and AIC values for the national comparison CCA model 

> mod.sel01 

Call: cca(formula = log10(veg+1)~ Mg + Al + Ba + Cd + NO3 + MC + SO4 + V + 

Fe + Mo + Zn) 

 

              Inertia Proportion Rank 

Total          5.9572     1.0000      

Constrained    1.7267     0.2898   11 

Unconstrained  4.2305     0.7102   42 

Inertia is mean squared contingency coefficient  

 

Eigenvalues for constrained axes: 

  CCA1   CCA2   CCA3   CCA4   CCA5   CCA6   CCA7   CCA8  

0.4815 0.3789 0.2091 0.1788 0.1293 0.1072 0.0861 0.0644  

 

Eigenvalues for unconstrained axes: 

   CA1    CA2    CA3    CA4    CA5    CA6    CA7    CA8  

0.4154 0.3847 0.3363 0.3012 0.2668 0.2261 0.1836 0.1679  

(Showed only 8 of all 42 unconstrained eigenvalues) 

 

 

> anova(mod.sel01,by="term") 

Permutation test for cca under reduced model 

Terms added sequentially (first to last) 

Permutation: free 

Number of permutations: 999 

 

Model: cca(formula = log10(veg+1)~ Mg + Al + Ba + Cd + NO3 + MC + SO4 + V + 

Fe + Mo + Zn) 

         Df ChiSquare      F Pr(>F)     

Mg        1    0.3749 7.7987  0.001 *** 

Al        1    0.3331 6.9285  0.001 *** 

Ba        1    0.1537 3.1969  0.001 *** 

Cd        1    0.1491 3.1011  0.004 **  

NO3       1    0.1350 2.8088  0.002 **  

MC        1    0.1135 2.3616  0.004 **  

SO4       1    0.1002 2.0836  0.003 **  

V         1    0.1125 2.3409  0.002 **  

Fe        1    0.0903 1.8784  0.024 *   

Mo        1    0.0864 1.7974  0.015 *   

Zn        1    0.0779 1.6211  0.031 *   

Residual 88    4.2305                   

 

 

> mod.sel01$anova 

      Df    AIC      F Pr(>F)    

+ Mg   1 355.29 6.5819  0.005 ** 

+ Al   1 351.14 6.1551  0.005 ** 

+ Ba   1 350.17 2.8955  0.005 ** 

+ Cd   1 349.20 2.8632  0.005 ** 

+ NO3  1 348.43 2.6381  0.005 ** 

+ MC   1 348.04 2.2475  0.005 ** 

+ SO4  1 347.89 2.0043  0.005 ** 

+ V    1 347.41 2.2832  0.010 ** 

+ Fe   1 347.38 1.8492  0.025 *  

+ Mo   1 347.39 1.7850  0.020 *  

+ Zn   1 347.56 1.6211  0.015 *  

 

 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Appendix 10 – Canonical correspondence analysis (CCA) ordination of the vegetation composition data 

from all the sites, constrained by those environmental variables selected in the model building process 

(Mg + Al + Ba + Cd + NO3
- + MC + SO4

2- + V + Fe + Mo + Zn). Labels are arranged to minimise 

overlapping. 
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Appendix 11 – Summary, permutation test and AIC values for the Pennine sites CCA model 

> mod.sel01 

Call: cca(formula = log10(veg+1)~ Ba + Al + P + Mg + Mo + Pb + Fe + S) 

 

              Inertia Proportion Rank 

Total          5.7205     1.0000      

Constrained    1.4297     0.2499    8 

Unconstrained  4.2908     0.7501   24 

Inertia is mean squared contingency coefficient  

 

Eigenvalues for constrained axes: 

  CCA1   CCA2   CCA3   CCA4   CCA5   CCA6   CCA7   CCA8  

0.4865 0.2562 0.1734 0.1664 0.1385 0.1207 0.0673 0.0208  

 

Eigenvalues for unconstrained axes: 

   CA1    CA2    CA3    CA4    CA5    CA6    CA7    CA8  

0.5373 0.4475 0.3979 0.3716 0.2877 0.2718 0.2378 0.2218  

(Showed only 8 of all 24 unconstrained eigenvalues) 

 

 

> anova(mod.sel01,by="term") 

Permutation test for cca under reduced model 

Terms added sequentially (first to last) 

Permutation: free 

Number of permutations: 999 

 

Model: cca(formula = log10(veg+1)~ Ba + Al + P + Mg + Mo + Pb + Fe + S) 

         Df ChiSquare      F Pr(>F)     

Ba        1    0.3489 5.7740  0.001 *** 

Al        1    0.2233 3.6958  0.001 *** 

P         1    0.1703 2.8177  0.002 **  

Mg        1    0.1585 2.6235  0.003 **  

Mo        1    0.1633 2.7027  0.006 **  

Pb        1    0.1137 1.8820  0.018 *   

Fe        1    0.1472 2.4356  0.005 **  

S         1    0.1043 1.7264  0.040 *   

Residual 71    4.2908                   

 

 

> mod.sel01$anova 

      Df    AIC      F Pr(>F)    

+ Ba   1 251.76 5.0669  0.005 ** 

+ Al   1 250.36 3.3406  0.005 ** 

+ P    1 249.67 2.5998  0.005 ** 

+ Mg   1 249.08 2.4673  0.010 ** 

+ NH4  1 249.18 1.7746  0.005 ** 

+ Mo   1 248.36 2.6202  0.010 ** 

+ Pb   1 248.35 1.8343  0.020 *  

+ Fe   1 248.15 1.9770  0.020 *  

+ S    1 247.78 1.7264  0.010 ** 

 

 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Appendix 12 – Canonical correspondence analysis (CCA) ordination of the vegetation composition data 

from the Pennine sites, constrained by those environmental variables selected in the model building 

process (Ba + Al + P + Mg + Mo + Pb + Fe + S). Labels are arranged to minimise overlapping. 
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Appendix 13 – Results of HOF models for national comparison. 

HOF model response curves for the most abundant species from all sites with respect to significant 

biogeochemical variables (Mg + Al + Ba + Cd + NO3
- + MC + SO4

2- + V + Fe + Mo + Zn). Species 

labels can be found in Appendix 1. 
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Appendix 14 – Non-metric multidimensional scaling (NMDS) ordination of the vegetation composition 

data from Sphagnum bead field trials, and survey data from Holme Moss and Black Hill. Labels are 

arranged to minimise overlapping. 
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