# Eradiate: 3D radiative transfer community model to support metrological applications

Metrology and Traceability

Yves Govaerts, Vincent Leroy, Yvan Nollet, Sebastian Schunke Rayference

QA4EO/IDEAS Cal/Val Workshop#I, University La Sapienza, Rome (Italy)

19 – 21 February 2020







# 1792 (definition) 1875 acceptance











# 1792 (definition) 1875 acceptance



TRUTHS



### Typical vicarious calibration targets/methods

| METHOD    | UV    | VIS   | NIR  | SWIR |
|-----------|-------|-------|------|------|
| Desert    | ?     | ATX   | ATX  | ATX  |
| DCC       | ?     | ATIX  | Т    | ?    |
| Snow/ice  | ?     | ΤХ    | Т    | Т    |
| Rayleigh  | ?     | ATIX  | ТΙ   | -    |
| Sun-glint | I. I. | I. I. | -    | -    |
| Moon      | ?     | [A]T  | [A]T |      |

A = Absolute, T = Trending, I = Inter-band, X = cross-calibration (SNO)



### Typical vicarious calibration targets/methods

| METHOD    | UV    | VIS           | NIR           | SWIR |
|-----------|-------|---------------|---------------|------|
| Desert    | ?     | ATX           | ATX           | ATX  |
| DCC       | ?     | ΑΤΙΧ          | Т             | ?    |
| Snow/ice  | ?     | ΤХ            | Т             | Т    |
| Rayleigh  | ?     | ΑΤΙΧ          | ТΙ            | -    |
| Sun-glint | I. I. | I             | -             | -    |
| Moon      | ?     | [ <b>A</b> ]T | [ <b>A</b> ]T |      |

A = Absolute, T = Trending, I = Inter-band, X = cross-calibration (SNO)

Absolute vicarious calibration methods rely on different references not traceable to a unique SI standard. Homogenisation of radiometers combining different methods is very cumbersome.



## Libya-4 Rayference Calibration Reference (LRCR)

- Characterisation of surface BRF from 300nm to 2800nm with a 1nm spectral resolution (assuming a flat surface for an area >100km<sup>2</sup>);
- Characterization of the atmospheric vertical profile and gas concentrations (H2O, O3, CO2, CH4, ...);
- Characterization of aerosol type and concentration;
- Simulation of spectral TOA BRF with 4 different models implementing:
  - Different methods to solve the radiative transfer equation;
  - Different assumptions for molecular absorption and its coupling with scattering;
- Can be used from 300nm to 2800nm at about 1 nm spectral resolution for sun and viewing zenith angles up to 65°.
- Estimated MEAN accuracy: 2.5%



#### Nadir view verification: AQUA/MODIS



#### Nadir view verification: AQUA/MODIS

| AQUA/MODIS |                    |                       |                      |                       |                       |  |  |  |  |
|------------|--------------------|-----------------------|----------------------|-----------------------|-----------------------|--|--|--|--|
| BAND       | $0.55 \mu m$       | $0.66 \mu \mathrm{m}$ | $0.84 \mu { m m}$    | $1.62 \mu \mathrm{m}$ | $2.20 \mu \mathrm{m}$ |  |  |  |  |
|            | B4                 | B1                    | B2                   | B6                    | B7                    |  |  |  |  |
| 6SV        | -0.98±1.03%        | -1.83±0.75%           | -1.51±0.77%          | -1.09±0.47%           | -1.35±1.22%           |  |  |  |  |
| LibRadtran | $+0.41{\pm}1.06\%$ | $-0.42{\pm}0.78\%$    | $-0.46 {\pm} 0.81\%$ | $-0.58 \pm 0.57\%$    | $+0.28{\pm}1.34\%$    |  |  |  |  |
| RTMOM      | $+0.74{\pm}1.09\%$ | $-0.05 \pm 0.80\%$    | $-0.07 \pm 0.78\%$   | $+0.15 \pm 0.50\%$    | $+1.57{\pm}1.27\%$    |  |  |  |  |
| ARTDECO    | +0.36±0.99%        | $-0.28 \pm 0.74\%$    | $+0.22{\pm}0.66\%$   | -0.09±0.37%           | $+1.21{\pm}1.01\%$    |  |  |  |  |
| RTM range  | I.72%              | I.78%                 | I.44%                | 1.24%                 | 2.92%                 |  |  |  |  |

#### Mean relative bias (120 obs.) and its standard deviation

The RTMs are a major source of uncertainty



#### General concept

Physics is based on two fundamental pillars







#### General concept

Physics is based on two fundamental pillars







#### General concept

Physics is based on two fundamental pillars





#### Toward a 1% RTM accuracy

- Surface BRF : accounting for topography (e.g., oriented sand dunes);
- Molecular absorption: account for species like  $O_4$ ;
- Rigorous calculation of the coupling between:
  - Surface reflectance and atmosphere scattering;
  - Aerosol scattering and molecular absorption;
- Polarization, non flat earth for large zenith angles;

• Improvement of the surface and atmospheric property characterization;



#### Review of existing models

- ID plane parallel atmosphere
  - Vertical structure of the atmosphere
  - No 3D cloud effects (e.g. for DCC)
  - Only flat surface
  - Not accurate for large sun and viewing angles because of the plane parallel approximation.
- 3D plane parallel atmosphere
  - The atmosphere is divided into regular voxels
  - Each voxel might have different optical properties
  - RTE solver : discrete ordinate or Monte Carlo





3

### The Eradiate radiative transfer model

- New open-source 3D RTM specifically dedicated to support Cal/Val activities;
- Based on most advanced 3D Monte Carlo Ray Tracing rendering techniques;
- Not limited to only one (atmospheric) community;
- Will include 3D representations of land / ocean / atmosphere / cryosphere in a single framework;
- Will allow the simulation of
  - BRF field at the infinity;
  - Satellite images;

opernic

- Ground observations;
- Laboratory measurements.





#### Eradiate development phases





#### www.eradiate.eu

Register to the Eradiate newsletter (under contact tab) to be updated on latest developments.





### Eradiate phase I : Planned Scene Elements

- ID Atmosphere
  - Plane-parallel ("flat-Earth")
  - Layered spheroids ("round-Earth")
- Surface
  - Standard empirical BRF models (e.g. RPV, Ross-Li, Hapke)
  - Microfacet models (e.g. semi-discrete, Oren-Nayar, Torrance-Sparrow, Cox-Munk)
  - Including parameter texturing
  - 3D scenes with detailed typography and objects (e.g. Libya-4, RadCalNet, Dome-C, ...)
- Illumination
  - Infinitely distant collimated
  - Finite-size solar disc (uncollimated)
- Sensors
  - Flux & radiance meters (ground observations)
  - Ideal detector (pinhole camera)
  - BRF at finite or infinite distance







16

- I. SI traceable space-based reference measurements (TRUTHS)
  - Highly accurate observations between 350 nm and 2400 nm;
  - Nadir view (angular information only from seasonal changing SZA);
  - Moon and sun view.





7

2. Methods to account for the sampling differences between the reference measurements and observations to be calibrated/verified

Simultaneous Nadir Overpass (SNO) requires sampling difference corrections





2. Methods to account for the sampling differences between the reference measurements and observations to be calibrated/verified



#### 3. Harmonization methods

Unique radiation transfer model;



- Unique uncertainty propagation scheme;
- Unique reference measurement.





- 3. Harmonization methods
  - Unique radiation transfer model;
  - Unique uncertainty propagation scheme;
  - Unique reference measurement.



All the different absolute calibration targets and associated methods should be traceable to the **same** SI standard ... to avoid statement like:

I use the desert PICS methods simulated with this code tied to that radiometer





#### Our sponsors for this presentation





#### www.eradiate.eu

Register to the Eradiate newsletter (under contact tab) to be updated on latest developments.



