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1 Introduction 
The UbiLAB (A ubiquitous virtual laboratory framework) project aims towards creating a 
framework for ubiquitous virtual, remote and software laboratories implemented in the cloud. The 
project took place from 2020-2023, and was financed by the Erasmus+ Programme under the 
number 2020-1-MK01-KA226-HE-094548.  

The project partners are three higher education organizations: The Faculty of Electrical 
Engineering and Information Technology (FEEIT) at the University Ss. Cyril and Methodius in 
Skopje, N. Macedonia, the University of Maribor (UM FERI) in Slovenia, and the Anhalt University 
of Applied Sciences (HSA) in Germany.  

As a result of the limitations imposed by the Covid-19 pandemic, the presence of students in the 
university laboratories has been significantly limited. One of the most affected aspects of students’ 
study experience are the laboratory experiments that used to be conducted on-site, in the 
laboratories. This project worked towards implementing digital technologies in the process of 
laboratory work and experiments. These are rarely completely transferrable into the digital world. 
Nevertheless, today's challenges have pushed forward the need to intensively explore down this 
road and provide the best possible solutions.  

The project resulted in an innovative framework, designed to support different types of endpoints: 
hardware devices, virtual devices, software solutions. This UbiLAB framework presents a 
foundation for a rich and diverse set of laboratory experiments, enables customizable modules 
supporting software and hardware exercises, promotes collaborative engagement on several 
levels, and uses open-source software which provides reusability and flexibility.  

This document contains the manuals for the remote laboratory exercises designed as part of the 
project’s fifth intellectual output. It contains detailed experiment implementation guidelines in 
order to optimally exploit the effects of the remote virtual laboratory learning approach.  

The laboratory manuals given in this document can also be accessed at 
https://github.com/UbiLAB-project/UbiLAB-Laboratory-manuals, along with the respective code 
files.  

The UbiLAB framework can be accessed at https://github.com/UbiLAB-project/UbiLAB-
Framework.  

   

https://github.com/UbiLAB-project/UbiLAB-Laboratory-manuals
https://github.com/UbiLAB-project/UbiLAB-Framework
https://github.com/UbiLAB-project/UbiLAB-Framework
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2 Programmable Logic Controllers 
Laboratory 

  

2.1 Introduction 
This remote laboratory exercise is intended for a course named Programmable Logic Controllers 
(PLC). The laboratory equipment contains a PLC and a personal computer (PC) that would be 
connected within the university network. In addition, a conveyor belt process is provided which 
should be electrically connected with the PLC. This means, that the remote laboratory exercise 
would require a one-time physical access in order to complete the electrical connection. After the 
electrical connection has been completed, the students will be required to develop a control 
program for the process and test its operation afterwards.  

The physical access laboratory experiment involves interaction between the students and the 
conveyor belt. In order for the students to observe their results, they put metallic and non-metallic 
objects on the conveyor belt and afterwards they observe the output from the sensors. They also 
interact with the push buttons or the analog potentiometer from the process. In the remote access 
laboratory, this interaction can be realized by involving augmented reality (AR) with virtualized 
objects, push buttons, potentiometer conveyed through a remote live stream of the conveyor.  

For this occasion, students will be remotely connecting through Remote Desktop Protocol (RDP), 
facilitated through the Apache Guacamole framework, to each workstation placed within the 
laboratory. This will provide a remote workstation for each student in order to be able to develop 
a control program which would be uploaded to the PLC through the laboratory network. 
Afterwards, students can observe and interact with the conveyor belt by a specific web application 
deployed on the Moodle framework. The web application will live stream the conveyor belt from 
the laboratory and will concurrently utilize AR in order to enable the interaction with the 
virtualized objects. Each outcome of the interaction will be communicated to the PLC through the 
university network. The PLC program will act according to the received messages and students 
will be able to observe the results from their developed control program through the live video 
stream. 

2.2 Laboratory equipment 
The laboratory contains a total of eight workstations. Each workstation provides: 

• Programmable logic controller: Mitsubishi FX3GE-24MT/DSS [1]  
• Variable frequency drive: Mitsubishi D700-SC 
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• Programmable logic controller: Student made 
• Voltage supply: 24VDC 
• Conveyor belt process 
• Personal computer with appropriate software 
• Wires with appropriate safety terminal connectors 
• Live stream camera 

Each device provides electrical connection to its terminal through safety plug-in connectors shown 
on the board next to the device. Each connection is designated according to device’s datasheet. 

Figure 2-1 shows an example of a workstation with the mentioned equipment. 

 
Figure 2-1. A single laboratory workstation.  

The conveyor belt process is shown in Figure 2-2. The conveyor belt process includes four digital 
proximity sensors, of which three are inductive and one is photoelectric, four push buttons, of 
which one pair are momentary switches and the other are maintained switches, direct current (DC) 
motor for the conveyor and an analog potentiometer. It can be summarized that the plant in total 
requires 8 digital inputs, 1 digital output and 1 analog input from the PLC. 

Each personal computer and PLC is connected to the university network. The full network topology 
is shown in Figure 2-3 and the actual network equipment in Figure 2-4.  
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Figure 2-2. The conveyor belt process.  

 
Figure 2-3. Network topology.  

 
Figure 2-4. Network equipment used for the setup.  
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2.3 System architecture for remote access 
Understanding the system architecture for remote access to the laboratory is important for 
executing remote laboratory experiments. The student will be required to establish two links in 
order to be able to access the laboratory: 

• PC access 
• Process access 

The PC access will enable the student to remotely access the personal computer within the 
laboratory. This eliminates the necessity for students to install appropriate PLC software on their 
computers, instead they can utilize the installed software on the laboratory computers. This can 
be realized through RDP, and facilitated by the Apache Guacamole Framework in order to be 
easily integrated into the UbiLAB framework. 

The Moodle LMS implementation enables the student to access the AR application for interaction 
with the conveyor belt process. Students will log in to the UbiLAB framework and use the 
appropriate course links to enter the AR application. Accordingly the AR application will provide 
live stream of the conveyor belt process and virtual interaction with the sensors, push buttons and 
potentiometer. The complete architecture is shown in Figure 2-5.  

 
Figure 2-5. System Architecture.  
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In the physical access laboratory, students had to put real life objects in front of sensors, push real 
life buttons and interact with the potentiometer. The AR application virtualizes this interaction by 
adding push buttons and potentiometer. In addition, it also adds virtual objects on the live stream 
footage which can move with the conveyor belt accordingly. These objects can interact with virtual 
sensors by evaluating their mutual position through AR processing algorithms. This enables to 
asses if an object is in front of a sensor and therefore assesses the sensor output accordingly.  

The frontend of the AR application is web based, hence easily accessible through any browser. It 
provides the preprocessed live stream footage along with the virtual push buttons and 
potentiometer. Figure 2-6 illustrates the interface of this application. Students can use the “Place 
Object” button to place or retrieve a virtual object on the conveyor. They can also interact with 
the push buttons and potentiometer. Each function of the interface widgets is shown in Table 2-1.  
 

Table 2-1. Functions of the interface widgets.  

Button name Function 
T1 Momentary switch 
T2 Momentary switch 
B1 Maintained switch 
B2 Maintained switch 

Place object Maintained switch for placing and retrieving a virtual object from the 
conveyor belt 

Potentiometer Simulate a 0-10V on the analog input of the PLC 

Figure 2-7 shows a real life use where the virtual object is shown in green along with appropriate 
sensor states (red – off; green - on). 

 

 
Figure 2-6. Application interface.  

The backend of the same AR application retrieves live stream footage from the camera which is 
preprocessed using AR algorithms to add the objects and evaluate their interaction with the virtual 
sensors. In addition, it uses Melsec Communication protocol [2], from Mitsubishi, to communicate 
with the PLC. The states of the push buttons, potentiometer and virtual sensors are sent through 
modifying appropriate bits and registers in the PLC.  
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Figure 2-7. A detected virtual object on the conveyor belt.  

2.4 Laboratory experiment 
2.4.1 Introduction 

In this laboratory experiment we are going to develop a control program for transporting objects 
on a conveyor belt. The objects are placed on the start of the conveyor belt and they should be 
transported on the other end. When an object arrives at the end, a photoelectric sensor proximity 
sensor detects its arrival and the conveyor belt should stop moving. As soon as the object is picked 
up, the conveyor belt should continue moving. The process can be started with a “start” push 
button and stopped with a “stop” push button. An emergency button should be utilized as well. 
2.4.2 Remote access procedure 

A general laboratory experiment requires the following steps for a remote access: 

1. Student establishes access to laboratory PC through RDP (integrated into the framework) 
2. Student logins through his UbiLAB framework account 
3. Student uses the appropriate course link to open the AR application 
4. Student uses the lab. PC software to create and upload control program to PLC 
5. Student uses the AR application to virtually interact with the conveyor belt process in order 

to evaluate his control program 
2.4.3 Goals of the experiment 

• Develop a control program for conveyor belt process 
• Transport an object from one end to another 
• Use the photoelectric sensor to detect if an object has arrived at the end 
• Always stop the conveyor when an object arrives at the end 
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• The conveyor should continue moving after object is picked up at the end 
• Use start and stop push buttons for starting and stopping the process 
• Use emergency button for emergency states 

 
2.4.4 Experimental setup 
2.4.4.1 Electrical connection 

In order to convey this experiment the following devices will be used: 

• Programmable logic controller: Mitsubishi FX3GE 24MT/DSS 
• Conveyor belt process 
• Voltage supply: 24VDC 

In order to execute the experiment the conveyor belt, shown in Figure 2-2, needs to be connected 
to the PLC along with appropriate voltage supply. Each PLC and Power supply connection terminal 
is accessible through safety plug-in connectors mounted on a wiring board, shown in Figure 2-8. 

 
Figure 2-8. Wiring terminals for each PLC and power supply.  

Using the schematics, shown in Figure 2-9, the following steps need to be executed in order to 
electrically connect the devices [3]: 

• Connect the PLC to 24VDC power supply 
• Connect the PLC digital output Y0 to one end of the DC motor and connect the other and 

to V- from the 12VDC power supply 
• Connect the +V0 terminal, from the PLC, to the V+ terminal from the 12VDC power supply 



15 

 

 
Figure 2-9. Schematic of the power supply connection to the PLC.  

2.4.4.2 PLC software and program upload 

The PLC control program will by developed by using GXWorks2 software from Mitsubishi Electric. 
The following screen should appear when starting the software: 
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Create a new project using the menu bar by clicking Project -> New. A new window should 
appear allowing to choose PLC parameters. Choose the following parameters and click OK: 

 

A new project should be created, displaying the following screen:  

 

This project will use Ladder Logic programming language. This is a symbolic language which uses 
symbol instructions being graphically connected in order to program a control logic. Each symbol 
can be inserted within the program sheet divided by multiple square, each square for one 
instruction. Use the following symbols in order to graphically construct the ladder program. 

 

Inserting an instruction can be realized by double clicking a square within the program sheet. A 
new window will appear as shown: 
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Choose the appropriate instruction and digital input/output address within the field. 

The only sensor/actuator electrically connected to the PLC is the DC motor. Considering that we 
connected the DC motor to address Y0, we will use this address within our control program. Any 
additonal sensor used within the control program is virtualized therefore we should use internal 
addresses for each virtualized sensor. The addresses should be used according to Table 2-2. 

  
Table 2-2. Addresses and tags for the used devices.  

Device Tag Address 
Inductive sensor 1 IS1 M0 
Inductive sensor 2 IS2 M1 
Inductive sensor 3 IS3 M2 

Photoelectric sensor PS M3 
Momentary switch 1 T1 M4 
Momentary switch 2 T2 M5 
Maintained switch 1 K1 M6 
Maintained switch 2 K2 M7 

Potentiometer Potenciomear D0 

Use the push buttons T1, T2 and K1 as start, stop and emergency stop (NO) push button. 

A control program solution is shown in Figure 2-10 [5]. We use the first rung in order to define 
the work state of an auxilary bit with address M10. The conveyor belt process should work if this 
bit is logic 1 and otherwise if logic 0. The state of this bit depends on the ladder instruction states 
for the start, stop and emergency push button. The second rung defines whether or not the 
conveyor belt should be moving according to the work bit and photoelectric sensor state. Use the 
menu bar to compile the program by clicking Compile->Build. 
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Figure 2-10. Control program solution.  

Using the navigation panel go Connection Destination and double click Connection1. A new 
window should appear allowing to establish connection with the PLC. Choose Ethernet Board for 
PC side communication and PLC Module for the PLC side. 

 

 

Double click the PLC Module to open setup the communication parameters for the PLC. Choose 
the appropriate IP address for your PLC and click OK. Test the connection by clicking Connection 
Test and click OK after confirming that the connection was successful. 

Now that we have established succesful connection to the PLC we may proceed with uploading 
the developed control program. Use the menu bar to open the programming windows by clicking 
Online->Write to PLC. Choose the MAIN program file as the only file to upload to the PLC and 
click Execute.  



19 

 

 

 
2.4.4.3 AR application 

In order to test the uploaded program the student may interact with the process through the AR 
application by using the interface buttons shown in Figure 2-6. Figure 2-11 illustrates the interface 
of the AR application. 

 
Figure 2-11. AR application interface.  
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2.4.5 Experimental results 

Use the AR application in order to test the program workflow. 

• Use the Place object to place a virtual object on the conveyor belt. A green square should 
appear on the conveyor belt. 

• Click the T1 to start the process. If the program upload was successful, the virtual green 
object should start moving. Observe the triggering of each sensor, as the object passes in 
front of them. 

• Each sensor designates its state by a green or red square right next to it, as shown in Figure 
2-7. If the photoelectric sensor is successfully triggered, the conveyor belt should stop. 

• Use the Place object button to remove the object. The conveyor belt should start moving 
again 

Figure 2-12 shows a series of images that present the workflow of the AR app. 

 
Figure 2-12. AR application workflow.  

2.5 Conclusion 
A remote access PLC laboratory was presented utilizing AR technology. It was shown that 
necessary interaction for evaluation PLC programs can be executed remotely through AR 
virtualized objects and sensors. Furthermore, this was demonstrated through a simple laboratory 
experiment. A control program was developed and its operation was tested through an AR 
application enabling remote access to the laboratory. 
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3 Scilab Virtual Software Laboratory 
 

3.1 Introduction 
The Virtual Software Laboratories (VSL) developed via the UbiLAB platform, can be used and 
implemented in a vast variety of online courses and applications. VSLs are implemented in the 
UbiLAB framework through the Moodle LMS (however, everything described below can be easily 
implemented on other Learning Management Systems, such as Open edX).  

In order to define and organize a VSL in the UbiLAB framework several elements need to be 
incorporated and connected. First, the access to the VSL needs to be configured. This is realized 
by using the Apache Guacamole framework and integrating it via the iFrame plugin in the LMS. 
Namely, Apache Guacamole is an open-source remote desktop gateway that allows users to 
access their desktops or applications through a web browser. It provides a way for users to access 
their desktops and applications from anywhere with an internet connection. The Guacamole server 
is installed on a server machine and configured to allow connections to remote desktops or 
applications. It uses standard protocols like VNC and RDP to communicate with the remote 
desktop, and it provides a web interface that allows users to access their remote desktops or 
applications from any device with a web browser.  

The Guacamole server can be configured to enable access to different software environments 
(Linux and Windows-based virtual machines, Docker or LXC containers and similar) equipped with 
the needed software applications for the online course, in our case Scilab. These environments 
actually present the resources in the LMS that the student needs to reserve. The reservation 
process is done through the Scheduling module implemented into the LMS, described later. 

When the Guacamole server is configured, the appropriate web interface can be embedded within 
an LMS iFrame. The iFrame is a web feature that can be easily embedded in different LMS 
platforms (Moodle). It allows embedding external web pages or applications (in this case the 
Guacamole web interface) within the LMS course page. An iFrame (short for inline frame) is a 
HTML element that can display the contents of another web page within a frame on your 
own/current web page. By embedding the Guacamole web interface within an iFrame, the 
students can access the remote virtual laboratory software environments or applications without 
leaving the LMS platform. 

When the resources in the course have been configured, in such a way that one virtual machine 
(virtual software environment) is one resource that can be used by one (or several, depending on 
the configuration/logic of the exercise) students. Then by using the implemented Scheduler 
module from the LMS (Moodle), teachers can organize the laboratory exercises for the entire 
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semester, create suitable laboratory slots (even for the entire semester), define laboratory exercise 
durations, set the maximum number of participants per exercise, and specify which students or 
groups can sign up for each exercise. The scheduler is connected to the actually definer resource 
in the course as explained previously. Then, students can sign up for available exercise slots 
directly from within the course, and teachers can manage and view their exercises through the 
Scheduler interface. Students are allowed access to the resource (virtual software environment) 
just during the time slot he/she reserved.  

 

3.2 Scilab 
Scilab is a free, open-source numerical computation software package for scientific and 
engineering applications. It provides a powerful computing environment for solving complex 
mathematical problems, creating and manipulating graphs and visualizations, and performing 
data analysis. 

Scilab is similar in functionality to other popular numerical computing environments such as 
MATLAB, GNU Octave, and Python's NumPy library. It includes a large library of built-in 
mathematical functions, as well as tools for linear algebra, signal processing, optimization, 
statistics, and more. 

Scilab also supports the development of user-defined functions and modules, making it highly 
customizable and extensible. It can be used for a wide range of applications, including scientific 
research, engineering design, and education. 

Overall, Scilab is a powerful and flexible software package that provides a comprehensive set of 
tools for numerical computing and scientific analysis. 

 

3.3 Laboratory experiment 1: AM Modulation 
 
3.3.1 Goals of the experiment 

The objective of this laboratory exercise is to provide a practical understanding of amplitude 
modulation (AM) using Xcos, a graphical modeling and simulation tool in Scilab. Amplitude 
modulation is a widely used technique in communication systems for transmitting information by 
varying the amplitude of a carrier wave. In this lab, we will use Xcos to simulate an AM system, 
explore the key components, and analyze the effects of different parameters on the modulation 
process. 
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3.3.2 Experimental setup 

● Launch Scilab on the virtual machine and open the Xcos environment. 
● Familiarize yourself with the Xcos interface, which consists of a palette of blocks, a model 

editor area, and a simulation toolbar. 
● Locate the blocks specific to AM modulation in the Xcos palette: 

○ GENSIN_f: sine wave generator; 
○ CONST_m: constant value generator. 
○ PRODUCT: element-wise multiplication of its vector inputs 
○ BIGSOM_f: performs addition on its scalar or vector inputs 
○ CSCOPE: displays its input with respect to simulation time 
○ CLOCK_s: generates a regular train of events that are scheduled by parameter 

3.3.3 Experimental procedure 

1. Start by creating a new Xcos model. Drag and drop the necessary blocks from the palette 
onto the model editor area to build the AM modulation system (as shown in Figure 3-1). 
Connect the blocks to establish the signal flow. 

 
Figure 3-1. Scheme of the AM modulation system. 

 

2. Set the frequency and amplitude of the carrier signal and the message signal (sine wave 
generators), as shown in Figure 3-2 and Figure 3-3. 
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Figure 3-2. Carrier signal. 

 
Figure 3-3. Modulation signal. 

3. Run the simulation and observe the modulated signal on the Scope block. Pay attention 
to the changes in amplitude and frequency as a result of the modulation process. 

4. Vary the parameters of the modulating signal, such as frequency and amplitude, to 
observe their effects on the modulated signal. Note any changes in amplitude modulation 
depth or spectral content. Additionally, vary the modulation index. 

 

 

 

5. Experiment with different carrier frequencies while keeping the modulating signal 
constant. Observe how the carrier frequency affects the characteristics of the modulated 
signal (Figure 3-4). 

6. Use Xcos's simulation features to analyze the demodulation process. Introduce an AM 
Demodulator block and connect it to the modulated signal. Connect the output of the 
demodulator to another Scope block to visualize the demodulated signal. 

 

Figure 3-4. Modulated signal for different system parameters. 
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3.3.4 Experimental results 

This laboratory exercise provided a practical understanding of amplitude modulation using Xcos 
in Scilab. By building and simulating an AM system, you have observed the effects of different 
parameters on the modulation and demodulation processes. Through Xcos's graphical modeling 
capabilities, you have gained insight into the modulation depth, carrier frequency, and spectral 
content of the modulated signal. This knowledge will serve as a foundation for further exploration 
of modulation techniques and their applications in communication systems. 

 

3.4 Laboratory experiment 2: AM Demodulation 
 

3.4.1 Goals of the experiment 

The objective of this laboratory exercise is to provide a practical understanding of amplitude 
demodulation using Xcos, a graphical modeling and simulation tool in Scilab. Amplitude 
demodulation is the process of extracting the original modulating signal from an amplitude-
modulated (AM) carrier signal. In this lab, we will use Xcos to simulate an AM demodulation 
system, explore the key components, and analyze the effects of different parameters on the 
demodulation process. 
3.4.2 Experimental setup 

● Launch Scilab on the virtual machine and open the Xcos environment. 
● Familiarize yourself with the Xcos interface, which consists of a palette of blocks, a model 

editor area, and a simulation toolbar. 
● Locate the blocks specific to AM modulation in the Xcos palette: 

○ GENSIN_f: sine wave generator; 
○ CONST_m: constant value generator. 
○ PRODUCT: element-wise multiplication of its vector inputs 
○ BIGSOM_f: performs addition on its scalar or vector inputs 
○ CSCOPE: displays its input with respect to simulation time 
○ CLOCK_s: generates a regular train of events that are scheduled by parameter 
○ CLR:  SISO linear system represented by its rational transfer function 

Numerator/Denominator 
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3.4.3 Experimental procedure 

1. Start by creating a new Xcos model. Drag and drop the necessary blocks from the palette 
onto the model editor area to build the AM demodulation system (as shown in Figure 3-5). 
Connect the blocks to establish the signal flow. 

 

2. Set the frequency and amplitude of the carrier signal and the message signal (sine wave 
generators), as shown in Figure 3-6 and Figure 3-7.  

 
Figure 3-6. Carrier signal. 

 
Figure 3-7. Modulation signal. 

3. Set the values of the low-pass filter (Figure 3-8). 

 

Figure 3-5. Scheme of the AM demodulation system. 



29 

 

 
Figure 3-8. Low-pass filter. 

 

4. Run the simulation and observe the demodulated signal on the Scope block. Pay attention 
to the changes in amplitude and frequency as a result of the demodulation process. 

5. Vary the parameters of the modulating signal, such as frequency and amplitude, to 
observe their effects on the demodulated signal. Note any changes in amplitude 
modulation depth or spectral content. Additionally, vary the values of the low-pass filter. 

 

3.4.4 Experimental results 

This laboratory exercise provided a practical exploration of amplitude demodulation using Xcos 
in Scilab. By building and simulating an AM demodulation system, you have observed the effects 
of different parameters and techniques on the fidelity and accuracy of the demodulated signal. 
Through Xcos's graphical modeling capabilities, you have gained insight into envelope detection, 
synchronous demodulation, and the impact of noise on the demodulation process. This 
knowledge will serve as a foundation for further exploration of demodulation techniques and their 
applications in communication systems.  

 

3.5 Laboratory experiment 3: Digital Modulation Techniques 
 

3.5.1 Goals of the experiment 

The objective of this laboratory exercise is to provide a hands-on understanding of digital 
modulation techniques, specifically Amplitude Shift Keying (ASK), Frequency Shift Keying (FSK), 
and Phase Shift Keying (PSK). These techniques are widely used in digital communication systems 
to transmit digital data over a carrier signal by manipulating amplitude, frequency, or phase. In 
this lab, we will use Scilab to simulate and analyze ASK, FSK, and PSK systems, and investigate 
their characteristics and performance. 
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3.5.2 Experimental setup 

● Launch Scilab on your computer and create a new script or open the Scilab editor. 
● Familiarize yourself with the Scilab environment and basic programming concepts, such 

as variables, functions, and plotting capabilities. 

 

3.5.3 Experimental procedure 

1. Start by defining the necessary parameters for ASK, FSK, and PSK systems, such as the 
carrier frequency, symbol rate, modulation index, and phase offsets. Assign appropriate 
values to these parameters based on the desired characteristics of each modulation 
technique. 

2. Generate a digital signal, such as a binary sequence, to be modulated using ASK, FSK, and 
PSK techniques. Assign appropriate values to represent the digital data. 

clc; 

clear; 

xdel(winsid()); 

sym=10;//no. of symbols 

g=[1 1 1 0 1 0 0 1 0 1 ]//binary data 

f1=1;f2=2;//frequencies of carrier 

t=0:2*%pi/99:2*%pi;//range of time 

 

3. Implement the ASK modulation scheme by creating a function or series of Scilab 
commands to encode a digital signal onto an amplitude-modulated carrier wave. This can 
involve multiplying the digital signal with the carrier signal to achieve the desired 
modulation. 

cp=[];bit=[];mod_ask=[];mod_fsk=[];mod_psk=[];cp1=[];cp2=[]; 

for n=1:length(g); 

    if g(n)==0; 

        die=zeros(1,100);    

    else g(n)==1; 

        die=ones(1,100); 
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    end 

    c_ask=sin(f1*t); 

    cp=[cp die]; 

    mod_ask=[mod_ask c_ask]; 

    end  

ask=cp.*mod_ask;//ASK modulated signal 

 

4. Implement the FSK modulation scheme by creating a function or series of Scilab 
commands to encode the digital signal onto frequency-modulated carrier waves. This can 
involve generating two carrier signals at different frequencies and switching between them 
based on the digital signal. 

for n=1:length(g); 

    if g(n)==0; 

        die=ones(1,100);  

        c_fsk=sin(f1*t);  

    else g(n)==1; 

        die=ones(1,100); 

        c_fsk=sin(f2*t); 

    end 

    cp1=[cp1 die]; 

    mod_fsk=[mod_fsk c_fsk]; 

end 

fsk=cp1.*mod_fsk;//FSK molated signal 

 

5. Implement the PSK modulation scheme by creating a function or series of Scilab 
commands to encode the digital signal onto phase-modulated carrier waves. This can 
involve adjusting the phase of the carrier signal according to the digital signal. 

for n=1:length(g); 

    if g(n)==0; 
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        die=ones(1,100);  

        c_psk=sin(f1*t);  

    else g(n)==1; 

        die=ones(1,100); 

        c_psk=-sin(f1*t); 

    end 

    cp2=[cp2 die]; 

    mod_psk=[mod_psk c_psk]; 

end 

psk=cp2.*mod_psk;//PSK modulated signal 

6. Plot and analyze the modulated signals in the time domain to observe the effects of each 
modulation technique on the carrier wave. 

subplot(4,1,1);plot(cp,'LineWidth',1.5);//plot binary signal 

xgrid; 

title('Binary Signal');//title 

mtlb_axis([0 100*length(g) -2.5 2.5]); //axis range  

subplot(4,1,2);plot(ask,'LineWidth',1.5);//plot of ASK modulated signal 

xgrid; 

title('ASK modulation');//title of plot 

mtlb_axis([0 100*length(g) -2.5 2.5]);//axis range 

subplot(4,1,3);plot(fsk,'LineWidth',1.5);//plot of FSK modulated signal 

xgrid; 

title('FSK modulation');//title of plot 

mtlb_axis([0 100*length(g) -2.5 2.5]);//axis range 

subplot(4,1,4);plot(psk,'LineWidth',1.5);//plot of PSK modulated signal 

xgrid; 

title('PSK modulation');//title of plot 

mtlb_axis([0 100*length(g) -2.5 2.5]);//range of axis 
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3.5.4 Experimental results 

This laboratory exercise provided a practical exploration of digital modulation techniques, 
specifically ASK, FSK, and PSK, using Scilab. By implementing and simulating these techniques, 
you have gained insight into how they manipulate carrier signals to transmit digital data. Through 
analyzing the modulated signals and demodulating them to obtain the original digital data, you 
have evaluated the performance of each modulation technique (Figure 3-9). This knowledge will 
serve as a foundation for further exploration of digital communication systems and modulation 
schemes. 

 

 

 

 

 

Figure 3-9. Results of the digital modulation techniques. 
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3.6 Conclusion 
In conclusion, the Scilab experiment on analog and digital modulation provided valuable insights 
into the fundamental concepts and techniques used in communication systems. Through hands-
on simulations, we explored both analog modulation methods, such as Amplitude Modulation 
(AM), as well as digital modulation techniques, including Amplitude Shift Keying (ASK), Frequency 
Shift Keying (FSK), and Phase Shift Keying (PSK). 

Amplitude modulation allowed us to understand the relationship between the modulating signal 
and the carrier. On the other hand, digital modulation provided us with insights into how digital 
data is conveyed using discrete symbols. ASK, FSK, and PSK modulation schemes showcased 
diverse approaches to encoding digital information onto carrier waves, each with its unique 
strengths and applications. 

By leveraging the capabilities of Scilab, we were able to visualize, analyze, and demodulate 
complex signals, enabling a deeper understanding of the performance and characteristics of each 
modulation technique.  
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4 Digital Signal Processing Laboratory 
 

4.1 Introduction 
The Digital Signal Processing (DSP) course provides students with interactive remote-controlled 
experiments with in the DSP laboratory. Three NI myRIO 1900 devices are programmed to host 
different experiment each. More about myRIO 1900 can be red in its official manual provided by 
National Instruments:  
https://www.ni.com/docs/en-US/bundle/myrio-1900-getting-started/resource/376047d.pdf 

The experiments are based on the exploitation of the Signal Processing Toolkit applied for: 

● Real-Time Audio Filtering; 
● Real-Time Moving Spectrogram; 
● Real-Time PWM Generation. 

They have a friendly user interface (UI), from which the remote user can change predefined 
parameters and observe the response in numerical, graphical and audio format. The LabVIEW 
software is used both for the experiment’s development and for the user front-end and remote 
control. It should be noted that students do not need any LabVIEW programming knowledge, 
they just use the UI. However, for enthusiasts who have a basic knowledge of LabVIEW, there is 
an opportunity for accessing the LabVIEW projects for exploring additional signal processing 
tools. 

The remote performance of the laboratory experiments offers the same possibilities as if the 
experiments are performed physically in the laboratory. The students need to be remotely 
connected through the Apache Guacamole Remote Desktop interface, to each workstation (PC 
computer) to access the UI and myRIO device. Additionally, connection through Zoom will be 
needed if the students want to process audio signals streamed from their microphone. To do this, 
the equipment needed from the student’s side are a microphone for real-time audio streaming 
and headphones for hearing the result from the audio processing.  

Note: For doing these experiments, students are expected to have a basic knowledge of STFT, 
spectrograms, IIR filters, and PWM signals. A brief reminder about these topics is given at the 
beginning of each of the experiments.  

 

 

https://www.ni.com/docs/en-US/bundle/myrio-1900-getting-started/resource/376047d.pdf
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4.2 Real-Time Audio Filtering 
IIR stands for Infinite Impulse Response, which refers to a type of digital filter commonly used for 
audio filtering. IIR filters are characterized by feedback, which allows for more efficient 
implementation compared to FIR (Finite Impulse Response) filters. 

In audio filtering applications, IIR filters are used to shape the frequency response of a signal by 
attenuating or amplifying specific frequency components. They can be useful for tasks such as 
equalization, low-pass filtering, high-pass filtering, band-pass filtering, and more. 

IIR filters are defined by their transfer function, which describes the relationship between the input 
and output of the filter in the frequency domain. The transfer function typically takes the form of 
a ratio of polynomials in the z-domain, where z represents the complex variable of the frequency 
response. 

The two main types of IIR filters commonly used in audio processing are: 

1. Butterworth Filters: Butterworth filters have a maximally flat frequency response in the 
passband and a gradual roll-off in the stopband. They are commonly used for applications 
where a smooth frequency response is desired, such as audio equalization. Butterworth 
filters can be designed as low-pass, high-pass, band-pass, or band-stop filters. 

2. Chebyshev Filters: Chebyshev filters trade off frequency response flatness for stteper roll-
off. They can achieve steeper roll-off rates than Butterworth filters but with some ripple in 
the passband or stopband. Chebyshev filters are suitable when a more aggressive filtering 
is needed. 

Designing and implementing IIR filters typically involves filter specification: Definition of the 
desired frequency response characteristics, such as cutoff frequency, passband ripple, stopband 
attenuation, and filter order. 

It's important to note that designing and implementing IIR filters requires careful consideration 
of stability to avoid issues like filter instability or excessive ringing. Additionally, appropriate filter 
design and implementation techniques should be employed to meet the desired audio filtering 
requirements effectively. 
4.2.1 Experimental setup 

The setup for this experiment, from the laboratory side, is consisted of: 

● NI myRIO 1900 device connected to a PC within the DSP laboratory; 
● 3.5 mm audio jack male to male cable connected from the PC’s audio output to myRIO’s 

audio input; 
● 3.5 mm audio jack male to male cable connected from myRIO’s audio output to the PC’s 

audio input; 
● LabVIEW user interface. 
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The setup needed from the student’s side is: 

● Remote Desktop application; 
● Zoom application (optional); 
● Microphone (optional); 
● Headphones (optional). 

The audio signal can be streamed from the PC, for example from YouTube, or from a microphone. 
If a microphone is used as an audio source, then a Zoom meeting needs to be launched.  

The user interface is shown in Figure 4-1. It provides a real-time plot of the raw audio waveform 
and a real-time raw vs. filtered audio spectrum. Students can change the predefined parameters 
about IIR filter specifications and the volume of the input audio signal.  

 
Figure 4-1. User interface for real-time audio filtering. 

The offered filter specifications are the following:  

● Filter topology: 
o Butterworth; 
o Chebyshev; 
o Inverse Chebyshev; 
o Elliptic; 
o Bessel; 

● Filter type: 
o High-pass; 
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o Low-pass; 
o Band-pass; 
o Band-stop; 

● First cut-off frequency – Fc1; 
● Second cut-off frequency – Fc2; 
● Filter order; 
● Pass band ripple; 
● Stop band attenuation. 

Note: When either low-pass or high-pass filter is used, the cut-off frequency is Fc1. 
4.2.2 Goal of the experiment 

The aim of this experiment is to perform real-time IIR filtering on the input audio signal and to 
observe the change in its spectrum according to the filter responses, as well as to listen to the 
filtered audio result. 
4.2.3 Experimental results 

Let’s separate the input audio signal into different frequency ranges, called Bass, Midtone and 
Treble.  

Bass is the lowest range of frequencies in an audio signal. To extract them we use a low-pass filter, 
for example a Butterworth filter, with a cut-off frequency 𝑓𝑓𝑐𝑐 = 450𝐻𝐻𝐻𝐻 and 3rd order. The result is 
shown in Figure 4-2. The spectrum of the raw audio signal is given in red, while the spectrum of 
the filtered audio signals is given in blue. 

Midtone is the middle range of frequencies in an audio signal. Here we use a band-pass 
Butterworth filter, with cut-off frequencies 𝑓𝑓𝑐𝑐1 = 450𝐻𝐻𝐻𝐻 and 𝑓𝑓𝑐𝑐2 = 3000𝐻𝐻𝐻𝐻 and from 3rd order. The 
result is shown in Figure 4-3. 

Treble is the highest range of frequencies in an audio signal. For that aim, we use a high-pass 
Butterworth filter with cut-off frequency 𝑓𝑓𝑐𝑐 = 3000𝐻𝐻𝐻𝐻 and from 3rd order. The result is shown in 
Figure 4-4. 
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Figure 4-2 Bass frequency range from an input audio signal. 

 
Figure 4-3. Midtone frequency range from an input audio signal. 
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Figure 4-4. Treble frequency ranges from an input audio signal. 

Task 1: Make a comparison between the spectrums and the responses of the filters. 

Task 2: Try different filter specifications, observe and listen the result.  

 

4.3 Real-Time Moving Spectrogram 
STFT, which stands for Short-Time Fourier Transform, is a widely used signal processing technique 
for analyzing and visualizing the frequency components of a time-varying signal. 

The STFT breaks down a signal into a series of short overlapping windows and performs a Fourier 
transform on each window to obtain its frequency content. This allows us to observe how the 
frequency content of the signal changes over time. 

Here's how the STFT spectrogram is computed: 

1. The input signal is divided into small segments or windows. The choice of window length 
and overlap between windows depends on the specific application and desired time-
frequency resolution. 

2. Each windowed segment of the signal is multiplied with a window function (e.g., Hamming, 
Hanning, Blackman …) to reduce spectral leakage and improve frequency resolution. 

3. A Fourier transform (typically the Fast Fourier Transform, or FFT) is applied to each 
windowed segment, producing a frequency spectrum for that specific time interval. 
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4. The resulting spectra are stacked together to form a two-dimensional representation 
called the spectrogram. The x-axis represents time, and the y-axis represents frequency. 
The color intensity or grayscale value at each time-frequency point corresponds to the 
magnitude or power of the frequency component present in that segment. 

By analyzing the spectrogram, you can identify the dominant frequencies at different points in 
time and observe how they evolve. Spectrograms are commonly used in various fields, including 
audio processing, speech analysis, music analysis, vibration analysis, and more. 

It's worth noting that the STFT spectrogram is a time-frequency representation, providing valuable 
information about the spectral characteristics of a signal over time. However, it has limitations in 
terms of temporal and frequency resolution, and some details may be lost due to windowing and 
overlap. Different choices of window size, type and overlap can trade-off between time and 
frequency resolution to suit specific analysis requirements. 
4.3.1 Experimental setup 

The setup for this experiment, from the laboratory side, consists of: 

● NI myRIO 1900 device connected to a PC within the DSP laboratory; 
● 3.5 mm audio jack male to male cable connected from the PC’s audio output to myRIO’s 

audio input; 
● LabView user interface. 

The setup needed from the student’s side is: 

● Remote Desktop application; 
● Zoom application (optional); 
● Microphone (optional); 
● Headphones (optional). 

The audio signal can be streamed from the PC, for example from YouTube, or from a microphone. 
If a microphone is used as an audio source, then a Zoom meeting needs to be launched. In the 
following example the audio file sound1.wav is used, attached as s source file to this experiment. 

The user interface is shown in Figure 4-5. It provides a real-time raw audio graph and a real-time 
moving spectrogram. Student can change the predefined parameters of the window type, and 
window length. 
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Figure 4-5. User interface for real-time moving spectrogram. 

The offered window types are the following: 

● Hanning; 
● Hamming; 
● Blackman – Harris; 
● Exact Blackman; 
● Blackman; 
● Flat Top. 

4.3.2 Goals of the experiment 

The goal of this experiment is to observe the impact of the different window type and different 
window length on the quality of the audio spectrogram. 
4.3.3 Experimental results 

Choose the window type to be “Hamming”. Let’s try two different window lengths and observe 
the obtained results.  
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4.3.3.1 Narrow window 

In the first case we can use a narrow window with a length equal of 64. The result is shown in 
Figure 4-6. It can be seen that this window gives good time localization but very poor frequency 
resolution.  

 
Figure 4-6. Narrow window. 

4.3.3.2 Wide window 

In the second case we will set the length of the window to 512. From Figure 4-7, we can conclude 
that this window gives better frequency resolution, but now the time localization is worse.  
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Figure 4-7. Wide window. 

We can conclude that a narrow window gives better time localization but a poor frequency 
resolution, while a wide window gives better frequency resolution, but a worse time localization. 

Task 1: Try different window lengths and observe the results.  

Task 2: Make a comparison on the impact of the window type on the audio spectrogram.  

 

4.4 Real-Time PWM Signal Generation 
PWM stands for Pulse Width Modulation, which is a modulation technique used in electronics to 
encode information in the form of a pulsing signal. It is widely used in various applications, 
including controlling the speed of motors, dimming LEDs, generating analog signals, and more. 

In PWM, the signal is typically a square wave with a fixed frequency and variable duty cycle. The 
duty cycle refers to the ratio of the pulse width (ON time) to the total period of the signal. By 
changing the duty cycle, the average power delivered to a device or component can be controlled. 

For example, in motor control, a PWM signal can be used to regulate the speed of a motor. By 
adjusting the duty cycle of the PWM signal, the effective voltage and power applied to the motor 
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can be varied. A higher duty cycle will result in a higher average voltage and power, thus increasing 
the motor speed, while a lower duty cycle will reduce the average voltage and power, slowing 
down the motor. 

PWM signals are generated using specialized circuits or microcontrollers capable of producing 
such signals. The frequency of the PWM signal determines how quickly it switches between high 
and low states, while the duty cycle determines the percentage of time the signal spends in the 
high state. 

The advantage of PWM is that it allows for precise control of power levels or analog-like signals 
using digital components. By rapidly switching the signal on and off, the average power delivered 
can be adjusted smoothly, creating the effect of a variable voltage or analog control. 
4.4.1 Experimental setup 

The setup for this experiment, from the laboratory side, is consisted of: 

● NI myRIO 1900 device connected to a PC within the DSP laboratory; 
● LabView user interface. 

The setup needed from the student’s side is: 

● Remote Desktop application. 

The user interface is shown in Figure 4-8. It provides real-time PWM signal generation. Student 
can change the predefined parameters about the frequency and duty cycle of two PWM signals 
and observe their graphical representation and their control over two LEDs. The firs PWM signal 
also controls the blinking of LED 0 on myRIO. 
4.4.2 Goals of the experiment 

The aim of this experiment is to observe how a PWM signal is interpreted by digital and analog 
outputs, to which LEDs are connected. 
4.4.3 Experimental results 

Generate two identical PWM signals and observe how these signals are interpreted by the digital 
and the analog output, both used to control LED lightning. The light intensity of the LED is 
between 0 and 255.  

In the first case, in the case of the digital output, the generated signal is interpreted as it has only 
two values or states, “0” and “1” or “OFF” and “ON”. Hence, in this case the LED is blinking. 
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Figure 4-8. User interface for real-time PWM signal generation. 

The blinking speed depends on the selected frequency, while the time spent in state “ON” 
depends on the selected duty cycle. 

In the second case, in the case of the analog output, the generated PWM signal regulates the LED 
dimming (regulates the lightning intensity in the range of values between 0 and 255). By changing 
the frequency and the duty cycle you can change the percentage of dimming according to the 
following equation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 × 6 × 10−4 

Task: Try different frequencies and duty cycles and observe the results.  
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4.5 Conclusion 
These experiments allow students to practically apply their knowledge from the field of IIR 
filtering, STFT, spectrograms and PWM signal generation, whether they work physically in a 
laboratory or remotely from home. With the friendly user interfaces, students can try different 
cases, compare results and draw conclusions.  
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5 Embedded Systems Laboratory 
 

5.1 Introduction 
Remote Embedded laboratory is a remote laboratory that is part of the UbiLAB framework. The 
ultimate purpose of this remote laboratory is to provide a unique learning experience for students 
and enthusiasts interested in the field of embedded systems and microcontroller programming. 
The course consists of five laboratory exercises each designed to be done in a single session. The 
topics that are covered in this course are: General purpose I/O ports, Timers for general purpose, 
analog/digital convertor (ADC), universal asynchronous/synchronous receiver/transmitter 
(USART) and inter-integrated circuits (I2C). The combination of all five exercises leads to an 
autonomous irrigation system project. Students can access the connected system through the 
Apache Guacamole framework embedded into the LMS course from anywhere with internet 
connection. When the connection is established, they can control the hardware setup. The user 
has the freedom to choose between Arduino IDE and CooCox for the software development 
environment. Additionally, Hercules SETUP software is used to interface with the Serial monitor. 
After uploading and running the program, results can be observed through the Serial monitor and 
the live video stream.  

The hardware solution consists of a personal computer, STM32f103c8t6 microcontroller, LED 
diodes that are connected on three different digital pins of the microcontroller, SEN0114 soil 
moisture sensor that is connected to an analog pin, SHT20 - temperature and humidity sensor 
connected to I2C compatible pins. Additionally, USB to TTL Adapter is connected between the 
microcontroller and personal computer for USART communication for serial print of the outputs 
and a video camera for observation of all visible outputs. This remote lab setup allows real-time 
interaction with the hardware solution. Students can send commands, read sensor data and 
observe the responses in real-time through a user-friendly interface. In this way students can 
understand the concepts better and verify the expected behavior of embedded systems. 

The laboratory setup and the remote access is presented in Figure 5-1.  
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5.2 Laboratory experiment 1 
The first laboratory experiment consists of a simple code that configures a selected I/O port which 
turns a LED diode connected through a 220 ohms resistor on or off depending on the set logic 
level. Additionally, two more diodes can be added in order to simulate the operation of a traffic 
light by using a for loop delay.  

GPIO stands for General Purpose Input/Output. It is a type of interface that allows an electronic 
device, such as a microcontroller or a processor, to communicate with external devices by 
providing digital input/output signals. GPIO pins can be configured as either input or output pins, 
depending on the system requirement. When configured as an input, the GPIO pin can read the 
state of external devices, such as sensors or switches, by detecting changes in the voltage level on 
the pin. On the other hand, when configured as an output pin, GPIO can control the state of 
external devices, turning LEDs on/off or driving a motor, by outputting a voltage level on the pin. 

In order to use the STM GPIO pins, first we have to configure them. The GPIO configuration 
consists of the following steps: 

● Enable the peripheral clock 
● Specify the GPIO pins to be configured 
● Specify the speed for the configured pins 
● Specify the operating mode for the configured pins 
● Remap the pin if an alternate function is used 
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5.2.1 Experimental setup 

Equipment: 

● Embedded system development board (STM32f103c8t6) 
● Three LEDs (red, green and yellow color) 
● Three 220 ohm resistors 
● Breadboard and jumper wires 

 

The anode (positive lead) of the red LED is connected to pin PA3 of the development board and 
the cathode (negative lead) is connected to one end of the 220 ohm resistor. The other end of the 
resistor is connected to the GND pin of the STM. These connections are repeated for the yellow 
and green diode by connecting them to pins PA8 and PA14 respectively, as shown in Figure 5-2. 

 

5.2.2 Goals of the experiment 

The goal of the first exercise is to get started and become familiar with the tools and environment, 
as well as understanding the general purpose I/O ports.  
5.2.3 Experimental results 

Write a program in C language to configure and control the GPIO pins. Your program should do 
the following: 
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● Initialize pins PA3, PA8 and PA14 as output pins. In order to do that the peripheral clock 
must be enabled, select the mode of the pin as output and select the GPIO speed.  

● Turn on the LED diodes on and off by using the GPIO_WriteBit() function.  
● Insert a delay by using a for loop for longer on and off time.  

The code is given below. For additional exercise, students can write a program to simulate the 
operation of traffic light by implementing multiple for loop delays. 

 
#include<stm32f10x_gpio.h> 
#include<stm32f10x_rcc.h> 
 
GPIO_InitTypeDef GPIO_InitSTruct; 
int led=0; 
 
int main(void){ 
  
 RCC_APB2PeriphClock (RCC_APB2Periph_GPIOA, ENABLE); 
 GPIO_InitSTruct.GPIO_Pin=GPIO_Pin_1; 
 GPIO_InitSTruct.GPIO_Mode=GPIO_Mode_Out_PP; 
 GPIO_InitSTruct.GPIO_Speed=GPIO_Speed_50MHz; 
 GPIO_Init (GPIOA, &GPIO_InitSTruct); 
   
} 
while(1){ 
 GPIO_WriteBit (GPIOA, GPIO_Pin_1, led); 
 for(int i=0;i<900000;i++){ 
  led=~led; 
 }} 

 

5.3 Laboratory experiment 2 
This experiment begins with a brief overview of the operation of integrated timers and prescaler. 
In its most basic form timer modules represent a digital logic circuit that counts up every clock 
cycle. More functionalities are implemented in hardware to support the timer module so it can 
count up or down. The timer module can have a prescaler to divide the input clock frequency by 
a selectable value.  

STM32 microcontrollers have a variety of timer modules that can be used to generate interrupts, 
measure time intervals and perform other time-based operations. Here are some of the most 
common timer modules of the STM32 microcontroller family: 

● Basic Timers (TIM6 and TIM7): simple timers that can generate interrupts with a 
frequency up to 84 MHz They can be used for timekeeping, periodic events and 
software timing loops.  

● General Purpose Timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10, TIM11): versatile 
timers that can be configured for a wide range of timing and control applications. 
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They support input capture, PWM (Pulse Width Modulation) modes, output 
compare and other modes of operation.  

● Advanced Control Timers (TIM1, TIM8): high-end timers that support advanced 
features such as motor control and high-resolution PWM. These timers operate at 
frequencies up to 168 MHz and offer multiple channels for advanced control 
applications. 

● Low-Power Timer (LPTIM1, LPTIM2): timers that operate in ultra-low-power modes 
for extended battery use.  

These different hardware timers in the STM32 microcontroller can operate in multiple modes. An 
STM32 timer module can operate in any of the following modes: timer mode, counter mode, PWM 
mode, advanced PWM mode, output compare mode, input compare mode etc.  
5.3.1 Experimental setup 

The setup for this experiment is the same as in experiment 1. 

Equipment: 

● Embedded system development board (STM32f103c8t6) 
● Three LEDs (red, green and yellow color) 
● Three 220 Ω resistors 
● Breadboard and jumper wires 

The anode (positive lead) of the red LED is connected to pin PA3 of the development board and 
the cathode (negative lead) is connected to one end of the 220 Ω resistor. The other end of the 
resistor is connected to the GND pin of the STM board. These connections are repeated for the 
yellow and green diodes by connecting them to pins PA8 and PA14 respectively, as shown in 
Figure 5-3.  

 
5.3.2 Goals of the experiment 

In this experiment, students will learn how to program the timers and PWM of an embedded 
system to control the brightness of an LED.  
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Figure 5-3. Experiment 2 connection schematic. 

 
5.3.3 Experimental results 

Write a program in C language to control and configure the timers and PWM:  

● Turn on the clock for timer 2 (TIM2).  
● Set the prescaler value to 71 and set the auto-reload register of TIM2 to 999. With this the 

timer will count till it reaches 999.  
● Generate an update event to update the prescaler buffer.  
● Reset the interrupt flag and turn on the timer.  
● Write a loop to count the given time. Lastly, turn-off the timer.  

An example code is given below. In the main program write a code to simulate traffic light 
operation by using the delay function. 

  
void delay_ms (int ms) 
{ 
 RCC -> APB1ENR |= 0x1;  
 TIM2 -> PSC = 72-1;  
 TIM2 -> ARR = 1000-1;  
 TIM2 -> CNT = 0; 
 TIM2 -> EGR |= 0x1;  
 TIM2 -> SR &= ~(0x1);  
 TIM2 -> CR1 |= 0x1;  
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 while (ms > 0)  
 { 
  while ((TIM2 -> SR & 0x1) == 0);  
   TIM2 -> SR &= ~(0x1);  
   ms--;  
  } 
 TIM2 -> CR1 &= ~(0x1);  
 RCC -> APB1ENR &= ~(0x1 ); 
} 

 

5.4 Laboratory experiment 3 
In experiment 3 students will write a code to configure and read the ADC (Analog to Digital 
Converter) and use a development board (STM32) to test the program. The STM32 series of 
microcontrollers have a built-in ADC module that can be used to convert analog signals into 
digital for processing in software. Some of the key features of the SMT32 ADC are: 

● 12 bits resolution  
● 16 multiplexed channels 
● Conversion modes: continuous conversion, single conversion and scan conversion.  
● DMA (Direct Memory Access) support: the ADC can be configured to use DMA to transfer 

data from the ADC buffer to memory without CPU intervention. 
● Trigger modes: software trigger, external trigger and timer trigger. 
● Sampling rates: ranging from a few samples per second to several mega-samples per 

second. 

To use the STM32 ADC module, the ADC registers have to be configured using a programming 
language and then start the conversion by a software or hardware trigger. Once the conversion is 
complete, the converted digital value can be read from the ADC data register and processed in 
software.  

The SEN0114 moisture sensor, shown in Figure 5-4, is a capacitive soil moisture sensor that can 
be used to measure the water content in soil. The two metal probes that are inserted into the soil 
pass current through the soil and then the sensor measures the resistance between them to get 
the relative moisture level. The resistance between the probes varies depending on the water 
content in the soil, higher water level results in lower resistance and vice versa. The sensor has 
three pins: VCC, GND and SIG. The meaning of the measured values is given in Table 5-1.  
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Figure 5-4. The SEN0114 moisture sensor. 

Table 5-1. Meaning of measured values of SEN0114. 

 
5.4.1 Experimental setup 

Equipment: 

● Embedded system development board (STM32f103c8t6) 
● SEN0114 moisture sensor 
● Breadboard and jumper wires 

The moisture sensor is connected to the development board as follows: 

● Connect pin VCC to 3.3 V or 5 V 
● Connect pin GND to ground  
● Connect pin SIG to GPIO pin A5 

5.4.2 Goals of the experiment 

The goal of the experiment is to convert the measured value from analog to digital form and to 
store this information in the microcontroller memory.  
5.4.3 Experimental results 

Write a program in C language to configure and read the ADC. Your program should do the 
following: 
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● Configure GPIO pin A5 as an analog input. Enable the peripheral clock and set the 
GPIO speed. 

● Set ADC mode as continuous and disable the external trigger. 
● Read the analog voltage value from the ADC data register after each conversion. The 

voltage value corresponds to the resistance value of the SEN0114 moisture sensor 
value.  

● Convert the analog voltage value to the corresponding moisture content using the 
calibration equation or lookup table, which can be found in the sensor datasheet. 

The code for initialization and reading the measured value is given bellow.  
 

#include"moisture_sensor.h" 
 
GPIO_InitTypeDef GPIO_ADC_InitStruct; 
void adc_init(void){ 
 
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); 
 GPIO_ADC_InitStruct.GPIO_Pin=GPIO_Pin_5; 
 GPIO_ADC_InitStruct.GPIO_Mode=GPIO_Mode_AIN; 
 GPIO_ADC_InitStruct.GPIO_Speed=GPIO_Speed_50MHz; 

GPIO_Init(GPIOA, &GPIO_ADC_InitStruct);        
GPIO_PinRemapConfig(GPIO_Remap_ADC1_ETRGREG, ENABLE); 

 ADC_DeInit(ADC1); 
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1,ENABLE); 
 RCC_ADCCLKConfig(RCC_PCLK2_Div4);  
 
 ADC_InitStruct.ADC_Mode==ADC_Mode_Independent; 
 ADC_InitStruct.ADC_ContinuousConvMode=ENABLE; 
 ADC_InitStruct.ADC_ScanConvMode=DISABLE; 
 ADC_InitStruct.ADC_NbrOfChannel=1; 
 ADC_InitStruct.ADC_DataAlign=ADC_DataAlign_Right; 
 ADC_InitStruct.ADC_ExternalTrigConv=ADC_ExternalTrigConv_None; 
 ADC_Init(ADC1,&ADC_InitStruct); 
 
 ADC_RegularChannelConfig(ADC1,ADC_Channel_5,1,ADC_SampleTime_1Cycles5); 
 ADC_Cmd(ADC1,ENABLE); 
 ADC_ResetCalibration(ADC1); 
 while(ADC_GetResetCalibrationStatus(ADC1)); 
 ADC_StartCalibration( ADC1); 
 ADC_SoftwareStartConvCmd(ADC1, ENABLE); 
 
 
} 
uint16_t read_adc_value(ADC_TypeDef* ADCx){ 
 uint16_t value=ADC_GetConversionValue(ADC1); 
 return value; 
} 
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5.5 Laboratory experiment 4 
In experiment 4, we will learn about Universal synchronous asynchronous receiver transmitter 
(USART). This is serial communication that uses two wires, one for transmitting and the other one 
for receiving messages. Tx (transmit) pin is used for transmission of data. This pin is connected to 
Rx (receive) pin. Rx pin is used for receiving messages, as shown in Figure 5-5. Data is sent and 
received as serial bit stream of 7 or 8 bits at programmed rate. This experiment is a continuation 
of the previous experiment. The measured values, from the previous experiment, stored on the 
microcontroller memory are sent and displayed on the serial monitor using the USART module 
and Hercules SETUP software. 

 

 

 

 

 

 

 

Frame Format 

The asynchronous data format consists of a start bit, 7 or 8 bits for data, even/odd or no parity 
bit and one or two bits for stop condition. 

USART transmission 

Start bit 

The communication starts with the start bit. Tx line is set to high level when it is not transmitting 
data. When start is requested, the Tx line is switched to low level for one clock cycle. When the 
transition is detected by receiver, it starts to read data frame. 

Data frame 

Data frame is 7 or 8 bits. Usually the least significant bit is sent first. 

Parity bit 

Parity bit is used to check the reliability of data. The bit can be changed during data transfers. 
When data is received it checks the number of bits with value of 1. If the parity bit is set to even 
parity the number of 1’s in the data should be even or if parity bit is set to odd parity, then the 
number of 1’s should be an odd number. 

 
  

Master Slave 

TX 

RX RX 

TX 

Figure 5-5. USART master-slave connection. 
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Stop bit 

Stop bit is used to force the communication to end. This is realized when transiter switches Tx line 
to high level. 

 
5.5.1 Experimental setup 

Equipment: 

● Embedded system development board (STM32f103c8t6) 
● Breadboard and jumper wires 
● SEN0114 moisture sensor 
● Hercules SETUP utility 

The moisture sensor is connected to the development board as follows: 

● Connect pin VCC to 3.3 V or 5 V 
● Connect pin GND to ground  
● Connect pin SIG to GPIO pin A5 

5.5.2 Goals of the experiment 

The goal of the experiment is to send the measured values stored on the microcontroller memory 
to the serial monitor of the PC.  
5.5.3 Experimental results 

Write a program in C language to configure the USART module and display the measured values 
on the serial monitor. Your program should do the following: 

● Configure the USART peripheral: enable the USART peripheral and choose the 
appropriate USART instance. Next set up the baud rate, data, stop and parity bits 
accordingly. Lastly, configure the GPIO pins for USART communication. 

● Implement a function to send data over USART. The function should take the 
measured values stored in the microcontroller memory and use the 
USART_SendData() or equivalent function to send the data. 

● Display the values using the Hercules SETUP. Configure the Hercules SETUP serial 
terminal to match the settings used in STM32 program (data bits, parity bits, stop 
bits and baud rate) and start the serial communication in the Hercules SETUP 
terminal. 
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5.6 Laboratory experiment 5 
In experiment 5, we will learn about Inter-Integrated-Circuit (I2C) protocol and how to use an I2C 
driver to interface with a digital temperature and humidity sensor. I2C communication is 
predefined serial communication between several devices. I2C protocol is defined between master 
and slaves. Master is the device that generates a clock to synchronize the communication (Figure 
5-6).                                                   

 

                                                         

                                                         

  

 

 

 

This protocol requires two wires for communication, but these two wires can support up to 1008 
slaves. SDA line is used for data transmission in both directions and SCL wire is used for clock and 
the direction is from master to the slaves.   

Messages contain two frames of data: start condition, an address frame, acknowledge bit and data 
(Table 5-2). Data transmission starts with start condition by switching SDA line from high level to 
low before switching SCL line from high to low. The address frame is the starting frame of any 
communication sequence. It contains the address of the device (7 bits), one bit for read or write 
command and the 9th bit is used for acknowledge. If the 9th bit is not set up that means that 
receiving device does not receive frame or the message is not understandable. The direction of 
SDA depends of write or read bit in address frame. Stop condition initiates end of communication 
by switching SCL line form high to low voltage level before switching SCL line from high to low 
voltage level. 
 

Table 5-2. I2C message. 

Start 
Address 
frame 

Read/Write  
       Bit 

ACK/ 
NACK 

bit 

Data 
frame 

ACK/ 
NACK bit 

Data 
frame 

ACK/ 
NACK bit 

Stop 

 

 
  

Master Slave 

SDA 

SCL SCL 

SDA 

  

 

 

 

 
 

Figure 5-6. I2C master-slave connection. 
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5.6.1 I2C transmission 

I2C transmission is realized using following steps: 

1. The master sends start conditions to the connected devices by switching the SDA line 
from high to low level before switching SCL line from high to low level.  

2. The master sends the address of the device that wants to communicate with and the 
address is followed by a read/write bit. 

3. Slave that has recognized the address that is sent from the master, sends 
acknowledge bit by switching SDA line to low level for one bit. 

4. The master sends or receives data  
5. After successful transmission, the acknowledge bit is sent 
6. Stop condition is generated by switching SCL line high before switching SDA line 

high. 

The SHT20 is a digital temperature and humidity sensor designed for various applications that 
require precise temperature and humidity measurements. Some of its key features are: 

1. Measurement accuracy: up to ±3% for relative humidity (RH) and ±0.3°C for temperature 
measurements, thus ensuring reliable and precise data. 

2. Digital interface: communication using standard I2C interface. 
3. Wide measurement range: it can measure humidity from 0% to 100% RH and temperature 

from -40°C to +125°C, allowing it to be used in a variety of environments and applications. 
4. Fast response time: allowing quick and accurate measurements in dynamic conditions. 
5. Calibration and digital signal processing: the sensor is factory calibrated and incorporates 

digital signal processing techniques that enhance the reliability and stability of the 
measured data. 

6. Low power consumption: suitable for battery powered applications. 

The SHT20 sensor is commonly used in weather stations, HVAC systems, industrial automation, 
medical devices and consumer electronics. Its small size, high accuracy and digital interface make 
it a reliable choice for humidity and temperature measurement applications. The sensor is given 
in Figure 5-7.  

 
Figure 5-7. The SHT20 digital temperature and humidity sensor. 
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5.6.2 Experimental setup 

Equipment: 

● Embedded system development board (STM32f103c8t6) 
● SHT20 I2C sensor for temperature and humidity  
● Breadboard and jumper wires 

The temperature and humidity sensor are connected to the development board as follows: 

● Connect pin VCC to 3.3 V or 5 V 
● Connect pin GND to ground  
● Connect pin SCL to GPIO pin B6 
● Connect pin SDA to GPIO pin B7 

5.6.3 Goals of the experiment 

The goal of this experiment is to establish I2C communication and measure the values of ambient 
temperature and humidity using SHT20 sensor. 

Write a program in C language to configure I2C driver and read the values from SHT20 senor. 
Your program should do the following: 

● Initialization of I2C communication: 
● Enable APB1 peripheral clock for I2C 
● Enable APB2 clock for SCL and SDA pins 
● Set the pins, mode and speed  
● Set the GPIO mode 
● Remap the configuration of pins 
● Set I2C clock speed, mode, duty cycle, enable acknowledge and address of master 

5.6.4 Experimental results 
 
#include <stm32f10x_gpio.h> 
#include <stm32f10x_rcc.h> 
#include <stm32f10x_tim.h> 
#include <stm32f10x_i2c.h> 
 
 
#define SHT20_I2C_ADDR                        0x80 
#define SHT20_NOHOLD_TEMP_REG_ADDR            0xF3 
#define SHT20_NOHOLD_HUMDTY_REG_ADDR          0xF5 
#define SHT20_HOLD_TEMP_REG_ADDR            0xF3 
#define SHT20_HOLD_HUMDTY_REG_ADDR          0xF5 
#define ERROR_I2C_TIMEOUT                     998 
#define ERROR_BAD_CRC                         999 
#define SHIFTED_DIVISOR                       0x988000 
I2C_InitTypeDef I2C_InitStruct; 
GPIO_InitTypeDef GPIO_I2C_InitStruct; 
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void init_I2C1(void){ 
 
 // enable APB1 peripheral clock for I2C1 
   RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE); 
   // enable clock for SCL and SDA pins 
   RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); 
 
   /* setup SCL and SDA pins 
    * You can connect I2C1 to two different 
    * pairs of pins: 
    * 1. SCL on PB6 and SDA on PB7 
    * 2. SCL on PB8 and SDA on PB9 
    */ 
   GPIO_I2C_InitStruct.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7; 
 
    // we are going to use PB6 and PB7 
   GPIO_I2C_InitStruct.GPIO_Mode = GPIO_Mode_AF_OD;  
 // set pins to alternate function 
   GPIO_I2C_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; 
 // set GPIO speed 
    //GPIO_InitStruct.GPIO_OType = GPIO_OType_OD;  
 // set output to open drain --> the line has to be only pulled low, not 
driven high 
    //GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_UP;  
 // enable pull up resistors 
   GPIO_Init(GPIOB, &GPIO_I2C_InitStruct);    
 // init GPIOB 
   GPIO_PinRemapConfig(GPIO_Remap_I2C1, ENABLE); 
 
   // Connect I2C1 pins to AF 
 
    I2C_InitStruct.I2C_ClockSpeed=100000; 
    I2C_InitStruct.I2C_Mode=I2C_Mode_I2C; 
    I2C_InitStruct.I2C_DutyCycle=I2C_DutyCycle_2; 
    I2C_InitStruct.I2C_Ack=I2C_Ack_Disable; 
    
I2C_InitStruct.I2C_AcknowledgedAddress=I2C_AcknowledgedAddress_7bit;  //size 
of the address 
    I2C_InitStruct.I2C_OwnAddress1=0x00;  //address of the 
Microcontroller 
 
    I2C_Init( I2C1,&I2C_InitStruct);   //init I2C 
    I2C_Cmd(I2C1, ENABLE);   //Enables or disables 
the specified I2C peripheral. 
 
} 
void I2C_start(I2C_TypeDef* I2Cx, uint8_t address, uint8_t direction){ 
  // Send I2C1 START condition 
    I2C_GenerateSTART(I2Cx, ENABLE); 
 
    // Send slave Address for write 
    I2C_Send7bitAddress(I2Cx, address, direction); 
 
} 
void I2C_write(I2C_TypeDef* I2Cx, uint8_t data) 
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    { 
 
     I2C_SendData(I2Cx, data); 
     // wait for I2C1 EV8_2 --> byte has been transmitted 
     //while(!I2C_CheckEvent(I2Cx, 
I2C_EVENT_MASTER_BYTE_TRANSMITTED)); 
    } 
 
    /* This function reads one byte from the slave device 
     * and acknowledges the byte (requests another byte) 
     */ 
uint8_t I2C_read_ack(I2C_TypeDef* I2Cx){ 
     // enable acknowledge of recieved data 
     I2C_AcknowledgeConfig(I2Cx, ENABLE); 
     // wait until one byte has been received 
     //while( !I2C_CheckEvent(I2Cx, 
I2C_EVENT_MASTER_BYTE_RECEIVED) ); 
     // read data from I2C data register and return data 
byte 
     uint8_t data = I2C_ReceiveData(I2Cx); 
     return data; 
    } 
 
    /* This function reads one byte from the slave device 
     * and doesn't acknowledge the recieved data 
     */ 
uint8_t I2C_read_nack(I2C_TypeDef* I2Cx){ 
     // disabe acknowledge of received data 
     // nack also generates stop condition after last byte 
received 
     // see reference manual for more info 
     I2C_AcknowledgeConfig(I2Cx, DISABLE); 
 
     // wait until one byte has been received 
     //while( !I2C_CheckEvent(I2Cx, 
I2C_EVENT_MASTER_BYTE_RECEIVED) ); 
     // read data from I2C data register and return data 
byte 
     uint8_t data = I2C_ReceiveData(I2Cx); 
     return data; 
    } 
 
void I2C_stop(I2C_TypeDef* I2Cx){ 
 // Send I2C1 STOP Condition 
 I2C_GenerateSTOP(I2Cx, ENABLE); 
} 
uint16_t SHT20_readValue(I2C_TypeDef* I2Cx, uint8_t address,uint8_t reg){ 
 uint8_t lsb,msb; 
 I2C_start(I2Cx,address,I2C_Direction_Transmitter); 
 I2C_write(I2Cx,reg); 
 I2C_start(I2Cx,address,I2C_Direction_Receiver); 
 delay_ms(20); 
 msb=I2C_read_ack(I2Cx); 
 delay_ms(20); 
 lsb=I2C_read_ack(I2Cx); 
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 u8 checksum=I2C_read_ack(I2Cx); 
 delay_ms(20); 
 I2C_stop(I2Cx); 
 
 uint16_t raw_value=((uint16_t) msb<<8)|(uint16_t)(lsb); 
// if (SHT20_checkCRC((u16)raw_value, (u8)checksum) != 0) 
//         return (ERROR_BAD_CRC); 
 return (raw_value & 0xfffc); 
 
 
} 
float SHT20_readHumidity(I2C_TypeDef* I2Cx, uint8_t address){ 
 float tempRH; 
 float rh; 
 uint16_t 
rawHumidity=SHT20_readValue(I2Cx,address,SHT20_NOHOLD_HUMDTY_REG_ADDR); 
 
//    if (rawHumidity == ERROR_I2C_TIMEOUT || rawHumidity == ERROR_BAD_CRC) 
//        return (rawHumidity); 
    tempRH=rawHumidity*125.0/65535.0; 
    tempRH=tempRH-6.0; 
    return tempRH; 
 
} 
 
float SHT20_readTemp(I2C_TypeDef* I2Cx, uint8_t address){ 
 float temp; 
 float rh; 
 uint16_t 
rawTemp=SHT20_readValue(I2Cx,address,SHT20_NOHOLD_TEMP_REG_ADDR); 
// 
//    if (rawTemp == ERROR_I2C_TIMEOUT || rawTemp == ERROR_BAD_CRC) 
//        return (rawTemp); 
    temp=rawTemp*(175.72/65536.0); 
    temp=temp-46.85; 
    return temp; 
} 
u8 SHT20_checkCRC(u16 message_from_sensor, u8 check_value_from_sensor) 
{ 
 u8 i; 
    u32 divsor = (u32)SHIFTED_DIVISOR; 
    u32 remainder = (u32)message_from_sensor << 8; 
 
    remainder |= (u32)check_value_from_sensor; 
 
    for(i = 0 ; i < 16 ; i++) { 
        if(remainder & (u32)1 << (23 - i)) 
           remainder ^= divsor; 
        divsor >>= 1; 
    } 
  return (u8)remainder; 

} 
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5.7 Conclusion 
The remote Embedded laboratory offers a convenient and interactive platform for students and 
enthusiasts interested in embedded systems. By providing virtual access to the real hardware and 
comprehensive documentation, this laboratory enables its users to gain practical experience in 
microcontroller programming and further develop their understanding of embedded systems.  

The key advantages of the remote embedded laboratory are: 

● Virtual Access: allowing users to access the embedded system setup from anywhere as if 
they are physically using them in the laboratory. 

● Real-time interaction: sending commands, reading sensor data and observing the system 
response in real time. 

● Experiment library: the laboratory has a set of pre-designed experiments covering 
various topics that can be combined to form a practical embedded system project. 

● Comprehensive documentation: a detailed documentation is provided for every 
experiment, including circuit diagrams, code examples, step-by-step instructions and 
explanations of the fundamental concepts. 

Overall, the remote embedded laboratory offer an innovative and effective approach to remote 
learning and experimentations in the field of embedded systems. It provides a flexible and 
accessible platform for individuals to explore and expand their knowledge of embedded systems 
and microcontroller programming.  
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6 Virtual Instrumentation Laboratory 
Platform 

 

6.1 Introduction 
The Remote Virtual Instrumentation Laboratory Platform (RVILP, given in Figure 6-1) provides 
engineers with a versatile platform for conducting a wide range of experiments using standard 
instrumentation. These include multimeters, power supplies, oscilloscopes, function generators, 
data acquisition cards, etc. The RVILP operates on an event-driven state machine programming 
architecture, enabling engineers to initiate specific virtual instruments (VIs) for carrying out 
dedicated tasks and updating the platform using global variables. This programming approach 
allows for efficient control and coordination of the experiments. To facilitate seamless 
communication among the virtual instruments, functional global variables are utilized. These 
variables serve as a means of sharing information pertaining to physical quantities, measurement 
units, status and control messages, as well as error control. Remote access to the VIs is made 
possible through a standard clientless remote desktop gateway, such as Apache Guacamole. This 
ensures that engineers can conveniently access and control the RVILP from any location, further 
enhancing the flexibility and usability of the platform. 

 
Figure 6-1. Front panel of the virtual instrumentation laboratory platform. 
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The RVILP consists of two main components: Instrumentation and simulation. In the 
Instrumentation section, users can access a comprehensive collection of standard instruments 
commonly found in engineering laboratories. These virtual instruments are equipped with the 
ability to communicate with one another, enabling the interfacing of real physical signals. This 
functionality allows users to replicate and interact with genuine measurement scenarios. On the 
other hand, the simulation tab provides virtual instruments specifically designed to simulate 
various instruments or operational principles commonly encountered in the field of measurement 
science and technology. These simulation tools offer users the opportunity to explore and 
understand theoretical concepts and experimental setups in a virtual environment. Additionally, 
the platform offers a variables tab where users can conveniently view, export, or store the signals 
generated by the global variables. This feature allows for easy access to and management of the 
data associated with the global variables used throughout the experiments.  

The primary objective of the RVILP platform is to create a virtual laboratory environment that 
replicates real-world experiments, enabling the monitoring of measurement parameters using 
data acquisition cards through the virtual instrumentation laboratory platform. This concept has 
broad applicability across various engineering domains since virtual instruments are versatile tools 
essential for conducting a wide range of measurements. The platform offers hardware support for 
integrating National Instruments-related hardware or Arduino boards into the experiments. When 
utilizing Arduino development boards, users need to upload a specific open-source firmware to 
enable their compatibility with the virtual platform. Once the firmware is uploaded, the Arduino 
board functions as a standard data acquisition card, capable of reading analog channels or 
performing read/write operations on digital channels. Moreover, the platform supports popular 
digital protocols like I2C, SPI, UART, and PWM. 

Beyond providing remote access to a virtual laboratory setup, the virtual instrumentation 
laboratory platform offers several advantages compared to traditional physical laboratory setups. 
One significant benefit is the ease of sharing and replicating experiments. Users can access the 
same virtual instruments and setups from anywhere in the world, facilitating collaboration among 
researchers and enabling students to access laboratory resources regardless of their location. 
Additionally, the platform serves as a valuable teaching tool to enhance engineering education. 
By offering a virtual instrumentation laboratory environment that simulates real-world 
experimentation, it provides students with an interactive and engaging learning experience. 
Furthermore, students can experiment freely without concerns about damaging physical 
equipment or consuming expensive resources. 

This part of the laboratory manual comprises three laboratory exercises that utilize the virtual 
instrumentation laboratory platform. The purpose of these exercises is twofold: to establish a 
proof of concept and to inspire other users to leverage the potential of the platform. To showcase 
its versatility, the laboratory exercises are implemented in three distinct scenarios: 
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1. Complete virtual instrumentation utilization, 

2. Utilizing virtual measurement instruments in conjunction with a specific hardware setup, 

3. Excitation and response measurement employing the Remote Virtual Instrumentation 
Laboratory Platform. 

 

6.2 Laboratory experiment 1: Voltmeter accuracy verification 
(calibration) 

To ensure accurate measurements of physical quantities, it is essential to understand the accuracy 
of the measuring instrument. These characteristics can be obtained from the technical datasheet 
of the instrument and is typically represented as the maximum error occurring within a specified 
measurement range. In the case of digital instruments, accuracy is commonly expressed as follows: 

Δ𝑋𝑋 = ±(𝐴𝐴% + 𝐵𝐵% + 𝐶𝐶), 

where A% is the error of the reading, B% is the error of the measurement range, and C is the 
resolution error expressed in digits. 

For the analog instruments, the accuracy is expressed through the accuracy class by the following 
formula: 

a. c. = |Δx𝑖𝑖|𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚

∙ 100, 

where “a.c.” is the accuracy class of the instrument, ∆xi is the maximum absolute error in the 
measurement range xmr. 

Throughout its lifespan, an instrument is subjected to various conditions that can impact its 
accuracy. Therefore, periodic verification (calibration) becomes necessary to either maintain its 
existing accuracy or establish a new level of accuracy that best reflects the instrument's current 
condition. In this particular exercise, students are introduced to the process of verifying 
voltmeters, which serves as the initial step in the calibration process. Generally, there are three 
methods available for testing measuring instruments during calibration: the compensation 
method, the comparison method using a more precise instrument, and the utilization of a 
specialized calibration device (calibrator). In this exercise, the calibration method employs a virtual 
calibrator. The process involves measuring the voltage generated by the calibrator using both an 
analog and digital voltmeter. It is crucial that all measurements with the instrument are conducted 
within the same measuring range, while the calibrator's measuring range can be adjusted during 
the process to achieve the most accurate readings. The accuracy of the instrument is then assessed 
by calculating the verification error. The value obtained through adjustment with the calibrator 
represents the "true" value, while the measured value corresponds to the reading obtained from 
the measuring instrument. 
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In the realm of metrology, it is recognized that the quantitative evaluation of a physical quantity 
should be complemented with a qualitative description encompassing the unit of measurement 
and a statement concerning the reliability of the measurement. This statement is known as 
measurement uncertainty and should be based on objective facts derived from the technical or 
scientific understanding of the measurement process. The concept of measurement uncertainty 
was established by the ISO/BIMP "Guide to the expression of uncertainty in measurement," 
commonly referred to as GUM, in 1992. Since then, this concept has gained international 
acceptance as the foundation for determining measurement uncertainty in metrology. According 
to the GUM, the total measurement uncertainty (y) is determined by applying the law of 
propagation of measurement uncertainty, which states:  

𝑢𝑢(𝑦𝑦) = �𝑢𝑢12(𝑦𝑦) + 𝑢𝑢22(𝑦𝑦) + ⋯𝑢𝑢𝑛𝑛2(𝑦𝑦), 

where u12(y) – un2(y) represents the contribution of each individual input quantity to the total 
measurement uncertainty of the measurement. 
6.2.1 Experimental setup 

 The experiment setup in this exercise consists of a virtual calibrator and two voltmeters, 
analog (AVM) and digital (DVM). The simplified electrical circuit of the laboratory exercise is given 
in Figure 6-2. 

 
Figure 6-2. Experiment setup for verification of analog and digital voltmeters. 

The measurand in this scenario refers to the direct current (DC) voltage produced by the calibrator, 
effectively functioning as a DC voltage source. This voltage is measured by both the analog and 
digital voltmeters, which are connected in parallel and communicate via the same virtual channel, 
such as CH1. All instruments are activated and controlled using the virtual instrumentation 
laboratory platform. The front panels of the virtual instruments can be observed in Figure 6-3. 
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a) Virtual calibrator 

  
b) Virtual digital voltmeter c) Virtual analog voltmeter 

Figure 6-3. Front panel of the virtual instruments. 

The readings obtained from both the analog and digital voltmeters are directly proportional to 
the predetermined voltage set on the virtual calibrator. The accuracy verification process is 
conducted at multiple points along the measurement range, such as -100%, -80%, ..., 0%, 20%, 
40%, ..., and 100%. However, before taking measurements, it is essential to properly configure the 
voltmeters for DC voltage measurements. This entails ensuring the correct virtual channel is 
selected (e.g., CH1), specifying the measurement quantity as DC voltage, and choosing the 
appropriate measurement range. These adjustments are necessary to ensure accurate and reliable 
readings during the calibration process.  
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6.2.2 Experimental results 

The primary objective of the laboratory exercise is to validate the claimed accuracy provided by 
the manufacturer. To achieve this, we assess the accuracy of both analog and digital voltmeters 
within a specified measurement range, following the procedure outlined in the previous chapter. 
It is crucial to meticulously record the voltmeter readings and appropriately input them into the 
result tables. Subsequently, we calculate the absolute and relative measurement errors using the 
virtual calibrator, comparing these values against the maximum allowable error of the voltmeters. 
The final column in the results tables should reflect the computation of the measurement 
uncertainty associated with the verification process. Please refer to the following data for detailed 
technical specifications of all measuring instruments utilized in the verification procedure.  
6.2.2.1 Virtual calibrator DC voltage specifications 

Measurement range 
Absolute uncertainty 

± [% of output + resolution] 
% of output Resolution 

100 mV 0.15 0.1 mV 

1 V 0.1 1 mV 

10 V 0.1 10 mV 

100 V 0.15 0.1 V 

1000 V 0.2 0.2 V 

 

6.2.2.2 Virtual digital voltmeter accuracy specifications 

Measurement range 
Digital voltmeter accuracy 

± [% of reading + resolution] 
% of reading Resolution 

400 mV 1 1 mV 

4 V 1 3 mV 

40 V 0.5 30 mV 

400 V 0.5 300 V 

1000 V 1 3 V 

 

Fill in the following tables with the measurement data obtained from the measurement process. 
The notations used in the tables are as follows: 

𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐 – virtual calibrator output voltage 
𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 – measured voltage with the instrument 
Δ𝑈𝑈 = 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐 – verification absolute error 
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𝛿𝛿𝛿𝛿 = ΔU
𝑈𝑈𝑐𝑐𝑐𝑐𝑐𝑐

∙ 100 – verification relative error 
±Δ𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 – voltmeter accuracy 
±𝑢𝑢 – standard absolute measurement uncertainty 
 

Table 6-1. Accuracy verification of digital voltmeter. 

No. %Umr Ucal [V] Uinstr [V] ∆U [V] δU [%] ±∆Umax [V] ±u [V] 

1.  100 4 3,973 -0,027 -0,67 0,043 0,014 
2.  90 3,6 3,575 -0,025 -0,69 0,039 0,013 
3.  80 3,2 3,177 -0,023 -0,71 0,035 0,012 
4.  70 2,8 2,779 -0,021 -0,75 0,031 0,011 
5.  60 2,4 2,381 -0,019 -0,79 0,027 0,001 
6.  50 2 1,983 -0,017 -0,85 0,023 0,001 
7.  40 1,6 1,585 -0,015 -0,93 0,019 0,011 
8.  30 1,2 1,187 -0,013 -1,08 0,015 0,012 
9.  20 0,8 0,789 -0,011 -1,37 0,011 0,013 
10.  10 0,4 0,391 -0,009 -2,25 0,007 0,014 

Voltmeter measurement range: Umr=4 V 

Plot the obtained results from the verification procedure of the DVM (absolute errors, accuracy 
limits, calibrator output voltage, and uncertainty bars):  

 
Table 6-2. Accuracy verification of analog voltmeter. 

 

 

-0,045

-0,035

-0,025

-0,015

-0,005

0,005

0,015

0,025

0,035

0,045

0 0,5 1 1,5 2 2,5 3 3,5 4

Calibrator output voltage Ucal [V]

Absolute error Accuracy limit



76 

 

No. %Umr Ucal [V] Uinstr [V] ∆U [V] δU [%] ±∆Umax [V] ±u [V] 

1.  100 10 10,0 0,0 0 0,20 0,014 
2.  90 9 9,0 0,0 0 0,18 0,013 
3.  80 8 8,0 0,0 0 0,16 0,012 
4.  70 7 7,0 0,0 0 0,14 0,011 
5.  60 6 6,0 0,0 0 0,12 0,001 
6.  50 5 5,0 0,0 0 0,10 0,001 
7.  40 4 4,0 0,0 0 0,08 0,011 
8.  30 3 2,9 -0,1 -3,3 0,05 0,012 
9.  20 2 1,9 -0,1 -5 0,03 0,013 
10.  10 1 0,9 -0,1 -10 0,01 0,014 

* the accuracy class of the analog voltmeter is 2 

Voltmeter measurement range: Umr=10 V 

Plot the obtained results from the verification procedure of the AVM (absolute errors, accuracy 
limits, calibrator output voltage, and uncertainty bars): 

 

What conclusions can be drawn from the results obtained during the verification of the analog 
and digital multimeters?  
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6.3 Laboratory experiment 2: Verification of the first Kirchhoff 
law 

The aim of this exercise is confirmation of the first Kirchoff law by simulation and realization of 
simple electrical circuit. The first Kirchoff law states “the sum of currents that enter or leave a given 
junction of the electrical circuit is equal to zero”. Junction (Figure 6-4) is a point where at least 
three branches of the electrical circuits are joined. 

 
Figure 6-4. Simplified representation of three branches of electrical circuit forming the junction “A”. 

The part of the electrical circuit given in the figure above consists of three branches. The branches 
are joined in the junction A, and the following electrical currents are defined: I1, I2 and I3. The first 
Kirchoff law for the junction A of the electrical circuit is: 

(+𝐼𝐼1) + (−𝐼𝐼2) + (−𝐼𝐼3) = 0 

In the mathematical formulation of the first Kirchoff law it is assumed than the currents entering 
the junction (I1 in this case) are positive, while the currents leaving the junction (I2 and I3) are 
negative. It is clear that the first Kirchoff law also holds in case of opposite current directions. This 
laboratory exercise demonstrate the exploitation of the RVILP for verification of the first Kirchhoff 
law in three steps: theoretical calculation, simulation and experimental verification. 

We are analyzing a simple electrical circuit formed by three branches (Figure 6-5). The first branch 
consists of a voltage generator E and resistor R1, while the remaining two branches contain the 
resistors R2 and R3 wired as in the figure below. The task is to determine the electrical currents I1, 
I2 and I3 and to check the first Kirchoff law for the junction J. In order to solve the electrical circuit, 
the following parameters are given: E=10 V, R1=470 Ω, R2=300 Ω, R3=200 Ω. 

Your task is to calculate the electrical currents in each branch of the circuit by using the 
recommendations given in this exercise. 
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Figure 6-5. A simple electrical circuit for verification of the first Kirchoff law. 

I1=__________ 

I2=__________ 

I3=__________ 

Question: what is the first Kirchoff law for junction Ј? 

Question: is the first Kirchoff law fulfilled? If it is NOT fulfilled, check the calculations and solve 
the electrical circuit again. 

 
6.3.1 Simulation of ideal electrical circuit 

In this part of the exercise we perform a simulation of the ideal electrical circuit given in the 
previous section. Under “ideal” electrical circuit we assume a circuit where all elements have exact 
and time invariable parameters. The aim of the simulation is to check the theoretical calculations 
of the electrical currents I1, I2 and I3. The simulation of the electrical circuit is realized with the 
RVILP. Run the application for the first Kirchoff law, which is located under the “simulations” tab 
of the RVILP platform. At this point, a virtual instrument intended for the first Kirchoff law will 
appear. The simulation of the electrical circuit is realized by selection of the tabulator “Calculation”. 
The front panel of the virtual instrument is given in Figure 6-6. 
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Figure 6-6. Front panel of the VI for simulation of the first Kirchoff law. 

The electrical current is being measured with instrument called amperemeter. In this part of the 
exercise we assume that the amperemeter is an ideal instruments, i.e. its internal impedance is 
equal to zero. Hence, the electrical circuit will remain identical if we replace the amperemeters 
with wires (short circuit). The configuration of the ideal amperemeter (А1, А2 and А3) is realized 
with the controls “ideal/realistic”, by turning them to the “ideal” position. 

Each amperemeter is wired in series in the branch whose current is being measured. Hence, the 
amperemeter А1 is used to measure the electrical current I1, the amperemeter А2 for the current 
I2, and the amperemeter А3 for the current I3. The measured electrical currents are shown on the 
indicators A1, A2 and А3. 

Your task is to simulate the electrical circuit from section 2 and determine the electrical currents 
in all branches. 

The simulation of the electrical circuit is realized by entering the following parameters: E=10 V, 
R1=470 Ω, R2=300 Ω, R3=200 Ω. Write the amperemeter readings fir the electrical currents I1, I2 
and I3: 

𝐼𝐼1 = 

𝐼𝐼2 = 

𝐼𝐼3 = 

Question: are the values from the simulation identical to those obtained by theoretical 
calculations in the previous section?  If they are NOT, check the simulation settings and theoretical 
calculations all over again. 
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Question: what is the behavior of the electrical currents I1, I2 and I3 in the electrical circuit if the 
voltage source decreases (from 10 V to 5 V)? 

 
6.3.2 Experimental setup 

This part of the exercise is related to the practical realization of the electrical circuit and performing 
realistic measurements. The aim is to test the first Kirchoff law once again, but this time in realistic 
conditions. To perform the experiment we use the experimental board given in Figure 6-7.a, and 
its practical realization in Figure 6-7.b. 

 

 

Figure 6-7. Experimental verification of the first Kirchoff law, a) Electrical circuit, and b) Practical 
realization. 

Your task is to realize the electrical circuit given in Figure 6-7 and measure the electrical currents 
in all branches of the circuit. 

The following hardware is used to perform the experiment: 

• Experimental board 
• Variable DC power supply 
• Data Acquisition Card NI-myDAQ 
• Arduino board 
• Relay modules (P1-P3) 

 

 

 



81 

 

We notice that the electrical circuit on the board is identical to those from the previous sections. 
The resistors R1=470 Ω, R2=300 Ω and R3=200 Ω are integrated into the experimental boar, while 
the voltage source and the amperemeters are externally connected. Actually, the experiment uses 
the current input channel of the NI MyDAQ card to measure direct current. The Arduino board 
controls which current is being measured by appropriate swiching the relay modules (P1-P3). 

Procedure for realization of the electrical circuit and performing experimental 
measurements: 

1. Note that the DC power supply is already connected to the experimenter board and it is 
adjusted to 10 V. 

2. Activate the tabulator “Measurement” from the virtual instrument. The front panel from Figure 
6-8 appears: 

 
Figure 6-8. Front panel of the VI for experimental verification of the first Kirchof law. 

3. Set the digital output ports of the Arduino board (D0-HIGH, D1-LOW, D2-LOW) through the 
Arduino VI of the RVILP platform and press the symbol of the amperemeter А1 (the symbol will 
turn yellow). Then, press the control button “RECORD” on the virtual instrument. 

If this step is performed correctly, the measured current in the first branch will appear on the 
digital indicator I1[mA]. 

4. Repeat the step 3 for the amperemeters А2 и А3 for measurement of the electrical currents I2 
and I3. 
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Write down the measured values for the electrical currents by using the NI-myDAQ instrument: 

𝐼𝐼1 = 

𝐼𝐼2 = 

𝐼𝐼3 = 

5. To check the first Kirchoff law for the junction Ј press the control button “CHECK” on the virtual 
instrument.  

The orange text indicator delivers a text message concerning the first Kirchoff law for the junction 
J. In case the first Kirchoff law is not fulfilled, the indicators are cleared and the experiment must 
be repeated again from the step 2. 

6. Compare the measurements for the electrical currents with the NI-MYDAQ with the theoretical 
calculations and the simulations from the previous sections. 

Question: do the measured values completely match the results from the theoretical calculations 
and the simulations? 

Note: Examine using realistic instruments (enter the amperemeter internal resistance) in the 
“simulation” tab. Are the simulation results getting closer to the results from the practical 
measurements? 

 

6.4 Laboratory experiment 3 
In this laboratory exercise, we will explore the fundamental principles and practical aspects of 
measuring the transfer characteristic of a PIN photodiode, a crucial device widely used in 
optoelectronic applications. Photodiodes are semiconductor devices that convert light into an 
electrical current. Among the different types of photodiodes, the PIN photodiode stands out due 
to its unique structure and characteristics. The PIN photodiode consists of three distinct regions: 
a P-type semiconductor layer sandwiched between two N-type semiconductor layers. The "P" 
stands for positive, indicating an excess of positive charge carriers, while the "N" represents an 
excess of negative charge carriers. 

When light strikes the depletion region, the region where the P and N layers meet, electron-hole 
pairs are generated. The electric field within the depletion region separates these charges, creating 
a photocurrent proportional to the incident light intensity. The transfer characteristic of a PIN 
photodiode describes the relationship between the output current and the input optical power or 
light intensity.  

In this laboratory exercise, we will explore the experimental techniques and procedures necessary 
to measure the transfer characteristic of a PIN photodiode when using the signal conditioning 
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circuit given in Figure 6-9. We cover topics regarding the signal conditioning, data acquisition and 
linear approximation by using the least squares method. Additionally, the students can observe 
the key parameters and considerations that impact the transfer characteristic, including dark 
current, and linearity. 

 
Figure 6-9. Experimental setup including the Arduino board, excitation LEDs, PIN photodiode, and 

signal conditioning circuit. 

6.4.1 Experimental setup 

In order to set up the experimental setup, the following equipment is required: 

• Firstly, a particular PIN photodiode is needed in the visible spectrum of the light. This is a 
type of photodetector that operates by converting light into an electrical current. It will 
serve as the primary sensor for detecting light in the experiment. 

• Next, an Arduino Uno or Nano board is necessary. This microcontroller board will act as a 
control and data acquisition module, responsible for receiving inputs from the photodiode 
and controlling the output of the LED diodes. The Arduino board will process the data 
from the photodiode and perform the required signal conditioning. 

• Ten green LED diodes with a wavelength in the middle of the spectral range of the PIN 
photodiode (approximately 555 nm for visible region) are also required. These LEDs will 
be used to emit light at a specific wavelength, and particular illumination, which will be 
detected by the photodiode. The LEDs should be of the same type and specifications to 
ensure consistency in the experiment. 

• To condition the signal from the photodiode, a signal conditioning circuit is needed. This 
circuit will process the electrical output from the photodiode to make it suitable for further 
analysis. It involves amplification in order to use the entire measurement range of the 
Arduino input analog to digital (AD) converters. 

• Lastly, a Remote Virtual Instrumentation Platform (RVILP) is required. This platform 
provides a virtual interface or software that enables remote control and data acquisition 
from the experimental setup. It allows users to monitor and interact with the Arduino 
board, photodiode, and other connected devices remotely, providing a convenient way to 
collect and analyze data. 
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Experimental Procedure: 

Step 1: Setting Up the Arduino and RVILP 

Assemble the necessary equipment, including the Arduino board, PIN photodiode, green LED 
diodes, and signal conditioning circuit. Connect the Arduino board to your computer using a USB 
cable. Launch the RVILP software on your computer and establish a connection with the Arduino 
board through the RVILP platform (Figure 6-10). 

 
Figure 6-10. Front panel of the Arduino virtual instrument embedded into the RVILP platform. 

Step 2: Configuring the LED Diodes 

Connect the green LED diodes to the Arduino board, positioning them at a distance of 5 cm 
normal to the PIN photodiode. Utilize the RVILP software to control the Arduino board, allowing 
for the sequential switching on of the LED diodes. 

Step 3: Signal Conditioning Circuit 

Set up the signal conditioning circuit to ensure accurate measurement of the PIN photodiode's 
output voltage. Connect the output of the PIN photodiode to the input of the signal conditioning 
circuit. Then, connect the output of the signal conditioning circuit to one of the analog input ports 
of the Arduino board (e.g. A0). 

Step 4: Conducting the Measurements 

Ensure that the PIN photodiode is appropriately positioned and aligned with the LED diodes. 
Measure the output voltage of the PIN photodiode without any light illumination to determine 
the dark current. The measurements are performed by using a virtual voltmeter from the RIVLP 
platform. Use the RVILP software to control the Arduino board, causing the LED diodes to 
illuminate sequentially. Measure the output voltage of the signal conditioning circuit for each 
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illuminated LED diode. Record the corresponding LED diode number and the measured output 
voltage in a table. Repeat this process for all ten LED diodes, resulting in ten discrete points for 
the transfer characteristic. 

 
6.4.2 Experimental results 
Table 6-3. Transfer characteristics of the PIN photodiode and signal conditioning circuit. 

No. Illumination [%]* OP amp output voltage [V] 
1.  0 0.0 
2.  10 0.21 
3.  20 0.51 
4.  30 0.81 
5.  40 1.12 
6.  50 1.42 
7.  60 1.72 
8.  70 2.03 
9.  80 2.33 
10.  90 2.73 
11.  100 3.03 

* The Illumination is expressed in percent normalized to the total Illumination from all 10 LEDs 

 

 
Figure 6-11. Transfer characteristics of the PIN photodiode. 
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6.5 Least squares approximation 
The least squares approximation is a widely used method for finding the best-fitting curve or line 
that minimizes the overall squared distance between the observed data points and the predicted 
values from the model. It provides a robust and efficient way to estimate parameters and make 
predictions based on limited or noisy data. 

In this laboratory practicum, we explore the principles and applications of least squares 
approximation through PIN photodiode hands-on experiments. As input parameters we are using 
the experimental results obtained from the measurements (given in Table 6-3 and Figure 6-11), 
whereas for the least squares approximation we are using a simulation virtual instrument from the 
RVILP. The virtual instruments and the obtained linear approximation coefficients are given in 
Figure 6-12. 

 
Figure 6-12. Virtual instrument for least squares approximation by using linear function. 

 

6.6 Conclusion 
Through these experiments, it can be seen that the Remote Virtual Instrumentation Laboratory 
Platform is a powerful and flexible environment for experiments and measurements using virtual 
versions of standard instrumentation, with easy and effective options for convenient remote 
access and control.   
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7 System Administration Laboratory 
 

7.1 Introduction 
 

The setup shown in Figure 7-1 that enables remote access to the laboratory experiments involves 
several stages of development and integration of various technologies. Here's a detailed 
description of each component: 

1. Apache Proxy Server: The first line of communication with the outside world, the Apache 
proxy server, is the backbone of our setup. It's strategically placed between the internet 
and our internal network, serving as the border point. This configuration not only maintains 
our internal network's security but also manages and controls the flow of traffic. Any 
requests from users first hit this server, where they are verified and then routed to the 
appropriate service in our internal network. 

2. OpenEdx and Guacamole Services: Both these services are deployed within the secure 
boundaries of our internal network and are responsible for the core functionality of our 
laboratory setup. OpenEdx is a feature-rich platform for online learning, serving course 
material, quizzes, and providing a user-friendly interface for learners to interact with the 
course content. Guacamole is used to facilitate the connection to our high-performance 
server. It provides a Virtual Network Computing (VNC) service that allows users to access 
the lab environment directly from their web browsers. 

Figure 7-1. The architecture of remote access to the laboratory experiments.   
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3. iFrame Integration: To provide a seamless user experience, Guacamole is integrated into 
OpenEdx using an iFrame. This allows the laboratory exercises to be loaded directly within 
the OpenEdx platform, offering a unified interface to the students. The students can access 
the lab exercises and OpenEdx course materials simultaneously, leading to a more 
interactive and efficient learning experience. 

4. High-Performance Server and Docker Containers: The laboratory environment is hosted 
on a high-performance Linux server. The server uses Docker, a platform-as-a-service 
product that delivers software in packages known as containers. These containers are 
temporary instances that contain all the necessary elements to run the desired application, 
in this case, the laboratory exercises. Each student gets their Docker container, providing 
an isolated environment for their work. This ensures that students' experiments do not 
interfere with each other and can be scaled as per the needs. 

5. Apache Guacamole VNC: Apache Guacamole's VNC is used to allow users to interact with 
their Docker containers. It provides a remote desktop interface, directly accessible from a 
web browser, eliminating the need for users to install any software or navigate complex 
network configurations. 

6. Automatic Exercise Checking Script: The grading of exercises is automated through a 
script. Upon completion of an exercise, this script packages the student's work into a tar 
file and computes its MD5 checksum for verification purposes. The tar file is then removed, 
ensuring that only the checksum remains for assessment. This setup allows for efficient, 
scalable, and consistent grading of student work. 

7. Integration with Moodle and OpenEdx Platforms: The entire laboratory setup is 
designed to connect seamlessly with Moodle and OpenEdx learning management systems. 
These integrations allow us to deliver laboratory exercises and feedback directly through 
these platforms, making it easier for students to access, complete, and receive feedback 
on their work. This setup provides a comprehensive learning experience to the students, 
right from accessing the course material to getting their exercises evaluated. 

This setup, with a combination of Apache Proxy Server, OpenEdx, Guacamole, Docker, and 
integration with popular learning management systems, ensures a scalable, accessible, and 
interactive environment for students to carry out their laboratory experiments remotely. The focus 
on security, usability, and seamless integration provides a superior learning experience for 
students. 
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7.2 Gaining remote access 

1. Login:  First, navigate to the OpenEdx platform using the domain name openedx.fila-lab.de 
in your web browser. You will be greeted by a login screen. Enter your credentials to 
proceed. If you don't have an account yet, you'll need to create one. 

 
Figure 7-3. Course Dashboard: A wide range of courses are at your disposal. Select one to proceed. 

2. Course Selection: After logging in, you will be directed to the main dashboard, where you 
can see all the available courses. Browse through the list and select the course you want 
to participate in. 

Figure 7-2. OpenEdx Login Screen: Enter your 
credentials to begin your learning journey. 
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3. Sections and Subsections: After selecting a course, you will be presented with the course 
outline. This includes various sections and subsections, each representing different topics 
and subtopics within the course. Navigate through these sections and subsections to find 
the laboratory exercises. 

4. Accessing Laboratory Exercises: The laboratory exercises are embedded within the course 
using an iframe. This iframe contains the Apache Guacamole VNC interface, which provides 
remote access to a Linux environment where the exercises are to be performed. Click on 
the specific laboratory exercise, and it will be loaded within the iframe. 

Please remember to save your work regularly while performing the exercises to avoid data loss. 
Once you have completed your exercise, it will be automatically graded and the feedback will be 
available on the OpenEdx platform. Enjoy your learning experience! 

 

 

 
Figure 7-4: Interactive Laboratory Exercise: Perform your exercise in the embedded Linux 

environment through the Apache Guacamole VNC interface. 
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7.3 Laboratory experiment 1: Accessing the Command Line  
This laboratory experiment introduces students to the Bash shell, a popular command-line 
interpreter for Unix-based systems. In the scope of this lab, students will execute a variety of 
commands, manipulate text files, and experience the efficiency of Bash command history 
shortcuts. 
7.3.1 Experimental setup 

The experiment is conducted on a Linux environment, accessed remotely via Apache Guacamole, 
integrated into the OpenEdx platform. Students log in to the environment as 'praktikum' with the 
same as the password, allowing them to execute commands in the Bash shell. 
7.3.2 Goals of the experiment 

The objectives of this experiment are to: 

1. Familiarize students with the Bash shell command line. 

2. Execute commands to identify file types and display parts of text files. 

3. Learn and practice using Bash command history shortcuts for command repetition and 
modification. 

7.3.3 Experimental results 

Upon completion of this experiment, students will gain: 

1. A clear understanding of how to navigate the Bash shell command line. 

2. Experience with executing commands to manipulate and inspect files. 

3. Proficiency in using Bash command history shortcuts to repeat and modify previous 
commands. 

4. After each step, students can input their command results into the lab's interactive grader 
for immediate feedback and validation. 

 
7.3.4 Task 

Step 1: Login 

Firstly, log in to Apache Guacamole using the credentials: username - 'student', password - 
'student'. Then, log in to the workstation with the credentials: username - 'praktikum', password - 
'praktikum'. 
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Step 2: Display Current Date and Time 

Execute the following command in the Bash shell to display the current time and date: 

date 

Step 3: Display Current Time in 12-Hour Clock Format 

To display the current time in a 12-hour clock format, use the following command: 

date +%r 

Step 4: Identify File Type 

Determine the file type of /home/praktikum/zcat and whether it is readable by humans using: 

file /home/praktikum/zcat 

Step 5: Display the Size of the File 

Use the wc command along with Bash shortcuts to display the size of zcat: 

wc -c /home/praktikum/zcat 

Step 6: Display the First 10 Lines of the File 

To display the first 10 lines of zcat, execute: 

head /home/praktikum/zcat 

Step 7: Display the Last 10 Lines of the File 

Display the last 10 lines of the zcat file using the following command: 

tail /home/praktikum/zcat 

Step 8: Repeat the Previous Command 

To repeat the previous command exactly with three or fewer keystrokes, use Bash history 
command: 

!! 

Step 9: Display the Last 20 Lines of the File 

Edit the previous command to display the last 20 lines of the file with a minimal number of 
keystrokes: 

!-1 -n 20 

Step 10: Run the date +%r Command Again 

Use the shell history to run the date +%r command again: 

!date 
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Please remember, after each step, to input your command results into the fields provided for 
verification. This will help you ensure the correctness of your work. 

Remember to follow each step carefully and good luck with your experiment! 

 

7.4 Laboratory experiment 2: Managing Files from the 
Command Line 

In this lab, you will efficiently create, move, and remove files and directories by using the shell and 
a variety of file name matching techniques. 

 
7.4.1 Experimental setup 

1. Log into Apache Guacamole as student using 'student' as the password. 

2. Log into the workstation as 'praktikum' using 'praktikum' as the password. 

 
7.4.2 Goals of the experiment 

The aim of this experiment is to: 

    1. Familiarize you with file and directory manipulation from the command line. 

    2. Teach you to use wildcards for locating and handling files. 

 
7.4.3 Task 

1. Before you create project files, use the mkdir command with brace expansion to create 
empty project planning documents in the /tmp/answer/Documents/project_plans 
directory. (Hint: if /tmp/answer/Documents does not exist, the -p option for the mkdir 
command will create it.) Create two empty files in the 
/tmp/answer/Documents/project_plans directory: season1_project_plan.odf and 
season2_project_plan.odf . 

2. Create sets of empty practice files to use in this lab. If you do not immediately recognize 
the intended shell expansion shortcut, use the solution to learn and practice. Use shell tab 
completion to locate file path names easily. Create a total of 12 files with names 
tv_seasonX_episodeY.ogg . Replace X with the season number and Y with that season's 
episode, for two seasons of six episodes each. 
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3. As the author of a successful series of mystery novels, your next bestseller's chapters are 
being edited for publishing. Create a total of eight files with names mystery_chapterX. 
Replace X with the numbers 1 through 8. 

4. Use a single command to create two subdirectories named season1 and season2 under 
the Videos directory, to organize the TV episodes. 

5. To check the task [student@workstation ~]$ bash /tmp/check.sh /tmp/answer/ 

6. Paste the output of the script into the text box  

7. Move the appropriate TV episodes into the season subdirectories. Use only two 
commands, specifying destinations using relative syntax. 

8. Create a 2-level directory hierarchy with a single command to organize the mystery book 
chapters. Create my_bestseller under the Documents directory, and chapters under the 
new my_bestseller directory. 

9. Create three more subdirectories directly under the my_bestseller directory using a single 
command. Name these subdirectories editor , changes , and vacation . The -p option 
(create parents) is not needed because the my_bestseller parent directory already exists. 

10. Change to the chapters directory. Move all book chapters to the chapters directory, which 
is now your current directory. What is the simplest syntax to specify the destination 
directory? 

11. To check the task: bash /tmp/check.sh /tmp/answer/ 

12. Paste the output of the script into the text box  

13. You sent the first two chapters to the editor for review. Move only those two chapters to 
the editor directory to avoid modifying them during the review. Starting from the chapters 
subdirectory, use brace expansion with a range to specify the chapter file names to move 
and a relative path for the destination directory. 

14.  While on vacation you intend to write chapters 7 and 8. Use a single command to move 
the files from the chapters directory to the vacation directory. Specify the chapter file 
names using brace expansion with a list of strings and without using wildcard characters. 

15. Change your working directory to /tmp/answer/Videos/season2 , and then copy the first 
episode of the season to the vacation directory. 

16. Use a single cd command to change from your working directory to the 
/tmp/answer/Documents/my_bestseller/vacation directory. List its files. Use the previous 
working directory argument to return to the season2 directory. (This will succeed if the last 
directory change with the cd command was accomplished with one command rather than 
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several cd commands.) From the season2 directory, copy the episode 2 file into the 
vacation directory. Use the shortcut again to return to the vacation directory 

17. To check the task:  bash /tmp/check.sh /tmp/answer/ 

18. Paste the output of the script into the text box 

19. The authors of chapters 5 and 6 want to experiment with possible changes. Copy both files 
from the /tmp/answer/Documents/my_bestseller/chapters directory to the 
/tmp/answer/Documents/my_bestseller/changes directory to prevent these changes from 
modifying original files. Navigate to the  /tmp/answer/Documents/my_bestseller directory. 
Use square-bracket pattern matching to specify which chapter numbers to match in the 
filename argument of the cp command. 

20. Change your current directory to the changes directory. Use the date +%F command with 
command substitution to copy mystery_chapter5 to a new file which includes the full date. 
The name should have the form mystery_chapter5_YYYY-MM-DD. Make another copy of 
mystery_chapter5 , appending the current time stamp (as the number of seconds since the 
epoch, 1970-01-01 00:00 UTC) to ensure a unique file name. Use command substitution 
with the date +%s command to accomplish this. 

21. After further review, you decide that the plot changes are not necessary. Delete the 
changes directory. If necessary, navigate to the changes directory and delete all the files 
within the directory. You cannot delete a directory while it is the current working directory. 
Change to the parent directory of the changes directory. Try to delete the empty directory 
using the rm command without the -r recursive option. This attempt should fail. Finally, 
use the rmdir command to delete the empty directory, which will succeed. 

22. When the vacation is over, the vacation directory is no longer needed. Delete it using the 
rm command with the recursive option. Return to /tmp/answer directory. 

23. Create a hard link to the 
/tmp/answer/Documents/project_plans/season2_project_plan.odf file named 
/tmp/answer/Documents/backups/season2_project_plan.odf.back . A hard link will 
protect against accidental deletion of the original file and will keep the backup file 
updated as changes are made to the original. 

24. On workstation, run the check.sh script to confirm success on this lab. $ cd /tmp/ ; bash 
check.sh answer/ 

25. Paste the output of the script into the text box  
7.4.4 Experimental results 

You should be able to use wildcards to locate and manipulate files. 
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7.5 Laboratory experiment 3: Editing Files Using Vim's Visual 
Mode  

In this lab, you'll learn how to simplify repetitive edits using Vim's visual mode. You'll manipulate 
a file containing a list of selected files and tabular data, which will help you become more familiar 
with the required utilities and techniques for file editing. 

 
7.5.1 Experimental setup 

Log into the server as 'student' and begin in the student's home directory. 

 
7.5.2 Goals of the experiment 

The objective of this experiment is to enhance your skills in: 

1. Redirecting output to a file or program. 

2. Editing text files from the shell prompt using Vim. 

3. Editing text files with a graphical editor. 

 
7.5.3 Experimental results 

At the completion of this lab experiment, you should have achieved the following outcomes: 

1. File Redirection: You should have successfully redirected the long listing of all content in 
the student's home directory into a file named editing_final_lab.txt. This redirection helps 
in logging the directory structure for future reference or for tracking changes over time. 

2. Vim Editing: You should be able to demonstrate your proficiency in using Vim's visual 
mode. This was achieved by editing editing_final_lab.txt and manipulating lines and 
columns within the file. Your skills in using the line-based, single-line, and block selection 
modes in Vim should have been honed. 

3. File Manipulation: By removing specific lines and columns from the file, you have 
demonstrated an understanding of how to selectively manipulate file content. This 
includes modifying file permissions and removing certain rows. 

4. File Backup and Emailing: You created a backup of your file using a timestamp to ensure 
a unique filename. You then emailed the contents of this file to 'student'. This showcases 
your ability to safeguard your work and to share your work via email. 
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5. File and Process Appending: You added a dashed line to the file to denote the beginning 
of new content. Subsequently, you appended a process listing to the file and validated its 
presence at the end of the file. This demonstrates your ability to dynamically add content 
to a file, including system process information. 

Overall, these outcomes signify that you've acquired valuable skills in redirecting output to a file, 
editing text files from the shell prompt using Vim, and using an editor in a graphical desktop 
environment to modify file content. 
7.5.4 Task 

Log in to workstation as student using student as the password. 

On workstation, run the edit-review start command. 

[student@workstation ~]$ lab edit-review start 

1. Redirect a long listing of all content in the student's home directory, including hidden 
directories and files, into a file named editing_final_lab.txt .  

2. Edit the file using Vim. 

3. Remove the first three lines. Enter line-based visual mode with uppercase V. 

4. Remove columns on the first line. Enter visual mode with lowercase v. Lowercase v selects 
characters on a single line only. The columns after -rw- should be deleted.  

5. Remove columns, and the subsequent dot (".") on the remaining lines. Use the visual block 
mode. Enter visual block with the control sequence Ctrl+V. Use this key sequence to select 
a block of characters on multiple lines. The columns after -rw-should be deleted.  

6. Use visual block mode to remove the fourth column. 

7. Use visual block mode to remove the time column, leaving the month and day on all lines. 

8. Remove the Desktop and Public rows. Enter visual line mode with uppercase V. 

9. Use the :wq command to save and exit the file. Make a backup, using the date (in seconds) 
to create a unique file name. 

10. Append a dashed line to the file. The dashed line should contain at least 12 dashes 

11. Append a directory listing of the Documents directory. List the directory listing on the 
terminal and send it to the editing_final_lab.txt file with one command line. 

12. Confirm that the directory listing is at the bottom of the lab file. 
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7.6 Conclusion 
In conclusion, this lab exercise provided a hands-on experience with fundamental operations in 
Unix/Linux command line environments, including redirecting output to a file, editing text files 
using Vim, and utilizing a graphical editor for altering file content. 

The practice of using Vim's visual modes allowed for enhanced understanding and skill 
development in manipulating file data effectively. The selective removal of lines and columns 
within a file served as an example of how file content could be manipulated for specific needs, 
such as refining file permissions or modifying specific rows. 

Moreover, the experiment emphasized the importance of good file management practices, 
particularly in creating backups and ensuring files are shared securely via email. 

Appending a process listing to a file demonstrated how system process information could be 
logged and accessed, underlining the versatility of Unix/Linux commands in gathering system 
insights. 

Ultimately, the lab has equipped the participants with essential command line skills that will be 
beneficial in a variety of scenarios, particularly in system administration, software development, 
and data management. These skills are not only crucial in dealing with Unix/Linux environments 
but also are transferrable to other computing contexts, which makes them valuable in today's 
increasingly digital and data-driven world.  
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Laboratory Manual  
Automation System Control Laboratory 
- Dual temperature control system  
- Closed loop control of dual temperature control system 
- Wind levitation system 
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8 Automation System Control Laboratory 
 

8.1 Introduction 
The laboratory experiments are intended for students to learn basic and advanced feedback 
theory concepts. The exercises cover basic feedback design techniques with graphical tools and 
modern design approaches with more complex and sophisticated tools. All the experiments can 
be executed remotely over the web graphic user interface. The developed web interface based on 
HTML and JavaScript can be easily portable to the different MOOC platforms and used for distance 
learning.  

This document describes the exercises on two different setups, where the goal is to design 
feedback control algorithms and perform activities remotely. The basis of both experiments is a 
connection bridge developed on the ARM32F7 controllers. The main board has two possible links 
to share the data over the network. The first link is based on serial communication, where the data 
is collected from the experiment and provided to the server, which ports the data to the web. A 
second connection is based on the LWIP stack, which enables a direct connection over the TCP/IP 
protocol. All data can be provided over both connection links and are managed to speed up the 
package transportation and multi-platform connection.   

The main board of the experiment collects the data from the existing system and processes the 
data from the sensors. Safety and connectivity are ensured with a multilevel watchdog timer, which 
distinguishes between non-activity from the user and safety protocols to maintain the system's 
safe operation. If the system detects the user's absence of network activity, restart the connection 
and re-establish a new link to the other user. The safety protocols of the experiment activity 
maintain the proper functionality and avoid unwanted malfunctions in the system. 

The exercises are divided into three subsections, where each previous experiments are starting 
point for the next practice. All the activities are closely related to the feedback control theory. 
Feedback control theory is a branch of engineering and mathematics that analyzes and designs 
systems governed by feedback loops. It provides a framework for understanding and 
manipulating the behaviour of dynamic systems to achieve desired objectives. Feedback control 
theory aims to design controllers that stabilize the system, reject disturbances, and achieve desired 
performance criteria such as stability, accuracy, speed, and robustness. The design process 
typically involves mathematical modelling of the system, analyzing its behaviour, and applying 
control techniques to achieve the desired objectives. Feedback control theory finds applications 
in various fields, including robotics, aerospace, automotive, process control, and electronics. It 
enables engineers to design control systems that can effectively control and optimize the 
behaviour of dynamic systems. 
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8.2 Laboratory experiment 1 - Dual Temperature Control 
System 

The laboratory experiment is based on a dual heater system. A dual temperature control system 
comprises two power transistors and two temperature sensors. A dual temperature control system 
is a specific feedback control system that controls two different temperatures simultaneously. It is 
commonly employed in applications where maintaining two different temperatures is critical, such 
as in industrial processes, environmental control systems, or HVAC (Heating, Ventilation, and Air 
Conditioning) systems.  

A dual temperature control system typically has two separate control loops, each responsible for 
regulating one temperature. Designing and tuning a dual temperature control system involves 
setting appropriate control parameters for each temperature loop to achieve stable and accurate 
temperature regulation. It also requires considering any interactions or cross-couplings between 
the two control loops to ensure proper coordination and prevent interference. 

The dual temperature control system can provide precise and independent control over two 
different temperatures, allowing optimal operation and energy efficiency in applications where 
maintaining specific temperature conditions is crucial. 

The essential components of the system include: 

• Sensors: Two temperature sensors measure the temperatures of the two different zones 
or processes. These sensors provide feedback signals to the control system. 

• Controllers: Two individual controllers are employed to process the feedback signals and 
generate the appropriate control actions for each temperature. Each controller compares 
the measured temperature with a desired setpoint and calculates the necessary control 
output. 

• Actuators: Two actuators adjust the inputs to control each temperature separately. These 
actuators could be heating elements, cooling units, valves, or other devices that can 
manipulate the temperature. 
 

8.2.1 Experimental setup 

A dual temperature control system is developed as a small MIMO system, which is portable and 
easy to use. The system does not require additional laboratory equipment. For the heaters, two 
power transistors, TIP31 are used. The resistor does not limit the current to the base port of the 
transistor, and a larger current is provided through the collector and emitter, therefor the heat 
dissipation is increased. On each power transistor, the LM60 temperature sensor is attached. The 
sensor has an analogue output, and the temperature scaling is processed on the microcontroller 
board. The main three components of the system are: 
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• Sensors: Two analogue sensors LM60. 
• Controllers: The controller is implemented in the main timer-interrupt routine with a time 

tap of 1 second.   
• Actuators: Two power transistors TIP31 driven with the PWM signal from the 

microcontroller board.  

The experiment is presented in Figure 8-1, and the block schematic of the dual temperature 
control system is given in Figure 8-2.  

 

    

  

 

 

 
8.2.2 Goals of the experiment 

Identify the parameters of the mathematical model. Identifying the parameters of the model is 
essential for the control design procedure. The mathematical modelling is based on the physics 
relation given below. The energy balance equation is given as: 

 

Temperature 
sensors  

 

Heater TIP31C 

Q1-input1 

Q2-input2 

T1-temperature1 

T2-temperature2 

Cross-coupling 

Figure 8-1. A dual temperature control system main board with microcontroller Nucleo F767ZI.  

Figure 8-2. Block schematic of a dual temperature control system. 
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For the first input Q1→T1,  

 

with the coupling parameters 

 

For the second input Q2→T2, 

 

with the coupling parameters 

 

The equations are complex, and most parameters are hard to determine. Most of the equation 
elements have a minor influence on the final temperature value and can be neglected. In this case, 
the approximation of the first-order transfer function is used.  
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Where τ  and k are time constant and gain separately defined as, 
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As presented in Figure 8-3, both parameters can be assigned from the system step response. 
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Figure 8-3. Step response of the system.  

 
8.2.3 Experimental results 

In the web-GUI (Figure 8-4), adjust the open loop slider to level 40 and read the step response of 
the system (given in Figure 8-5 for Q1→T1). 

 
Figure 8-4. Web-GUI for Dual temperature control system. 

Step response of the real system on channel one (Q1→T1) close view, 
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Figure 8-5. Step response of the system  Q1->T1. 

Assigned data from the step response in Figure 8-5: 

( ) ( )
( )

1

1

0.82
165.2

0.85 0.0049
165.2 1 0.0061

k
s

T s
H s

Q s s s

τ
=
=

= = =
+ +

 

Model validation is presented in Figure 8-6, close view. 

 
Figure 8-6. Model validation  Q1->T1. Blue line: a real measurement, yellow line: simulated model. 
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8.3 Laboratory experiment 2 - Closed-loop Control 
The laboratory experiment aims to design a feedback structure for the dual temperature heater 
system described in experiment 1.  
8.3.1 Experimental setup 

In experiment 2, the dual temperature system is used. In this case, the negative feedback (Figure 
8-7) is employed. 

( )lagC s ( )H s
( )Y s( )V s ( )U s( )E s ( )U s

−

 
Figure 8-7. Closed-loop system. 

8.3.2 Goals of the experiment 

The experiment aims to design a feedback control loop with a lag compensator. A lag 
compensator is a feedback control system designed to improve the stability and performance of 
a system. It is often used to shape the frequency response of a system to achieve desired 
characteristics such as better transient response, reduced overshoot, and improved stability 
margins. The purpose of a lag compensator is to introduce additional phase lag to the system's 
open-loop transfer function, thereby reducing the system's gain at high frequencies while 
maintaining or increasing the gain at low frequencies. This helps to mitigate issues like instability 
or poor response time that may occur in the original system. The transfer function of the lag 
compensator is,  
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Here g , b , a  are compensator gain, zero, and pole, respectively. Designing a lag compensator 
involves analysing the system's open-loop transfer function and evaluating the desired stability 
and performance criteria. 
8.3.3 Experimental results 

The lag compensator regarding the system transfer (exercise 1) function is designed to 
compensate the pole of the system. The compensator pole located close to the origin achieves 
transient response behaviour and tracking capability.  

The transfer function of the system, 
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The root locus of the transfer function ( )H s  is presented in Figure 8-8.  

 
Figure 8-8. Root locus of the transfer function H(s). 

Preselect compensator regarding latter design guidelines (Figure 8-9).  
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Figure 8-9. Root locus of the transfer function H(s) with lag compensator Clag(s). 
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Experimental results are given in Figure 8-10, for selected compensator and reference values.  

 
Figure 8-10. Real-time experiment with lag compensator, web-GUI. 

 

8.4 Laboratory experiment 3 - Wind Levitation System 
The aim of experiment 3 is t design the feedback structure that stabilizes the floater in the wind 
tube at a certain height. Height stabilization in the context of a wind tube typically refers to a 
device or mechanism designed to maintain stability and control the position of an object within 
the wind tunnel. In wind tunnel testing, a wind tube is used to simulate the effects of airflow on 
an object or model under controlled conditions. The object or model is typically placed within the 
wind tunnel, and the air is blown through the tunnel at various speeds to study the dynamic 
behaviour of the object. The specific design and implementation of a stabilizing floater in a wind 
tunnel can vary depending on the object being tested, the desired level of control, and the 
capabilities of the wind tunnel facility. 
8.4.1 Experimental setup 

The Wind levitation system experiment comprises the wind tube floater and the fan. The fan is 
placed under the wind tube with an attached sensor to measure the accurate height of the floater. 
Figure 8-11 presents the experiment system. 
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Figure 8-11. Wind levitation experiment system. 

All the measurements, data processing, and communication task proceeded on board 
NUCLE767ZI. The communication protocol is the same as in the previous Dual temperature control 
system experiment. The main three components of the system are: 

• Sensors: Time to Fligt (ToF) sensor VL53L0X. 
• Controllers: The controller is implemented in the main timer-interrupt routine with a time 

tap of 1 second.   
• Actuators: Fan EDF Ducated 70mm, 3000Kv brushless motor.   

The hardware structure and connection between the system are presented in Figure 8-12.  
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Figure 8-12. Hardware connection of the Wind levitation system. 

 
8.4.2 Goals of the experiment 

Design a PID controller for stabilizing the floater at desired height inside the wind tube. Use the 
following mathematical model. 

 

 

The transfer function of the system is, 

Second Newton law of floater motion, 

Second-order differential equation, 
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The PID controller is designed for the transfer function ( )
( )

height

fan

H s
F s . In the feedback structure 

presented in Figure 8-13, the gravity constant g  can be compensated with additional input at the 
output of the PID controller.  
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Figure 8-13. Wind levitation feedback structure. 

The transfer function of the PID controller is: 
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where pK , iT , dT   are proportional gain, integrator, and derivative constant, respectively.  

For the controller, the design uses a function 'pidtool' in Matlab software or a similar PID-tuner 
package (Python script, pidtuner.com, etc.). Tune the PID controller with the given closed-loop 
performance characteristics: 

• Overshoot 15%≤ . 
• Settling time 32s≤ . 
• Rise time 25s≤ . 
• Steady-state error 2%≤ . 

 
8.4.3 Experimental results 

The tuned controller parameters are, 
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The PID controller is: 
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The tuned controller is implemented over web-GUI for the Wind levitation system (Figure 8-14).   

 
Figure 8-14. Real-time experiment of Wind levitation feedback control with web-GUI. 

 

A close view of the experimental results is presented in Figure 8-15. 
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Figure 8-16. Real-time experiment of Wind levitation feedback structure with web-GUI. 

 

 

 

 

 

 

 

 

 

 
 

 



114 

 

8.5 Conclusion 
The presented laboratory exercise presents the capability of the developed system. All the 
practices can be executed remotely, and the data are accessible to the student in real time. Such 
a system can be ported into vast platforms and web pages. The platform can be used online or 
offline. All the presented exercises are pilot examples for students with basic knowledge of the 
control theory and system or first level of study. The exercises are developed gradually.  

The first exercise is an example of how to determine the transfer function directly from the 
measurement. Many industrial control applications (temperature, pressure, flow systems) can be 
described with first or second order differential equations. With the given exercises, the student 
can learn how to deal with the transfer function coefficient efficiently before starting with the 
controller design without a complex modelling procedure and analytical approaches. The second 
exercise is related to the first. The derived model from the first exercise is used as the plant for 
the feedback system design with the lag compensator. The lag compensator is designed to 
improve the tracking capability of the heater system. The design procedure uses the root-locus 
approach, where the dominant pole of the system is compensated with zero of the lag 
compensator. The compensator pole is placed close to the origin, which lowers the steady state 
error and improves the feedback system's tracking capability. The third exercise involves the 
design of the feedback system for unstable systems. The stability issue is essential in the design 
procedure, whereby the performance criteria must be met. The design introduced a non-classical 
feedback structure with direct compensation of the gravity constant. The Wind levitation system 
is an example of the many practical systems such as hovering drones, helicopter height 
stabilization, air pressure stabilization in the air piping, air suspension etc.  

For further development, the exercises can be developed for students with advanced knowledge 
and researchers. With the capability of remote execution, there is no need for additional hardware 
or laboratory equipment. For the advanced exercises, the model predictive control (MPC) can be 
introduced for the Dual temperature control system or nonlinear controllers such as Sliding mode 
control (SMC) or Backstepping design for the Wind levitation system.  
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