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Static Program Analysis

Reasoning statically about behavior of a program without executing it
• compile-time analysis
• exhaustive, considers all possible executions under all possible environments 

and inputs

The algorithmic discovery of properties of program by inspection of the 
source text

Manna and Pnueli, “Algorithmic Verification”

Also known as static analysis, program verification, formal methods, etc.

Automated

Analysis

Correct

Incorrect

Program

Specification
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Turing, 1936:  “undecidable”
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Undecidability

The halting problem

• does a program P terminates on input I

• proved undecidable by Alan Turing in 1936

• https://en.wikipedia.org/wiki/Halting_problem

Rice’s Theorem

• for any non-trivial property of partial functions, no general and effective 
method can decide whether an algorithm computes a partial function with that 

property

• in practice, this means that there is no machine that can always decide 
whether the language of a given Turing machine has a particular nontrivial 

property

• https://en.wikipedia.org/wiki/Rice%27s_theorem

https://en.wikipedia.org/wiki/Halting_problem
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Living with Undecidability

“Algorithms” that occasionally diverge

Limit programs that can be analyzed
• finite-state, loop-free

Partial (unsound) verification
• analyze only some executions up-to a fixed number of steps

Incomplete verification / Abstraction
• analyze a superset of program executions 

Programmer Assistance
• annotations, pre-, post-conditions, inductive invariants
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[Clarke and Emerson, 1981]                      [Queille and Sifakis, 1982]

Model Checking

Abstract Interpretation

[Cousot and Cousot, 1977 ]

Symbolic Execution

[King, 1976 ]

Automated Software Analysis
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(Temporal Logic) Model Checking

Automatic verification technique  for finite state 

concurrent systems.

• Developed independently by Clarke and 

Emerson and by Queille and Sifakis in early 

1980’s.

• ACM Turing Award 2007

Specifications are written in propositional 

temporal logic. (Pnueli 77)

• Computation Tree Logic (CTL), Linear Temporal 

Logic (LTL), …

Verification procedure is an intelligent exhaustive 

search of the state space of the design

• Statespace explosion
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Model Checking since 1981

1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998  Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

105

10100

101000

1990s: Formal Hardware 
Verification in Industry:
Intel, IBM, Motorola, etc.
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1981 Clarke / Emerson: CTL Model Checking
Sifakis / Quielle

1982 EMC: Explicit Model Checker
Clarke, Emerson, Sistla

1990 Symbolic Model Checking
Burch, Clarke, Dill, McMillan

1992 SMV: Symbolic Model Verifier
McMillan

1998  Bounded Model Checking using SAT
Biere, Clarke, Zhu

2000 Counterexample-guided Abstraction Refinement
Clarke, Grumberg, Jha, Lu, Veith

CBMC

SLAM,
MAGIC,
BLAST, …

Model Checking since 1981
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started PhD in MC at UofT

multi-valued model checking

2000

2006 SMC Yasm: safety, liveness, 
multi-valued abstraction for MC

2010 Boxes abstract domain (SAS’10)

2012 UFO: MC + AI: SAS’12

2015 SeaHorn: MC (Spacer) and AI (Crab)

SV-COMP

BLAST

VMCAI’06

x + 2y < 10

z < 10

10

decision
node

true
terminal

false
edge

false
terminal

true
edge

VMCAI
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Classical Model Checking* [EC81,QS82]

Not decidable!
To enable automation, Model Checking restricts the problem:
Model: Finite-state reactive systems
Specification: Propositional temporal logics

Formal 
specification

Does the system satisfy 
the specification ?

Model of a 
system !

*Clarke, Emerson, and Sifakis won the 2007 Turing award for their contribution to MC
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Finite State Reactive Systems - Examples

Hardware designs
Controllers (elevator, traffic-light)
Communication protocols (when ignoring the message content)
High level (abstracted) description of infinite state systems
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Model of a system  
Kripke structure / transition system
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Model of a system (cont.)  
Kripke structure / transition system

States labeled by 
atomic propositions 
(AP)
• “x=0”, 
• “Printer is busy”, 
• “process in critical 

section”, 
• …

Reactive systems:

Set of states is finite,

But computations are infinite

p

q

p,q

p,q

q

p

p

p,q
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Models: Kripke Structures

Conventional state machines
• K = (V, S, s0, I , R)
• V is a (finite) set of atomic 
propositions
• S is a (finite) set of states
• s0 Î S is a start state
• I: S ® 2V is a labelling function that maps 

each state to the set of propositional 
variables that hold in it 
– That is, I(S) is a set of interpretations 

specifying which propositions are true 
in each state

• R Í S ´ S is a transition relation 

req req,
busy

busy

s0

s2

s1

s3
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From Programs to Kripke Structures

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     x =1;
6:

Program

pc x y …

3 1 3 …

State

pc x y …

2 1 2 …

Transition
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From Circuits to Kripke Structures

a
b c 000 010

111101

100

001 011

110

States = valuations to variables a,b,c
à 8 states:  000,001,…

Transitions:

a,b: inputs, change arbitrarily

c: state variable, updated according to circuit   

c’ <-> (a ∧ b) ∨ c
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Modal Logic

Extends propositional logic with modalities to qualify propositions
• “it is raining” – rain
• “it will rain tomorrow” –�rain
– it is raining in all possible futures

• “it might rain tomorrow” – ⃟rain
– it is raining in some possible futures

Modal logic formulas are interpreted over a collection of possible worlds
connected by an accessibility relation

Temporal logic is a modal logic that adds temporal modalities: next, 
always, eventually, and until
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Linear Time
• Every moment has a unique successor
• Infinite sequences (words)
• Linear Time Temporal Logic (LTL)

Branching Time
• Every moment has several successors
• Infinite tree
• Computation Tree Logic (CTL)

• Temporal Logics
− Express properties of event orderings in time

Temporal Logic
[A. Pnueli, FOCS 1977]
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Propositional temporal logic

AP – a set of atomic propositions

Temporal operators:
Gp
Fp
Xp
pUq

Path quantifiers: A for all path
E there exists a path
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LTL/CTL/CTL*

LTL – of the form Aψ
ψ - path formula, contains no path quantifiers

but any nesting of temporal operators
interpreted over infinite computation paths

CTL – path quantifiers and temporal operators appear in 
pairs: AG, AU, AF, AX, EG, EU, EF, EX
interpreted over infinite computation trees

CTL* - Allows any combination of temporal operators and 
path quantifiers. Includes both LTL and CTL
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Illustration of CTL Semantics

EFp : AFp :

EGp : AGp :

“exists 
reachable 
state s.t.”

“all 
reachable 
states….”
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CTL formulas:
mutual exclusion:   AG ¬( cs1 ∧ cs2)
non starvation:  AG (request ⇒ AF grant)
“sanity” check: EF request
Communication protocols: A (¬get-msg) U send-msg

LTL formulas:
fairness:  A(GF enabled ⇒ GF executed)
A(x=a ∧ y=b ⇒ XXXX z=a+b)

Properties in Temporal Logic - Examples
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LTL/CTL/CTL*

CTL LTL

CTL*

A FG p

Along every path,
p holds globally 

from some point

EG p

There is a path where
p holds globally

ACTL / ACTL*: The universal fragments of CTL/CTL* with only 
universal path quantifiers

2O (|φ|) × O(|M|)O(|φ|×|M|)

2O (|φ|) × O(|M|)
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Some Statements To Express

An elevator can remain idle on the third floor with its doors closed 
• EF (state=idle Ù floor=3 Ù doors=closed)

When a request occurs, it will eventually be acknowledged
• AG (request ⇒ AF acknowledge)

A process is enabled infinitely often on every computation path
• AG AF enabled

A process will eventually be permanently deadlocked
• AF AG deadlock

Action s precedes p after q
• A[¬q U (q ∧ A[¬p U s])]

• Note:  hard to do correctly.  Use property patterns
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Expressing Properties in LTL

Good for safety (G ¬) and liveness (F) properties

Express:
• When a request occurs, it will eventually be acknowledged

– G (request ⇒ F acknowledge)

• Each path contains infinitely many q’s

– G F q
• At most a finite number of states in each path satisfy ¬q (or property q

eventually stabilizes)

– F G q
• Action s precedes p after q
– [¬q U (q ∧ [¬p U s])]
– Note:  hard to do correctly.  
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Safety and Liveness

Safety AG ¬bad
• e.g., mutual exclusion: no two 

processes are in their critical section at 
once

• if false then there is a finite cex
• Safety = reachability

Liveness AF good
• e.g., every request is eventually 

serviced
• if false then there is an infinite cex
• Liveness = termination 

* Every LTL formula can be decomposed into a safety property and a 
liveness property
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Model Checking

Temporal 
logic formula 

φ

MC

Finite state 
model !

M ⊨ φ M ⊭ φ
(+counterexample)
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Property types

Universal Existential
EG ¬bad

EF good

Safety AG ¬bad
• e.g., mutual exclusion: no two 

processes are in their critical section at 
once

• if false then there is a finite cex
• Safety = reachability

Liveness AF good
• e.g., every request is eventually 

serviced
• if false then there is an infinite cex
• Liveness = termination 

Combinations:  AG EF reset
“along every possible execution, in every state there is a possible 
continuation that will eventually reach a reset state”

A

A

r
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The Safety Verification Problem

Initial

Error

Is there a path from an initial to an error state?

Safe
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Mutual Exclusion Example 
[by Willem Visser]

N1  ® T1
T1 Ù S0 ® C1 Ù S1     
C1 ® N1 Ù S0

N2  ® T2
T2 Ù S0 ® C2 Ù S1
C2 ® N2 Ù S0

||

• Two process mutual exclusion protocol with shared semaphore

• Each process has three states

• Non-critical (N)

• Trying (T)

• Critical (C)

• Semaphore can be available (S0) or taken (S1) 

• Initially both processes are in the Non-critical state and
the semaphore is available --- N1 N2 S0
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Model for Mutual Exclusion

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

Specification:    M ╞AG EF (N1 ÙN2 Ù S0)
No matter where you are there is 
always a way to get to the initial state
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Mutual Exclusion Example

N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 ÙN2 Ù S0)
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N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 ÙN2 Ù S0)

Mutual Exclusion Example
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N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 ÙN2 Ù S0)

Mutual Exclusion Example
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N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 ÙN2 Ù S0)

Mutual Exclusion Example
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N1N2S0

C1N2S1
T1T2S0

N1T2S0T1N2S0

N1C2S1

T1C2S1C1T2S1

M ╞AG EF (N1 ÙN2 Ù S0)

No matter where you are there is 
always a way to get to the initial state

Mutual Exclusion Example
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Applications of Model Checking

§Emerging as an industrial standard for verification of hardware
designs: Intel, IBM, Cadence, Synopsis, …
§ HWMCC: annual competition  of academic tools (http://fmv.jku.at/hwmcc15/)

§Emerging as software verification: 
§ Industry: SLAM (Microsoft), F-Soft (NEC), …
§ Academic tools: CBMC, BLAST, UFO, CPAChecker, Smack, SeaHorn, …
§ SV-COMP: annual Software Verification competition  (http://sv-comp.sosy-

lab.org/2018/)
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Handbook of Model Checking (2017)
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Handbook of Model Checking (2017)

What Is Model Checking?
Temporal Logic and Fair Discrete Systems.
Modeling.
Binary Decision Diagrams.
Propositional SAT Solving.
Procedures for Satisfiability Modulo Theories.
Automata Theory and Model Checking.
The mu-calculus as a Formalism for Verification.
BDD-Based Symbolic Model Checking.
SAT-Based Model Checking.
Explicit-State Model Checking.
Partial-Order Reduction.
Abstraction and Abstraction-Refinement.
Compositional Reasoning.
Interpolation: Proofs in the Service of Model 
Checking.
Model Checking and Deduction.

Transfer of Model Checking Theory to Industrial 
Practice.
Property Specification Languages for Hardware.
Predicate Abstraction for Program Verification
Model Checking Concurrent Software.
Combining Model Checking and Data-Flow 
Analysis.
Combining Model Checking and Testing.
Symbolic Trajectory Evaluation.
Model Checking Procedural Programs.
Parameterized Systems.
Model Checking Security Protocols.
Games and Synthesis.
Symbolic Model Checking in Non-Bool. Domains.
Verification of Real-Time Systems.
Verification of Hybrid Systems.
Probabilistic Model Checking.
Model Checking and Process Algebra.
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State Explosion

How fast do Kripke structures grow? 
• Composing linear number of structures yields exponential growth!

How to deal with this problem?
• Symbolic model checking with efficient data structures (BDDs, SAT). 

– Do not need to represent and manipulate the entire model

• Abstraction 

– Abstract away variables in the model which are not relevant to the formula 
being checked 

– Partial order reduction (for asynchronous systems)

– Several interleavings of component traces may be equivalent as far as 
satisfaction of the formula to be checked is concerned

• Composition
– Break the verification problem down into several simpler verification 

problems
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SOFTWARE MODEL CHECKING
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Software  Model Checking

Yes/No 

Answer

Program

(e.g., C)

Correctness

property
Model of

the program

Model 

Extraction

Model 

Checker 

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     error();
6:

EF (pc = 5)
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A Magician’s Guide to Solving Undecidable 
Problems
Develop a procedure P for a decidable problem

Show that P is a decision procedure for the problem
• e.g., model checking of finite-state systems

Choose one of
• Always terminate with some answer (over-approximation)
• Always make useful progress (under-approximation)

Extend procedure P to procedure Q that “solves” the undecidable 
problem
• Ensure that Q is still a decision procedure whenever P is
• Ensure that Q either always terminates or makes progress
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http://seahorn.github.io
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Example: in test.c, check that x is always greater than or equal to y
test.c

SeaHorn command: SeaHorn result:

SeaHorn Usage
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SeaHorn at a glance

Publicly Available (http://seahorn.github.io)
state-of-state-of-the-art Software Model Checker

Industrial-strength front-end based on Clang and LLVM

Abstract Interpretation engine: Crab

SMT-based verification engine: Spacer

Bit-precise Bounded Model Checker and Symbolic Execution

Executable Counter-Examples

A framework for research and application of logic-based verification

http://seahorn.github.io)/


49 49

SeaHorn Workflow

Property 
Checker

SeaHorn

TestGen

Code Under 
Analysis 
(CUA)

Verification 
Problem (VP)

Bad + 
Counterexample 

(CEX)

Good + 
Verification 

Certificate (Cert)

Test harness 
(Test)

Property 
Spec

Verification 
Environment
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SeaHorn workflow components

Code Under Analysis (CUA)
• code being analyzed. Device driver, component, library, etc.

Verification Environment
• stubs for the environment with which CUA interacts
• e.g., libc, memcpy, malloc, OS system calls, user input, socket, file, …

Property Checker
• static instrumentation of a program with a monitor that indicates when an error 

has happened
• similar to dynamic sanitizers, but can use verifier-specific API to perform symbolic 

actions
• property spec is specific to a property checker

Verification Problem
• a prepared instance of program with embedded assertions, potentially simplified 

by abstracting away irrelevant parts of execution
Test Gen
• generates a test harness that includes all stubs and stimuli to guide CUA to a 

property failure discovered by the verifier
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Developing a Static Property Checker

A static property checker is similar to a dynamic checker
• e.g., clang sanitizer (address, thread, memory, etc.)

A significant development effort for each new property
• new specialized static analyses to rule out trivial cases

• different instrumentations have affect on performance

Developed by a domain expert
• understanding of verification techniques is useful (but not required)

• 3-6 month effort for a new property
– but many things can be reused between similar properties 

– e.g., memory safety, null-dereference, taint checking, use-after-free, etc.

SeaHorn property checkers:
• memory safety (out of bound uses, null pointer)

– ongoing work to improve scalability and usability

• taint analysis (being developed by Princeton, see CAV 2018)
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Architecture of Seahorn

Heap Abstraction

VC Generation

Precision:
- Integers
- Floating point
- Pointers
- Memory contents

   LLVM  Opt:
- SSA
- DCE
- Peephole 
- CFG Simplification

    Devirtualization
             and 
  Exception Lowering

Property Instr:
-Buffer overflow
-Null dereferences

 Slicing Assertions

   Front-end    Middle-end    Back-end

  C/C++   LLVM bitcode             Horn Clauses

PDR/IC3-based
Model checking

 Clang

Array Abstraction

Abstract Interp.
- Intervals
- DBMs
- LDDs

         BMC       
     bitvectors

Template-based  
     (Houdini)
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DEMO
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Types of Software Model Checking

Bounded Model Checking (BMC)

• look for bugs (bad executions) up to a fixed bound

• usually bound depth of loops and depth of recursive calls

• reduce the problem to SAT/SMT

Predicate Abstraction with CounterExample Guided Abstraction 
Refinement (CEGAR)

• Construct finite-state abstraction of a program

• Analyze using finite-state Model Checking techniques

• Automatically improve / refine abstraction until the analysis is conclusive

Interpolation-based Model Checking (IMC)

• Iteratively apply BMC with increasing bound

• Generalize from bounded-safety proofs 

• reduce the problem to many SAT/SMT queries and generalize from SAT/SMT 

reasoning
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SYMBOLIC MODEL CHECKING
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Symbolic model checking

Model is represented symbolically using Boolean formulas
Model checking is performed on the symbolic 
representation directly

BDD-based
• Use specialized data structure, Binary Decision Diagrams, to represent and 

manipulate sets of states
SAT-based
• Represent sets of executions using Boolean formulas in Conjunctive Normal 

Form (CNF)
• Use efficient SAT(isfiability)-solvers for reasoning
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Modeling with Propositional Formulas

a
b c

System is modeled as (V, INIT, T):

• V – finite set of Boolean variables
state = valuation to variables

• INIT(V) – describes the set of initial states
• T(V,V’) – describes the set of transitions

Atomic Propositions:
• p(V)  - describes the set of states satisfying p

V = {a, b, c}   
à 8 states:  000,001,…

T = (c’↔(a ∧ b) ∨ c)

INIT = ¬a ∧ ¬b 

p = ¬a∧ c

000 010

111101

100

001 011

110

001 011

p p
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Representing Sets as Prop. Formulas

[F]
states satisfying F , i.e. {! | ! ⊨ F }

F
propositional formula over V

[F1] ∩[F2] F1 ∧ F2

[F1] ∪[F2] F1 ∨ F2

[F] ¬ F 

[F1] ⊆ [F2] F1 ⇒ F2

i.e. F1 ∧ ¬ F2  unsatisfiable
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BDD-based model checking

Binary Decision Diagrams  ( BDDs ) 
are used to represent the transition relation and 
sets of  states. 
can handle systems with hundreds of Boolean 
variables.

[J.R. Burch, E.M. Clarke, K.L. McMillan, 
D.L. Dill, L.J. Hwang, LICS’90]

a
b

c

10

ROBDD
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Binary decision diagrams 
(BDDs)

Data structure for representing 
Boolean functions (propositional formulas)

Often concise in memory

Canonical representation

Most Boolean operations can be performed on 
BDDs in polynomial time in the BDD size

[Bryant, 1986]
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a
b

c

10

c

1 1

b
c

1 1

b

cc
b

0 11 0

a
b

cc

1 1 10

c c c

BDD for  f(a,b,c) = (a ∧ b ) ∨ c

Decision tree

a
b

c

10

ROBDD
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INIT

Forward Reachability Analysis with BDDs

Bad=¬
p

Does AG p hold?

R1=R0∨ Img(INIT,T)
R2=R1∨
Img(R1,T)

…  Rn=Rn-1∨ Img(Rn-

1,T)

All safety properties 
reduce to reachability 
analysis

Image(Q,T)(V’) = ∃V [Q(V) ∧ T(V,V’)] 

Boolean operations 
on BDDs T and Q
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Boolean Satisfiability (CNF-SAT)

Let V be a set of variables
A literal is either a variable v in V or its negation  ~v
A clause is a disjunction of literals
• e.g., (v1 || ~v2 || v3)

A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction 
of clauses
• e.g., (v1 || ~v2) && (v3 || v2)

An assignment s of Boolean values to variables satisfies a clause c if it 
evaluates at least one literal in c to true
An assignment s satisfies a formula C in CNF if it satisfies every clause 
in C
Boolean Satisfiability Problem (CNF-SAT):  
• determine whether a given CNF C is satisfiable
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Algorithms for SAT

SAT is NP-complete

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ‘01)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.

http://minisat.se/downloads/MiniSat.pdf
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S. A. Seshia 1 

Some Experience with SAT Solving 
Sanjit A. Seshia 

Speed-up of 2012 solver over other solvers 

1 

10 

100 

1,000 

Solver 

Sp
ee

d-
up

 (l
og

 s
ca

le
) 

Figure 4: SAT Solvers Performance
%labelfigure

20

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf  
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SAT - Milestones

year Milestone
1960 Davis-Putnam procedure

1962 Davis-Logeman-Loveland

1984 Binary Decision Diagrams 

1992 DIMACS SAT challenge

1994 SATO: clause indexing

1997 GRASP: conflict clause 

learning

1998 Search Restarts

2001 zChaff: 2-watch literal, VSIDS

2005 Preprocessing techniques

2007 Phase caching

2008 Cache optimized indexing

2009 In-processing, clause 

management

2010 Blocked clause elimination

2002 2010

Problems impossible 10 years ago are trivial today

Concept

Millions of 
variables from 

HW designs Courtesy Daniel le Berre



67 67

SAT(isfiability)-Solvers

SAT is NP-complete
• but existing tools can solve problems with millions of variables

DPLL (Davis-Putnam-Logemman-Loveland, ‘60)
• smart enumeration of all possible SAT assignments
• worst-case EXPTIME
• alternate between deciding and propagating variable assignments

CDCL (GRASP ‘96, Chaff ’01, MiniSat’03)
• conflict-driven clause learning
• extends DPLL with
– smart data structures, backjumping, clause learning, heuristics, restarts…

• scales to millions of variables
• N. Een and N. Sörensson, “An Extensible SAT-solver”, in SAT 2013.

http://minisat.se/downloads/MiniSat.pdf
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SAT-based Model Checking

Bounded Model Checking
• Is there a counterexample of k-steps

Unbounded Model Checking
• Induction and K-Induction (k-IND)
• Interpolation Based Model Checking (IMC)
• Property Directed Reachability (IC3/PDR)
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Bounded Model Checking for AG p

Given
•A finite transition system M= (V, I(V), T(V,V’))
•A safety property AG p, where p = p(V)

Determine
•Does M allow a counterexample to p of 
k transitions or fewer?

* BMC can handle all of LTL formulas

A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, Y. Zhu, DAC'99
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BMC for checking AG p with SAT

Unfold the model k times:
• U = T<0> ∧ T<1> ∧ ... ∧ T<k-1>

a
b

c

a
b

c

a
b

c...I<0> ¬p<k>

• Use SAT solver to check satisfiability of
I<0> ∧ U ∧ ¬p<k>

• If satisfiable:  the satisfying assignment describes a 
counterexample of length k

• If unsatisfiable: property has no counterexample of length k

Biere, et al. TACAS99

I<0> = I(V0)

T<i> = T(Vi,Vi+1)

p<k> = p(Vk)
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Bounded Model Checking

INIT

R1

¬p

INIT(V0) �T(V0,V1)�¬p(V1)
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Bounded Model Checking

INIT

R1 R2

¬p

INIT(V0) �T(V0,V1) �T(V1,V2)�¬p(V2)
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Bounded Model Checking

INIT

R1 R2

¬p

……

INIT(V0)

Rk

�T(V0,V1) �…�T(Vk-1,Vk)�¬p(Vk)
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Bounded Model Checking

Terminates 
• with a counterexample or 
• with time- or memory-out

=> The method is suitable for falsification, not verification

Can be used for verification by choosing k which is large enough
• Need bound on length of the shortest counterexample.
– diameter bound. The diameter is the maximum length of the shortest path 

between any two states.

Using such k is often not practical
– Worst case diameter is exponential. Obtaining better bounds is sometimes 

possible, but generally intractable.
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Unbounded SAT-based Model Checking

Induction and K-Induction (k-IND)

Interpolation Based Model Checking (IMC)

Property Directed Reachability (IC3/PDR)
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SAT-Based Verification
(unbounded model checking)
Uses BMC for falsification

Simulates forward reachability analysis for verification

Identifies a termination condition
• all reachable states have been found: “fixed-point”
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Symbolic Safety and Reachability

A transition system P = (V, Init, Tr, Bad)
P is UNSAFE if and only if there exists a number N s.t.

P is SAFE if and only if there exists a safe inductive invariant Inv s.t.

Inductive

Safe

Init(X0) ^
 

N�1̂

i=0

Tr(Xi, Xi+1)

!
^ Bad(XN ) 6) ?

Init ) Inv

Inv(X) ^ Tr(X,X 0) ) Inv(X 0)

Inv ) ¬Bad
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Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation:            Initial ⊆ Inv
• Safety:          Inv ∩ Bad = ∅
• Consecution:   TR(Inv) ⊆ Inv

Initial

i.e., if s ∈ Inv and s↝t 
then t ∈ Inv
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Inductive Invariants

System State Space

Bad Inv

System S is safe iff there exists an inductive invariant Inv:
• Initiation:            Initial ⊆ Inv
• Safety:          Inv ∩ Bad = ∅
• Consecution:   TR(Inv) ⊆ Inv

Initial

System S is safe if Reach ∩ Bad = ∅

Reach

i.e., if s ∈ Inv and s↝t 
then t ∈ Inv


