Martin Löf Type Theory: Univalence implies function extensionality

Thomas Pipilikas

INTER-INSTITUTIONAL GRADUATE PROGRAM "ALGORITHMS, LOGIC AND DISCRETE MATHEMATICS"

Disclaimer

We will not use the notion of $\mu \varepsilon \tau \alpha \sigma \chi \eta \mu \alpha \tau \iota \sigma \mu \circ \frac{1}{}$.

Disclaimer

We will not use the notion of $\mu \varepsilon \tau \alpha \sigma \chi \eta \mu \alpha \tau \iota \sigma \mu \circ u$. Here we include the uniqueness principle

$$
f \equiv \lambda x . f(x)
$$

as a principle of judgmental equality.

Disclaimer

We will not use the notion of $\mu \varepsilon \tau \alpha \sigma \chi \eta \mu \alpha \tau \iota \sigma \mu \circ u$. Here we include the uniqueness principle

$$
f \equiv \lambda x \cdot f(x)
$$

as a principle of judgmental equality.

$$
\eta_{A \rightarrow B}(f): \lambda\left(\mathrm{apply}_{f}\right)=f
$$

to отоío เxаvотоเะí in $\sigma \chi$ ह́のท

$$
\eta_{A \rightarrow B}(\lambda(b)) \equiv \operatorname{refl}_{\lambda(b)},
$$

о́тои $(x: A) b(x): B$

Disclaimer

I know nothing on Homotopy Theory...

> I'll just be a coq!

Thomas Pipilikas
Univalence implies Function Extensionality

Disclaimer

I know nothing on Homotopy Theory...

I'll just be a coq!

D

"there they laugh: they do not understand me; I am not the mouth for these ears."

Also sprach Zarathustra: Ein Buch firr Alle und Keinen, Eriedrich Nietzsche

Why HoTT is hot?!

■ 1986 "Algebraic Cycles and Higher K-theory" , by Spencer Bloch contained a mistake (Lemma 1.1).

Why HoTT is hot?!

■ 1986 "Algebraic Cycles and Higher K-theory" , by Spencer Bloch contained a mistake (Lemma 1.1).

- 1989 " ∞-groupoids as a model for a homotopy category" , by Michael Kapranov and Vladimir Voevodsky.

Why HoTT is hot?!

■ 1986 "Algebraic Cycles and Higher K-theory" , by Spencer Bloch contained a mistake (Lemma 1.1).

- 1989 " ∞-groupoids as a model for a homotopy category" , by Michael Kapranov and Vladimir Voevodsky.
- 1993 A new proof of Lemma 1.1! It took many more years for it to be accepted as correct.

Why HoTT is hot?!

■ 1986 "Algebraic Cycles and Higher K-theory" , by Spencer Bloch contained a mistake (Lemma 1.1).

- 1989 " ∞-groupoids as a model for a homotopy category", by Michael Kapranov and Vladimir Voevodsky.
- 1993 A new proof of Lemma 1.1! It took many more years for it to be accepted as correct.

■ 1992/1993 "Cohomological Theory of Presheaves with Transfers." , by Vladimir Voevodsky.

Why HoTT is hot?!

■ 1986 "Algebraic Cycles and Higher K-theory" , by Spencer Bloch contained a mistake (Lemma 1.1).

- 1989 " \propto-groupoids as a model for a homotopy category" , by Michael Kapranov and Vladimir Voevodsky.
- 1993 A new proof of Lemma 1.1! It took many more years for it to be accepted as correct.

■ 1992/1993 "Cohomological Theory of Presheaves with Transfers." , by Vladimir Voevodsky.
The approach to Motivic Cohomology circumvented Bloch's lemma by relying on this paper.

Why HoTT is hot?!

■ 1999/2000 "Cohomological Theory of Presheaves with Transfers." contained a mistake!!!

Why HoTT is hot?!

- 1999/2000 "Cohomological Theory of Presheaves with Transfers." contained a mistake!!!

This story got me scared. Starting from 1993 multiple groups of mathematicians studied the "Cohomological Theory" paper at seminars and used it in their work and none of them noticed the mistake.

Vladimir Voevodsky

Why HoTT is hot?!

■ 1999/2000 "Cohomological Theory of Presheaves with Transfers." contained a mistake!!!

This story got me scared. Starting from 1993 multiple groups of mathematicians studied the "Cohomological Theory" paper at seminars and used it in their work and none of them noticed the mistake.

Vladimir Voevodsky

■ 1998 "Homotopy types of strict 3-groupoids" , by Carlos Simpson contained a counter example on " ∞-groupoids as a model for a homotopy category" paper.

Why HoTT is hot?!

■ Mathematical research currently relies on a complex system of mutual trust based on reputations.

Why HoTT is hot?!

- Mathematical research currently relies on a complex system of mutual trust based on reputations.

■ We are off to uncharted waters!

Why HoTT is hot?!

- Mathematical research currently relies on a complex system of mutual trust based on reputations.

■ We are off to uncharted waters!
the only real long-term solution to the problems that I encountered is to start using computers in the verification of mathematical reasoning.

Vladimir Voevodsky[3]

Why HoTT is hot?!

■ We need new proof verifiers!

Why HoTT is hot?!

■ We need new proof verifiers!

The roadblock that prevented generations of interested mathematicians and computer scientists from solving the problem of computer verification of mathematical reasoning was the unpreparedness of foundations of mathematics for the requirements of this task.

Vladimir Voevodsky[3]

Why HoTT is hot?!

■ Why Type Theory?!

Why HoTT is hot?!

■ Why Type Theory?!

 чориалเбно́....

Nıxó入 $\alpha \varsigma$ P \quad ŕ $\alpha<$

Why HoTT is hot?!

■ Why Type Theory?!

 чориальбцо́....

$$
\text { Nıxó } \lambda \alpha \varsigma \text { P } \eta \dot{\gamma} \gamma \alpha s
$$

- The idea of Homotopy Type Theory arose around 2006 in independent work by Awodey and Warren and Voevodsky, but it was inspired by Hofmann and Streicher's earlier groupoid interpretation [2].

Why HoTT is hot?!

■ Why Type Theory?!

 чориальбно́....

$$
\text { Nıxó } \lambda \alpha \varsigma \text { P } \eta \dot{\gamma} \gamma \alpha
$$

■ The idea of Homotopy Type Theory arose around 2006 in independent work by Awodey and Warren and Voevodsky, but it was inspired by Hofmann and Streicher's earlier groupoid interpretation [2].

- In particular, Voevodsky constructed an interpretation of type theory in Kan simplicial sets, and recognized that this interpretation satisfied a further crucial property which he dubbed univalence.

Why HoTT is hot?!

■ Coq, Agda...

Why HoTT is hot?!

■ Coq, Agda...

- The first such library called "Foundations" was created by Vladimir Voevodsky in 2010.

Why HoTT is hot?!

■ Coq, Agda...

- The first such library called "Foundations" was created by Vladimir Voevodsky in 2010.
- HoTT Coq library and HoTT Agda library.

Why HoTT is hot?!

■ Coq, Agda...

■ The first such library called "Foundations" was created by Vladimir Voevodsky in 2010.

■ HoTT Coq library and HoTT Agda library.
...many of the proofs described in this book (HoTT) were actually first done in a fully formalized form in a proof assistant, and are only now being "unformalized" for the first time - a reversal of the usual relation between formal and informal mathematics. [1]

Homotopy

Definition

Let $f, g: \prod_{(x: A)} P(x)$ be two sections of a type family $P: A \rightarrow \mathcal{U}$. A homotopy from f to g is a dependent function of type

$$
(f \sim g): \equiv \prod_{x: A}(f(x)=g(x)) .
$$

Homotopy

Definition

Let $f, g: \prod_{(x: A)} P(x)$ be two sections of a type family $P: A \rightarrow \mathcal{U}$. A homotopy from f to g is a dependent function of type

$$
(f \sim g): \equiv \prod_{x: A}(f(x)=g(x)) .
$$

Lemma (Lemma 2.4.3.)

Suppose $H: f \sim g$ is a homotopy between functions $f, g: A \rightarrow B$ and let $p: x=A y$. Then we have

$$
H(x) \cdot g(p)=f(p) \cdot H(y) .
$$

We may also draw this as a commutative diagram:

proof of Lemma 2.4.3.
By induction, we may assume p is refl $_{x}$.

We may also draw this as a commutative diagram:

proof of Lemma 2.4.3.
By induction, we may assume p is refl $_{x}$. Then trivially we observe that

$$
H(x) \cdot g\left(\operatorname{refl}_{x}\right)=f\left(\operatorname{refl}_{x}\right) \cdot H(x)
$$

We may also draw this as a commutative diagram:

proof of Lemma 2.4.3.
By induction, we may assume p is refl x. Then trivially we observe that

$$
H(x) \cdot g\left(\operatorname{refl}_{x}\right)=f\left(\operatorname{refl}_{x}\right) \cdot H(x): \equiv H(x) \cdot \operatorname{ap}_{g}\left(\operatorname{refl}_{x}\right)=\operatorname{ap}_{f}\left(\operatorname{refl}_{x}\right) \cdot H(x)
$$

We may also draw this as a commutative diagram:

proof of Lemma 2.4.3.
By induction, we may assume p is refl x_{x}. Then trivially we observe that

$$
\begin{aligned}
H(x) \cdot g\left(\operatorname{refl}_{x}\right)=f\left(\operatorname{refl}_{x}\right) \cdot H(x) & : \equiv H(x) \cdot \operatorname{ap}_{g}\left(\operatorname{refl}_{x}\right)=\operatorname{ap}_{f}\left(\operatorname{refl}_{x}\right) \cdot H(x) \\
& : \equiv H(x) \cdot \operatorname{refl}_{x}=\operatorname{refl}_{x} \cdot H(x)
\end{aligned}
$$

We may also draw this as a commutative diagram:

proof of Lemma 2.4.3.
By induction, we may assume p is refl x_{x}. Then trivially we observe that

$$
\begin{aligned}
H(x) \cdot g\left(\operatorname{refl}_{x}\right)=f\left(\operatorname{refl}_{x}\right) \cdot H(x) & : \equiv H(x) \cdot \operatorname{ap}_{g}\left(\operatorname{refl}_{x}\right)=\operatorname{ap}_{f}\left(\operatorname{refl}_{x}\right) \cdot H(x) \\
& : \equiv H(x) \cdot \operatorname{refl}_{x}=\operatorname{refl}_{x} \cdot H(x) \\
& : \equiv H(x)=H(x)
\end{aligned}
$$

We may also draw this as a commutative diagram:

proof of Lemma 2.4.3.
By induction, we may assume p is refl $_{x}$. Then trivially we observe that

$$
\begin{aligned}
H(x) \cdot g\left(\operatorname{refl}_{x}\right)=f\left(\operatorname{refl}_{x}\right) \cdot H(x) & : \equiv H(x) \cdot \operatorname{ap}_{g}\left(\operatorname{refl}_{x}\right)=\operatorname{ap}_{f}\left(\operatorname{refl}_{x}\right) \cdot H(x) \\
& : \equiv H(x) \cdot \operatorname{refl}_{x}=\operatorname{refl}_{x} \cdot H(x) \\
& : \equiv H(x)=H(x)
\end{aligned}
$$

which is inhabited by $\operatorname{refl}_{H(x)}$.

Quasi Inverse

Definitions

For a function $f: A \rightarrow B$ a quasi-inverse of f is a triple (g, α, β) consisting of a function $g: B \rightarrow A$ and homotopies $\alpha: f \circ g \sim \operatorname{id}_{B}$ and $\beta: g \circ f \sim \operatorname{id}_{A}$.

Quasi Inverse

Definitions

For a function $f: A \rightarrow B$ a quasi-inverse of f is a triple (g, α, β) consisting of a function $g: B \rightarrow A$ and homotopies $\alpha: f \circ g \sim \operatorname{id}_{B}$ and $\beta: g \circ f \sim \operatorname{id}_{A}$. The type of quasi-inverses of f

$$
\operatorname{Qlnv}(f): \equiv \sum_{q: B \rightarrow A}\left(\left(f \circ g \sim \operatorname{id}_{B}\right) \times\left(g \circ f \sim \operatorname{id}_{A}\right)\right) .
$$

Quasi Inverse

Definitions

For a function $f: A \rightarrow B$ a quasi-inverse of f is a triple (g, α, β) consisting of a function $g: B \rightarrow A$ and homotopies $\alpha: f \circ g \sim \operatorname{id}_{B}$ and $\beta: g \circ f \sim \operatorname{id}_{A}$. The type of quasi-inverses of f

$$
\operatorname{Qlnv}(f): \equiv \sum_{q: B \rightarrow A}\left(\left(f \circ g \sim \operatorname{id}_{B}\right) \times\left(g \circ f \sim \operatorname{id}_{A}\right)\right) .
$$

We also define the types

$$
\begin{aligned}
& \operatorname{LInv}(f): \equiv \sum_{q: B \rightarrow A}\left(g \circ f \sim \operatorname{id}_{A}\right) \\
& \operatorname{RInv}(f): \equiv \sum_{q: B \rightarrow A}\left(f \circ g \sim \operatorname{id}_{B}\right)
\end{aligned}
$$

of left inverses and right inverses to f, respectively.

Quasi Inverse

Definitions

For a function $f: A \rightarrow B$ a quasi-inverse of f is a triple (g, α, β) consisting of a function $g: B \rightarrow A$ and homotopies $\alpha: f \circ g \sim \operatorname{id}_{B}$ and $\beta: g \circ f \sim \operatorname{id}_{A}$.
The type of quasi-inverses of f

$$
\operatorname{Qlnv}(f): \equiv \sum_{q: B \rightarrow A}\left(\left(f \circ g \sim \operatorname{id}_{B}\right) \times\left(g \circ f \sim \mathrm{id}_{A}\right)\right)
$$

We also define the types

$$
\begin{aligned}
& \operatorname{Llnv}(f): \equiv \sum_{q: B \rightarrow A}\left(g \circ f \sim \mathrm{id}_{A}\right) \\
& \operatorname{RInv}(f): \equiv \sum_{q: B \rightarrow A}\left(f \circ g \sim \mathrm{id}_{B}\right)
\end{aligned}
$$

of left inverses and right inverses to f, respectively.
We call f left invertible if $\operatorname{LInv}(f)$ is inhabited, and similarly right invertible if $\operatorname{RInv}(f)$ is inhabited.

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f)) to have the following properties:

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f)) to have the following properties:
$1 \operatorname{QInv}(f) \rightarrow \operatorname{IsEquiv}(f)$

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f)) to have the following properties:
$1 \operatorname{QInv}(f) \rightarrow \operatorname{IsEquiv}(f)$
2 IsEquiv $(f) \rightarrow \operatorname{QInv}(f)$

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f)) to have the following properties:
$1 \operatorname{QInv}(f) \rightarrow \operatorname{IsEquiv}(f)$
2 IsEquiv $(f) \rightarrow \operatorname{QInv}(f)$
$3 \operatorname{IsEquiv}(f)$ is a mere proposition.

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f)) to have the following properties:
$1 \operatorname{QInv}(f) \rightarrow \operatorname{IsEquiv}(f)$
2 IsEquiv $(f) \rightarrow \operatorname{QInv}(f)$
$3 \operatorname{IsEquiv}(f)$ is a mere proposition.
We will firstly use our well known definition of equivalence:

$$
\operatorname{IsEquiv}(f): \equiv \operatorname{LInv}(f) \times \operatorname{RInv}(f)
$$

Exercise (Exercise 2.10.)

Prove that Σ-types are "associative", in that for any $A: \mathcal{U}$ and families $B: A \rightarrow \mathcal{U}$ and $C: \sum_{(x: A)} B(x) \rightarrow \mathcal{U}$, we have

$$
\left(\sum_{x: A} \sum_{y: B(x)} C(p \operatorname{pair}(x, y))\right) \simeq\left(\sum_{p: \sum_{(x: A)} B(x)} C(p)\right) .
$$

Exercise (Exercise 2.10.)

Prove that Σ-types are "associative", in that for any $A: \mathcal{U}$ and families $B: A \rightarrow \mathcal{U}$ and $C: \sum_{(x: A)} B(x) \rightarrow \mathcal{U}$, we have

$$
\left(\sum_{x: A} \sum_{y: B(x)} C(p \operatorname{pair}(x, y))\right) \simeq\left(\sum_{p: \sum_{(x: A)} B(x)} C(p)\right) .
$$

hint

Exercise (Exercise 2.10.)

Prove that Σ-types are "associative", in that for any $A: \mathcal{U}$ and families $B: A \rightarrow \mathcal{U}$ and $C: \sum_{(x: A)} B(x) \rightarrow \mathcal{U}$, we have

$$
\left(\sum_{x: A} \sum_{y: B(x)} C(\operatorname{pair}(x, y))\right) \simeq\left(\sum_{p: \Sigma_{(x: A)} B(x)} C(p)\right) .
$$

hint
By induction for Σ-types

$$
\begin{aligned}
& f: \equiv \operatorname{pair}\left(a, \operatorname{pair}\left(b_{a}, c_{\text {pair }}\left(a, b_{a}\right)\right)\right) \mapsto \operatorname{pair}\left(\operatorname{pair}\left(a, b_{a}\right), c_{\text {pair }\left(a, b_{a}\right)}\right) \\
& g: \equiv \operatorname{pair}\left(u, c_{u}\right) \mapsto \operatorname{pair}\left(\operatorname{pr}_{1}(u), \operatorname{pair}\left(\operatorname{pr}_{2}(u), c_{u}\right)\right)
\end{aligned}
$$

Univalence

■ Nov. 1853; George Boole

Univalence

■ Nov. 1853; George Boole
If instead of the proposition, "The sun shines," we say, "It is true that the sun shines," we then speak not directly of things, but of a proposition concerning things, viz., of the proposition, "The sun shines." And, therefore, the proposition in which we thus speak is a secondary one. Every primary proposition may thus give rise to a secondary proposition, viz., to that secondary proposition which asserts its truth, or declares its falsehood.

An Investigation of the Laws of Thought, George Boole

Univalence

■ Nov. 1853; George Boole
If instead of the proposition, "The sun shines," we say, "It is true that the sun shines," we then speak not directly of things, but of a proposition concerning things, viz., of the proposition, "The sun shines." And, therefore, the proposition in which we thus speak is a secondary one. Every primary proposition may thus give rise to a secondary proposition, viz., to that secondary proposition which asserts its truth, or declares its falsehood.

An Investigation of the Laws of Thought, George Boole

- 1935; Alfred Tarski; Convention T:

$$
\left(" P^{\prime \prime}=" \text { true }^{\prime \prime}\right) \simeq(P \simeq \text { true })
$$

Univalence

■ Nov. 1853; George Boole
If instead of the proposition, "The sun shines," we say, "It is true that the sun shines," we then speak not directly of things, but of a proposition concerning things, viz., of the proposition, "The sun shines." And, therefore, the proposition in which we thus speak is a secondary one. Every primary proposition may thus give rise to a secondary proposition, viz., to that secondary proposition which asserts its truth, or declares its falsehood.

An Investigation of the Laws of Thought, George Boole

- 1935; Alfred Tarski; Convention T:

$$
\left(" P^{\prime \prime}=\text { "true } "\right) \simeq(P \simeq \text { true })
$$

"It is snowing" is a true sentence if and only if it is snowing The Concept of Truth in Formalized Languages,Alfred Tarski

Univalence

- 1940; Alonzo Church (A Formulation of the Simple Theory of Types);

Univalence

- 1940; Alonzo Church (A Formulation of the Simple Theory of Types); Propositional Extensionality:

$$
(P=Q) \simeq(P \simeq Q),
$$

where P, Q are propositions.

Univalence

- 1940; Alonzo Church (A Formulation of the Simple Theory of Types); Propositional Extensionality:

$$
(P=Q) \simeq(P \simeq Q),
$$

where P, Q are propositions.

- 1998; Martin Hofmann and Thomas Streicher [2]; Uniqueness of Identity Proofs (UIP) is not inhabited,

Univalence

- 1940; Alonzo Church (A Formulation of the Simple Theory of Types); Propositional Extensionality:

$$
(P=Q) \simeq(P \simeq Q)
$$

where P, Q are propositions.

- 1998; Martin Hofmann and Thomas Streicher [2];

Uniqueness of Identity Proofs (UIP) is not inhabited, where UIA (A) stands for
If a_{1}, a_{2} are objects of type A then for any proofs p and q of the proposition " a_{1} equals a_{2} " there is another proof establishing the equality of p and q.

Univalence

- 2006-2009; Vladimir Voevodsky Univalence

Univalence (aka UA)

For any $A, B: \mathcal{U}$, the function

$$
\text { idtoeqv: }(A=\mathcal{U} B) \rightarrow(A \simeq B)
$$

is an equivalence.

Univalence

■ 2006-2009; Vladimir Voevodsky Univalence

Univalence (aka UA)

For any $A, B: \mathcal{U}$, the function

$$
\text { idtoeqv: }(A=\mathcal{U} B) \rightarrow(A \simeq B)
$$

is an equivalence.
In particular, therefore, we have

$$
(A=\mathcal{U} B) \simeq(A \simeq B)
$$

Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality (aka FunExt)

For any $A, B: \mathcal{U}$ types and functions $f, g: A \rightarrow B$ the function

$$
\text { happly: }(f=g) \rightarrow \prod_{x: A}\left(f(x)={ }_{B} g(x)\right)
$$

is an equivalence.

Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality (aka FunExt)

For any $A, B: \mathcal{U}$ types and functions $f, g: A \rightarrow B$ the function

$$
\text { happly: }(f=g) \rightarrow \prod_{x: A}\left(f(x)={ }_{B} g(x)\right)
$$

is an equivalence.
In particular happly has a quasi-inverse

$$
\text { funext: } \prod_{x: A}\left(f(x)=_{B} g(x)\right) \rightarrow(f=g) .
$$

Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality (aka FunExt)

For any $A, B: \mathcal{U}$ types and functions $f, g: A \rightarrow B$ the function

$$
\text { happly: }(f=g) \rightarrow \prod_{x: A}(f(x)=B g(x))
$$

is an equivalence.
In particular happly has a quasi-inverse

$$
\text { funext: } \prod_{x: A}\left(f(x)=_{B} g(x)\right) \rightarrow(f=g) .
$$

Naive functional extensionality:
If functions take equal values, then they are equal.

Our Goal!

We want to show that

UA implies FunExt

Mere Propositions

Definition

A type P is a mere proposition if for all $x, y: P$ we have $x=p y$.

Mere Propositions

Definition

A type P is a mere proposition if for all $x, y: P$ we have $x=p y$. Specifically, for any $P: \mathcal{U}$, the type IsProp (P) is defined to be

$$
\operatorname{IsProp}(P): \equiv \prod_{x, y: P}\left(x=_{P} y\right) .
$$

Mere Propositions

Definition

A type P is a mere proposition if for all $x, y: P$ we have $x=p y$. Specifically, for any $P: \mathcal{U}$, the type $\operatorname{lsProp}(P)$ is defined to be

$$
\operatorname{IsProp}(P): \equiv \prod_{x, y: P}(x=P y) .
$$

Lemma (Lemma 3.3.3 / $\Lambda \dot{\eta} \mu \mu \alpha 45$)
If P and Q are mere propositions such that $P \rightarrow Q$ and $Q \rightarrow P$, then $P \simeq Q$.

Contractability

Definition

A type A is contractible, or a singleton, if there is $a: A$, called the center of contraction, such that $a=x$ for all $x: A$. We denote the specified path $a=x$ by contr $_{x}$.
In other words, the type $\operatorname{Is} \operatorname{Contr}(A)$ is defined to be

$$
\operatorname{IsContr}(A): \equiv \sum_{a: A} \prod_{x: A}(a=x)
$$

Contractability

Definition

A type A is contractible, or a singleton, if there is $a: A$, called the center of contraction, such that $a=x$ for all $x: A$. We denote the specified path $a=x$ by contr . $^{\text {. }}$
In other words, the type $\operatorname{IsContr}(A)$ is defined to be

$$
\operatorname{IsContr}(A): \equiv \sum_{a: A} \prod_{x: A}(a=x)
$$

Lemma (Lemma 3.11.8.)
For any A and any $a: A$, the type $\sum_{(x: A)}(a=x)$ is contractible.

Contractability

Definition

A type A is contractible, or a singleton, if there is $a: A$, called the center of contraction, such that $a=x$ for all $x: A$. We denote the specified path $a=x$ by contr x.
In other words, the type IsContr (A) is defined to be

$$
\operatorname{IsContr}(A): \equiv \sum_{a: A} \prod_{x: A}(a=x) .
$$

Lemma (Lemma 3.11.8.)

For any A and any $a: A$, the type $\sum_{(x: A)}(a=x)$ is contractible.
Lemma (Lemma 3.11.9.)
Let $P: A \rightarrow \mathcal{U}$ be a type family.
1 If each $P(x)$ is contractible, then $\sum_{(x: A)} P(x)$ is equivalent to A.
$\boxed{2}$ If A is contractible with center a, then $\sum_{(x: A)} P(x)$ is equivalent to $P(a)$.

We choose as center of the contraction the point pair $\left(a, \operatorname{refl}_{a}\right)$.

We choose as center of the contraction the point pair $(a$, refl $a)$ ． Now suppose pair $(x, p): \sum_{(x: A)}(a=x)$ ；

We choose as center of the contraction the point pair $(a$, refl $a)$. Now suppose pair $(x, p): \sum_{(x: A)}(a=x)$; we must show $\operatorname{pair}\left(a, \operatorname{refl}_{a}\right)=\operatorname{pair}(x, p)$.

We choose as center of the contraction the point pair $\left(a, \operatorname{refl}_{a}\right)$. Now suppose pair $(x, p): \sum_{(x: A)}(a=x)$; we must show
pair $\left(a\right.$, refl $\left._{a}\right)=\operatorname{pair}(x, p)$.
By the characterization of paths in Σ-types (Theorem 2.7.2. / Es'́pnu 32), we know that for any $w, w^{\prime}: \sum_{(x: A)}(a=x)$, there is an equivalence

$$
\left(w=w^{\prime}\right) \simeq \sum_{\left(q: \operatorname{pr}_{1}(w)=\operatorname{pr}_{1}\left(w^{\prime}\right)\right)} \operatorname{transport}^{(a=-)}\left(q, \mathrm{pr}_{2}(w)\right)=\mathrm{pr}_{2}\left(w^{\prime}\right) .
$$

We choose as center of the contraction the point pair $\left(a, \operatorname{refl}_{a}\right)$. Now suppose pair $(x, p): \sum_{(x: A)}(a=x)$; we must show pair $\left(a, \operatorname{refl}_{a}\right)=\operatorname{pair}(x, p)$.
By the characterization of paths in Σ-types (Theorem 2.7.2. / Es'́pnu 32), we know that for any $w, w^{\prime}: \sum_{(x: A)}(a=x)$, there is an equivalence

$$
\left(w=w^{\prime}\right) \simeq \sum_{\left(q: \operatorname{pr}_{1}(w)=\operatorname{pr}_{1}\left(w^{\prime}\right)\right)} \operatorname{transport}^{(a=-)}\left(q, \mathrm{pr}_{2}(w)\right)=\mathrm{pr}_{2}\left(w^{\prime}\right) .
$$

Thus it suffices to exhibit $q: a=x$ such that $\operatorname{transport}^{(a=-)}\left(q, \operatorname{refl}_{a}\right)=p$.

We choose as center of the contraction the point pair $\left(a, \operatorname{refl}_{a}\right)$. Now suppose pair $(x, p): \sum_{(x: A)}(a=x)$; we must show pair $\left(a, \operatorname{refl}_{a}\right)=\operatorname{pair}(x, p)$.
By the characterization of paths in Σ-types (Theorem 2.7.2. / Es'́pqu 32), we know that for any $w, w^{\prime}: \sum_{(x: A)}(a=x)$, there is an equivalence

$$
\left(w=w^{\prime}\right) \simeq \sum_{\left(q: \operatorname{pr}_{1}(w)=\operatorname{pr}_{1}\left(w^{\prime}\right)\right)} \operatorname{transport}^{(a=-)}\left(q, \mathrm{pr}_{2}(w)\right)=\mathrm{pr}_{2}\left(w^{\prime}\right) .
$$

Thus it suffices to exhibit $q: a=x$ such that $\operatorname{transport}^{(a=-)}\left(q, \operatorname{refl}_{a}\right)=p$. But we can take $q: \equiv p$ in which case

$$
\begin{aligned}
\operatorname{transport}^{(a=-)}\left(q, \operatorname{refl}_{a}\right) & =p \cdot \operatorname{refl}_{a} & & \text { L.2.11.2. / } \dot{n} \mu \mu \alpha 24 \\
& =p & & \text { L.2.11.4. / } \dot{n} \mu \mu \alpha 15
\end{aligned}
$$

Retract

If A is equivalent to B and A is contractible, then so is B.

Retract

If A is equivalent to B and A is contractible, then so is B. More generally, it suffices for B to be a retract of A.

Retract

If A is equivalent to B and A is contractible, then so is B. More generally, it suffices for B to be a retract of A.

Definition

A retraction is a function $r: A \rightarrow B$ such that there exists a function $s: B \rightarrow A$, called its section, and a homotopy
$\epsilon: \prod_{(y: B)}(r(s(y))=y)$

Retract

If A is equivalent to B and A is contractible, then so is B. More generally, it suffices for B to be a retract of A.

Definition

A retraction is a function $r: A \rightarrow B$ such that there exists a function $s: B \rightarrow A$, called its section, and a homotopy
$\epsilon: \prod_{(y: B)}(r(s(y))=y) \equiv r \circ s \sim \operatorname{id}_{A}$;

Retract

If A is equivalent to B and A is contractible, then so is B. More generally, it suffices for B to be a retract of A.

Definition

A retraction is a function $r: A \rightarrow B$ such that there exists a function $s: B \rightarrow A$, called its section, and a homotopy
$\epsilon: \prod_{(y: B)}(r(s(y))=y) \equiv r \circ s \sim \operatorname{id}_{A}$; then we say that B is a retract of A.

Retract

If A is equivalent to B and A is contractible, then so is B.
More generally, it suffices for B to be a retract of A.

Definition

A retraction is a function $r: A \rightarrow B$ such that there exists a function $s: B \rightarrow A$, called its section, and a homotopy
$\epsilon: \prod_{(y: B)}(r(s(y))=y) \equiv r \circ s \sim \operatorname{id}_{A}$;
then we say that B is a retract of A.
Lemma (Lemma 3.11.7.)
If B is a retract of A, and A is contractible, then so is B.
proof of Lemma 3.11.7.
Let $a_{0}: A$ be the center of contraction.
proof of Lemma 3.11.7.
Let $a_{0}: A$ be the center of contraction. Let also,
■ $r: A \rightarrow B$ the retraction
proof of Lemma 3.11.7.
Let $a_{0}: A$ be the center of contraction. Let also,

- $r: A \rightarrow B$ the retraction

■ $s: B \rightarrow A$ the section
proof of Lemma 3.11.7.
Let $a_{0}: A$ be the center of contraction. Let also,

- $r: A \rightarrow B$ the retraction
- $s: B \rightarrow A$ the section
- $\epsilon: \prod_{(y: B)}(r(s(y))=y)$
proof of Lemma 3.11.7.
Let $a_{0}: A$ be the center of contraction. Let also,
■ $r: A \rightarrow B$ the retraction
■ $s: B \rightarrow A$ the section
$■ \epsilon: \prod_{(y: B)}(r(s(y))=y)$
We claim that $b_{0}: \equiv r\left(a_{0}\right): B$ is a center of contraction for B.
proof of Lemma 3.11.7.
Let $a_{0}: A$ be the center of contraction. Let also,
■ $r: A \rightarrow B$ the retraction
■ $s: B \rightarrow A$ the section
$■ \epsilon: \prod_{(y: B)}(r(s(y))=y)$
We claim that $b_{0}: \equiv r\left(a_{0}\right): B$ is a center of contraction for B.
Let $b: B$;
proof of Lemma 3.11.7.
Let $a_{0}: A$ be the center of contraction. Let also,
- $r: A \rightarrow B$ the retraction

■ $s: B \rightarrow A$ the section

- $\epsilon: \prod_{(y: B)}(r(s(y))=y)$

We claim that $b_{0}: \equiv r\left(a_{0}\right): B$ is a center of contraction for B.
Let $b: B$; we need a path $p: b_{0}=b$.
proof of Lemma 3．11．7．
Let $a_{0}: A$ be the center of contraction．Let also，
－$r: A \rightarrow B$ the retraction
－$s: B \rightarrow A$ the section
－$\epsilon: \prod_{(y: B)}(r(s(y))=y)$
We claim that $b_{0}: \equiv r\left(a_{0}\right): B$ is a center of contraction for B ．
Let $b: B$ ；we need a path $p: b_{0}=b$ ．
But we have $\epsilon(b): r \circ s(b)=b$ and $\operatorname{contr}_{s(b)}: a_{0}=s(b)$ ，
proof of Lemma 3.11.7.
Let $a_{0}: A$ be the center of contraction. Let also,

- $r: A \rightarrow B$ the retraction
- $s: B \rightarrow A$ the section
- $\epsilon: \prod_{(y: B)}(r(s(y))=y)$

We claim that $b_{0}: \equiv r\left(a_{0}\right): B$ is a center of contraction for B.
Let $b: B$; we need a path $p: b_{0}=b$.
But we have $\epsilon(b): r \circ s(b)=b$ and contr $r_{s(b)}: a_{0}=s(b)$, so by composition

$$
r\left(\operatorname{contr}_{s(b)}\right): \equiv \operatorname{ap}_{r}\left(\operatorname{contr}_{s(b)}\right): r\left(a_{0}\right)=r \circ s(b)
$$

proof of Lemma 3.11.7.
Let $a_{0}: A$ be the center of contraction. Let also,
■ $r: A \rightarrow B$ the retraction
■ $s: B \rightarrow A$ the section

- $\epsilon: \prod_{(y: B)}(r(s(y))=y)$

We claim that $b_{0}: \equiv r\left(a_{0}\right): B$ is a center of contraction for B.
Let $b: B$; we need a path $p: b_{0}=b$.
But we have $\epsilon(b): r \circ s(b)=b$ and contr $_{s(b)}: a_{0}=s(b)$, so by composition

$$
r\left(\operatorname{contr}_{s(b)}\right): \equiv \operatorname{ap}_{r}\left(\operatorname{contr}_{s(b)}\right): r\left(a_{0}\right)=r \circ s(b)
$$

thus

$$
r\left(\operatorname{contr}_{s(b)}\right) \cdot \epsilon(b): b_{0}=b .
$$

We conclude that B is contractible with center of contraction b_{0}.

Contractible fibers

Definitions

The fiber (iva) of a map $f: A \rightarrow B$ over a point $y: B$ is

$$
\operatorname{fib}_{f}(y): \equiv \sum_{x: A}(f(x)=y) .
$$

Contractible fibers

Definitions

The fiber ($\mathfrak{i} \alpha \alpha)$ of a map $f: A \rightarrow B$ over a point $y: B$ is

$$
\operatorname{fib}_{f}(y): \equiv \sum_{x: A}(f(x)=y) .
$$

In homotopy theory, this is what would be called the homotopy fiber of f.

Contractible fibers

Definitions

The fiber (iva) of a map $f: A \rightarrow B$ over a point $y: B$ is

$$
\operatorname{fib}_{f}(y): \equiv \sum_{x: A}(f(x)=y) .
$$

In homotopy theory, this is what would be called the homotopy fiber of f.

A map $f: A \rightarrow B$ is contractible if for all $y: B$, the fiber $\operatorname{fib}_{f}(y)$ is contractible.

Contractible fibers

Definitions

The fiber $(i v \alpha)$ of a map $f: A \rightarrow B$ over a point $y: B$ is

$$
\operatorname{fib}_{f}(y): \equiv \sum_{x: A}(f(x)=y) .
$$

In homotopy theory, this is what would be called the homotopy fiber of f.

A map $f: A \rightarrow B$ is contractible if for all $y: B$, the fiber $\operatorname{fib}_{f}(y)$ is contractible.
Thus the type IsContr (f) is defined to be

$$
\operatorname{IsContr}(f): \equiv \prod_{y: B} \operatorname{lsContr}\left(\operatorname{fib}_{f}(y)\right) .
$$

A Useful Lemma

We are going to need the following lemma.

A Useful Lemma

We are going to need the following lemma.
Lemma (Lemma 4.8.1.)
For any type family $B: A \rightarrow \mathcal{U}$, the fiber of $\mathrm{pr}_{1}: \sum_{(x: A)} B(x) \rightarrow A$ over $a: A$ is equivalent to $B(a)$:

$$
\operatorname{fib}_{\mathrm{pr}_{1}}(a) \simeq B(a) .
$$

proof of Lemma 4．8．1．We have

$$
\mathrm{fib}_{\mathrm{pr}_{1}}(a): \equiv \sum_{u: \sum_{(x: A)} B(x)}\left(\operatorname{pr}_{1}(u)=a\right)
$$

proof of Lemma 4.8.1. We have

$$
\begin{align*}
\mathrm{fib}_{\mathrm{pr}_{1}}(a) & : \equiv \sum_{u: \sum_{(x: A)} B(x)}\left(\mathrm{pr}_{1}(u)=a\right) \\
& \simeq \sum_{x: A} \sum_{b: B(x)}(x=a) \tag{Ex. 2.10}
\end{align*}
$$

proof of Lemma 4.8.1. We have

$$
\begin{aligned}
\mathrm{fib}_{\mathrm{pr}_{1}}(a) & : \equiv \sum_{u: \sum_{(x: A)} B(x)}\left(\operatorname{pr}_{1}(u)=a\right) \\
& \simeq \sum_{x: A} \sum_{b: B(x)}(x=a) \\
& \simeq \sum_{x: A} \sum_{p: x=a} B(x)
\end{aligned}
$$

Ex. 2.10
(*)
proof of Lemma 4.8.1. We have

$$
\begin{aligned}
\mathrm{fib}_{\mathrm{pr}_{1}}(a) & : \equiv \sum_{u: \sum(x: A)} B(x) \\
& \simeq \sum_{x: A} \sum_{b: B(x)}(x=a) \\
& \simeq \sum_{x: A} \sum_{p: x=a} B(x) \\
& \simeq B(a)
\end{aligned}
$$

Ex. 2.10
(*)
(**)
proof of Lemma 4.8.1. We have

$$
\begin{aligned}
\mathrm{fib}_{\mathrm{pr}_{1}}(a) & : \equiv \sum_{u: \sum(x: A)} B(x) \\
& \simeq \sum_{x: A} \sum_{b: B(x)}(x=a) \\
& \simeq \sum_{x: A} \sum_{p: x=a} B(x) \\
& \simeq B(a)
\end{aligned}
$$

Ex. 2.10
(**)

$$
\begin{aligned}
\\
(*) \quad f: \equiv \operatorname{pair}\left(a, \operatorname{pair}\left(b_{a}, \operatorname{refl}_{a}\right)\right) \mapsto \operatorname{pair}\left(a, \operatorname{pair}\left(\operatorname{refl}_{a}, b_{a}\right)\right) \\
g: \equiv \operatorname{pair}\left(a, \operatorname{pair}\left(\operatorname{refl}_{a}, b_{a}\right)\right) \mapsto \operatorname{pair}\left(a, \operatorname{pair}\left(b_{a}, \operatorname{refl}_{a}\right)\right)
\end{aligned}
$$

proof of Lemma 4.8.1. We have

$$
\begin{align*}
\mathrm{fib}_{\mathrm{pr}_{1}}(a) & : \equiv \sum_{u: \sum(x: A)} B(x) \\
& \simeq \sum_{x: A} \sum_{b: B(x)}(x=a) \tag{Ex. 2.10}\\
& \left.\simeq \sum_{x: A} \sum_{p: x=a} B(x)=a\right) \tag{*}\\
& \simeq B(a)
\end{align*}
$$

$$
(* *)
$$

$$
\begin{aligned}
(*) \quad f & : \equiv \operatorname{pair}\left(a, \operatorname{pair}\left(b_{a}, \operatorname{refl}_{a}\right)\right) \mapsto \operatorname{pair}\left(a, \operatorname{pair}\left(\operatorname{refl}_{a}, b_{a}\right)\right) \\
g & : \equiv \operatorname{pair}\left(a, \operatorname{pair}\left(\operatorname{refl}_{a}, b_{a}\right)\right) \mapsto \operatorname{pair}\left(a, \operatorname{pair}\left(b_{a}, \operatorname{refl}_{a}\right)\right) \\
(* *) \quad f & : \equiv \operatorname{pair}\left(a, \operatorname{pair}\left(\operatorname{refl}_{a}, b_{a}\right)\right) \mapsto b_{a} \\
g & : \equiv b_{a} \mapsto \operatorname{pair}\left(a, \operatorname{pair}\left(\operatorname{refl}_{a}, b_{a}\right)\right)
\end{aligned}
$$

Definition

A function $g: A \rightarrow B$ is said to be a retract of a function $f: X \rightarrow Y$ if there is a diagram

for which there are
1 a homotopy $R: r \circ s \sim \operatorname{id}_{A}$
2 a homotopy $R^{\prime}: r^{\prime} \circ s^{\prime} \sim \operatorname{id}_{B}$
3 a homotopy $L: f \circ s \sim s^{\prime} \circ g$
4 a homotopy $K: g \circ r \sim r^{\prime} \circ f$
5 for every $a: A$, a path $H(a)$ witnessing the commutativity of the square

$$
\begin{gathered}
g(r(s(a))) \xlongequal{K(s(a))} r^{\prime}(f(s(a))) \\
g(R(a))\left\|^{\|}\right\|^{\prime}(L(a)) \\
\left(R^{\prime}(g(a))\right)^{-1} \\
r^{\prime}\left(s^{\prime}(g(a))\right)
\end{gathered}
$$

Equivalences

We have the following 3 approaches of the notion of equivalence.

Definitions

1 Half Adjoint Equivalence (definition used in HoTT) A function $f: A \rightarrow B$ is a half adjoint equivalence if there are $g: B \rightarrow A$ and homotopies $\eta: g \circ f \sim \operatorname{id}_{A}$ and $\epsilon: f \circ g \sim \operatorname{id}_{B}$ such that there exists a homotopy

$$
\tau: \prod_{x: A}(f(\eta(x))=\epsilon(f(x)))
$$

Equivalences

We have the following 3 approaches of the notion of equivalence.

Definitions

1 Half Adjoint Equivalence (definition used in HoTT) A function $f: A \rightarrow B$ is a half adjoint equivalence if there are $g: B \rightarrow A$ and homotopies $\eta: g \circ f \sim \operatorname{id}_{A}$ and $\epsilon: f \circ g \sim \operatorname{id}_{B}$ such that there exists a homotopy

$$
\tau: \prod_{x: A}(f(\eta(x))=\epsilon(f(x)))
$$

Thus we have a type ishae (f), defined to be

$$
\text { ishae }(f): \equiv \sum_{(g: B \rightarrow A)} \sum_{\left(\eta: g \circ f \sim i \mathrm{~d}_{A}\right)} \sum_{\left(\epsilon: f \circ g \sim \mathrm{id}_{B}\right)} \prod_{x: A}(f(\eta(x))=\epsilon(f(x)))
$$

Equivalences

We have the following 3 approaches of the notion of equivalence.

Definitions

1 Half Adjoint Equivalence (definition used in HoTT)
A function $f: A \rightarrow B$ is a half adjoint equivalence if there are $g: B \rightarrow A$ and homotopies $\eta: g \circ f \sim \operatorname{id}_{A}$ and $\epsilon: f \circ g \sim \operatorname{id}_{B}$ such that there exists a homotopy

$$
\tau: \prod_{x: A}(f(\eta(x))=\epsilon(f(x))) .
$$

Thus we have a type ishae (f), defined to be

$$
\text { ishae }(f): \equiv \sum_{(g: B \rightarrow A)} \sum_{\left(\eta: g \circ f \sim \mathrm{id}_{A}\right)} \sum_{\left(\epsilon: f \circ g \sim \mathrm{id}_{B}\right)} \prod_{x: A}(f(\eta(x))=\epsilon(f(x)))
$$

2 Bi-invertible Map (the well known definition)

Equivalences

We have the following 3 approaches of the notion of equivalence.

Definitions

1 Half Adjoint Equivalence (definition used in HoTT)
A function $f: A \rightarrow B$ is a half adjoint equivalence if there are $g: B \rightarrow A$ and homotopies $\eta: g \circ f \sim \operatorname{id}_{A}$ and $\epsilon: f \circ g \sim \operatorname{id}_{B}$ such that there exists a homotopy

$$
\tau: \prod_{x: A}(f(\eta(x))=\epsilon(f(x))) .
$$

Thus we have a type ishae (f), defined to be

$$
\text { ishae }(f): \equiv \sum_{(g: B \rightarrow A)} \sum_{\left(\eta: g \circ f \sim \mathrm{id}_{A}\right)} \sum_{\left(\epsilon: f \circ g \sim \mathrm{id}_{B}\right)} \prod_{x: A}(f(\eta(x))=\epsilon(f(x)))
$$

2 Bi-invertible Map (the well known definition)
3 Contractible Functions (the one used by Voevodsky)

We will mainly use the 1st definition of equivalence.

We will mainly use the 1st definition of equivalence.
But are those definitions equivalences?

We will mainly use the 1st definition of equivalence.
But are those definitions equivalences?
Theorem (Theorem 4.2.3.)
For any $f: A \rightarrow B$ we have $\operatorname{QInv}(f) \rightarrow \operatorname{IsHaE}(f)$.

We will mainly use the 1st definition of equivalence.
But are those definitions equivalences?
Theorem (Theorem 4.2.3.)
For any $f: A \rightarrow B$ we have $\operatorname{QInv}(f) \rightarrow \operatorname{IsHaE}(f)$.

The other direction is trivial. (Why?)
proof of the Theorem 4.2.3.
Let $(g, \eta, \epsilon): \operatorname{Qlnv}(f)$.
proof of the Theorem 4.2.3.
Let $(g, \eta, \epsilon): \operatorname{Qlnv}(f)$.
We want to to provide a quadruple $\left(g^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \tau\right): \operatorname{IsHaE}(f)$.
proof of the Theorem 4.2.3.
Let $(g, \eta, \epsilon): \operatorname{Qlnv}(f)$.
We want to to provide a quadruple $\left(g^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \tau\right): \operatorname{IsHaE}(f)$.
We define

- $g^{\prime}: \equiv g$
- $\eta^{\prime}: \equiv \eta$
$■ \epsilon^{\prime}: \equiv \epsilon(f(g(b)))^{-1} \cdot f(\eta(g(b))) \cdot \epsilon(b)$
proof of the Theorem 4.2.3.
Let $(g, \eta, \epsilon): \operatorname{Qlnv}(f)$.
We want to to provide a quadruple $\left(g^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \tau\right): \operatorname{IsHaE}(f)$.
We define
- $g^{\prime}: \equiv g$
- $\eta^{\prime}: \equiv \eta$
- $\epsilon^{\prime}: \equiv \epsilon(f(g(b)))^{-1} \cdot f(\eta(g(b))) \cdot \epsilon(b) \quad ?!$
proof of the Theorem 4.2.3.
Let $(g, \eta, \epsilon): \operatorname{Qlnv}(f)$.
We want to to provide a quadruple $\left(g^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \tau\right): \operatorname{IsHaE}(f)$.
We define
- $g^{\prime}: \equiv g$
- $\eta^{\prime}: \equiv \eta$
- $\epsilon^{\prime}: \equiv \epsilon(f(g(b)))^{-1} \cdot f(\eta(g(b))) \cdot \epsilon(b) \quad ?!$

Let us brake ϵ^{\prime} into pieces!
$■ \epsilon(f(g(b)))^{-1}: f \circ g(b)=f \circ g(f(g(b)))$
■ $f(\eta(g(b))): f \circ g(f(g(b)))=f \circ g(b)$

- $\epsilon(b): f \circ g(b)=b$
proof of the Theorem 4.2.3.
Let $(g, \eta, \epsilon): \operatorname{Qlnv}(f)$.
We want to to provide a quadruple $\left(g^{\prime}, \eta^{\prime}, \epsilon^{\prime}, \tau\right): \operatorname{IsHaE}(f)$.
We define
- $g^{\prime}: \equiv g$
- $\eta^{\prime}: \equiv \eta$
- $\epsilon^{\prime}: \equiv \epsilon(f(g(b)))^{-1} \cdot f(\eta(g(b))) \cdot \epsilon(b) \quad ?!$

Let us brake ϵ^{\prime} into pieces!
$■ \epsilon(f(g(b)))^{-1}: f \circ g(b)=f \circ g(f(g(b)))$
■ $f(\eta(g(b))): f \circ g(f(g(b)))=f \circ g(b)$

- $\epsilon(b): f \circ g(b)=b$

Thus $\epsilon^{\prime}: f \circ g(b)=b$ as wanted.
We need to find τ, s.t.

$$
\tau(a): f(\eta(a))=\epsilon^{\prime}(a) .
$$

proof of the theorem (Cont'd)
From Lemma 2.4.3. we can easilly observe that

$$
\begin{equation*}
\eta(g \circ f(a))=g \circ f(\eta(a)) . \tag{1}
\end{equation*}
$$

proof of the theorem (Cont'd)
From Lemma 2.4.3. we can easilly observe that

$$
\begin{equation*}
\eta(g \circ f(a))=g \circ f(\eta(a)) . \tag{1}
\end{equation*}
$$

Therefore,

$$
\begin{array}{rlr}
f(\eta(g \circ f(a))) \cdot \epsilon(f(a)) & =f \circ g(f(\eta(a))) \cdot \epsilon(f(a)) & 1 \tag{1}\\
& =\epsilon(f(g \circ f(a))) \cdot f(\eta(a)) \quad \text { Lemma 2.4.3. }
\end{array}
$$

proof of the theorem (Cont'd)
From Lemma 2.4.3. we can easilly observe that

$$
\begin{equation*}
\eta(g \circ f(a))=g \circ f(\eta(a)) . \tag{1}
\end{equation*}
$$

Therefore,

$$
\begin{array}{rlr}
f(\eta(g \circ f(a))) \cdot \epsilon(f(a)) & =f \circ g(f(\eta(a))) \cdot \epsilon(f(a)) & 1 \\
& =\epsilon(f(g \circ f(a))) \cdot f(\eta(a)) & \text { Lemma 2.4.3. }
\end{array}
$$

where we used Lemma 2.4.3. as
$■ f \leftarrow f \circ g$ and $g \leftarrow \mathrm{id}_{A}$

- $H \leftarrow \epsilon$

■ $x \leftarrow f \circ g(f(a))$ and $y \leftarrow f(a)$

- $p \leftarrow f(\eta(a)): f \circ g(f(a))=f(a)$

Equivalence of Equivalences :)

Theorem (Theorem 4.2.13.)
For any $f: A \rightarrow B$, the type $\operatorname{IsHaE}(f)$ is a mere proposition.

Equivalence of Equivalences :)

Theorem (Theorem 4.2.13.)
For any $f: A \rightarrow B$, the type $\operatorname{IsHaE}(f)$ is a mere proposition.
Theorem (Corollary 4.3.3. \& Theorem 4.4.5.)
All three types IsHaE, Bilnv and IsContr are equivalent:

$$
\mathrm{IsHaE} \simeq \text { Bilnv } \simeq \mathrm{IsContr}
$$

Equivalence of Equivalences :)

Theorem (Theorem 4.2.13.)
For any $f: A \rightarrow B$, the type $\mathrm{IsHaE}(f)$ is a mere proposition.
Theorem (Corollary 4.3.3. \& Theorem 4.4.5.)
All three types IsHaE, Bilnv and IsContr are equivalent:

$$
\mathrm{IsHaE} \simeq \text { Bilnv } \simeq \mathrm{IsContr}
$$

Strategy of proof:
$\operatorname{Bilnv}(f) \leftrightarrow \operatorname{IsHaE}(f)$ and $\operatorname{IsContr}(f) \leftrightarrow \operatorname{IsHaE}(f)$ and
$\operatorname{Bilnv}(f), \operatorname{IsContr}(f)$ are mere propositions (Lemma 3.3.3 / $\Lambda \tilde{\mu} \mu \mu \alpha 45$)

Total Space

Definitions

- Given two type families $P, Q: A \rightarrow \mathcal{U}$, we refer to a function $f: \prod_{(x: A)}(P(x) \rightarrow Q(x))$ as a fiberwise map or a fiberwise transformation.

Total Space

Definitions

$■$ Given two type families $P, Q: A \rightarrow \mathcal{U}$, we refer to a function $f: \prod_{(x: A)}(P(x) \rightarrow Q(x))$ as a fiberwise map or a fiberwise

transformation.

- Such a map induces a function on total spaces

$$
\operatorname{total}(f): \equiv \lambda w . \operatorname{pair}\left(\operatorname{pr}_{1}(w), f\left(\operatorname{pair}\left(\operatorname{pr}_{1}(w), \operatorname{pr}_{2}(w)\right)\right)\right): \sum_{x: A} P(x) \rightarrow \sum_{x: A} Q(x)
$$

Total Space

Definitions

■ Given two type families $P, Q: A \rightarrow \mathcal{U}$, we refer to a function $f: \prod_{(x: A)}(P(x) \rightarrow Q(x))$ as a fiberwise map or a fiberwise transformation.

- Such a map induces a function on total spaces

$$
\operatorname{total}(f): \equiv \lambda w . \operatorname{pair}\left(\operatorname{pr}_{1}(w), f\left(\operatorname{pair}\left(\operatorname{pr}_{1}(w), \operatorname{pr}_{2}(w)\right)\right)\right): \sum_{x: A} P(x) \rightarrow \sum_{x: A} Q(x) .
$$

- We say that a fiberwise map $f: \prod_{(x: A)}(P(x) \rightarrow Q(x))$ is a fiberwise equivalence if each $f(x): P(x) \rightarrow Q(x)$ is an equivalence.

Total Space

Theorem (Theorem 4.7.6.)

Suppose that f is a fiberwise transformation between families P and Q over a type A and let $x: A$ and $v: Q(x)$. Then we have an equivalence

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Total Space

Theorem (Theorem 4.7.6.)

Suppose that f is a fiberwise transformation between families P and Q over a type A and let $x: A$ and $v: Q(x)$. Then we have an equivalence

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Theorem (Theorem 4.7.7.)

Suppose that f is a fiberwise transformation between families P and Q over a type A. Then f is a fiberwise equivalence if and only if $\operatorname{total}(f)$ is an equivalence.
proof of the theorem 4.7.6.
We calculate:

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)): \equiv \sum_{w: \sum_{(x: A)} P(x)} \operatorname{pair}\left(\operatorname{pr}_{1}(w), f\left(\operatorname{pair}\left(\operatorname{pr}_{1}(w), \operatorname{pr}_{2}(w)\right)\right)\right)=\operatorname{pair}(x, v)
$$

proof of the theorem 4.7.6.
We calculate:

$$
\begin{array}{rlr}
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) & : \equiv \sum_{w: \sum_{(x: A)} P(x)} \operatorname{pair}\left(\operatorname{pr}_{1}(w), f\left(\operatorname{pair}\left(\operatorname{pr}_{1}(w), \operatorname{pr}_{2}(w)\right)\right)\right)=\operatorname{pair}(x, v) \\
& \simeq \sum_{a: A} \sum_{u: P(a)} \operatorname{pair}(a, f(\operatorname{pair}(a, u)))=\operatorname{pair}(x, v) & \text { Ex.2.10. }
\end{array}
$$

proof of the theorem 4.7.6.
We calculate:

$$
\begin{array}{rlrl}
\text { fib }_{\text {total }(f)}(\operatorname{pair}(x, v)) & : \equiv \sum_{w: \sum(x: A)} P(x) \\
\operatorname{pair}\left(\operatorname{pr}_{1}(w), f\left(\operatorname{pair}\left(\operatorname{pr}_{1}(w), \operatorname{pr}_{2}(w)\right)\right)\right)= & \operatorname{pair}(x, v) \\
& \simeq \sum_{a: A} \sum_{u: P(a)} \operatorname{pair}(a, f(\operatorname{pair}(a, u)))=\operatorname{pair}(x, v) & \text { Ex.2.10. } \\
& \simeq \sum_{a: A} \sum_{u: P(a)} \sum_{p: a=x} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v & \Theta .32 .
\end{array}
$$

proof of the theorem 4.7.6.
We calculate:

$$
\begin{array}{rlr}
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) & : \equiv \sum_{w: \sum_{(x: A)} P(x)} \operatorname{pair}^{\left(\operatorname{pr}_{1}(w), f\left(\operatorname{pair}\left(\operatorname{pr}_{1}(w), \operatorname{pr}_{2}(w)\right)\right)\right)=} \begin{array}{c}
\text { pair }(x, v) \\
\\
\\
\simeq \sum_{a: A} \sum_{u: P(a)} \operatorname{pair}^{\prime}(a, f(\operatorname{pair}(a, u)))=\operatorname{pair}(x, v) \\
\\
\\
\simeq \sum_{a: A} \sum_{u: P(a)} \sum_{p: a=x} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v \\
\\
\end{array} \sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v & \text { Ex.2.10. }
\end{array}
$$

proof of the theorem 4.7.6.
We calculate:

$$
\begin{array}{rlrl}
\text { fib }_{\text {total }(f)}(\operatorname{pair}(x, v)) & : \equiv \sum_{w: \sum(x: A)} P(x) \\
& \operatorname{pair}\left(\operatorname{pr}_{1}(w), f\left(\operatorname{pair}\left(\operatorname{pr}_{1}(w), \operatorname{pr}_{2}(w)\right)\right)\right)= & \operatorname{pair}(x, v) \\
& \simeq \sum_{a: A} \sum_{u: P(a)} \operatorname{pair}(a, f(\operatorname{pair}(a, u)))=\operatorname{pair}(x, v) & \text { Ex.2.10. } \\
& \simeq \sum_{a: A} \sum_{u: P(a)} \sum_{p: a=x} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v & \Theta .32 . \\
& \simeq \sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v & \tag{*}\\
& \simeq \sum_{u: P(x)} f(\operatorname{pair}(x, u))=v & (*)
\end{array}
$$

proof of the theorem 4.7.6.
We calculate:

$$
\begin{array}{rlrl}
\text { fib }_{\text {total }(f)}(\operatorname{pair}(x, v)) & : \equiv \sum_{w: \sum(x: A)} P(x) \\
& \operatorname{pair}\left(\operatorname{pr}_{1}(w), f\left(\operatorname{pair}\left(\operatorname{pr}_{1}(w), \operatorname{pr}_{2}(w)\right)\right)\right)= & \operatorname{pair}(x, v) \\
& \simeq \sum_{a: A} \sum_{u: P(a)} \operatorname{pair}(a, f(\operatorname{pair}(a, u)))=\operatorname{pair}(x, v) & \text { Ex.2.10. } \\
& \simeq \sum_{a: A} \sum_{u: P(a)} \sum_{p: a=x} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v & \Theta .32 . \\
& \simeq \sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v & \tag{*}\\
& \simeq \sum_{u: P(x)} f(\operatorname{pair}(x, u))=v & \\
& \equiv \operatorname{fib}_{f(x)}(v) & *)
\end{array}
$$

proof of the theorem 4.7.6. (Cont'd)
(*) $\sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)}$ transport $^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v \simeq \operatorname{sum}_{u: P(x)} f(\operatorname{pair}(x, u))=v$
By Lemma 3.11.8. $\sum_{(x: A)}(a=x)$ is contractible with center of contraction $\left(a, \operatorname{refl}_{a}\right)$.
proof of the theorem 4．7．6．（Cont＇d）
（＊）$\quad \sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v \simeq \operatorname{sum}_{u: P(x)} f(\operatorname{pair}(x, u))=v$
By Lemma 3．11．8．$\sum_{(x: A)}(a=x)$ is contractible with center of contraction
$\left(a\right.$, refl $\left._{a}\right)$ ．
Let us assume that $P: \sum_{(x: A)}(a=x) \rightarrow \mathcal{U}$ ，where

$$
P(\operatorname{pair}(a, p)): \equiv \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v .
$$

proof of the theorem 4.7.6. (Cont'd)
(*) $\quad \sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v \simeq \operatorname{sum}_{u: P(x)} f(\operatorname{pair}(x, u))=v$
By Lemma 3.11.8. $\sum_{(x: A)}(a=x)$ is contractible with center of contraction
$\left(a, \operatorname{refl}_{a}\right)$.
Let us assume that $P: \sum_{(x: A)}(a=x) \rightarrow \mathcal{U}$, where

$$
P(\operatorname{pair}(a, p)): \equiv \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v .
$$

By Lemma 3.11.9. and Exercise 2.10. we have that
proof of the theorem 4.7.6. (Cont'd)
(*) $\quad \sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v \simeq \operatorname{sum}_{u: P(x)} f(\operatorname{pair}(x, u))=v$
By Lemma 3.11.8. $\sum_{(x: A)}(a=x)$ is contractible with center of contraction
$\left(a, \operatorname{refl}_{a}\right)$.
Let us assume that $P: \sum_{(x: A)}(a=x) \rightarrow \mathcal{U}$, where

$$
P(\operatorname{pair}(a, p)): \equiv \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v .
$$

By Lemma 3.11.9. and Exercise 2.10. we have that
$\sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}(p, f(\operatorname{pair}(a, u)))=v \simeq \sum_{u: P(a)} \operatorname{transport}\left(\operatorname{refl}_{a}, f(\operatorname{pair}(a, u))\right)=v$
proof of the theorem 4.7.6. (Cont'd)
(*) $\quad \sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v \simeq \operatorname{sum}_{u: P(x)} f(\operatorname{pair}(x, u))=v$
By Lemma 3.11.8. $\sum_{(x: A)}(a=x)$ is contractible with center of contraction
$\left(a, \operatorname{refl}_{a}\right)$.
Let us assume that $P: \sum_{(x: A)}(a=x) \rightarrow \mathcal{U}$, where

$$
P(\operatorname{pair}(a, p)): \equiv \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v .
$$

By Lemma 3.11.9. and Exercise 2.10. we have that

$$
\begin{aligned}
\sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}(p, f(\operatorname{pair}(a, u)))=v & \simeq \sum_{u: P(a)} \operatorname{transport}\left(\operatorname{reff}_{a}, f(\operatorname{pair}(a, u))\right)=v \\
& \equiv \sum_{u: P(x)} f(\operatorname{pair}(x, u))=v
\end{aligned}
$$

proof of the theorem 4.7.6. (Cont'd)
(*) $\quad \sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v \simeq \operatorname{sum}_{u: P(x)} f(\operatorname{pair}(x, u))=v$
By Lemma 3.11.8. $\sum_{(x: A)}(a=x)$ is contractible with center of contraction
$\left(a, \operatorname{refl}_{a}\right)$.
Let us assume that $P: \sum_{(x: A)}(a=x) \rightarrow \mathcal{U}$, where

$$
P(\operatorname{pair}(a, p)): \equiv \sum_{u: P(a)} \operatorname{transport}^{(a=-)}(p, f(\operatorname{pair}(a, u)))=v .
$$

By Lemma 3.11.9. and Exercise 2.10. we have that

$$
\begin{aligned}
\sum_{a: A} \sum_{p: a=x} \sum_{u: P(a)} \operatorname{transport}(p, f(\operatorname{pair}(a, u)))=v & \simeq \sum_{u: P(a)} \operatorname{transport}\left(\operatorname{reff}_{a}, f(\operatorname{pair}(a, u))\right)=v \\
& \equiv \sum_{u: P(x)} f(\operatorname{pair}(x, u))=v
\end{aligned}
$$

proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all $x: A$ and $v: Q(x)$ that

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all $x: A$ and $v: Q(x)$ that

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Equivalently, fib $_{\text {total }(f)}(\operatorname{pair}(x, v))$ is contractible iff $\operatorname{fib}_{f(x)}(v)$ is contractible.
proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all $x: A$ and $v: Q(x)$ that

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Equivalently, $\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v))$ is contractible iff $\operatorname{fib}_{f(x)}(v)$ is contractible.

We can trivially observe that:
■ $f: \prod_{(x: A)} P(x) \rightarrow Q(x)$ is a fiberwise equivalence
proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all $x: A$ and $v: Q(x)$ that

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Equivalently, $\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v))$ is contractible iff $\operatorname{fib}_{f(x)}(v)$ is contractible.

We can trivially observe that:

- $f: \prod_{(x: A)} P(x) \rightarrow Q(x)$ is a fiberwise equivalence

■ Iff for all $x: A, f(x): P(x) \rightarrow Q(x)$ is an equivalence.
proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all $x: A$ and $v: Q(x)$ that

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Equivalently, $\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v))$ is contractible iff $\operatorname{fib}_{f(x)}(v)$ is contractible.

We can trivially observe that:

- $f: \prod_{(x: A)} P(x) \rightarrow Q(x)$ is a fiberwise equivalence

■ Iff for all $x: A, f(x): P(x) \rightarrow Q(x)$ is an equivalence.

- Iff for all $x: A, f(x)$ is contractible.
proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all $x: A$ and $v: Q(x)$ that

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Equivalently, $\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v))$ is contractible iff $\operatorname{fib}_{f(x)}(v)$ is contractible.

We can trivially observe that:

- $f: \prod_{(x: A)} P(x) \rightarrow Q(x)$ is a fiberwise equivalence

■ Iff for all $x: A, f(x): P(x) \rightarrow Q(x)$ is an equivalence.

- Iff for all $x: A, f(x)$ is contractible.
- Iff for all $x: A$ and for all $v \in Q(x)$, fib $_{f(x)}(v)$ is contractible.
proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all $x: A$ and $v: Q(x)$ that

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Equivalently, $\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v))$ is contractible iff $\operatorname{fib}_{f(x)}(v)$ is contractible.

We can trivially observe that:

- $f: \prod_{(x: A)} P(x) \rightarrow Q(x)$ is a fiberwise equivalence

■ Iff for all $x: A, f(x): P(x) \rightarrow Q(x)$ is an equivalence.

- Iff for all $x: A, f(x)$ is contractible.
- Iff for all $x: A$ and for all $v \in Q(x)$, $\operatorname{fib}_{f(x)}(v)$ is contractible.
- Iff for all $w: \sum_{(x: A)} Q(x)$, fib total $(f)(w)$ is contractible.
proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all $x: A$ and $v: Q(x)$ that

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Equivalently, $\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v))$ is contractible iff $\operatorname{fib}_{f(x)}(v)$ is contractible.

We can trivially observe that:

- $f: \prod_{(x: A)} P(x) \rightarrow Q(x)$ is a fiberwise equivalence

■ Iff for all $x: A, f(x): P(x) \rightarrow Q(x)$ is an equivalence.

- Iff for all $x: A, f(x)$ is contractible.
- Iff for all $x: A$ and for all $v \in Q(x)$, $\operatorname{fib}_{f(x)}(v)$ is contractible.
- Iff for all $w: \sum_{(x: A)} Q(x)$, fib total $(f)(w)$ is contractible.
- Iff total (f) is contractible.
proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all $x: A$ and $v: Q(x)$ that

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Equivalently, $\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v))$ is contractible iff $\operatorname{fib}_{f(x)}(v)$ is contractible.

We can trivially observe that:

- $f: \prod_{(x: A)} P(x) \rightarrow Q(x)$ is a fiberwise equivalence

■ Iff for all $x: A, f(x): P(x) \rightarrow Q(x)$ is an equivalence.

- Iff for all $x: A, f(x)$ is contractible.
- Iff for all $x: A$ and for all $v \in Q(x)$, $\operatorname{fib}_{f(x)}(v)$ is contractible.
- Iff for all $w: \sum_{(x: A)} Q(x)$, fib total $(f)(w)$ is contractible.
- Iff total (f) is contractible.
- Iff total (f) is an equivalence.
proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all $x: A$ and $v: Q(x)$ that

$$
\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v)) \simeq \operatorname{fib}_{f(x)}(v) .
$$

Equivalently, $\operatorname{fib}_{\text {total }(f)}(\operatorname{pair}(x, v))$ is contractible iff $\operatorname{fib}_{f(x)}(v)$ is contractible.

We can trivially observe that:

- $f: \prod_{(x: A)} P(x) \rightarrow Q(x)$ is a fiberwise equivalence

■ Iff for all $x: A, f(x): P(x) \rightarrow Q(x)$ is an equivalence.

- Iff for all $x: A, f(x)$ is contractible.
- Iff for all $x: A$ and for all $v \in Q(x)$, $\operatorname{fib}_{f(x)}(v)$ is contractible.
- Iff for all $w: \sum_{(x: A)} Q(x)$, fib total $(f)(w)$ is contractible.
- Iff total (f) is contractible.
- Iff total (f) is an equivalence.

The Main Theorem

"I prefer Long Proofs to Short Proofs, the same way that I prefer long walks in the woods to short ones".

Vladimir Voevodsky (quoted by Avi Wigderson, Memorial Service for VV, Oct. 8, 2017, at IAS).

The Main Theorem

"I prefer Long Proofs to Short Proofs, the same way that I prefer long walks in the woods to short ones".

Vladimir Voevodsky (quoted by Avi Wigderson, Memorial Service for VV, Oct. 8, 2017, at IAS).

We will brake the proof into shorter proofs...

Weak Function Extensionality Principle

Definition (WFE)

The weak function extensionality principle asserts that there is a function

$$
\prod_{x: A} \operatorname{IsContr}(P(x)) \rightarrow \operatorname{ls} \operatorname{Contr}\left(\prod_{x: A} P(x)\right)
$$

for any family $P: A \rightarrow \mathcal{U}$ of types over any type A.

Weak Function Extensionality Principle

Definition (WFE)

The weak function extensionality principle asserts that there is a function

$$
\prod_{x: A} \operatorname{IsContr}(P(x)) \rightarrow \operatorname{ls} \operatorname{Contr}\left(\prod_{x: A} P(x)\right)
$$

for any family $P: A \rightarrow \mathcal{U}$ of types over any type A.
Lemma (Lemma 4.9.2.)
Assuming \mathcal{U} is univalent, for any $A, B, X: \mathcal{U}$ and any $e: A \simeq B$, there is an equivalence

$$
(X \rightarrow A) \simeq(X \rightarrow B)
$$

of which the underlying map is given by post-composition with the underlying function of e.
proof of the Lemma 4.9.2.
Let $e: A \simeq B$. By induction we may assume that $e: \equiv\left(f_{e}, \alpha\right)$, where $f_{e}: A \rightarrow B$ and α :IsEquiv $\left(f_{e}\right)$.
proof of the Lemma 4.9.2.
Let $e: A \simeq B$. By induction we may assume that $e: \equiv\left(f_{e}, \alpha\right)$, where $f_{e}: A \rightarrow B$ and α :IsEquiv $\left(f_{e}\right)$.

Let us assume the map given by post-composition with the underlying function of e

$$
\lambda(g: X \rightarrow A) . g \circ f_{e}:(X \rightarrow A) \rightarrow(X \rightarrow B)
$$

Let $e: A \simeq B$. By induction we may assume that $e: \equiv\left(f_{e}, \alpha\right)$, where $f_{e}: A \rightarrow B$ and α :IsEquiv $\left(f_{e}\right)$.

Let us assume the map given by post-composition with the underlying function of e

$$
\lambda(g: X \rightarrow A) . g \circ f_{e}:(X \rightarrow A) \rightarrow(X \rightarrow B)
$$

As $e: A \simeq B$, by UA we have that

$$
\text { idtoeqv: }(A=B) \rightarrow(A \simeq B)
$$

is an equuivalence and thus we may assume that e is of the form idtoeqv (p), for some $p: A=B$; i.e.

$$
e=\operatorname{idtoeqv}(p) .
$$

proof of the Lemma 4.9.2. (Cont'd)
By path induction, assuming $p: \equiv \operatorname{refl}_{A}$, we have

$$
e=\operatorname{idtoeqv}\left(\operatorname{reff}_{A}\right) \equiv e=\operatorname{transport}^{X \mapsto X}\left(\operatorname{reff}_{A},-\right) \equiv e=\operatorname{id}_{A} .
$$

proof of the Lemma 4.9.2. (Cont'd)
By path induction, assuming $p: \equiv \operatorname{refl}_{A}$, we have

$$
e=\operatorname{idtoeqv}\left(\operatorname{reff}_{A}\right) \equiv e=\operatorname{transport}^{X \mapsto X}\left(\operatorname{reff}_{A},-\right) \equiv e=\operatorname{id}_{A} .
$$

Thus we have
$\lambda(g: X \rightarrow A) \cdot g \circ f_{e}=\lambda(g: X \rightarrow A) \cdot g \circ \operatorname{id}_{A} \equiv \lambda(g: X \rightarrow A) \cdot g \circ f_{e}=\operatorname{id}_{(X \rightarrow A) \rightarrow(X \rightarrow A)}$ which $\operatorname{id}_{(X \rightarrow A) \rightarrow(X \rightarrow A)}$ is an equivalence of $(X \rightarrow A) \simeq(X \rightarrow A)$.

Corollary (Corollary 4.9.3.)
Let $P: A \rightarrow \mathcal{U}$ be a family of contractible types,

Corollary (Corollary 4.9.3.)
Let $P: A \rightarrow \mathcal{U}$ be a family of contractible types, i.e. $\prod_{(x: A)} \operatorname{Is} \operatorname{Contr}(P(x))$. Then the projection $\mathrm{pr}_{1}:\left(\sum_{(x: A)} P(x)\right) \rightarrow A$ is an equivalence.

Corollary (Corollary 4.9.3.)

Let $P: A \rightarrow \mathcal{U}$ be a family of contractible types, i.e. $\prod_{(x: A)} \operatorname{Is} \operatorname{Contr}(P(x))$. Then the projection $\mathrm{pr}_{1}:\left(\sum_{(x: A)} P(x)\right) \rightarrow A$ is an equivalence.
Assuming \mathcal{U} is univalent, it follows immediately that post-composition with pr_{1} gives an equivalence

$$
\alpha:\left(A \rightarrow \sum_{x: A} P(x)\right) \simeq(A \simeq A) .
$$

proof of the Corollary 4.9.3.
By Lemma 4.8.1, for $\mathrm{pr}_{1}:\left(\sum_{(x: A)} P(x)\right) \rightarrow A$ and $x: A$ we have an equivalence

$$
\operatorname{fib}_{\mathrm{pr}_{1}}(x) \simeq P(x) .
$$

proof of the Corollary 4.9.3.
By Lemma 4.8.1, for $\mathrm{pr}_{1}:\left(\sum_{(x: A)} P(x)\right) \rightarrow A$ and $x: A$ we have an equivalence

$$
\operatorname{fib}_{\mathrm{pr}_{1}}(x) \simeq P(x) .
$$

As for any x : A we have that $P(x)$ is contractible, we get that pr_{1} is contractible, or equivalently pr_{1} is an equivalence of

$$
\left(\sum_{(x: A)} P(x)\right) \simeq A
$$

proof of the Corollary 4.9.3.
By Lemma 4.8.1, for $\mathrm{pr}_{1}:\left(\sum_{(x: A)} P(x)\right) \rightarrow A$ and $x: A$ we have an equivalence

$$
\operatorname{fib}_{\mathrm{pr}_{1}}(x) \simeq P(x) .
$$

As for any $x: A$ we have that $P(x)$ is contractible, we get that pr_{1} is contractible, or equivalently pr_{1} is an equivalence of

$$
\left(\sum_{(x: A)} P(x)\right) \simeq A
$$

By Lemma 4.9.2. for $X: \equiv A$ we have

$$
\left(A \rightarrow \sum_{x: A} P(x)\right) \simeq(A \simeq A)
$$

as wanted.

UA implies WFE

Theorem (Theorem 4.9.4.)

In a univalent universe \mathcal{U}, suppose that $P: A \rightarrow \mathcal{U}$ is a family of contractible types and let

$$
\alpha:\left(A \rightarrow \sum_{x: A} P(x)\right) \simeq(A \simeq A) .
$$

Then $\prod_{(x: A)} P(x)$ is a retract of fib ${ }_{\alpha}\left(\mathrm{id}_{A}\right)$.
As a consequence, $\prod_{(x: A)} P(x)$ is contractible.

UA implies WFE

Theorem (Theorem 4.9.4.)

In a univalent universe \mathcal{U}, suppose that $P: A \rightarrow \mathcal{U}$ is a family of contractible types and let

$$
\alpha:\left(A \rightarrow \sum_{x: A} P(x)\right) \simeq(A \simeq A)
$$

Then $\prod_{(x: A)} P(x)$ is a retract of $\mathrm{fib}_{\alpha}\left(\mathrm{id}_{A}\right)$.
As a consequence, $\prod_{(x: A)} P(x)$ is contractible.
In other words, the univalence axiom implies the weak function extensionality principle.
proof of the Theorem 4.9.4.
We define the following functions:
proof of the Theorem 4.9.4.
We define the following functions:
Section

$$
\begin{gathered}
\varphi: \prod_{(x: A)} P(x) \rightarrow \operatorname{fib}_{\alpha}\left(\mathrm{id}_{A}\right) \\
\varphi(f): \equiv \operatorname{pair}\left(\lambda(x: A) \cdot \operatorname{pair}(x, f(x)), \operatorname{refl}_{\mathrm{id}_{A}}\right)
\end{gathered}
$$

proof of the Theorem 4.9.4.
We define the following functions:
Section

$$
\left.\begin{array}{c}
\varphi: \prod_{(x: A)} P(x) \rightarrow \operatorname{fib}_{\alpha}\left(\mathrm{id}_{A}\right) \\
\varphi(f): \equiv \operatorname{pair}\left(\lambda(x: A) \cdot \operatorname{pair}(x, f(x)), \operatorname{refl}_{\mathrm{id}}^{A}\right.
\end{array}\right)
$$

Observe that it φ well defined:
\qquad
proof of the Theorem 4.9.4.
We define the following functions:
Section

$$
\begin{gathered}
\varphi: \prod_{(x: A)} P(x) \rightarrow \operatorname{fib}_{\alpha}\left(\mathrm{id}_{A}\right) \\
\varphi(f): \equiv \operatorname{pair}\left(\lambda(x: A) \cdot \operatorname{pair}(x, f(x)), \operatorname{refl}_{\mathrm{id}_{A}}\right)
\end{gathered}
$$

Observe that it φ well defined:

- $\lambda(x: A) \cdot \operatorname{pair}(x, f(x)): A \rightarrow \sum_{x: A} P(x)$
proof of the Theorem 4.9.4.
We define the following functions:
Section

$$
\begin{gathered}
\varphi: \prod_{(x: A)} P(x) \rightarrow \operatorname{fib}_{\alpha}\left(\mathrm{id}_{A}\right) \\
\varphi(f): \equiv \operatorname{pair}\left(\lambda(x: A) \cdot \operatorname{pair}(x, f(x)), \operatorname{refl}_{\mathrm{id}_{A}}\right)
\end{gathered}
$$

Observe that it φ well defined:

- $\lambda(x: A) \cdot \operatorname{pair}(x, f(x)): A \rightarrow \sum_{x: A} P(x)$
- $\operatorname{fib}_{\alpha}\left(\mathrm{id}_{A}\right) \equiv \sum_{\left(z: A \rightarrow \sum_{x: A} P(x)\right)} \alpha(z)=\operatorname{id}_{A}$
proof of the Theorem 4.9.4. (Cont'd)

Retraction

$$
\begin{gathered}
\psi: \mathrm{fib}_{\alpha}\left(\operatorname{id}_{A}\right) \rightarrow \prod_{x: A} P(x) \\
\psi(\operatorname{pair}(g, p)): \equiv \lambda(x: A) \cdot \operatorname{happly}(p, x)_{*}\left(\operatorname{pr}_{2}(g(x))\right)
\end{gathered}
$$

proof of the Theorem 4.9.4. (Cont'd)

Retraction

$$
\begin{gathered}
\psi: \mathrm{fib}_{\alpha}\left(\operatorname{id}_{A}\right) \rightarrow \prod_{x: A} P(x) \\
\psi(\operatorname{pair}(g, p)): \equiv \lambda(x: A) \cdot \operatorname{happly}(p, x)_{*}\left(\operatorname{pr}_{2}(g(x))\right)
\end{gathered}
$$

Observe that ψ is well defined:

- $g: A \rightarrow \sum_{(x: A)} P(x)$
proof of the Theorem 4.9.4. (Cont'd)

Retraction

$$
\begin{gathered}
\psi: \mathrm{fib}_{\alpha}\left(\operatorname{id}_{A}\right) \rightarrow \prod_{x: A} P(x) \\
\psi(\operatorname{pair}(g, p)): \equiv \lambda(x: A) \cdot \operatorname{happly}(p, x)_{*}\left(\operatorname{pr}_{2}(g(x))\right)
\end{gathered}
$$

Observe that ψ is well defined:

- $g: A \rightarrow \sum_{(x: A)} P(x)$
- $p: \alpha(g)=\operatorname{id}_{A}$
proof of the Theorem 4.9.4. (Cont'd)

Retraction

$$
\begin{gathered}
\psi: \mathrm{fib}_{\alpha}\left(\operatorname{id}_{A}\right) \rightarrow \prod_{x: A} P(x) \\
\psi(\operatorname{pair}(g, p)): \equiv \lambda(x: A) . \text { happly }(p, x)_{*}\left(\operatorname{pr}_{2}(g(x))\right)
\end{gathered}
$$

Observe that ψ is well defined:

- $g: A \rightarrow \sum_{(x: A)} P(x)$
- $p: \alpha(g)=\operatorname{id}_{A}$
- happly $(p,-): \prod_{(x: A)} \propto(g)(x)=x$
proof of the Theorem 4.9.4. (Cont'd)
Retraction

$$
\begin{gathered}
\psi: \mathrm{fib}_{\alpha}\left(\mathrm{id}_{A}\right) \rightarrow \prod_{x: A} P(x) \\
\psi(\operatorname{pair}(g, p)): \equiv \lambda(x: A) \cdot \operatorname{happly}(p, x)_{*}\left(\operatorname{pr}_{2}(g(x))\right)
\end{gathered}
$$

Observe that ψ is well defined:

- $g: A \rightarrow \sum_{(x: A)} P(x)$
- $p: \alpha(g)=\operatorname{id}_{A}$
- happly $(p,-): \prod_{(x: A)} \propto(g)(x)=x$

■ happly $(p, x)_{*}: P(\alpha(g)(x)) \rightarrow P(x)$
proof of the Theorem 4.9.4. (Cont'd)
Retraction

$$
\begin{gathered}
\psi: \mathrm{fib}_{\alpha}\left(\operatorname{id}_{A}\right) \rightarrow \prod_{x: A} P(x) \\
\psi(\operatorname{pair}(g, p)): \equiv \lambda(x: A) \cdot \operatorname{happly}(p, x)_{*}\left(\operatorname{pr}_{2}(g(x))\right)
\end{gathered}
$$

Observe that ψ is well defined:

- $g: A \rightarrow \sum_{(x: A)} P(x)$
- $p: \alpha(g)=\operatorname{id}_{A}$
- happly $(p,-): \prod_{(x: A)} \alpha(g)(x)=x$

■ happly $(p, x)_{*}: P(\alpha(g)(x)) \rightarrow P(x)$

- λx. happly $(p, x)_{*}\left(\operatorname{pr}_{2}(g(x))\right): \prod_{(x: A)} P(x)$
proof of the Theorem 4.9.4. (Cont'd)
Let $f: \prod_{(x: A)} P(x)$.
We have that
proof of the Theorem 4.9.4. (Cont'd)
Let $f: \prod_{(x: A)} P(x)$.
We have that

$$
\psi \circ \varphi(f) \equiv \psi\left(\operatorname{pair}\left(\lambda(x: A) \cdot \operatorname{pair}(x, f(x)), \operatorname{refl}_{\mathrm{id}_{A}}\right)\right)
$$

proof of the Theorem 4.9.4. (Cont'd)
Let $f: \prod_{(x: A)} P(x)$.
We have that

$$
\begin{aligned}
\psi \circ \varphi(f) & \equiv \psi\left(\operatorname{pair}\left(\lambda(x: A) \cdot \operatorname{pair}(x, f(x)), \operatorname{refl}_{\mathrm{id}_{A}}\right)\right) \\
& \equiv \lambda(x: A) \cdot \operatorname{happly}\left(\operatorname{refl}_{\mathrm{id}_{A}}, x\right)_{*}(f(x))
\end{aligned}
$$

proof of the Theorem 4.9.4. (Cont'd)
Let $f: \prod_{(x: A)} P(x)$.
We have that

$$
\begin{aligned}
\psi \circ \varphi(f) & \equiv \psi\left(\operatorname{pair}\left(\lambda(x: A) \cdot \operatorname{pair}(x, f(x)), \operatorname{refl}_{\mathrm{id}_{A}}\right)\right) \\
& \equiv \lambda(x: A) \cdot \operatorname{happly}\left(\operatorname{refl}_{\mathrm{id}_{A}}, x\right)_{*}(f(x)) \\
& \equiv \lambda(x: A) \cdot f(x)
\end{aligned}
$$

proof of the Theorem 4.9.4. (Cont'd)
Let $f: \prod_{(x: A)} P(x)$.
We have that

$$
\begin{aligned}
\psi \circ \varphi(f) & \equiv \psi\left(\operatorname{pair}\left(\lambda(x: A) \cdot \operatorname{pair}(x, f(x)), \operatorname{refl}_{\mathrm{id}_{A}}\right)\right) \\
& \equiv \lambda(x: A) \cdot \operatorname{happly}\left(\operatorname{refl}_{\mathrm{id}_{A}}, x\right)_{*}(f(x)) \\
& \equiv \lambda(x: A) \cdot f(x) \\
& \equiv f
\end{aligned}
$$

proof of the Theorem 4.9.4. (Cont'd)
Let $f: \prod_{(x: A)} P(x)$.
We have that

$$
\begin{aligned}
\psi \circ \varphi(f) & \equiv \psi\left(\operatorname{pair}\left(\lambda(x: A) \cdot \operatorname{pair}(x, f(x)), \operatorname{refl}_{\mathrm{id}_{A}}\right)\right) \\
& \equiv \lambda(x: A) \cdot \operatorname{happly}\left(\operatorname{refl}_{\mathrm{id}_{A}}, x\right)_{*}(f(x)) \\
& \equiv \lambda(x: A) \cdot f(x) \\
& \equiv f
\end{aligned}
$$

Thus $\prod_{(x: A)} P(x)$ is a retract of $\operatorname{fib}_{\alpha}\left(\mathrm{id}_{A}\right)$.

proof of the Theorem 4.9.4. (Cont'd)

Let $f: \prod_{(x: A)} P(x)$.
We have that

$$
\begin{aligned}
\psi \circ \varphi(f) & \equiv \psi\left(\operatorname{pair}\left(\lambda(x: A) \cdot \operatorname{pair}(x, f(x)), \operatorname{refl}_{\mathrm{id}_{A}}\right)\right) \\
& \equiv \lambda(x: A) \cdot \operatorname{happly}\left(\operatorname{refl}_{\mathrm{id}_{A}}, x\right)_{*}(f(x)) \\
& \equiv \lambda(x: A) \cdot f(x) \\
& \equiv f
\end{aligned}
$$

Thus $\prod_{(x: A)} P(x)$ is a retract of $\mathrm{fib}_{\alpha}\left(\mathrm{id}_{A}\right)$.
But from Corollary 4.9.3. $\mathrm{fib}_{\alpha}\left(\mathrm{id}_{A}\right)$ is contractible.

proof of the Theorem 4.9.4. (Cont'd)

Let $f: \prod_{(x: A)} P(x)$.
We have that

$$
\begin{aligned}
\psi \circ \varphi(f) & \equiv \psi\left(\operatorname { p a i r } \left(\lambda(x: A) \cdot \operatorname{pair}_{\left.\left.(x, f(x)), \operatorname{refl}_{\mathrm{id}_{A}}\right)\right)}\right.\right. \\
& \equiv \lambda(x: A) \cdot \operatorname{happly}\left(\operatorname{refl}_{\mathrm{id}_{A}}, x\right)_{*}(f(x)) \\
& \equiv \lambda(x: A) \cdot f(x) \\
& \equiv f
\end{aligned}
$$

Thus $\prod_{(x: A)} P(x)$ is a retract of $\mathrm{fib}_{\alpha}\left(\mathrm{id}_{A}\right)$.
But from Corollary 4.9.3. $\mathrm{fib}_{\alpha}\left(\mathrm{id}_{A}\right)$ is contractible.
Therefore by Lemma 3.11.7. we conclude that $\mathrm{fib}_{\alpha}\left(\mathrm{id}_{A}\right)$ is contractible.
\square

WFE implies FunExt

Theorem (Theorem 4.9.5.)
Weak function extensionality implies the function extensionality Axiom.

WFE implies FunExt

Theorem (Theorem 4.9.5.)
Weak function extensionality implies the function extensionality Axiom.

Therefore

UA implies FunExt

proof of Theorem 4.9.5.
We want to show that the type

$$
\prod_{A: \mathcal{U}} \prod_{P: A \rightarrow \mathcal{U} f, g: \prod_{(x: A)}} \prod_{P(x)} \text { IsEquiv(happly }(f, g) \text {) }
$$

is inhabited.
proof of Theorem 4.9.5.
We want to show that the type

$$
\prod_{A: \mathcal{U}} \prod_{P: A \rightarrow \mathcal{U}, g: \prod_{(x: A)}} \prod_{P(x)} \text { IsEquiv }(\text { happly }(f, g))
$$

is inhabited.
It suffices to show that

$$
\lambda\left(g: \prod_{x: A} P(x)\right) \cdot \text { happly }(f, g): \prod_{g: \prod_{(x: A)} P(x)}((f=g) \rightarrow(f \sim g))
$$

is a fiberwise equivalence.
proof of Theorem 4.9.5. (Cont'd)
Since a fiberwise map induces an equivalence on total spaces iff it is fiberwise an equivalence by Theorem 4.7.7, where we assume

- $A \leftarrow \prod_{(s: A)} P(x)$
- $P(x) \leftarrow f=g$
- $Q(x) \leftarrow f \sim g$

■ $f \leftarrow \lambda\left(g: \prod_{x: A} P(x)\right)$. happly (f, g)
it suffices to show that the function
total $\left(\lambda\left(g: \prod_{x: A} P(x)\right) \cdot\right.$ happly $\left.\left.(f, g)\right): \sum_{g: \prod_{(x: A)} P(x)}(f=g) \rightarrow \sum_{g: \prod_{(x: A)} P(x)}(f \sim g)\right)$
is an equivalence.
proof of Theorem 4.9.5. (Cont'd)
By Lemma 3.11.8. we know that $\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f=g)$ is contractible.
proof of Theorem 4.9.5. (Cont'd $^{\prime}$)
By Lemma 3.11.8. we know that $\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f=g)$ is contractible.
It suffices to show that the type $\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f \sim g)$ is also contractible.
proof of Theorem 4.9.5. (Cont'd $^{\prime}$)
By Lemma 3.11.8. we know that $\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f=g)$ is contractible.
It suffices to show that the type $\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f \sim g)$ is also contractible.
proof of Theorem 4.9.5. (Cont'd)
By Lemma 3.11.8. we know that $\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f=g)$ is contractible.
It suffices to show that the type $\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f \sim g)$ is also contractible.
" A technical argument by a trusted author, which is hard to check and looks similar to arguments known to be correct, is hardly ever checked in detail"

Vladimir Voevodsky [3]

Our Lemma

Lemma

Suppose function $f: A \rightarrow B$. If the types A, B are contractible, then f is an equivalence.

Our Lemma

Lemma

Suppose function $f: A \rightarrow B$. If the types A, B are contractible, then f is an equivalence.
proof of Lemma
Let $a: A$ and $b: B$ the corresponding centers of contraction;

Our Lemma

Lemma

Suppose function $f: A \rightarrow B$. If the types A, B are contractible, then f is an equivalence.
proof of Lemma
Let $a: A$ and $b: B$ the corresponding centers of contraction; i.e.

- $\alpha: \operatorname{lsContr}(A)$ and $a: \equiv \operatorname{pr}_{1}(\alpha)$
- $\beta: \operatorname{lsContr}(B)$ and $b: \equiv \operatorname{pr}_{1}(\beta)$
proof of Lemma (Cont'd)
As B is contractible there are
- $p: b=f(a)$
- $q_{y}: \equiv \operatorname{pr}_{2}(\beta)(y): b=y$, for any $y: B$.
proof of Lemma (Cont'd)
As B is contractible there are
- $p: b=f(a)$
- $q_{y}: \equiv \operatorname{pr}_{2}(\beta)(y): b=y$, for any $y: B$.

Let us fix y : B.
\qquad
proof of Lemma (Cont'd)
As B is contractible there are

- $p: b=f(a)$
- $q_{y}: \equiv \operatorname{pr}_{2}(\beta)(y): b=y$, for any $y: B$.

Let us fix y : B. We define

$$
p_{y}: \equiv p^{-1} \cdot q_{y}: f(a)=y .
$$

proof of Lemma (Cont'd)
As B is contractible there are

- $p: b=f(a)$
- $q_{y}: \equiv \operatorname{pr}_{2}(\beta)(y): b=y$, for any $y: B$.

Let us fix y : B. We define

$$
p_{y}: \equiv p^{-1} \cdot q_{y}: f(a)=y .
$$

Thus $\left(a, p_{y}\right): \operatorname{fib}_{f}(y)$.

As B is contractible there are

- $p: b=f(a)$
- $q_{y}: \equiv \operatorname{pr}_{2}(\beta)(y): b=y$, for any $y: B$.

Let us fix y : B. We define

$$
p_{y}: \equiv p^{-1} \cdot q_{y}: f(a)=y .
$$

Thus $\left(a, p_{y}\right): \mathrm{fib}_{f}(y)$. We want to show that $\left(a, p_{y}\right)$ is center of retraction of $\operatorname{fib}_{f}(y)$.

As B is contractible there are

- $p: b=f(a)$
- $q_{y}: \equiv \operatorname{pr}_{2}(\beta)(y): b=y$, for any $y: B$.

Let us fix y : B. We define

$$
p_{y}: \equiv p^{-1} \cdot q_{y}: f(a)=y .
$$

Thus $\left(a, p_{y}\right): \mathrm{fib}_{f}(y)$. We want to show that $\left(a, p_{y}\right)$ is center of retraction of $\operatorname{fib}_{f}(y)$.

Let $w:$ fib $_{f}(y)$.

As B is contractible there are

- $p: b=f(a)$
- $q_{y}: \equiv \operatorname{pr}_{2}(\beta)(y): b=y$, for any $y: B$.

Let us fix y : B. We define

$$
p_{y}: \equiv p^{-1} \cdot q_{y}: f(a)=y .
$$

Thus $\left(a, p_{y}\right): \mathrm{fib}_{f}(y)$. We want to show that $\left(a, p_{y}\right)$ is center of retraction of $\mathrm{fib}_{f}(y)$.

Let $w: \mathrm{fib}_{f}(y)$. By induction for Σ-types we may assume that $w: \equiv\left(a^{\prime}, p^{\prime}\right)$.
We want to show that $\left(a, p_{y}\right)=\left(a^{\prime}, p^{\prime}\right)$.

As B is contractible there are

- $p: b=f(a)$
- $q_{y}: \equiv \operatorname{pr}_{2}(\beta)(y): b=y$, for any $y: B$.

Let us fix y : B. We define

$$
p_{y}: \equiv p^{-1} \cdot q_{y}: f(a)=y .
$$

Thus $\left(a, p_{y}\right): \mathrm{fib}_{f}(y)$. We want to show that $\left(a, p_{y}\right)$ is center of retraction of $\mathrm{fib}_{f}(y)$.

Let $w:$ fib $_{f}(y)$. By induction for Σ-types we may assume that $w: \equiv\left(a^{\prime}, p^{\prime}\right)$.
We want to show that $\left(a, p_{y}\right)=\left(a^{\prime}, p^{\prime}\right)$.
By Theorem 2.7.2. it suffices to show that

$$
\sum_{k: a=a^{\prime}} \text { transport }^{\mathrm{fib}_{f}(y)}\left(k, p_{y}\right)=p^{\prime}
$$

proof of Lemma (Cont'd)
We have $\mathrm{pr}_{2}(\alpha)\left(a^{\prime}\right): a=a^{\prime}$.
proof of Lemma (Cont'd)
We have $\mathrm{pr}_{2}(\alpha)\left(a^{\prime}\right): a=a^{\prime}$.
By path induction we may assume $a^{\prime}: \equiv a$,
proof of Lemma (Cont'd)
We have $\operatorname{pr}_{2}(\alpha)\left(a^{\prime}\right): a=a^{\prime}$.
By path induction we may assume $a^{\prime}: \equiv a$, thus it suffices to show that

$$
\operatorname{transport}^{\operatorname{fib}_{f}(y)}\left(\operatorname{refl}_{a}, p_{y}\right)=p^{\prime} \equiv p_{y}=p^{\prime} .
$$

proof of Lemma (Cont'd)
We have $\operatorname{pr}_{2}(\alpha)\left(a^{\prime}\right): a=a^{\prime}$.
By path induction we may assume $a^{\prime}: \equiv a$, thus it suffices to show that

$$
\operatorname{transport}^{\operatorname{fib}_{f}(y)}\left(\operatorname{refl}_{a}, p_{y}\right)=p^{\prime} \equiv p_{y}=p^{\prime}
$$

By path induction we may assume also that $y: \equiv f(a)$.
proof of Lemma (Cont'd)
We have $\operatorname{pr}_{2}(\alpha)\left(a^{\prime}\right): a=a^{\prime}$.
By path induction we may assume $a^{\prime}: \equiv a$, thus it suffices to show that

$$
\operatorname{transport}^{\operatorname{fib}_{f}(y)}\left(\operatorname{refl}_{a}, p_{y}\right)=p^{\prime} \equiv p_{y}=p^{\prime}
$$

By path induction we may assume also that $y: \equiv f(a)$. Thus it suffices to show that

$$
p_{f(a)}=p^{\prime} \equiv \operatorname{refl}_{f(a)}=\operatorname{refl}_{f(a)}
$$

which is inhabited by refl ${ }_{\text {refl }}^{f(a)}$.
proof of Theorem 4.9.5. (Cont'd)
Now by Theorem 2.15.7 / Өєćp \quad u人 58 (aka AC) we get that

$$
\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f \sim g) \text { is a retract of } \prod_{(x: A)} \sum_{(u: P(x))}(f(x)=u)
$$

(Without using FunExt).
proof of Theorem 4.9.5. (Cont'd)
Now by Theorem 2.15.7 / Өєćp \quad u人 58 (aka AC) we get that

$$
\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f \sim g) \text { is a retract of } \prod_{(x: A)} \sum_{(u: P(x))}(f(x)=u)
$$

(Without using FunExt).
By Lemma 3.11.8. we can observe that $\prod_{(x: A)} \sum_{(u: P(x))}(f(x)=u)$ is a product of contractible types.
proof of Theorem 4.9.5. (Cont'd)
Now by Theorem 2.15.7 / Өєćp \quad u人 58 (aka AC) we get that

$$
\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f \sim g) \text { is a retract of } \prod_{(x: A)} \sum_{(u: P(x))}(f(x)=u)
$$

(Without using FunExt).
By Lemma 3.11.8. we can observe that $\prod_{(x: A)} \sum_{(u: P(x))}(f(x)=u)$ is a product of contractible types.

Thus by WFE we get that $\prod_{(x: A)} \sum_{(u: P(x))}(f(x)=u)$.
proof of Theorem 4.9.5. (Cont'd)
Now by Theorem 2.15.7 / Өєćp \quad u人 58 (aka AC) we get that

$$
\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f \sim g) \text { is a retract of } \prod_{(x: A)} \sum_{(u: P(x))}(f(x)=u)
$$

(Without using FunExt).
By Lemma 3.11.8. we can observe that $\prod_{(x: A)} \sum_{(u: P(x))}(f(x)=u)$ is a product of contractible types.

Thus by WFE we get that $\prod_{(x: A)} \sum_{(u: P(x))}(f(x)=u)$.
Therefore, by Lemma 3.11.7. we have that $\sum_{\left(g: \prod_{(x: A)} P(x)\right)}(f \sim g)$ is also contractible, as wanted.

This proof was discovered by the one and only Vladimir Voevodsky!

This proof was discovered by the one and only Vladimir Voevodsky!
He proved it using Coq!

This proof was discovered by the one and only Vladimir Voevodsky!
He proved it using Coq!

```
roof
    | (fun p = nnd (projT1 p)),
    ntros 
    nexists (eristT - (existT (fun (xy:A 有) =>fst xy ~ snd xy) (x,x) (idpath x)) -)
    intros [|lu v] p] q].
    simpl in x+ }
    induction q as [a].
    Induction p as [b
    apply idpolh.
Defined.
    And finally, we are ready to prove that extensionality of maps holds, i.e., if two maps are pointwise
homotopic then they are homotopic. First we outline the proof.
    Suppose maps fg:A->B are extensionally equal via a pointwise homotopy p}\mathrm{ . We seek a path f}g\mathrm{ .
Because cta f~f}\mathrm{ and cta g}~g\mathrm{ it suffices to find a path cla f}~\mathrm{ cta g.
    Consider the maps de:S->\mathrm{ path_space T where d }|=\mathrm{ exist T}-(fx;fx)(udpath x) and e }x=\mathrm{ erist T
(f }x,gx)(px)\mathrm{ . If we compose d and e with trg we get eta f and eta g, respectively. So, if we had a path
from d to e}\mathrm{ , we would get one from eta }f\mathrm{ to cta g}\mathrm{ . But we can get a path from d to e because src od d=ete
f=srco e and composition with src is an equivalence.
Theoren extensionality {A B:Set} (f g:A->B):(V\hbarfx-gx)->(f~g).
proof
    intro p.
    pose (d:= fun x:A = eristT (fun xy f fst xy ~ snd xy) (f x, f x) (idpath (f x))).
    pose (e:= fun x:A existT (fun ry =>fst xy }~\mathrm{ snd xy) (fx,gx) (px)).
    pose (src_compose:= weq_exponential (sre B) A).
    pose (trg-compose:= weq-erponential (trg B) A).
    apply weq-injective with ( }w:=\mathrm{ etaweq A B).
    simp1.
    path_via (projTI trg_compose e)
    auth_via (projT1 trg_compose d)
    apply map.
    aply weq_injective with ( }w:=\mathrm{ sre_compose)
    apply idpath.
Defined.
    And that is all, thank you.
```

A Coq proof that Univalence Axioms implies Functional Extensionality Andrej Bauer, Peter LeFanu Lumsdaine

Bibliography

目 The Univalent Foundations Program，Homotopy Type Theory： Univalent Foundations of Mathematics， https：／／homotopytypetheory．org／book／．Institute for Advanced Study， 2013.
國 Martin Hofmann and Thomas Streicher．The groupoid interpretation of type theory．In Giovanni Sambin and Jan M．Smith， editors，Twenty－five years of constructive type theory（Venice，1995）， volume 36 of Oxford Logic Guides，pages 83－111．Oxford University Press，New York， 1998.
囯 Vladimir Voevodsky．UNIVALENT FOUNDATIONS，Institute for Advanced Study Princeton，NJ March 26， 2014

