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Disclaimer

We will not use the notion of μετασχηματισμού.

Here we include the uniqueness principle

f ” λx.f pxq

as a principle of judgmental equality.
vs η-conversion (Λήμμα 8.) Για οποιαδήποτε f : A Ñ B υπάρχει ένα

ηAÑB pf q : λ
´

applyf

¯

“ f

το οποίο ικανοποιεί τη σχέση

ηAÑB pλ pbqq ”reflλpbq,

όπου px : Aq b pxq : B
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Disclaimer

I know nothing on Homotopy Theory...
I’ll just be a coq!

“there they laugh: they do not understand me; I am not the mouth
for these ears.”

Also sprach Zarathustra: Ein Buch für Alle und Keinen, Friedrich Nietzsche
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Why HoTT is hot?!

1986 “Algebraic Cycles and Higher K-theory” , by Spencer Bloch
contained a mistake (Lemma 1.1).

1989 “8-groupoids as a model for a homotopy category” , by Michael
Kapranov and Vladimir Voevodsky.

1993 A new proof of Lemma 1.1! It took many more years for it
to be accepted as correct.

1992/1993 “Cohomological Theory of Presheaves with Transfers.” , by
Vladimir Voevodsky.

The approach to Motivic Cohomology circumvented Bloch’s
lemma by relying on this paper.

Thomas Pipilikas A.L.MA.
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Why HoTT is hot?!

1999/2000 “Cohomological Theory of Presheaves with Transfers.”
contained a mistake!!!

This story got me scared. Starting from 1993 multiple groups of
mathematicians studied the “Cohomological Theory” paper at sem-
inars and used it in their work and none of them noticed the mis-
take.

Vladimir Voevodsky

1998 “Homotopy types of strict 3-groupoids” , by Carlos Simpson
contained a counter example on “8-groupoids as a model for a
homotopy category” paper.
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Why HoTT is hot?!

Mathematical research currently relies on a complex system of
mutual trust based on reputations.

We are off to uncharted waters!

the only real long-term solution to the problems that I encountered
is to start using computers in the verification of mathematical rea-
soning.

Vladimir Voevodsky[3]

Thomas Pipilikas A.L.MA.
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Why HoTT is hot?!

We need new proof verifiers!

The roadblock that prevented generations of interested mathemati-
cians and computer scientists from solving the problem of computer
verification of mathematical reasoning was the unpreparedness of
foundations of mathematics for the requirements of this task.
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Why HoTT is hot?!

Why Type Theory?!

...΄Ενα πλεονέκτημα της χρήσης τής θεωρίας τύπων για την κα-

τασκευή προγραμμάτων είναι ότι είναι δυνατόν να εκφράσουμε

τόσο τις προδιαγραφές όσο και τα προγράμματα μέσα στον ίδιο

φορμαλισμό....

Νικόλας Ρήγας

The idea of Homotopy Type Theory arose around 2006 in
independent work by Awodey and Warren and Voevodsky, but it
was inspired by Hofmann and Streicher’s earlier groupoid
interpretation [2].
In particular, Voevodsky constructed an interpretation of type
theory in Kan simplicial sets, and recognized that this
interpretation satisfied a further crucial property which he
dubbed univalence.

Thomas Pipilikas A.L.MA.
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Why HoTT is hot?!

Coq, Agda...

The first such library called "Foundations" was created by Vladimir
Voevodsky in 2010.

HoTT Coq library and HoTT Agda library.

...many of the proofs described in this book (HoTT) were actually
first done in a fully formalized form in a proof assistant, and are
only now being “unformalized” for the first time — a reversal of
the usual relation between formal and informal mathematics. [1]

Thomas Pipilikas A.L.MA.
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Homotopy

Definition
Let f , g :

ś

px:Aq P pxq be two sections of a type family P : A Ñ U . A
homotopy from f to g is a dependent function of type

pf „ gq :”
ź

x:A

pf pxq “ g pxqq .

Lemma (Lemma 2.4.3.)

Suppose H : f „ g is a homotopy between functions f , g : A Ñ B and let
p : x “A y. Then we have

H pxq g ppq “ f ppq H pyq .

Thomas Pipilikas A.L.MA.
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We may also draw this as a commutative diagram:

f pxq
f ppq

Hpxq

f pyq

Hpyq

gpxq
gppq

gpyq

proof of Lemma 2.4.3.

By induction, we may assume p is reflx.

Then trivially we observe that

H pxq g preflxq “ f preflxq H pxq :” H pxq apg preflxq “apf preflxq H pxq

:” H pxq reflx“reflx H pxq
:” H pxq “ H pxq

which is inhabited by reflHpxq.
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Quasi Inverse

Definitions
For a function f : A Ñ B a quasi-inverse of f is a triple pg, α, βq consisting of a
function g : B Ñ A and homotopies α : f ˝ g „idB and β : g ˝ f „idA.

The type of quasi-inverses of f

QInv pf q :”
ÿ

q:BÑA
ppf ˝ g „idBq ˆ pg ˝ f „idAqq .

We also define the types

LInv pf q :”
ÿ

q:BÑA
pg ˝ f „idAq

RInv pf q :”
ÿ

q:BÑA
pf ˝ g „idBq

of left inverses and right inverses to f , respectively.
We call f left invertible if LInv pf q is inhabited, and similarly right invertible
if RInv pf q is inhabited.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality



Quasi Inverse

Definitions
For a function f : A Ñ B a quasi-inverse of f is a triple pg, α, βq consisting of a
function g : B Ñ A and homotopies α : f ˝ g „idB and β : g ˝ f „idA.
The type of quasi-inverses of f

QInv pf q :”
ÿ

q:BÑA
ppf ˝ g „idBq ˆ pg ˝ f „idAqq .

We also define the types

LInv pf q :”
ÿ

q:BÑA
pg ˝ f „idAq

RInv pf q :”
ÿ

q:BÑA
pf ˝ g „idBq

of left inverses and right inverses to f , respectively.
We call f left invertible if LInv pf q is inhabited, and similarly right invertible
if RInv pf q is inhabited.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality



Quasi Inverse

Definitions
For a function f : A Ñ B a quasi-inverse of f is a triple pg, α, βq consisting of a
function g : B Ñ A and homotopies α : f ˝ g „idB and β : g ˝ f „idA.
The type of quasi-inverses of f

QInv pf q :”
ÿ

q:BÑA
ppf ˝ g „idBq ˆ pg ˝ f „idAqq .

We also define the types

LInv pf q :”
ÿ

q:BÑA
pg ˝ f „idAq

RInv pf q :”
ÿ

q:BÑA
pf ˝ g „idBq

of left inverses and right inverses to f , respectively.

We call f left invertible if LInv pf q is inhabited, and similarly right invertible
if RInv pf q is inhabited.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality



Quasi Inverse

Definitions
For a function f : A Ñ B a quasi-inverse of f is a triple pg, α, βq consisting of a
function g : B Ñ A and homotopies α : f ˝ g „idB and β : g ˝ f „idA.
The type of quasi-inverses of f

QInv pf q :”
ÿ

q:BÑA
ppf ˝ g „idBq ˆ pg ˝ f „idAqq .

We also define the types

LInv pf q :”
ÿ

q:BÑA
pg ˝ f „idAq

RInv pf q :”
ÿ

q:BÑA
pf ˝ g „idBq

of left inverses and right inverses to f , respectively.
We call f left invertible if LInv pf q is inhabited, and similarly right invertible
if RInv pf q is inhabited.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality



Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquivpf q)
to have the following properties:

1 QInv pf q Ñ IsEquivpf q
2 IsEquivpf q ÑQInv pf q
3 IsEquivpf q is a mere proposition.

We will firstly use our well known definition of equivalence:

IsEquivpf q :” LInv pf qˆ RInv pf q

Thomas Pipilikas A.L.MA.
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Exercise (Exercise 2.10. )

Prove that Σ-types are “associative”, in that for any A : U and families
B : A Ñ U and C :

ř

px:Aq B pxq Ñ U , we have

¨

˝

ÿ

x:A

ÿ

y:Bpxq

C ppairpx, yqq

˛

‚»

¨

˝

ÿ

p:
ř

px:Aq Bpxq

C ppq

˛

‚.

hint

By induction for Σ-types

f :” pair
´

a, pair
´

ba, cpairpa,baq

¯¯

ÞÑ pair
´

pairpa, baq, cpairpa,baq

¯

g :” pairpu, cuq ÞÑ pairppr1 puq , pairppr2 puq , cuqq
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By induction for Σ-types

f :” pair
´

a, pair
´

ba, cpairpa,baq

¯¯

ÞÑ pair
´

pairpa, baq, cpairpa,baq

¯

g :” pairpu, cuq ÞÑ pairppr1 puq , pairppr2 puq , cuqq



Univalence

Nov. 1853; George Boole

If instead of the proposition, “The sun shines,” we say, “It is true
that the sun shines,” we then speak not directly of things, but of
a proposition concerning things, viz., of the proposition, “The sun
shines.” And, therefore, the proposition in which we thus speak is
a secondary one. Every primary proposition may thus give rise to
a secondary proposition, viz., to that secondary proposition which
asserts its truth, or declares its falsehood.

An Investigation of the Laws of Thought, George Boole

1935; Alfred Tarski; Convention T:

p”P” “ ”true”q » pP » trueq

“It is snowing” is a true sentence if and only if it is snowing
The Concept of Truth in Formalized Languages,Alfred Tarski

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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Propositional Extensionality:

pP “ Qq » pP » Qq ,

where P, Q are propositions.

1998; Martin Hofmann and Thomas Streicher [2];
Uniqueness of Identity Proofs (UIP) is not inhabited,
where UIApAq stands for

If a1, a2 are objects of type A then for any proofs p and q of the
proposition “a1 equals a2” there is another proof establishing the
equality of p and q.
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Univalence

2006 - 2009; Vladimir Voevodsky Univalence

Univalence (aka UA)

For any A, B : U , the function

idtoeqv: pA “U Bq Ñ pA » Bq

is an equivalence.

In particular, therefore, we have

pA “U Bq » pA » Bq
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Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality (aka FunExt)

For any A, B : U types and functions f , g : A Ñ B the function

happly: pf “ gq Ñ
ź

x:A

pf pxq “B g pxqq

is an equivalence.
In particular happly has a quasi-inverse

funext:
ź

x:A

pf pxq “B g pxqq Ñ pf “ gq .

Naive functional extensionality:
If functions take equal values, then they are equal.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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Our Goal!

We want to show that

UA implies FunExt

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality



Mere Propositions

Definition
A type P is a mere proposition if for all x, y : P we have x “P y.

Specifically, for any P : U , the type IsProppPq is defined to be

IsProp pPq :”
ź

x,y:P

px “P yq .

Lemma (Lemma 3.3.3 / Λήμμα 45 )

If P and Q are mere propositions such that P Ñ Q and Q Ñ P, then P » Q.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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Contractability

Definition
A type A is contractible, or a singleton, if there is a : A, called the
center of contraction, such that a “ x for all x : A. We denote the
specified path a “ x by contrx.
In other words, the type IsContrpAq is defined to be

IsContrpAq :”
ÿ

a:A

ź

x:A

pa “ xq .

Lemma (Lemma 3.11.8.)

For any A and any a : A, the type
ř

px:Aq pa “ xq is contractible.

Lemma (Lemma 3.11.9.)

Let P : A Ñ U be a type family.
1 If each Ppxq is contractible, then

ř

px:Aq P pxq is equivalent to A.

2 If A is contractible with center a, then
ř

px:Aq P pxq is equivalent to
Ppaq.
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proof of Lemma 3.11.8.

We choose as center of the contraction the point pairpa, reflaq.

Now suppose pairpx, pq :
ř

px:Aq pa “ xq; we must show
pairpa, reflaq “pairpx, pq.

By the characterization of paths in Σ-types (Theorem 2.7.2. / Θεώρημα
32), we know that for any w, w1 :

ř

px:Aq pa “ xq, there is an
equivalence

`

w “ w1
˘

»
ÿ

pq:pr1pwq“pr1pw1qq

transportpa“´q pq, pr2 pwqq “pr2
`

w1
˘

.

Thus it suffices to exhibit q : a “ x such that
transportpa“´q pq, reflaq “ p.
But we can take q :” p in which case

transportpa“´q pq, reflaq “ p refla L.2.11.2. / Λήμμα 24
“ p L.2.11.4. / Λήμμα 15
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Retract

If A is equivalent to B and A is contractible, then so is B.

More generally, it suffices for B to be a retract of A.

Definition
A retraction is a function r : A Ñ B such that there exists a function
s : B Ñ A, called its section, and a homotopy
ε :

ś

py:Bq pr ps pyqq “ yq” r ˝ s „ idA;
then we say that B is a retract of A.

Lemma (Lemma 3.11.7.)

If B is a retract of A, and A is contractible, then so is B.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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proof of Lemma 3.11.7.

Let a0 : A be the center of contraction.

Let also,
r : A Ñ B the retraction
s : B Ñ A the section
ε :

ś

py:Bq pr ps pyqq “ yq

We claim that b0 :” r pa0q : B is a center of contraction for B.

Let b : B; we need a path p : b0 “ b.
But we have ε pbq : r ˝ s pbq “ b and contrspbq: a0 “ s pbq, so by
composition

r
´

contrspbq
¯

:” apr

´

contrspbq
¯

: r pa0q “ r ˝ s pbq

thus
r
´

contrspbq
¯

ε pbq : b0 “ b.

We conclude that B is contractible with center of contraction b0.
l
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Contractible fibers

Definitions
The fiber (ίνα) of a map f : A Ñ B over a point y : B is

fibf pyq :”
ÿ

x:A

pf pxq “ yq .

In homotopy theory, this is what would be called the homotopy fiber of
f .

A map f : A Ñ B is contractible if for all y : B, the fiber fibf pyq is
contractible.
Thus the type IsContr pf q is defined to be

IsContr pf q :”
ź

y:B

IsContr
`

fibf pyq
˘

.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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A Useful Lemma

We are going to need the following lemma.

Lemma (Lemma 4.8.1.)

For any type family B : A Ñ U , the fiber of pr1:
ř

px:Aq B pxq Ñ A over
a : A is equivalent to Bpaq:

fibpr1 paq » B paq .

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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proof of Lemma 4.8.1. We have

fibpr1 paq :”
ÿ

u:
ř

px:Aq Bpxq

ppr1 puq “ aq

»
ÿ

x:A

ÿ

b:Bpxq

px “ aq Ex. 2.10

»
ÿ

x:A

ÿ

p:x“a
B pxq p˚q

» B paq p˚˚q

p˚q
f :” pairpa, pairpba, reflaqq ÞÑ pairpa, pairprefla, baqq

g :” pairpa, pairprefla, baqq ÞÑ pairpa, pairpba, reflaqq

p˚˚q
f :” pairpa, pairprefla, baqq ÞÑ ba
g :” ba ÞÑ pairpa, pairprefla, baqq

l
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Definition
A function g : A Ñ B is said to be a retract of a function f : X Ñ Y if there is a diagram

A s //

g
��

X r //

f
��

A

g
��

B
s1
// Y

r1
// B

for which there are

1 a homotopy R : r ˝ s „idA

2 a homotopy R1 : r1 ˝ s1 „idB

3 a homotopy L : f ˝ s „ s1 ˝ g

4 a homotopy K : g ˝ r „ r1 ˝ f

5 for every a : A, a path Hpaqwitnessing the commutativity of the square

gprpspaqqq
Kpspaqq

gpRpaqq

r1pf pspaqqq

r1pLpaqq

gpaq
pR1pgpaqqq´1

r1ps1pgpaqqq



Equivalences
We have the following 3 approaches of the notion of equivalence.

Definitions

1 Half Adjoint Equivalence (definition used in HoTT)
A function f : A Ñ B is a half adjoint equivalence if there are g : B Ñ A
and homotopies η : g ˝ f „idA and ε : f ˝ g „idB such that there exists a
homotopy

τ :
ź

x:A
pf pη pxqq “ ε pf pxqqq .

Thus we have a type ishaepf q, defined to be

ishaepf q :”
ÿ

pg:BÑAq

ÿ

pη:g˝f„idAq

ÿ

pε:f˝g„idBq

ź

x:A
pf pη pxqq “ ε pf pxqqq

2 Bi-invertible Map (the well known definition)

3 Contractible Functions (the one used by Voevodsky)

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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We will mainly use the 1st definition of equivalence.

But are those definitions equivalences?

Theorem (Theorem 4.2.3.)

For any f : A Ñ B we have QInv pf q Ñ IsHaEpf q.

The other direction is trivial. (Why?)

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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proof of the Theorem 4.2.3.

Let pg, η, εq :QInv pf q.

We want to to provide a quadruple
`

g1, η1, ε1, τ
˘

: IsHaEpf q.

We define
g1 :” g
η1 :” η

ε1 :” ε pf pg pbqqq´1 f pη pg pbqqq ε pbq ?!

Let us brake ε1 into pieces!

ε pf pg pbqqq´1 : f ˝ g pbq “ f ˝ g pf pg pbqqq
f pη pg pbqqq : f ˝ g pf pg pbqqq “ f ˝ g pbq
ε pbq : f ˝ g pbq “ b

Thus ε1 : f ˝ g pbq “ b as wanted.

We need to find τ, s.t.

τ paq : f pη paqq “ ε1 paq .
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proof of the theorem (Cont’d)

From Lemma 2.4.3. we can easilly observe that

η pg ˝ f paqq “ g ˝ f pη paqq . (1)

Therefore,

f pη pg ˝ f paqqq ε pf paqq “ f ˝ g pf pη paqqq ε pf paqq 1
“ ε pf pg ˝ f paqqq f pη paqq Lemma 2.4.3.

where we used Lemma 2.4.3. as
f Ð f ˝ g and g ÐidA

H Ð ε

x Ð f ˝ g pf paqq and y Ð f paq
p Ð f pη paqq : f ˝ g pf paqq “ f paq

l
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Equivalence of Equivalences :)

Theorem (Theorem 4.2.13.)

For any f : A Ñ B, the type IsHaE pf q is a mere proposition.

Theorem (Corollary 4.3.3. & Theorem 4.4.5.)

All three types IsHaE,BiInv and IsContr are equivalent:

IsHaE » BiInv »IsContr

Strategy of proof:
BiInv pf q Ø IsHaE pf q and IsContr pf q Ø IsHaE pf q and
BiInv pf q , IsContr pf q are mere propositions (Lemma 3.3.3 / Λήμμα 45 )

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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Total Space

Definitions

Given two type families P, Q : A Ñ U , we refer to a function
f :

ś

px:Aq pP pxq Ñ Q pxqq as a fiberwise map or a fiberwise
transformation.

Such a map induces a function on total spaces

total pf q :” λw. pairppr1 pwq , f ppairppr1 pwq , pr2 pwqqqq :
ÿ

x:A

P pxq Ñ
ÿ

x:A

Q pxq .

We say that a fiberwise map f :
ś

px:Aq pP pxq Ñ Q pxqq is a
fiberwise equivalence if each f pxq : Ppxq Ñ Qpxq is an
equivalence.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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proof of the theorem 4.7.6.

We calculate:

fibtotalpfq ppairpx, vqq :”
ÿ

w:
ř

px:Aq Ppxq

pairppr1 pwq , f ppairppr1 pwq , pr2 pwqqqq “ pairpx, vq

»
ÿ

a:A

ÿ

u:Ppaq

pairpa, f ppairpa, uqqq “pairpx, vq Ex.2.10.

»
ÿ

a:A

ÿ

u:Ppaq

ÿ

p:a“x
transportpa“´q pp, f ppairpa, uqqq “ v Θ. 32.
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proof of the theorem 4.7.6. (Cont’d)
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a:A
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p:a“x

ÿ

u:Ppaq

transportpa“´q pp, f ppairpa, uqqq “ v » sumu:Ppxqf ppairpx, uqq “ v

By Lemma 3.11.8.
ř

px:Aq pa “ xq is contractible with center of contraction

pa, reflaq.
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u:Ppaq

transportpa“´q pp, f ppairpa, uqqq “ v.

By Lemma 3.11.9. and Exercise 2.10. we have that
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a:A
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u:Ppxq

f ppairpx, uqq “ v
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proof of the Theorem 4.7.7.

By Theorem 4.7.6 it follows for all x : A and v : Qpxq that

fibtotalpf q ppairpx, vqq »fibf pxq pvq .

Equivalently, fibtotalpf q ppairpx, vqq is contractible iff fibf pxq pvq is
contractible.

We can trivially observe that:
f :

ś

px:Aq P pxq Ñ Q pxq is a fiberwise equivalence

Iff for all x : A, f pxq : P pxq Ñ Q pxq is an equivalence.
Iff for all x : A, f pxq is contractible.
Iff for all x : A and for all v P Q pxq , fibf pxq pvq is contractible.

Iff for all w :
ř

px:AqQ pxq , fibtotalpf q pwq is contractible.

Iff totalpf q is contractible.
Iff totalpf q is an equivalence.

l
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The Main Theorem

"I prefer Long Proofs to Short Proofs, the same way that I prefer
long walks in the woods to short ones".

Vladimir Voevodsky (quoted by Avi Wigderson, Memorial Service for VV, Oct. 8, 2017, at IAS).

We will brake the proof into shorter proofs...

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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Weak Function Extensionality Principle

Definition (WFE)

The weak function extensionality principle asserts that there is a
function

ź

x:A

IsContrpP pxqq ÑIsContr

˜

ź

x:A

P pxq

¸

for any family P : A Ñ U of types over any type A.

Lemma (Lemma 4.9.2.)

Assuming U is univalent, for any A, B, X : U and any e : A » B, there is an
equivalence

pX Ñ Aq » pX Ñ Bq

of which the underlying map is given by post-composition with the
underlying function of e.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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proof of the Lemma 4.9.2.

Let e : A » B. By induction we may assume that e :” pfe, αq, where
fe : A Ñ B and α :IsEquivpfeq.

Let us assume the map given by post-composition with the
underlying function of e

λ pg : X Ñ Aq .g ˝ fe : pX Ñ Aq Ñ pX Ñ Bq .

As e : A » B, by UA we have that

idtoeqv: pA “ Bq Ñ pA » Bq

is an equuivalence and thus we may assume that e is of the form
idtoeqvppq, for some p : A “ B; i.e.

e “idtoeqvppq .
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proof of the Lemma 4.9.2. (Cont’d)

By path induction, assuming p :” reflA, we have

e “idtoeqvpreflAq ” e “transportX ÞÑX preflA,´q ” e “idA .

Thus we have

λ pg : X Ñ Aq .g˝ fe “ λ pg : X Ñ Aq .g˝ idA” λ pg : X Ñ Aq .g˝ fe “idpXÑAqÑpXÑAq

which idpXÑAqÑpXÑAq is an equivalence of pX Ñ Aq » pX Ñ Aq.
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Corollary (Corollary 4.9.3.)

Let P : A Ñ U be a family of contractible types,

i.e.
ś

px:Aq IsContrpP pxqq.

Then the projection pr1:
´

ř

px:Aq P pxq
¯

Ñ A is an equivalence.

Assuming U is univalent, it follows immediately that post-composition with
pr1 gives an equivalence

α :

˜

A Ñ
ÿ

x:A

P pxq

¸

» pA » Aq .

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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proof of the Corollary 4.9.3.

By Lemma 4.8.1 , for pr1:
´

ř

px:Aq P pxq
¯

Ñ A and x : A we have an
equivalence

fibpr1 pxq » P pxq .

As for any x : A we have that P pxq is contractible, we get that pr1 is

contractible, or equivalently pr1 is an equivalence of
¨

˝

ÿ

px:Aq

P pxq

˛

‚» A

By Lemma 4.9.2. for X :” A we have
˜

A Ñ
ÿ

x:A

P pxq

¸

» pA » Aq

as wanted.
l
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UA implies WFE

Theorem (Theorem 4.9.4.)

In a univalent universe U , suppose that P : A Ñ U is a family of
contractible types and let

α :

˜

A Ñ
ÿ

x:A

P pxq

¸

» pA » Aq .

Then
ś

px:Aq P pxq is a retract of fibα pidAq.
As a consequence,

ś

px:Aq P pxq is contractible.

In other words, the univalence axiom implies the weak function
extensionality principle.

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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proof of the Theorem 4.9.4.

We define the following functions:

Section
ϕ :

ź

px:Aq

P pxq Ñfibα pidAq

ϕ pf q :” pair
`

λ px : Aq . pairpx, f pxqq , reflidA

˘

Observe that it ϕ well defined:

λ px : Aq . pairpx, f pxqq : A Ñ
ř

x:A P pxq

fibα pidAq ”
ř

pz:AÑ
ř

x:A Ppxqq α pzq “idA
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proof of the Theorem 4.9.4. (Cont’d)

Retraction
ψ :fibα pidAq Ñ

ź

x:A

P pxq

ψ ppairpg, pqq :” λ px : Aq . happlypp, xq˚ ppr2 pg pxqqq

Observe that ψ is well defined:
g : A Ñ

ř

px:Aq P pxq

p : α pgq “idA

happlypp,´q :
ś

px:Aq α pgq pxq “ x

happlypp, xq˚ : P pα pgq pxqq Ñ P pxq

λx. happlypp, xq˚ ppr2 pg pxqqq :
ś

px:Aq P pxq
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proof of the Theorem 4.9.4. (Cont’d)

Let f :
ś

px:Aq P pxq.
We have that

ψ ˝ ϕ pf q ” ψ
`

pair
`

λ px : Aq . pairpx, f pxqq , reflidA

˘˘

” λ px : Aq . happly
`

reflidA
, x
˘

˚
pf pxqq

” λ px : Aq .f pxq
” f

Thus
ś

px:Aq P pxq is a retract of fibα pidAq.

But from Corollary 4.9.3. fibα pidAq is contractible.

Therefore by Lemma 3.11.7. we conclude that fibα pidAq is contractible.
l
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WFE implies FunExt
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Weak function extensionality implies the function extensionality Axiom.

Therefore

UA implies FunExt

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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proof of Theorem 4.9.5.

We want to show that the type
ź

A:U

ź

P:AÑU

ź

f ,g:
ś

px:Aq Ppxq

IsEquivphapplypf , gqq

is inhabited.

It suffices to show that

λ

˜

g :
ź

x:A

P pxq

¸

. happlypf , gq :
ź

g:
ś

px:Aq Ppxq

ppf “ gq Ñ pf „ gqq

is a fiberwise equivalence.
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proof of Theorem 4.9.5. (Cont’d)

Since a fiberwise map induces an equivalence on total spaces iff it is
fiberwise an equivalence by Theorem 4.7.7 , where we assume

A Ð
ś

ps:Aq P pxq

P pxq Ð f “ g
Q pxq Ð f „ g
f Ð λ pg :

ś

x:A P pxqq . happlypf , gq

it suffices to show that the function

total

˜

λ

˜

g :
ź

x:A
P pxq

¸

. happlypf , gq

¸

:
ÿ

g:
ś

px:Aq Ppxq

pf “ gq Ñ
ÿ

g:
ś

px:Aq Ppxq

pf „ gqq

is an equivalence.



proof of Theorem 4.9.5. (Cont’d)

By Lemma 3.11.8. we know that
ř

´

g:
ś

px:Aq Ppxq
¯ pf “ gq is contractible.

It suffices to show that the type
ř

´

g:
ś

px:Aq Ppxq
¯ pf „ gq is also

contractible.
?!

“A technical argument by a trusted author, which is hard to check
and looks similar to arguments known to be correct, is hardly ever
checked in detail”

Vladimir Voevodsky [3]
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Our Lemma

Lemma
Suppose function f : A Ñ B. If the types A, B are contractible, then f is an
equivalence.

proof of Lemma

Let a : A and b : B the corresponding centers of contraction; i.e.

α : IsContr pAq and a :” pr1 pαq

β : IsContr pBq and b :” pr1 pβq

Thomas Pipilikas A.L.MA.

Univalence implies Function Extensionality
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proof of Lemma (Cont’d)

As B is contractible there are
p : b “ f paq
qy :” pr2 pβq pyq : b “ y, for any y : B.

Let us fix y : B. We define

py :” p´1 qy : f paq “ y.

Thus
`

a, py
˘

:fibf pyq. We want to show that
`

a, py
˘

is center of
retraction of fibf pyq.

Let w :fibf pyq. By induction for Σ-types we may assume that
w :”

`

a1, p1
˘

.
We want to show that

`

a, py
˘

“
`

a1, p1
˘

.
By Theorem 2.7.2. it suffices to show that

ÿ

k:a“a1
transportfibfpyq

`

k, py
˘

“ p1.
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Now by Theorem 2.15.7 / Θεώρημα 58 (aka AC) we get that
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´

g:
ś

px:Aq Ppxq
¯

pf „ gq is a retract of
ź

px:Aq

ÿ

pu:Ppxqq

pf pxq “ uq

(Without using FunExt).

By Lemma 3.11.8. we can observe that
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Thus by WFE we get that
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´

g:
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