
“output” — 2019/3/29 — page 1 — #1

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: 29 March 2019
Manuscript Category

Genome analysis

Annotation transfer within pangenomes
Nicky Faber 1,∗

1Bioinformatics group, Wageningen University, Wageningen, Droevendaalsesteeg 1 6708PB, The Netherlands

∗To whom correspondence should be addressed.

Received on 22 March, 2019; revised on 28 March, 2019; accepted on 28 March, 2019

Abstract

Motivation: Comparative genomics is a field of research that tries to link genotype to phenotype by
comparing many genomes of related organisms. With the help of genome annotation, these analyses can
lead to the discovery of biological processes that influence a certain phenotype, which could be exploited
in many fields such as agriculture, microbiome analysis and health and disease. However, because many
similar genomes are used in comparative genomics, it would be more efficient to transfer already curated
annotations from present genomes to a new genome rather than to manually curate each annotation
separately. The structure of a pangenome, a graph based database that contains many genomes of a
population, can facilitate this transfer of annotations very well, and even allows the transfer of annotations
to happen comparatively in the future.
Results: Pairwise annotation transfer was implemented as a built in functionality in pangenome tool
Pantools as a starting point for comparative annotation transfer. It is able to efficiently and cheaply transfer
annotation from a reference genome to a newly sequenced genome. This can be done very well between
assembly versions and strains or accession of many different species, and even between different species
to a degree. Pantools can transfer the coding sequences of genes with a very high-quality results, but
the transfer of the UTRs of genes doesn’t yield high-quality results. It was shown that even pairwise
annotation transfer yields a relatively complete annotation for the newly sequenced genome, and that it is
computationally feasible to transfer many genes in big genomes. However, it is not yet scalable to transfer
annotation within very large pangenomes. Now that a framework is in place for pangenomic annotation
transfer, the door has been opened for future implementations such as comparative annotation transfer,
the integration of RNA-seq data for more precision and the addition of more annotation features such as
breeding markers or tRNAs among many others.
Availability: https://git.wur.nl/bioinformatics
Contact: sandra.smit@wur.nl
Supplementary information: Supplementary data are available at Bioinformatics online.
Keywords: Annotation transfer, pangenomes, graph based genomes, comparative genomics, annotation

1 Introduction
Until the development of next-generation sequencing technologies, it took
a huge effort to sequence a single genome (Fleischmann et al., 1995; Venter
et al., 2001). Nowadays, whole-genome sequencing is routinely done on a
large scale in many fields such as agriculture (Li et al., 2014), microbiome
analysis (Gilbert et al., 2014) and health and disease (Siva, 2008). This
wealth of information has opened up the door for comparative genomics, a
field of research that tries to link genotype to phenotype by comparing the
genomes of different organisms. High quality genome annotations are vital

to give biological context when these links are found, and this information
can be applied, for example, to improved breeding of crops and livestock
in agriculture, to gain more knowledge on gut and soil microbiomes, or
to develop personalized medicine in health and disease, among many
others. Although this field of research is extremely relevant and broadly
applicable, it still has some limitations. One of these limitations is the
fact that producing a high-quality annotation is a time-consuming and
labour-intensive process.

Annotation for newly sequenced genomes is usually done using de
novo tools such as MAKER2 (Holt & Yandell, 2011) or BRAKER1 (Hoff
et al., 2015). However, these predict genes with a rather low sensitivity and
specificity, both only about 70% (Hoff et al., 2015), which necessitates a lot

© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

“output” — 2019/3/29 — page 2 — #2

2 Nicky Faber 1,∗

of manual curation to produce a high-quality annotation. Considering the
large amount of genomes used in comparative genomics and the fact that
these genomes are all related to a certain extent, people have started looking
to a more efficient way to obtain high-quality annotations: annotation
transfer. By transferring a well-curated annotation onto another genome, a
higher quality annotation can be produced immediately (Otto et al., 2011;
Fiddes et al., 2018). Besides this advantage, it would also be possible to
transfer homemade annotation features such as plant breeding markers to
another genome. Although annotation transfer is a good strategy, there are
some flaws in the design of current tools.

Two generally applicable tools for annotation transfer exist, namely
RATT (Rapid Annotation Transfer Tool) (Otto et al., 2011) and CAT
(Comparative Annotation Toolkit) (Fiddes et al., 2018). Other tools are
specific to certain organisms or are only made to work on genome
assembly versions as annotation liftover. RATT works by finding synteny
blocks between genomes to transfer annotation in conserved regions,
and CAT uses a multiple sequence alignment and optional RNA-seq
data. The problem with RATT is that it creates an internal error while
running and it can only be used on .embl format, which makes using it
cumbersome at best. CAT is nontransparent in the way it integrates its
data and it is extremely difficult to install because of third party software
dependencies, which limits its practicality. Besides these inconveniences,
a major disadvantage of both tools is that although they can use multiple
annotations as reference to transfer from, they can only be used on one
genome at a time. Even though annotation transfer can produce high-
quality genome annotations with less manual curation than de novo tools,
it would still be time-consuming and labour-intensive to use on the many
genomes used in comparative genomics. The solution to this problem
is to make annotation transfer catch up with the newest advancement in
comparative genomics: pangenomes.

A pangenome is a data structure that contains all genomes of a
population (The Computational Pan-Genomics Consortium, 2016). The
reason pangenomes were developed for comparative genomics is because
the increasing amount of genomic data showed that a single reference
genome cannot contain all variation in a population (Tettelin et al., 2005;
Zhao et al., 2018). This meant that pairwise comparisons had to be done for
all combinations of genomes, which is not practical or feasible. As having
all genomes in one pangenome greatly improves comparative genomics
analyses, both in quality and ease of use, it also has the potential to solve the
problems of annotation transfer. A pangenome tool that provides a natural
framework for annotation transfer is Pantools (Sheikhizadeh et al., 2016),
as similar genomic regions are compressed. Besides this, annotations can
be added to the pangenome and new genomes can be added easily. This
framework allows for annotation transfer to multiple genomes at once,
which is fast and convenient, and furthermore, it allows for multiple
genomes to serve as a reference, which is important, as one genome might
not have all genes that are present in a population (Tettelin et al., 2005;
Zhao et al., 2018). Therefore, it is important that annotation transfer is
implemented in a pangenomic framework.

Here we present the implementation of annotation transfer within
Pantools. The following questions will be addressed: Does annotation
transfer within a pangenome work across the tree of life and between
different genome assembly versions, different strains or accession and even
different species? Is the transferred annotation of high quality, not only for
single copy homologs, but also for gene families with many similar genes
and multiple copy homologs? How complete is the transferred annotation?
Is the algorithm computationally feasible?

2 Methods
In this section, the algorithm designed for annotation transfer within
Pantools will be discussed. Also, the implementation, test data and
validation strategies will be explained.

2.1 Algorithm design

Pantools uses a graph database to store pangenomic data instead of a linear
representation, so a new strategy is necessary to implement annotation
transfer. In Pantools, similar genomic regions share ’nucleotide’ nodes, so
locating where an annotation should be transferred to in another genome
is straightforward. After an appropriate region has been found, annotation
transfer is a matter of mapping where exactly the new annotation should
be, and whether or not this gene is still valid in this place. Overall,
the algorithm works in five steps: finding similar regions, mapping
coordinates, transferring coordinates, validating and resolving double
transfers. These steps will be described in detail below and an overview
can be seen in Figure 1.

2.1.1 Region finding
The first step in the annotation transfer algorithm is finding similar regions
(Figure 1A). For each reference gene that is to be transferred, the sequence
of nucleotide nodes that the gene spans is found by its genomic position.
For each of these nodes, all in- and outgoing edges to other nucleotide
nodes are taken. As edges store the information of which genomic regions
go through the nucleotide node, it is now known which other regions share
nucleotide nodes with our reference feature’s region. Regions that only
share less than 5% of our reference nodes are excluded. Next, so called
’anchors’ will be made for each of the regions that share nodes. This means
that if a region shares more than one consecutive node with the reference,
these nodes will be put together in an anchor. Next, ’bridges’ are made
between anchors, which is done by comparing the sequence length of the
unshared regions. If the unshared region is at least 75% and no more than
150% of the reference region’s length, and the bridge spans a maximum of
500 bp, a bridge is made. This bridging will be done in several rounds, each
round trying to bridge another gap between anchors. Finally, if the length
of the matching region is at least 90% of the original feature’s sequence
length, this region will be reported as a match. There can be zero, one or
multiple matches per region. This means that if a gene is matched twice or
more, and all following steps will be passed, an annotation is transferred
multiple times.

2.1.2 Mapping coordinates
The second step in the annotation transfer algorithm is mapping
coordinates for each similar region (Figure 1B). For each matching region
and its reference, the nucleotide sequence of both regions is extracted, and
an alignment is made with MAFFT on default settings (Katoh & Standley,
2013). Now, each nucleotide coordinate of the reference is associated to
the one in the match (except if there is a gap within the alignment). From
this alignment, an identity score is also calculated.

2.1.3 Transferring coordinates
The third step in the annotation transfer algorithm is the transferring of
begin and end coordinates of the reference features (Figure 1C). For
each gene, all child features (mRNA, CDS and exon) are taken from the
pangenome. For each matching region, the start and end location of all
these features are inferred from the coordinate mapping. If the coordinates
of a feature cannot be transferred because a gap in the mapping spans over
the begin or end location of the feature, the match is excluded. The type,
name and other attributes are copied from the original annotation and a
new feature ID is created. The strand is inferred from the reported match
direction of the region finding step.

“output” — 2019/3/29 — page 3 — #3

Annotation transfer within pangenomes 3

2.1.4 Validating
The fourth step in the annotation transfer algorithm is validating that a
transferred gene is still valid in its new place (Figure 1D). This validation
will be done per transcript, so it is possible that some transcripts of a
gene pass, while another transcript doesn’t. The validation rules are: a
minimum nucleotide identity of 90%, a nucleotide length of at least 90%

of the reference, a minimum protein identity of 90%, a protein length of
at least 90% of the reference, a valid start codon (either ATG, or the same
codon as the reference to include alternative start codons), a valid stop
codon (TAA, TGA or TAG, or the same codon as the reference to include
alternative stop codons), a reading frame that is divisible by 3, no in-frame
stop codons in exons and finally, a valid splice site in introns (either GT/AG

Fig. 1. An overview of the algorithm design. A. Region finding. The green circles represent graph nucleotide nodes (which contain nucleotide sequences), the arrows represent edges
between these nodes (which contain sequence paths). The letter ’r’ indicates the path of the reference region, the letters ’a’, ’b’ and ’c’ indicate other sequences that share a part of the
nucleotide nodes. The big blue arrow shows the reference path, and the orange arrow shows the path of sequence ’a’. In this example, it can be seen that region ’a’ shares all nodes except
node 6 with the reference. Region ’b’ and ’c’ share only one node each with reference ’a’. Four anchors are made, two of which for sequence ’a’: one containing node 1 through 5 and one
containing node 7. The other two will contain node 2 and node 4 for region ’b’ and ’c’ respectively. A bridge will be attempted to made between the two regions of ’a’ by comparing node 6
and 8. No bridges can be made for regions ’b’ and ’c’, as they both only have a single anchor. If the bridge for region ’a’ is successful, this will be reported as a match. Region ’b’ and ’c’
are too short and will be excluded. B. Mapping coordinates. A MAFFT alignment is made between the reference sequence and the match sequence and coordinates are mapped. In this
example alignment, nucleotide coordinate 10 from the reference is mapped to nucleotide 35 from the match sequence, and so on. When there is a mismatch in the alignment like between
coordinate 14 in the reference and coordinate 39 in the match, those coordinates are still mapped. However, when there is a gap in the alignment, the nucleotides spanning this gap such as
coordinate 44 and 45 in the match, are not mapped to another nucleotide. This way, it could happen that the begin or end coordinate of a reference gene does not occur in the coordinate
mapping. C. Transferring coordinates. All info about a gene and all its child features is taken from the pangenome. Then, the begin and end locations of those features are transferred
using the coordinate mapping from the previous step. The other gff fields are created as such: sequence name is transferred using the match location, source of annotation will be Pantools,
feature type will be copied from the reference, strand is transferred using the match orientation, score and phase are copied from the reference, a new feature id is made and the correct
parent is added, and the rest of the attributes are copied from the reference using the prefix "pantools_". Matches for which one or more child features fails to be transferred are excluded. D.
Validating. For each gene that is transferred, 9 validation steps need to be passed. If one or more of these fails, the transfer is excluded. E. resolving double transfers. For each validated
gene, it is checked whether or not there are more than 1 transfers to this location. If so, these double transfers need to be resolved. In this example, Gene 1 and Gene 2 are tandemly repeated
in the reference genome, and when trying to transfer these genes, both references match to both target regions in the target genome as they all share sequences. However, Gene 1 might have
a slightly higher identity to Match 1 and Gene 2 to Match 2. By picking the transfer with the highest identity, double transfers are resolved.

“output” — 2019/3/29 — page 4 — #4

4 Nicky Faber 1,∗

or the same nucleotides as the reference to include alternative splice sites).
If one or more of these fields does not pass, this transcript will be excluded.
By default, Pantools’ annotation transfer will be strict about these rules.
However, it is possible to give Pantools an argument to make it non-strict.
Then, transcripts that fail validation will be added with the warning label
’needs_curation’.

2.1.5 Resolving double transfers
The final step in the annotation transfer algorithm is the resolving of double
transfers (Figure 1E). If a gene is present in multiple copies in a genome or
if two genes are very similar, it might occur that the same matching region
is found twice. When this happens, the choice of which reference gene
is transferred to this location needs to be made. For each region to which
multiple transfers are made, the match with the highest nucleotide identity
is picked to be the final transfer. If there are ties in the identity, the first
transfer that happened is picked. Although this seems arbitrary, identities
of two transfers will only be exactly the same if there are exactly the
same amount of differences between them as well. This likely means that
the two reference genes are exactly the same, and then, only the naming
of the genes differs. As gene naming is universally quite divergent and
unstandardized, this is a problem that will need to be dealt with on a larger
scale.

2.2 Implementation

Annotation transfer was implemented in the development branch
“NickyAnnotationTransfer” of Pantools version 1.3, which is written in
Java version 8.0 and uses Neo4j version 3.5.3, including its query language
Cypher. The annotation transfer functionality is implemented in three
classes: AnnotationTransfer, which implements all functionalities, Match,
which stores all values related to a match from the region finding step of
the algorithm, and Transfer, which stores all values related to a transfer
from after the transfer step of the algorithm. The Pantools development
repository is available from https://git.wur.nl/Bif/pangenomics/pantools
for people with access.

2.3 Test data and validation

Four aspects of annotation transfer will be tested: performance
on transferring single-copy homologs, behaviour when transferring
multiple-copy homologs, completeness of the transferred annotation and
computational feasibility of the algorithm.

2.3.1 Single-copy homolog transfer
The pangenomes used to test performance on single-copy homologs will
contain two genomes, one that will serve as reference genome and one
that will serve as target genome (see Table 1 and Table S1-3), which
vary on two aspects. Firstly, different organisms will be used to test
whether annotation transfer within Pantools works across the entire tree
of life. These organisms are E. coli, S. cerevisiae, D. melanogaster and
A. thaliana, thus including bacteria, fungi, animals and plants. Secondly,
different amounts of relatedness between the genomes will be used to get
an indication of the amount of relatedness that is necessary for annotation
transfer to be a viable strategy. The relations between the genomes will
be assembly versions, strains/accessions and different species. Therefore,
these tests will cover the three use cases for annotation transfer: transferring
between genome assembly versions, transferring between related strains
or accessions and transferring between related species. To test the quality
of annotation transfer, annotations will be added for both genomes in the
pangenome, which allows validation to be done between the transferred
annotations and the actual annotations of the target genome. However,
before the quality of annotation transfer can be tested, an important
question needs to be answered: how do we know which annotation from the

reference genome corresponds to which annotation in the other genome? In
E. coli and S. cerevisiae, gene names are quite standardized, which gives a
clue, but for D. melanogaster and A. thaliana, this is certainly not the case.
Therefore, we decided to use homology grouping as validation, which
conveniently comes as built in functionality in Pantools (Sheikhizadeh
et al., 2018).

One difficulty with using homology groups as validation is that some
genes are part of a gene family with multiple very similar genes and some
genes are copied multiple times in the genome, both of which would lead
to big homology groups in which it is not clear which gene from the
reference genome corresponds to what other gene in the target genome. For
annotation transfer quality testing, it would be optimal if every gene from
the reference genome was in a homology group with either no other genes,
indicating that this gene is not present in the other genome, or with a single
gene from the target genome, so it is clear where the annotation transfer
should happen to. However, when grouping settings are too stringent,
genes might end up alone in a homology group instead of with their
orthologous gene, as there might be some differences between the them.
On the other hand, if grouping settings are too relaxed, genes might end up
in larger gene families instead of only with their one homologous gene. To
estimate optimal homology grouping settings in this trade-off, homology
grouping was done using the 8 precooked settings for various levels of
stringency provided by Sheikhizadeh et al. (2018) (see Supplementary
chapter 2: Pantools homology group validation). This was done all five
test pangenomes containing two genomes used for performance testing on
single-copy homologs. For each setting in every pangenome containing
two genomes, the number of validatable genes was counted and plotted
(Figure S1, S2, S3, S4, S5). From these results, it was concluded that the
d1 settings (the most stringent settings) would be best to use for validation,
as this setting resulted in the highest amount of validatable genes in each
of the pangenomes.

Validation of the transferred annotations will be done by comparing
them to the actual annotation of the target genome. This comparison will
be done on two aspects: the begin and end location of a gene and the
begin and end location of all CDSs of a gene. Precision is defined as
the number of single-copy homologs that were transferred correctly over
the total number of genes transferred. Recall is defined as the number of
single-copy homologs that were transferred correctly over the total number
of single-copy homologs that should have been able to be transferred.

2.3.2 Multiple-copy homolog transfer
Of course, genes in a gene family with very similar genes or genes that are
present multiple times in the genome will still end up in larger homology
groups. A few of these cases will be tested separately from the single-copy
homologs on a small scale using manual validation. This will be done using
two relevant examples of cases in which multiple-copy homologs might be
difficult to transfer between genomes. Firstly, when a gene is part of family
in which many similar genes occur, it might be difficult to know where this
gene should be transferred to, as all locations where genes from that family
occur could be viable targets. Secondly, when a gene is duplicated multiple
times in both genomes, all copies of this gene will be viable targets for
transfer. For both of these examples, double transfers could occur, meaning
that one location in the target genome is annotated multiple times. As can
be seen in Fig1E, Pantools resolves these double transfers by picking the
match with the highest identity to the target location. To demonstrate this
behaviour, the examples that will be used are the very conserved auxin
response factor (ARF) gene family in A. thaliana (Finet et al., 2012) and
the tandemly repeated gene CUP1 in S. cerevisiae (Zhao et al., 2014).

First, ARF genes were tested using the pangenome containing two
A. thaliana accessions. By looking at all homology groups containing
ARF genes (see Figure S6 and Supplementary chapter 3: Multiple-copy

“output” — 2019/3/29 — page 5 — #5

Annotation transfer within pangenomes 5

Table 1. Pangenomes used as test data. In the pangenome column, the general scope of the pangenome is given. Then, the reference genome is the genome whose
annotation will be used to transfer onto the other genomes. For the A. thaliana assembly versions, no assembly accession code is given, because TAIR8 is outdated.
Then, the number of scaffolds, the genome size and the number of genes are given for the reference genome, information taken from NCBI’s Genome database
(Sayers et al., 2019). Finally, the number of genomes used in each pangenome is given. For some groups, multiple pangenomes of different sizes are given as they
are used to test runtime.

Pangenome Reference genome Scaffolds Genome size (Mb) Genes Number of genomes

E. coli strains K-12 substr. MG1655 (GCA_000005845.2) 1 4.6 ~4600 2
S. cerevisiae strains S288C (GCA_000146045.2) 17 12.2 ~6400 2, 10, 50, 94
Drosophila species D. melanogaster Iso-1 (GCA_000001215.4) 1870 143.7 ~17700 2
A. thaliana accessions Col-0 (GCA_000001735.2) 7 119.7 ~38300 2
A. thaliana assembly versions Col-0 (TAIR8) 7 119.7 ~33300 2

homolog transfer), it was decided to test on 4 specific ARF genes that were
both in a homology group with one other gene, allowing validation, but
also very similar to genes in another homology group, causing ambiguity in
where a transfer should happen to. The first ambiguous case are the genes
ARFB1B and ARFB1C, who are similar to their corresponding gene in the
second genome, but also to each other. The second ambiguous case are the
genes ARF1, ARFA1B, ARF1A1C, ARFA1D and ARFA1E. These genes
are all similar to each other and their corresponding genes in the second
genome.

Secondly, to show how Pantools deals with genes for which many
matches will be found, CUP1 was transferred between S. cerevisiae
strains with a varying amount of copies of this gene. In Strope et al.
(2015) supplementary table S15, for each of the 100 yeasts strains used
there, the copy number of the CUP1 gene was estimated using RNA-
seq coverage data. Reference strain S288, which contains two CUP1
copies, was used as reference genome to transfer annotations to target
strains YJM1304, YJM1133, YJM1383, YJM993, YJM1527, YJM189,
YJM1381, YJM1574, YJM1326 and YJM1549. The number of CUP1
genes present in these strains is 1, 2, 3, 4, 5, 6, 9, 12, 15 and 18, respectively.

2.3.3 Transferred annotation completeness
As these measures only consider the genes that should have been
transferred and not the genes that the target genome should have in total,
another analysis was done to show the completeness of a transferred
annotation. All genes from the reference genome in the pangenome
containing two E. coli strains will be transferred to the target genome. The
feature density of the transferred annotation will be plotted for the entire
genome and compared to the feature density of the actual annotation of
this genome. For the regions in which there might not be enough features
annotated, it will be checked whether this is because of a flaw in the
annotation transfer or because this region is not conserved between the two
genomes by making a whole genome alignment using Mauve on default
settings (Darling et al., 2004).

2.3.4 Runtime and peak memory
To test whether or not Pantools’ annotation transfer is computationally
feasible, three tests will be done, as there are three factors that influence
Pantools’ annotation transfer runtime and peak memory: the number of
genes, genome size and pangenome size. Firstly, it is important that
Pantools can deal with a large number of genes, as plants for example
have tens of thousands of them. Secondly, it is important that Pantools
can deal with large genome sizes too, as genomes can be very large in
both the plant and animal kingdoms. Finally, the number of genomes in a
pangenome are an important factor as well, as comparative genomics will
likely use large pangenomes.

To show impact of the number of genes to be transferred on runtime
and peak memory, an increasing amount of genes (100, 200, 300 and 400)

was transferred in the S. cerevisiae pangenome containing 2 genomes.
To test how much genome size matters for runtime and peak memory,
annotation transfer was done in 4 pangenomes containing 2 genomes
of organisms with increasing genome size: E. coli, S. cerevisiae, A.
thaliana and Drosophila, of which genome sizes are 4.6 Mb, 12.2 Mb,
119.7 Mb and 143.7 Mb, respectively. For each pangenome, 100 genes
from the reference genome were transferred to the other genome in the
pangenome. To test how the number of genomes in the pangenome impacts
the runtime, annotation transfer was done from one reference genome to
an increasing amount of target genomes (1, 9, 49 and 93) within four
S. cerevisiae pangenomes. Currently, region finding is the most time-
consuming step in the algorithm, and this step is done for all genomes
at the same time. Therefore, it is possible that the number of genomes in
a pangenome doesn’t impact runtime quadratically. For each pangenome,
100 annotations from the reference genome were transferred to all other
genomes in the pangenome.

3 Results and discussion
Annotation transfer was implemented as an easy to use and transparent
functionality in Pantools. It is now possible, when one or multiple new
genomes are sequenced for comparative genomics, to annotate them using
annotation transfer within a pangenome. The user is informed about the
results via multiple log files that document each step in the algorithm. It
is now also possible to view or remove annotations, both imported and
transferred. When it becomes desirable to use the transferred annotation
for analyses outside of a pangenome, it is possible to export them to a
standard gff3 file format. Overall, the newly implemented functionalities
in Pantools are listed below.

1. Transfer annotations, given a reference genome number and one or
multiple target genome numbers, transfers genes from the former to
the latter. The optional strict/non-strict argument to also add transfers
that have failed validation but have passed all other steps. The label
’needs_curation’ will be added to these transfers.

2. View annotations, given a genome number, shows the annotation ID,
the number of features and the source of annotation (from a file or
from an annotation transfer) for each annotation of the given genome.

3. Remove annotation, given an annotation ID (which can be obtained
with view annotations), removes the annotation node and all
annotation features belonging to this annotation ID.

4. Remove transferred annotations, given a genome number, removes all
transferred annotations within this genome. When genome number
0 is provided (which is never an actual genome), all transferred
annotations in the entire pangenome are removed.

5. Export gff3, given a genome number, exports a gff3 file with all
annotation features of this genome.

“output” — 2019/3/29 — page 6 — #6

6 Nicky Faber 1,∗

Table 2. The percentage of total genes transferred is shown in the second column, and the percentage of genes that pass in each step of the annotation transfer
algorithm for each of the five tested pangenomes are shown in the third, fifth, sixth, seventh and eighth columns. In the fourth column, the percentage of extra
matches in the total amount of matches is shown.

Pangenome Genes transferred Region finding Extra matches Coordinate mapping Transferring Validating Resolving double transfers

E. coli strains 96.5% 98.9% 1.8% 100.0% 99.5% 97.6% 99.2%
S. cerevisiae strains 99.5% 99.8% 11.3% 100.0% 93.3% 99.1% 95.9%
Drosophila species 65.4% 85.4% 16.0% 100.0% 97.6% 69.0% 99.9%
A. thaliana accessions 91.5% 94.2% 9.8% 100.0% 93.9% 94.2% 97.9%
A. thaliana assembly versions 95.2% 95.4% 2.9% 100.0% 98.6% 99.2% 99.1%

The next four sections will show results of the quality and feasibility
tests on Pantools’ annotation transfer and show that this functionality will
be a valuable asset in all fields that use comparative genomics.

3.1 Single-copy homolog transfer

In this section, it is shown that most single-copy homologous genes can be
transferred between genomes. Also, it is shown that the quality of transfer
is very good transferring CDSs but not so good when transferring UTRs.

Firstly, it is shown that for annotation transfer between assembly
versions and strains/accessions, most single copy homologs can be
transferred. As we’re only transferring single copy homologous genes,
all genes should be transferred to the target genome exactly once, and no
additional extra matches should be found in the region finding step of the
algorithm. The overall percentage of genes that could be transferred in

each pangenome is shown in the second column of Table 2. As can be
seen, for all pangenomes except Drosophila, more than 90% of genes can
be transferred. This shows that transferring annotations is a very feasible
approach between genome assembly versions and strains/accessions.
Although most genes are transferred in Drosophila as well, more tests
need to be done to get a better idea of how well annotation transfer will
work between species. A start was made with this analysis, but it was not
finished due to time restrictions (see Supplementary chapter 4: Minimum
genome relatedness).

To demonstrate where improvements can still be made in the algorithm,
the percentage of matches that passes each step in the algorithm is also
plotted in Table 2 and Sankey flow diagrams of both the best (S. cerevisiae)
and worst (Drosophila) transfers is shown in Figure 2. For the other three
pangenomes, the flow diagrams are shown in figures S14-16. In the region
finding step, matching regions are found for practically all genes in S.

Fig. 2. A. Single-copy homolog transfer results for S. cerevisiae. In the region finding step, for 5281 out of 5293 genes, matching regions are found (99.8%). The other 11 genes had no
matching regions. There are also 672 additional matches from genes that had more than one matching region. For all 5954 matching regions, nucleotide coordinates were mapped. In the
transfer step, 5557 of the 5954 matches (93.3%) can be transferred successfully. This means that the other 397 matching regions match only part of the gene region and missed either the
begin or end location in the coordinate mapping index. When validating the 5557 transferred genes, 5506 (99.1%) pass. For the resolving of double transfers in one region, 5281 out of 5506
(95.9%) validated transfers are the best match in that location. Overall, of all 5293 genes that the algorithm started with, 27 were not transferred (meaning that most dropouts were extra
matches), and 4 genes were transferred twice. B. Single-copy homolog transfer results for Drosophila species. In the region finding step, for 853 out of 999 genes, matching regions are
found (85.4%). The other 146 genes had no matching regions. There are also 190 additional matches from genes that had more than one matching region. For all 1043 matching regions,
nucleotide coordinates were mapped. In the transfer step, 1014 of the 1043 matches (97.2%) can be transferred successfully. This means that the other 29 matching regions match only part
of the gene region and missed either the begin or end location in the coordinate mapping index. When validating the 1014 transferred genes, 654 (64.5%) pass. For the resolving of double
transfers in one region, 653 out of 654 (99.8%) validated transfers are the best match in that location. Overall, of all 999 genes that the algorithm started with, 346 were not transferred
(meaning that most dropouts were extra matches), and 0 genes were transferred twice.

“output” — 2019/3/29 — page 7 — #7

Annotation transfer within pangenomes 7

cerevisiae, but 15% of genes is already not found in Drosophila. Although
this makes sense, as there is more variation between the two genomes in
the Drosophila pangenome as they are of different species, it might be
something that can be improved upon in the future. As can also be seen,
there are extra matches in the region finding step for each pangenome.
As each gene in this test should be transferred exactly once, those extra
matches shouldn’t be there. What is causing these extra matches in E.
coli and S. cerevisiae is a bug which reports certain matches twice with a
slightly varying start or end location. Upon further inspection of the extra
matches in Drosophila and both A. thaliana transfers, it was discovered
that these were partly caused by the same bug as in E. coli and S. cerevisiae,
but also partly caused by a bug in the writing of the log file, which reports
each transcript of a gene as an extra match. These bugs should be fixed,
but do not impact the algorithm, as double matches are filtered out during
the last step of the algorithm. For coordinate mapping, there are currently
no elimination rules, so all matches pass here. When checking a few low-
identity matches, it became apparent that most of these matches were
partial, spanning only the last half of the reference gene. The reason why
these partial matches were still long enough to be reported by Pantools as
a matching region is because the match sequence continues further before
or after gene. These low identity matches are not a big problem, as they
will be filtered out in the next step, but this does indicate that in the future,
another filtering step could already be implemented here which excludes
matches with a very low coverage. For transferring coordinates, only S.
cerevisiae and A. thaliana show a slightly lower percentage of genes that
pass. The reason for this is that they both have some extra matches which
are only partial in the region finding step, which are all eliminated in the
transferring step. Most matches pass the transferring step in the Drosophila
pangenome as these al turned out to be transcripts instead of extra matches.
In the validation step, only Drosophila shows a very low number of genes
that pass. When looking at which of the 9 validation rules is causing this, it
becomes apparent that about 15% of all matches fail because the minimum
match identity is lower than 90%. Therefore, it seems that this rule is too
stringent when transferring between different species, and more testing
needs to be done to get a better threshold. Also, another 10% of matches
fail because of an invalid stop codon, suggesting that the algorithm could
benefit greatly from having an auto-correct implementation, which looks
up- and downstream for a certain amount of base pairs to find a valid stop
codon. This could also lead to an even higher percentage of matches that
pass in the other four pangenomes. In the resolving of double transfers,
most genes pass in all pangenomes. A few less pass in the S. cerevisiae and
A. thaliana transfers because of the bug that was reporting the same match
twice. Overall, these results show that besides a few small improvements
that can be made, the annotation transfer algorithm works very well in a
variety of species and different amounts of relatedness.

Secondly, it is shown that Pantools’ annotation transfer has good
precision and recall when transferring CDSs, but a low precision and recall
when transferring UTRs. For all 5 pangenomes, of the annotations that
were transferred, the results were compared to the actual annotation of the
target genome to get precision and recall measures. Two measures were
used for validation. First, a transferred gene was counted as transferred
correctly if the begin and end location and the strand of this gene are
correct. However, according to this measure, the intron and exon structure
of the gene could be completely wrong and it would still be counted as
transferred correctly. Therefore, secondly, another validation was done
where a transferred gene was counted as transferred correctly if all CDSs of
all transcripts were correct. This means that if there was a transcript missing
or a transcript extra, this genes is also not counted as transferred correctly.
Precision and recall for both of these measures for all 5 pangenomes can
be seen in Table 3.

As can be seen, for the validation of gene begin and end location, the
precision and recall vary a lot. Precision and recall are extremely good in

Table 3. Precision and recall of annotation transfer of single-copy homologs
in a variety of pangenomes. Two different validation strategies are shown, the
first one being gene validation and the second one being CDSs validation.

Pangenome Gene validation CDS validation
Precision Recall Precision Recall

E. coli strains 0.661 0.641 0.657 0.637
S. cerevisiae strains 0.997 0.995 0.996 0.994
Drosophila species 0.007 0.005 0.812 0.531
A. thaliana accessions 0.150 0.138 0.864 0.779
A. thaliana assembly versions 0.939 0.894 0.934 0.888

both S. cerevisiae and A. thaliana assembly versions, reasonable in E. coli,
and terrible in A. thaliana and Drosophila. Upon further investigation,
it turned out that there were no UTRs annotated in either E. coli or S.
cerevisiae, while they were annotated in A. thaliana and Drosophila.
Therefore, it is likely that transferring UTRs, which have been shown to
not be very conserved (Lin & Li, 2011), is not possible without additional
RNA-seq data, and that if UTRs were annotated in E. coli and S. cerevisiae
as well, the precision and recall of their transfers would be worse as well.
The precision and recall of CDSs of transferred genes is much better in
A. thaliana and Drosophila than those of the gene validation, and they
are similar in the other three pangenomes. Therefore, it is concluded that
annotation transfer works reasonably well for CDSs, but not so well for
UTRs.

Even though precision and recall are better when validating using CDSs
rather than UTRs, improvements are still necessary. Firstly, in E. coli,
about a third of all genes is transferred to the correct location in the target
genome, but to the wrong strand. This is happening because there is a
large inversion in the target genome compared to the reference genome
(see Figure 3A). Therefore, finding and fixing this bug will likely raise
precision and recall to close to 1 for E. coli. Secondly, to improve recall in
Drosophila, more testing should be done to optimize the 9 gene validation
rules in the validation step of the algorithm. Thirdly, to improve precision
overall, RNA-seq data could be integrated to improve both CDS precision
even further, but also to improve UTR precision. Fourthly, to improve
recall overall, an auto-correct could be implemented to save genes that
have an invalid start codon, stop codon or splice site after transfer. When
these improvements are implemented in Pantools’ annotation transfer,
transferred annotations will be of very high quality.

Overall, the transfer of single-copy homologs is going very well in
similar genomes such as assembly versions and strains/accessions, and
reasonably well in less similar genomes of different species. Therefore,
these results show that Pantools can reliably transfer single-copy homologs
to another genome between assembly versions and strains, but that more
research is necessary on the amount of relatedness that is necessary
between genomes for annotation transfer to be a viable strategy. As
annotation transfer will most likely predominantly be used to transfer
annotations between assembly versions and strains for comparative
genomics, it is already very useful a functionality within Pantools.

3.2 Multiple-copy homolog transfer

In this section, it is shown that Pantools’ annotation transfer can not only
deal with transferring single-copy homologous genes, but also multiple-
copy homologs.

Firstly, four ARF genes which are part of a large gene family in A.
thaliana with many similar genes were transferred between two genomes.
When transferring these genes, not only were all four transferred to
the correct region, but the region finding step in the transfer algorithm

“output” — 2019/3/29 — page 8 — #8

8 Nicky Faber 1,∗

found only the correct region. The reason why Pantools has no trouble
transferring these genes correctly, despite the presence of many other
homologous genes, is because it looks at similarity on the nucleotide
level, not on the protein level. Even though ARF’s are very conserved
genes because of their important function in plant development, this
conservation is mostly on the protein level. Therefore, other homologous
genes can be very different on the nucleotide level, which causes no
problems for Pantools’ annotation transfer. Besides this, the region finding
step considers the entire gene length including introns, which are not as
conserved as exons and aren’t considered in homology grouping. This
result shows that transferring genes in families with many similar and very
conserved genes will not be a problem in Pantools.

Secondly, the CUP1 genes in S. cerevisiae, which are tandemly
repeated in varying amounts in different strains, were transferred to several
strains. These tandemly repeated genes are all exactly the same, so unlike
the ARF gene family, this will cause double matches to be found in the
region finding step. In the genomes of the 10 strains the CUP1 genes were
transferred to, there should be 1, 2, 3, 4, 5, 6, 9, 12, 15 and 18 copies of
this gene present, respectively. However, when both CUP1 genes from the
reference are transferred to the 10 other genomes, exactly one matching
region is found in each genome, twice for each reference CUP1 gene. From
these results, it was concluded that the region finding algorithm has trouble
finding tandemly repeated sequences. Despite this problem however, the
one matching region in each genome was in fact found twice, once for
each reference CUP1 gene. If it wasn’t for Pantools resolving these double
transfers, two annotation would en up in the same location in each of the
genomes. However, because Pantools resolves these double transfers, the
first CUP1 gene is transferred 10 times and the second CUP1 gene zero
times, because Pantools transfers either the match with the highest identity
or, if the identities are the same, the first match. Because of this, there
are no double annotations in the target genomes. These results show that
Pantools’ annotation transfer algorithm can also deal with repeated genes.

All in all, Pantools is able to deal with multiple-copy homologs very
well. However, this analysis did bring to light the fact that improvements
should be made in the finding matching regions algorithm to deal with
tandemly repeated regions.

3.3 Completeness of transferred annotation

In this section, it is shown that even with pairwise annotation transfer within
a pangenome, a largely complete annotation can already be produced for
a newly sequenced genome.

All annotations from the reference genome in the E. coli pangenome
were transferred to the target genome. To see how complete the transferred
annotation is, the feature density of the transferred annotation was
compared to the feature density of the actual annotation of the target
genome. The results of this can be seen in Figure 3B. As can be seen,
the feature density of both annotation is comparable, although that of the
transferred annotation is somewhat lower. However, there are some gaps
were there are no annotated features in the transferred annotation. To see
whether or not this was because these regions are not conserved between
the two genomes, a whole genome alignment was made (see Figure 3A).
As can be seen, the gaps in the feature density correspond exactly to the
regions where there is no conservation between the two genomes. These
results show that the transferred annotation is as complete as it can get
using annotation transfer with a single reference genome.

Because of this result, a question that needs to be raised is: can the
annotation of a genome ever be complete by using annotation transfer
solely, as there is no way to annotate genes that are not present in the
reference genome? The solution to this problem is twofold. Firstly, it
was shown by Tettelin et al. (2005) that as the number of genomes in
a pangenome increases, the number of different genes present in the
pangenome also increases. Therefore, if most genes in a population are
present in the pangenome, using multiple references for annotation transfer
would make the transferred annotation more complete. This is valuable

Fig. 3. A. Whole genome alignment of two E. coli strains. Conserved blocks are indicated by color, and the amount of conservation is indicated by the height of the block. On the top,
the reference genome is shown and on the bottom, the target genome is shown. B. Feature density plot of actual and transferred annotations. On the top, the actual feature density
of the target genome is shown and on the bottom, the transferred annotation feature density is shown. As indicated by the red squares, regions where there are no annotations in
the transferred annotation are also regions where there is no conservation between the two genomes.

“output” — 2019/3/29 — page 9 — #9

Annotation transfer within pangenomes 9

functionality that should be implemented in a future version of annotation
transfer within Pantools. However, one downside of annotation transfer
will always be that it is impossible to find novel genes, a certain amount of
which are still found with each newly sequenced genome (Tettelin et al.,
2005). Therefore, secondly, in order for Pantools to annotate these novel
genes as well, RNA-seq data should be integrated as well.

Despite the fact that currently, only single reference annotation is
implemented in Pantools, it already provides a largely complete annotation
and it has a lot of potential to produce an even more complete annotation.

3.4 Runtime and peak memory

In this section, it is shown that Pantools’ annotation transfer algorithm is
computationally feasible. Three factors were tested: the number of genes
being transferred, genome size and pangenome size, the results of which
can be seen in Figure 4.

Firstly, it is shown that the algorithm scales well to a large number
of genes being transferred. By transferring an increasing amount of genes
(100, 200, 300 and 400) while keeping genome size and pangenome size
the same with an S. cerevisiae pangenome containing two genomes, a
relationship between CPU runtime and peak memory could be obtained.
These results are shown in Figure 4 A and B. As can be seen, there is
a linear relationship between the number of genes being transferred and
the runtime (R2 = 0.9852). Extrapolating from this relationship to the
amount of genes that, for example, A. thaliana has, which is about 33.000,
this would result in a CPU time of about 5 hours. There seems to be no
relationship between the peak memory and the number of genes being
transferred (R2 = 0.0009). Although, the number of genes that is being
transferred needs to be tested on a larger scale to get a definitive estimate
about runtime and peak memory, these results show that a large amount of
genes can be transferred within a reasonable amount of time.

Secondly, it is shown that the algorithm scales extremely well to
transferring annotations within a large genome. The relationship between
genome size and runtime and peak memory was tested by transferring 100
genes between genomes of increasing size (4.6, 12.2, 119.7 and 143.7 Mb)
within a pangenome containing 2 genomes. The results of this experiment
are shown in Figure 4 C and D. As can be seen, there is a weak relationship
between the runtime and genome size, but only a little variance can be
explained by genome size alone (R2 = 0.2352). The same is the case for
the relationship between peak memory and genome size (R2 = 0.1632).
These results show that there are likely other more important differences
between these pangenomes that impact runtime and peak memory. The
reason why genome size doesn’t have a big impact on runtime and peak
memory is because similar genomic regions are already together within the
structure of the pangenome. This means that the algorithm only has to look
in this region and not in the rest of the genome. I suggest that other impact
factors could include gene length, the number of repeated regions within
the genomes and the relatedness between the two genomes. Longer genes
could be a cause of longer computation time in every step of the algorithm,
more repeated regions in the genomes could cause more computation time
as more matching regions will be found and less relatedness between the
genomes could cause shorter computation time as more often, no matching
region are found. Overall, both runtime and peak memory increase only
marginally when annotations are transferred between larger genomes.
These results suggest that Pantools’ annotation transfer can likely deal
with even larger genomes such as that of wheat.

Finally, it is shown that more improvements need to be made to
the algorithm before annotation transfer becomes feasible within large
pangenomes. To test the impact of pangenome size on runtime and peak
memory, 100 genes were transferred within an S. cerevisiae pangenome
from one reference genome to an increasing amount of target genomes (1,
9, 49, 93). The the results of this are shown in Figure 4 E and F. As can be

seen, there is a strong positive relationship between both the runtime and
pangenome size (R2 = 0.9923) and peak memory and pangenome size
(R2 = 0.9829). For only 100 genes, CPU runtime is already over an hour
when there are 94 genomes present in the pangenome. Extrapolating from
this relationship to the amount of genes that S. cerevisiae really has, and
transferring those within a pangenome containing 94 genomes, this would
result in a CPU time of almost 3 days. With 94 genomes in the pangenome,
peak memory becomes four times higher than for the pangenome with 2
genomes. These results show that Pantools’ annotation transfer doesn’t
scale quite satisfactorily with large pangenomes yet for the two reasons.
Firstly, although runtime and peak memory are still within a reasonable
range for 94 S. cerevisiae genomes, the large amount of genes in other
organisms will make annotation transfer quite a long process. Secondly, as
shown by many big sequencing projects (Li et al., 2014; Gilbert et al., 2014;
Siva, 2008), it is safe to assume that even larger pangenomes will become a
reality in the future, which will raise runtime and peak memory even higher.
Besides this, there currently is another problem with annotation transfer
within large pangenomes. This problem is that in the region finding step
of the algorithm, it is currently impossible to find matching regions for
only a subset of genomes in a pangenome. As it usually will be the case
that only a few new genomes will be added to a large pangenome, a lot of
computational time is wasted by finding matching regions in genomes that
already have annotation. Overall, more work needs to be done to make
annotation transfer scalable to larger pangenomes.

All in all, these results show that Pantools’ annotation transfer scales
very well to a large amount of genes and large genomes. However,
improvements will need to be made before it is also scalable when big
pangenomes are used. For these improvements, I have the following
four suggestions. Firstly, the region finding step, which is currently
implemented in python, should be updated to the newest version which
is written in Java. Updating this step will improve runtime significantly
because it eliminates the need for an external process to run within
Pantools, because Java is generally believed to be faster, and mostly
because the algorithm is redesigned to be faster in and of itself. Secondly,
another bottleneck in the algorithm is the coordinate mapping step which
is currently done using MAFFT. MAFFT could be replaced with Pantools’
built-in alignment functionality, which might improve runtime as this
also eliminates the need for an external process to run within Pantools.
However, it remains to be tested whether replacing MAFFT is actually
faster. Thirdly, as genes are independently transferred until the last
step, resolving double transfers, multi-threading could be implemented
to greatly benefit runtime. Fourthly, it might be possible to speed up the
region finding process by not doing region finding for one gene at a time,
but for multiple neighbouring genes at a time. However, it needs to be
tested whether or not low complexity regions in between those genes might
increase runtime again. An even faster option might be to approach the
region finding step in a whole-genome alignment way.

When these improvements can be made, it will be more scalable to use
Pantools’ annotation transfer within large pangenomes as well as within
small ones.

4 Conclusion
Comparative genomics is an increasingly relevant field of research as it is
now easier and cheaper to sequence genomes than ever, yielding a huge
wealth of genomic data. As annotations give biological context to genomic
variation found in comparative genomics, it is important that annotation
efforts keep up with sequencing efforts. To this end, annotation transfer was
implemented as a built in functionality in Pantools. It is able to quickly
and cheaply annotate a newly sequenced genome that is related to an
already present annotated genome without a lot of manual curation being

“output” — 2019/3/29 — page 10 — #10

10 Nicky Faber 1,∗

necessary. It was shown that most single-copy homologous genes can
be transferred between genomes of many different species and between
genomes of assembly versions and strains/accessions. However, there were

some minor bugs in the algorithm that should be straightened out in order
to be able to transfer all genes. Between species, a decent amount of genes
was also shown to be transferable, but more testing is needed before this

Fig. 4. Annotation transfer runtime and peak memory in relation to three factors: number of genes to be transferred (A. and B.), genome size (C. and D.) and pangenome size (E. and F.).
In A., C. and E., the CPU runtime is shown in minutes, and in B., D. and F., the peak memory is given in MB. For all, a linear regression line is shown as well as an R2 value to show how
much variability is explained by the linear regression model.

“output” — 2019/3/29 — page 11 — #11

Annotation transfer within pangenomes 11

can be applied with reliable results. Of the genes that were transferred,
the quality of transfer of CDSs was very good. However, in order to
be able to transfer UTRs successfully also, additional RNA-seq data
needs to be integrated. Pantools’ annotation transfer can not only transfer
single-copy homologous genes, but also multiple-copy homologs. It was
shown that annotation transfer within a pangenome is a viable strategy
to get a relatively complete annotation for a newly sequence genome.
Also, Pantools’ annotation transfer algorithm is computationally feasible
to transfer many genes in big genomes. However, some improvements
should be made before it also scales well to large pangenomes.

This work has three considerable limitations. The first is that due
to time restrictions, annotation transfer was only implemented in a
pairwise manner, thus not making use of the advantage a pangenome
has, which is that there are many reference annotations available. The
second limitation is that no benchmarking was done to other annotation
transfer tools. Therefore, it is unsure whether or not this new functionality
in Pantools is better than already existing tools. The third limitation is that
currently, it is only possible to transfer coding genes and no other features.
However, Pantools’ annotation transfer shows that it is able to do high-
quality annotation transfers while using a single reference genome only.
Also, additional features could easily be added to the annotation transfer
algorithm. Therefore, there is a lot of potential for annotation transfer
quality to become even higher when multiple reference annotation transfer
is implemented, when RNA-seq data is integrated and when more features
such as breeding markers or tRNAs are added to the transfer algorithm as
well.

Acknowledgements
Thanks to Eef Jonkheer, Siavash Sheikhizadeh and Leonoor Engeltjes for
all their help.

References
The Computational Pan-Genomics Consortium (2016). Computational pan-

genomics: status, promises and challenges. Briefings in bioinformatics, 19,
118-135.

Darling, A. C., Mau, B., Blattner, F. R., & Perna, N. T. (2004). Mauve: multiple
alignment of conserved genomic sequence with rearrangements. Genome research,
14(7), 1394-1403.

Fiddes, I. T., Armstrong, J., Diekhans, M., Nachtweide, S., Kronenberg, Z. N.,
Underwood, J. G., ... & Haussler D., Stanke M. & Paten B. (2018). Comparative
Annotation Toolkit (CAT)-simultaneous clade and personal genome annotation,
Genome research, 28, 1029-1038.

Finet, C., Berne-Dedieu, A., Scutt, C. P., & Marlétaz, F. (2012). Evolution of the
ARF gene family in land plants: old domains, new tricks. Molecular Biology and
Evolution, 30(1), 45-56.

Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F.,
Kerlavage, A. R., ... & Merrick, J. M. (1995). Whole-genome random sequencing
and assembly of Haemophilus influenzae Rd, Science, 269(5223), 496-512.

Fundel, K., & Zimmer, R. (2006). Gene and protein nomenclature in public databases.
Bmc Bioinformatics, 7(1), 372.

Gilbert, J. A., Jansson J. K., & Knight R. (2014). The Earth Microbiome project:
successes and aspirations, BMC Biology, 12, 69.

Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M., & Stanke, M. (2015).
BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET
and AUGUSTUS, Bioinformatics, 32(5), 767-769.

Holt, C., & Yandell, M. (2011). MAKER2: an annotation pipeline and genome-
database management tool for second-generation genome projects, textitBMC
bioinformatics, 12, 491.

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software
version 7: improvements in performance and usability. Molecular biology and
evolution, 30(4), 772-780.

Li, J., Wang, J., & Zeigler, R. S. (2014). The 3,000 rice genomes project: new
opportunities and challenges for future rice research, GigaScience, 3, 8.

Lin, Z., & Li, W. H. (2011). Evolution of 5′ untranslated region length and gene
expression reprogramming in yeasts. Molecular biology and evolution, 29(1), 81-
89.

Otto, T. D., Dillon, G. P., Degrave, W. S., & Berriman, M. (2011). RATT: rapid
annotation transfer tool, Nucleic acids research, 39(9), e57.

Sayers, E. W., Agarwala, R., Bolton, E. E., Brister, J. R., Canese, K., Clark, K., ... &
Holmes, J. B. (2019). Database resources of the National Center for Biotechnology
Information. Nucleic acids research, 47(Database issue), D23.

Sheikhizadeh, S., Schranz, M. E., Akdel, M., de Ridder, D., & Smit, S.
(2016). PanTools: representation, storage and exploration of pan-genomic data.
Bioinformatics, 32(17), i487-i493.

Sheikhizadeh, S., de Ridder, D., Schranz, M. E., & Smit, S. (2018). Efficient inference
of homologs in large eukaryotic pan-proteomes. BMC bioinformatics, 19(1), 340.

Strope, P. K., Skelly, D. A., Kozmin, S. G., Mahadevan, G., Stone, E. A.,
Magwene, P. M., ... & McCusker, J. H. (2015). The 100-genomes strains, an S.
cerevisiae resource that illuminates its natural phenotypic and genotypic variation
and emergence as an opportunistic pathogen. Genome research, 25(5), 762-774.

Siva, N. (2008). 1000 Genomes project, Nature Biotechnology, 26, 256.
Tettelin, H., Masignani, V., Cieslewicz, M. J., Donati, C., Medini, D., Ward,

N. L., ... & DeBoy, R. T. (2005). Genome analysis of multiple pathogenic
isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”.
Proceedings of the National Academy of Sciences, 102(39), 13950-13955.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., ... &
Gocayne, J. D. (2001). The sequence of the human genome. Science, 291(5507),
1304-1351.

Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., ... & Huang, X. (2018).
Pan-genome analysis highlights the extent of genomic variation in cultivated and
wild rice. Nature genetics, 50(2), 278.

Zhao, Y., Strope, P. K., Kozmin, S. G., McCusker, J. H., Dietrich, F. S., Kokoska, R. J.,
& Petes, T. D. (2014). Structures of naturally evolved CUP1 tandem arrays in yeast
indicate that these arrays are generated by unequal nonhomologous recombination.
G3: Genes, Genomes, Genetics, 4(11), 2259-2269.

Supplementary data

Contents
1. Genomes used in pangenomes .. 2

2. Pantools homology group validation ... 7

3. Multiple-copy homolog transfer ... 11

4. Minimum genome relatedness ... 12

5. Single-copy homologous genes transfers .. 16

6. Benchmarking .. 19

1. Genomes used in pangenomes
Table S1 - Single-copy homolog testing pangenomes

Number Organism Genome size (Mb) Genbank accession Function

1 E. coli K 12 substr MG1655 uid225 4958 KB U00096 Reference

2 E. coli IAI39 uid33411 5084 KB CU928164 Target

Number Organism Genome size (Mb) Genbank accession Function

1 S. cerevisiae S288C 12.1571 GCA_000146045.2 Reference

2 S. cerevisiae YJM993 12.4989 GCA_000662435.1 Target

Number Organism Genome size (Mb) Genbank accession Function

1 D. melanogaster Iso-1 143.726 GCA_000001215.4 Reference

2 D. simulans w501 124.964 GCA_000754195.3 Target

Number Organism Genome size (Mb) Genbank accession Function

1 A. thaliana Col-0 119.669 GCA_000001735.2 Reference

2 A. thaliana Ler-0 113.15 GCA_000835945.1 Target

Number Organism Genome size (Mb) Genbank accession Function

1 A. thaliana Col-0 (TAIR8) 119.669 - Reference

2 A. thaliana Col-0 (TAIR10) 119.669 GCA_000001735.2 Target

Table S2 - Multiple-copy homolog testing pangenomes

Number Organism Genome size (Mb) Genbank accession Function

1 S. cerevisiae S288C 12.1571 GCA_000146045.2 Reference

2 S. cerevisiae YJM993 12.4989 GCA_000662435.1 Target

3 S. cerevisiae YJM189 12.2614 GCA_000975735.3 Target

4 S. cerevisiae YJM1133 12.1187 GCA_000976695.2 Target

5 S. cerevisiae YJM1304 12.3665 GCA_000977025.1 Target

6 S. cerevisiae YJM1326 12.4065 GCA_000977115.2 Target

7 S. cerevisiae YJM1381 12.4062 GCA_000977355.2 Target

8 S. cerevisiae YJM1383 12.5861 GCA_000977385.1 Target

9 S. cerevisiae YJM1527 12.7146 GCA_000978195.1 Target

10 S. cerevisiae YJM1549 13.2166 GCA_000978225.1 Target

11 S. cerevisiae YJM1574 12.2871 GCA_000978285.1 Target

Number Organism Genome size (Mb) Genbank accession Function

1 A. thaliana Col-0 119.669 GCA_000001735.2 Reference

2 A. thaliana Ler-0 113.15 GCA_000835945.1 Target

Table S3 - Runtime testing pangenomes

Number Organism
Genome
size (Mb) Genbank accession

2
Genomes

10
Genomes

50
Genomes

94
Genomes

1
S. cerevisiae
S288C 12.1571 GCA_000146045.2 Reference Reference Reference Reference

2
 S. cerevisiae
YJM993 12.4989 GCA_000662435.1 Target Target Target Target

3
 S. cerevisiae
YJM195 12.7524 GCA_000975585.1 - Target Target Target

4
 S. cerevisiae
YJM244 12.8576 GCA_000975615.1 - Target Target Target

5
 S. cerevisiae
YJM1078 11.8576 GCA_000975645.2 - Target Target Target

6
 S. cerevisiae
YJM1083 12.4684 GCA_000975675.1 - Target Target Target

7
 S. cerevisiae
YJM1129 13.0833 GCA_000975705.1 - Target Target Target

8
 S. cerevisiae
YJM189 12.2614 GCA_000975735.3 - Target Target Target

9
 S. cerevisiae
YJM193 13.0078 GCA_000975765.1 - Target Target Target

10
 S. cerevisiae
YJM248 12.1126 GCA_000975795.1 - Target Target Target

11
 S. cerevisiae
YJM270 12.3653 GCA_000975825.1 - - Target Target

12
 S. cerevisiae
YJM271 13.421 GCA_000975855.2 - - Target Target

13
 S. cerevisiae
YJM320 13.4761 GCA_000975885.1 - - Target Target

14
 S. cerevisiae
YJM326 12.3508 GCA_000975915.1 - - Target Target

15
 S. cerevisiae
YJM428 12.2726 GCA_000975945.1 - - Target Target

16
 S. cerevisiae
YJM450 12.3888 GCA_000975975.2 - - Target Target

17
 S. cerevisiae
YJM451 12.1525 GCA_000976005.1 - - Target Target

18
 S. cerevisiae
YJM453 12.7106 GCA_000976035.1 - - Target Target

19
 S. cerevisiae
YJM456 12.2745 GCA_000976065.1 - - Target Target

20
 S. cerevisiae
YJM470 12.5585 GCA_000976095.1 - - Target Target

21
 S. cerevisiae
YJM541 12.9666 GCA_000976125.1 - - Target Target

22
 S. cerevisiae
YJM554 13.0198 GCA_000976155.3 - - Target Target

23
 S. cerevisiae
YJM555 13.2955 GCA_000976185.1 - - Target Target

24
 S. cerevisiae
YJM627 12.5811 GCA_000976215.1 - - Target Target

25
 S. cerevisiae
YJM681 12.3431 GCA_000976245.1 - - Target Target

26
 S. cerevisiae
YJM682 12.2746 GCA_000976275.3 - - Target Target

27
 S. cerevisiae
YJM683 12.4278 GCA_000976305.1 - - Target Target

28
 S. cerevisiae
YJM689 12.19 GCA_000976335.1 - - Target Target

29
 S. cerevisiae
YJM693 13.1201 GCA_000976365.1 - - Target Target

30
 S. cerevisiae
YJM969 12.359 GCA_000976395.1 - - Target Target

31
 S. cerevisiae
YJM972 12.9616 GCA_000976425.1 - - Target Target

32
 S. cerevisiae
YJM975 12.2218 GCA_000976455.2 - - Target Target

33
 S. cerevisiae
YJM978 12.4892 GCA_000976485.1 - - Target Target

34
 S. cerevisiae
YJM981 12.8972 GCA_000976515.1 - - Target Target

35
 S. cerevisiae
YJM984 13.0626 GCA_000976545.1 - - Target Target

36
 S. cerevisiae
YJM987 12.9731 GCA_000976575.3 - - Target Target

37
 S. cerevisiae
YJM990 12.1965 GCA_000976605.2 - - Target Target

38
 S. cerevisiae
YJM996 12.6958 GCA_000976665.1 - - Target Target

39
 S. cerevisiae
YJM1133 12.1187 GCA_000976695.2 - - Target Target

40
 S. cerevisiae
YJM1190 12.9065 GCA_000976725.1 - - Target Target

41
 S. cerevisiae
YJM1199 12.9065 GCA_000976755.1 - - Target Target

42
 S. cerevisiae
YJM1202 12.5098 GCA_000976785.1 - - Target Target

43
 S. cerevisiae
YJM1208 13.0594 GCA_000976815.2 - - Target Target

44
 S. cerevisiae
YJM1242 13.0594 GCA_000976845.2 - - Target Target

45
 S. cerevisiae
YJM1244 12.6675 GCA_000976875.2 - - Target Target

46
 S. cerevisiae
YJM1248 12.5207 GCA_000976905.1 - - Target Target

47
 S. cerevisiae
YJM1250 12.4871 GCA_000976935.1 - - Target Target

48
 S. cerevisiae
YJM1252 12.5675 GCA_000976965.2 - - Target Target

49
 S. cerevisiae
YJM1273 12.5399 GCA_000976995.1 - - Target Target

50
 S. cerevisiae
YJM1304 12.3665 GCA_000977025.1 - - Target Target

51
 S. cerevisiae
YJM1307 12.3665 GCA_000977055.2 - - - Target

52
 S. cerevisiae
YJM1311 12.5492 GCA_000977085.1 - - - Target

53
 S. cerevisiae
YJM1326 12.4065 GCA_000977115.2 - - - Target

54
 S. cerevisiae
YJM1332 12.2673 GCA_000977145.1 - - - Target

55
 S. cerevisiae
YJM1336 12.2673 GCA_000977175.2 - - - Target

56
 S. cerevisiae
YJM1338 12.2186 GCA_000977205.1 - - - Target

57
 S. cerevisiae
YJM1341 12.5251 GCA_000977235.1 - - - Target

58
 S. cerevisiae
YJM1342 12.6226 GCA_000977265.2 - - - Target

59
 S. cerevisiae
YJM1355 12.943 GCA_000977295.1 - - - Target

60
 S. cerevisiae
YJM1356 12.5725 GCA_000977325.1 - - - Target

61
 S. cerevisiae
YJM1381 12.4062 GCA_000977355.2 - - - Target

62
 S. cerevisiae
YJM1383 12.5861 GCA_000977385.1 - - - Target

63
 S. cerevisiae
YJM1385 12.9205 GCA_000977415.1 - - - Target

64
 S. cerevisiae
YJM1386 12.6155 GCA_000977445.1 - - - Target

65
 S. cerevisiae
YJM1387 12.821 GCA_000977475.2 - - - Target

66
 S. cerevisiae
YJM1388 12.5221 GCA_000977505.1 - - - Target

67
 S. cerevisiae
YJM1389 12.2528 GCA_000977535.1 - - - Target

68
 S. cerevisiae
YJM1399 12.5094 GCA_000977565.1 - - - Target

69
 S. cerevisiae
YJM1400 12.3575 GCA_000977595.1 - - - Target

70
 S. cerevisiae
YJM1401 12.1686 GCA_000977625.1 - - - Target

71
 S. cerevisiae
YJM1402 12.5655 GCA_000977655.1 - - - Target

72
 S. cerevisiae
YJM1415 12.9341 GCA_000977685.1 - - - Target

73
 S. cerevisiae
YJM1417 12.703 GCA_000977715.3 - - - Target

74
 S. cerevisiae
YJM1418 12.4463 GCA_000977745.1 - - - Target

75
 S. cerevisiae
YJM1419 13.5384 GCA_000977775.2 - - - Target

76
 S. cerevisiae
YJM1433 12.5256 GCA_000977805.1 - - - Target

77
 S. cerevisiae
YJM1434 12.5479 GCA_000977835.1 - - - Target

78
 S. cerevisiae
YJM1439 12.9281 GCA_000977865.1 - - - Target

79
 S. cerevisiae
YJM1443 12.0458 GCA_000977895.1 - - - Target

80
 S. cerevisiae
YJM1444 12.2635 GCA_000977925.1 - - - Target

81
 S. cerevisiae
YJM1447 12.2163 GCA_000977955.1 - - - Target

82
 S. cerevisiae
YJM1450 12.8449 GCA_000977985.1 - - - Target

83
 S. cerevisiae
YJM1460 12.6569 GCA_000978015.1 - - - Target

84
 S. cerevisiae
YJM1463 13.3898 GCA_000978045.1 - - - Target

85
 S. cerevisiae
YJM1477 12.1849 GCA_000978075.2 - - - Target

86
 S. cerevisiae
YJM1478 12.7035 GCA_000978105.1 - - - Target

87
 S. cerevisiae
YJM1479 12.4266 GCA_000978135.1 - - - Target

88
 S. cerevisiae
YJM1526 12.5274 GCA_000978165.1 - - - Target

89
 S. cerevisiae
YJM1527 12.7146 GCA_000978195.1 - - - Target

90
 S. cerevisiae
YJM1549 13.2166 GCA_000978225.1 - - - Target

91
 S. cerevisiae
YJM1573 12.2409 GCA_000978255.1 - - - Target

92
 S. cerevisiae
YJM1574 12.2871 GCA_000978285.1 - - - Target

93
 S. cerevisiae
YJM1592 12.3227 GCA_000978315.1 - - - Target

94
 S. cerevisiae
YJM1615 12.7047 GCA_000978345.1 - - - Target

2. Pantools homology group validation
To see whether or not the annotation transfer algorithm transfers genes to the correct location in the

target genome, validation was done using Pantools’ build in homology grouping functionality. For this

validation, it would be optimal if every gene from the reference genome was in a homology group with

either no other genes, indicating that this gene is not present in the other genome, or with a single gene

in the other genome, so it is clear where the annotation transfer should happen to. Of course, there

might be variation between two homologous genes, which would cause them to be in a different

homology group when grouping settings are too stringent. On the other hand, if grouping settings are

too relaxed, genes might end up in larger gene families instead of only with their one homologous gene.

To find the optimal parameters in this trade-off, Pantools’ 8 precooked group settings (d1 through d8)

were tested on 5 pangenomes containing 2 genomes (E. coli strains, S. cerevisiae strains, Drosophila

species, A. thaliana accessions and A. thaliana assembly versions) and on 2 pangenomes containing 4

genomes of decreasing relatedness (strains/accessions, genera and species of both Saccharomycetaceae

and Brassiciaceae) (See supplementary chapter 4).

For each setting, the number of members in each homology group can be counted and added up, but this

would not be informative, as one gene can have multiple mRNA’s in one homology group. Therefore, the

number of homology groups with exactly 2 contributing genes from both genomes was extracted with a

Cypher query shown below and plotted as validatable genes (Fig. S1, S2, S3, S4, S5). For the two

pangenomes containing 4 genomes, this query was ran three times with genome numbers 2, 3 and 4 as

target genomes instead of only 2 (Fig. S8, S9, S10, S11, S12, S13).

As can be seen from these results, d1 settings (the most stringent settings) resulted in the highest

amount of validatable genes in each of the 5 pangenomes. This means that as the group settings become

less stringent, more genes shift into homology groups with more than two members than genes that shift

out of a homology group with 1 member.

From these data, it was concluded that the most stringent group settings (d1) were best to validate the

annotation transfer algorithm with. From this analysis, all genes in a two-member homology group with

one gene from every genome will be used to test the precision and recall of the annotation transfer on

single copy homologs. Of genes that are in a homology group by themselves, it will be assumed that

they should not be transferred to the target genome. Genes that are in a homology group with more

than 2 members will be tested to estimate annotation transfer precision and recall with multiple-copy

homologs.

Figure S1 - E. coli strains validatable genes with Pantools’ group settings d1 through d8. On the x-
axis, the group setting is shown. On the y-axis, the number of validatable genes (i.e. homology

groups with 2 members, one from each genome) is plotted.

Figure S2 – S. cerevisiae strains validatable genes with Pantools’ group settings d1 through d8. On
the x-axis, the group setting is shown. On the y-axis, the number of validatable genes (i.e.
homology groups with 2 members, one from each genome) is plotted.

3474 3474 3474 3474

3472

3469 3469

3465

3460

3462

3464

3466

3468

3470

3472

3474

3476

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

E. coli validatable genes

5293 5289 5285 5281 5278

5263

5247

5225

5180

5200

5220

5240

5260

5280

5300

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

S. cerevisiae validatable genes

Figure S3 - Drosophila species validatable genes with Pantools’ group settings d1 through d8. On
the x-axis, the group setting is shown. On the y-axis, the number of validatable genes (i.e.

homology groups with 2 members, one from each genome) is plotted.

Figure S4 – A. thaliana accessions validatable genes with Pantools’ group settings d1 through d8.
On the x-axis, the group setting is shown. On the y-axis, the number of validatable genes (i.e.
homology groups with 2 members, one from each genome) is plotted.

3262 3252 3236 3216
3174

3090

2971

2798

2500

2600

2700

2800

2900

3000

3100

3200

3300

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

Drosophila validatable genes

16817 16785 16723 16641
16505

16234

15538

14464

13000

13500

14000

14500

15000

15500

16000

16500

17000

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

A. thaliana validatable genes

Figure S5 – A. thaliana assembly versions validatable genes with Pantools’ group settings d1
through d8. On the x-axis, the group setting is shown. On the y-axis, the number of validatable

genes (i.e. homology groups with 2 members, one from each genome) is plotted.

20685 20671 20643 20593 20529
20348

19831

18883

17500

18000

18500

19000

19500

20000

20500

21000

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

A. thaliana assembly versions validatable genes

3. Multiple-copy homolog transfer
To find suitable genes to test the transferring of genes in a gene family with many related genes, all

homology groups containing ARF genes in A. thaliana were looked at. In all homology groups except for

the circled five, it can be seen that there are two genes present per homology group. Two homology

groups may be present for two genes when two genes produce more than one mRNA, and those mRNA’s

are put into separate homology groups. Nonetheless, for all of these genes, it is clear what their transfer

target should be.

However, this is not the case for the five circled homology groups. Genes in those homology groups are

all similar to each other (as indicated by the is_similar_to edges), and some homology groups even

contain more than two genes. Luckily, there are two homology groups that do contain only two genes,

despite the fact that those genes are also similar to other genes outside of the homology group. Thus,

these genes are good to test annotation transfer specificity with, as these genes can be validated but do

provide the risk that they may end up in a wrong position.

Figure S6 – All homology groups containing ARF’s in A. thaliana. The yellow nodes represent

homology groups, the pink nodes represent mRNA’s and the green nodes represent genes.

4. Minimum genome relatedness
It was tried to estimate how related genomes should be for annotation transfer to be a viable strategy to

produce a high quality annotation. However, due to time restrictions, this analysis was not finished.

Two pangenomes were made with one reference genome and 3 target genomes each. The three target

genomes had a decreasing amount of relatedness to the reference, namely strain/accession, genus and

species as can be seen in Table 4.

Table 3 - Minimum genome similarity testing pangenomes

Number Organism
Genome size
(Mb)

Genbank
accession sacc_4

1 Saccharomyces cerevisiae S228C 12.1571 GCA_000146045.2 Reference

2 Saccharomyces cerevisiae YJM993 12.4989 GCA_000662435.1 Target

3 Saccharomyces eubayanus FM1318 11.7342 GCA_001298625.1 Target

4 Naumovozyma castellii CBS 4309 11.2195 GCA_000237345.1 Target

Number Organism
Genome size
(Mb)

Genbank
accession bras_4

1 Arabidopsis thaliana Col-0 119.669 GCA_000001735.2 Reference

2 Arabidopsis thaliana Ler-0 118.891 GCA_000835945.1 Target

3 Arabidopsis lyrata subsp. Lyrata 206.823 GCA_000004255.1 Target

4 Brassica rapa FPsc (B3) 314.865 GCA_003434825.1 Target

Homology grouping was done using all 8 grouping settings as mentioned before. The results of this can

be seen in figures S8, S9, S10, S11, S12 and S13.

Figure S8 – Saccharomycetaceae strains validatable genes with Pantools’ group settings d1 through
d8. On the x-axis, the group setting is shown. On the y-axis, the number of validatable genes (i.e.
homology groups with 2 members, one from each genome) is plotted.

4582 4581 4580
4578 4577

4572 4571

4565

4555

4560

4565

4570

4575

4580

4585

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

Saccharomycetaceae validatable genes between
strains

Figure S9 – Saccharomycetaceae genera validatable genes with Pantools’ group settings d1
through d8. On the x-axis, the group setting is shown. On the y-axis, the number of validatable

genes (i.e. homology groups with 2 members, one from each genome) is plotted.

Figure S10 – Saccharomycetaceae species validatable genes with Pantools’ group settings d1
through d8. On the x-axis, the group setting is shown. On the y-axis, the number of validatable
genes (i.e. homology groups with 2 members, one from each genome) is plotted.

683 683 683 682

677
673

663

655

640

645

650

655

660

665

670

675

680

685

690

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

Saccharomycetaceae validatable genes between
genera

38 38 38 38

39

37 37

34

31

32

33

34

35

36

37

38

39

40

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

Saccharomycetaceae validatable genes between
species

Figure S11 Brassicaceae accessions validatable genes with Pantools’ group settings d1 through d8.
On the x-axis, the group setting is shown. On the y-axis, the number of validatable genes (i.e.

homology groups with 2 members, one from each genome) is plotted.

Figure S12 Brassicaceae accessions validatable genes with Pantools’ group settings d1 through d8.

On the x-axis, the group setting is shown. On the y-axis, the number of validatable genes (i.e.
homology groups with 2 members, one from each genome) is plotted.

12391 12349 12284 12182 12033 11777
11137

10232

0

2000

4000

6000

8000

10000

12000

14000

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

Brassicaceae validatable genes between
accessions

5397 5369 5319 5240 5156 5023
4791

4439

0

1000

2000

3000

4000

5000

6000

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

Brassicaceae validatable genes between genera

Figure S13 Brassicaceae accessions validatable genes with Pantools’ group settings d1 through d8.
On the x-axis, the group setting is shown. On the y-axis, the number of validatable genes (i.e.
homology groups with 2 members, one from each genome) is plotted.

From these results, it was concluded that d1 settings were also best to use in this analysis. However, the

number of validatable genes became much lower than expected, and the analysis was aborted at this

point. The number of validatable genes can be seen in Figure S14.

Figure S14 – Validatable genes

516 502 487 469
446 429

395

344

0

100

200

300

400

500

600

d1 d2 d3 d4 d5 d6 d7 d8

o

f
va

lid
at

ab
le

 g
en

es

Precooked setting

Brassicaceae validatable genes between species

4582

12391

683

5397

38 516

0

2000

4000

6000

8000

10000

12000

14000

Saccharomycetaceae Brassicaceae

o

f
va

lid
at

ab
le

 g
en

es

of validatable genes between genomes of
decreasing relatedness

Strains/Accessions Genera Species

5. Single-copy homologous genes transfers

Figure S14 – Single-copy homolog transfer results for E. coli strains. In the region finding step, for 3437 out of 3474 genes, matching regions are found
(98.9%). The other 37 genes had no matching regions. There are also 62 additional matches from genes that had more than one matching region. For all
3499 matching regions, nucleotide coordinates were mapped. In the transfer step, 3480 of the 3499 matches (99.5%) can be transferred successfully.
This means that the other 19 matching regions match only part of the gene region and missed either the begin or end location in the coordinate mapping
index. When validating the 3480 transferred genes, 3396 (97.6%) pass. For the resolving of double transfers in one region, 3367 out of 3396 (99.1%)
validated transfers are the best match in that location. Overall, of all 3474 genes that the algorithm started with, 123 were not transferred (meaning that

most dropouts were extra matches), and 16 genes were transferred twice.

Figure S15 - Single-copy homolog transfer results for A. thaliana accessions. In the region finding step, for 942 out of 1000 genes, matching regions are
found (94.2%). The other 58 genes had no matching regions. There are also 109 additional matches from genes that had more than one matching
region. For all 1051 matching regions, nucleotide coordinates were mapped. In the transfer step, 983 of the 1051 matches (93.5%) can be transferred
successfully. This means that the other 68 matching regions match only part of the gene region and missed either the begin or end location in the

coordinate mapping index. When validating the 983 transferred genes, 923 (93.9%) pass. For the resolving of double transfers in one region, 902 out of
923 (97.7%) validated transfers are the best match in that location. Overall, of all 1000 genes that the algorithm started with, 99 were not transferred
(meaning that most dropouts were extra matches), and 1 gene was transferred twice.

Figure S16 - Single-copy homolog transfer results for A. thaliana assembly versions. In the region finding step, for 952 out of 1000 genes, matching
regions are found (95.2%). The other 48 genes had no matching regions. There are also 30 additional matches from genes that had more than one
matching region. For all 982 matching regions, nucleotide coordinates were mapped. In the transfer step, 968 of the 982 matches (98.6%) can be
transferred successfully. This means that the other 14 matching regions match only part of the gene region and missed either the begin or end location in
the coordinate mapping index. When validating the 968 transferred genes, 960 (99.2%) pass. For the resolving of double transfers in one region, 951 out

of 960 (99.1%) validated transfers are the best match in that location. Overall, of all 1000 genes that the algorithm started with, 51 were not transferred
(meaning that most dropouts were extra matches), and 2 genes were transferred twice.

6. Benchmarking
To see how Pantools' annotation transfer compares to existing annotation tools, benchmarking should

have been done. Annotation tools that are currently most widely used are de novo tools MAKER2 and

BREAKER1 and annotation transfer tools RATT and CAT. As RATT and CAT both report better

performance than de novo tools, the plan was to only benchmark with RATT and CAT. However,

ultimately because of limited time, benchmarking couldn't be done.

Even though this is a clear weakness in this research, it is worth mentioning that a lot of fruitless time

and effort was in fact spent on getting RATT and CAT to run. However, both tools came with serious

problems which in the end, there was no time to deal with.

RATT was easy to install, but it kept on producing an internal error while reading a temporary embl file it

wrote itself (given error message, replacing the x and y with genome coordinates: "Probel mwith the

embl file at position: x..y)"). As this problem was not related to input files or settings, and there was no

documentation on how to fix this error, RATT could not be tested further.

On the other hand, CAT never got to actually be installed and run because of a lot of third party software

dependencies, software version requirement conflicts and server type requirement problems. Even

though a docker is provided to run CAT inside of, in the end there was no time left to do this.

With this regrettable course of events in mind, it is safe to say that Pantools' annotation transfer wins at

ease of use and installation, as it comes built into Pantools itself. The only third party dependency it

currently has is Mafft, and this is already planned to be resolved as well, as the newest version of

Pantools also has alignment functionality built in.

All in all, benchmarking remains to be done in the future.

	Faber_Nicky_BIF80336_thesis
	Faber_Nicky_BIF80336_thesis-suppl

