A Macroinvertebrate Bioassessment Index for Headwater Streams of the Eastern Coalfield Region, Kentucky

Kentucky Department for Environmental Protection
Division of Water
Water Quality Branch
December 2002

The Natural Resources and Environmental Protection Cabinet does not discriminate on the basis of race, color, national origin, sex, age, religion, or disability, and provides, on request, reasonable accommodations including auxiliary aids and services necessary to afford an individual with a disability an equal opportunity to participate in all services, programs and activities.

This document was printed on recycled paper with state funds.

A Macroinvertebrate Bioassessment Index for Headwater Streams of the Eastern Coalfield Region, Kentucky

Kentucky Department for Environmental Protection
Division of Water
Water Quality Branch
14 Reilly Road
Frankfort, Kentucky 40601

Jeffrey W. P	ratt, Director
•	ion of Water

A Macroinvertebrate Bioassessment Index for Headwater Streams of the Eastern Coalfield Region, Kentucky

By

Gregory J. Pond, Environmental Biologist III Ecological Support Section

Stephen E. McMurray, Environmental Biologist III Nonpoint Source Section

Kentucky Department for Environmental Protection
Division of Water
Water Quality Branch
14 Reilly Rd.
Frankfort, KY 40601

Natural Resources and Environmental Protection Cabinet

Table of Contents

Acknowledgements	
List of Figures	
List of Tables	iv
Executive Summary	1
1.0 Introduction	4
2.0 Study Area	6
3.0 Methods	8
3.1 Physical Parameters	
3.2 Macroinvertebrate Communities	
4.0 Data Analysis	10
4.1 Environmental Parameters	10
4.2 Community Classification	10
4.3 Metric Selection	10
4.4 Metric Scoring and Index Development	12
5.0 Results	14
5.1 Environmental Parameters	14
5.2 Macroinvertebrate Communities	16
5.3 Metric Performance	17
5.4 Scoring Formulae	20
5.5 MBI Performance	21
5.6 Geographical Differences in MBI Scores	24
6.0 Discussion	25
6.1 Environmental Parameters	25
6.2 Macroinvertebrate Communities	26
6.3 Metric Evaluation	27
6.4 MBI Performance and Application	28
7.0 Application of Family-level Taxonomic Resolution	29
8.0 Literature Cited	35
Appendices	
A Site Locations for All Sites	39
B Physicochemical Variables for All Sites	
C RBP Habitat Assessment Scores for All Sites	
D List and Number of Macroinvertebrates Collected from All Sites	
E MBI Metric Values for All Sites	47
F Pearson Correlations for Metrics and Environmental Variables	48

Acknowledgements

The authors thank current and former Water Quality Branch personnel P. Akers, S. Call, S. Cohn, M. Compton, E. Eisiminger, R. Payne, D. Peake, R. Pierce, A. Reich, C. Schneider, and J. Schuster for field or laboratory work. U.S. Army Corps of Engineers personnel J. Sparks, D. Messer, and T. Hagman of the Louisville District also helped with field collections. K. Tarter, V. Bishop, and J. Walker of the Daniel Boone National Forest offered logistical support for sampling within the National Forest. We also acknowledge W. Marshall and M. Lackey of University of Kentucky's Robinson Forest Research Area, and the Kentucky State Nature Preserves Commission for sampling privileges on their properties. This work was funded in part by a grant from the U.S. Environmental Protection Agency under §319(h) of the Clean Water Act (P.L. 100-4) to the Kentucky Division of Water (Grant number C9994861-01).

Thanks to the following reviewers that made helpful comments and suggestions on this report:

Karen Blocksom, U.S. EPA - National Exposure Research Laboratory, Cincinnati, OH Dr. Scott Grubbs, Western Kentucky University, Bowling Green, KY Hoke Howard, U.S. EPA - EPA/SESD/Ecological Assessment Branch, Athens, GA Margaret Passmore, U.S. EPA Region 3, Wheeling, WV

Water Quality Branch personnel also involved in in-house manuscript review were T. Anderson, M. Compton, B. Johnson, M. Mills, R. Payne, D. Peake, R. Pierce, and M. Vogel.

List of Figures

Figure	•
1	

1	Generalized map of the 6 sampling areas showing ecoregions found within the Eastern
	Coalfield Region6
2	Distribution of reference and test sites by drainage area (DA)
3	Hypothetical interquartile plots showing sensitivity, or discriminatory power scoring criteria
4	Metric scoring schemes used to evaluate the MBI. EPT example shown
5	Discriminant root scores using %embeddedness, conductivity, canopy, and total habitat
	score
6	Box plots of selected environmental variables from reference and test sites (2000 calibration
	data)
7	NMDS ordination (genus level) of all reference sites grouped by geographic region 16
8	Canonical Correspondence Analysis (CCA) of spring 2000 calibration reference and test
	sites
9	Box plots of selected macroinvertebrate metrics that were rejected for use in the MBI 19
10	Box plots of selected macroinvertebrate metrics that were retained for use in the MBI 19
11	Comparison of MBI scores from reference and test sites: 25th %ile, quadrisection, and 100-
	point % of standard
12	Box plot of MBI scores from reference and test sites showing thresholds for narrative
	ratings
13	Box plot of RBP habitat scores from reference and test sites
14	Relationship of MBI to total habitat scores (all sites)
15	Relationship of the MBI to a perceived disturbance gradient as defined by PCA axis 1 (all
	sites)
16	Box plot of reference MBI scores among study regions
17	Box plot of MBI scores among landuse types
18	Relationship of original MBI scores to the Family-level MBI (F-MBI)30
19	Box plot of F-MBI scores from reference and test sites (all sites) showing thresholds for
	narrative ratings
20	Box plot of MBI and Family-level MBI (F-MBI)

List of Tables

Table	
1	Summary of sampling methods for headwater, moderate/high gradient streams9
2	Candidate metrics, abbreviations, and expected response to disturbance11
3	Correlation of transformed environmental variables on the first 2 PCA axes14
4	Metrics evaluated for the MBI showing discrimination efficiency (DE), sensitivity score,
	interquartile coefficient, and redundancy
5	Pearson correlation matrix for reference metrics chosen for use in the MBI20
6	Metric scoring formulae and example calculation of the MBI
7	Top 20 taxa collected from all reference sites based on relative frequency + mean relative
	abundance (=relative importance value)
8	Variability in the MBI and metrics from revisit and duplicate samples at Lower Pigeon
	Branch
9	Metric scoring formulae and example calculation of the F-MBI31

10 Executive Summary

Since the promulgation of the Clean Water Act (CWA), as amended in 1987, the Kentucky Division of Water (KDOW) has routinely collected chemical, biological, and habitat information in streams across the Commonwealth. These data have been used primarily for use-support designations in association with 303(d) reports and biennial 305(b) reports to Congress, intensive watershed surveys, and Kentucky Pollutant Discharge Elimination System (KPDES) compliance monitoring. Current KDOW Water Quality Standards are narrative with regard to biological criteria and state that "...Surface waters shall not be aesthetically or otherwise degraded by substances that: (d) Injure, are chronically or acutely toxic to or produce adverse physiological or behavioral responses in humans, animals, fish and other aquatic life; (e) Produce undesirable aquatic life or result in the dominance of nuisance species..." (401 KAR 5:031 Section 2). 401 KAR 5:031 has additional narrative criteria that prevent adverse effects to aquatic communities. In Kentucky, these narrative standards are interpreted using various numeric indices of biological integrity developed from KDOW data. Despite historical biological monitoring, data gaps exist for Kentucky's headwater streams.

Headwater streams, as defined in this document, are 1st or 2nd order streams as depicted on 1:24,000 scale topographic maps and are generally < 3 to 5 mi² (~ 8 to 13 km²) in drainage area. These streams (either intermittent or perennial) and their ephemeral tributaries serve multiple functions often overlooked in environmental planning and landuse decision-making. They are the key interface between the surrounding landscape and larger waterbodies. Healthy headwater streams provide habitat to relatively distinct and diverse invertebrate assemblages, and by assimilating nutrients, organic matter, and sediments, they export high quality water in the form of goods and services (e.g., water supply, recreation, waste assimilation, flood control, and ecological values) (Yoder et al. 2000, Wallace and Meyer 2001). These streams are also closely connected to groundwater resources and provide thermal refuges to many organisms in both winter and summer. Despite possessing these attributes, little is known about the biological potential of small headwater streams in Kentucky.

We sampled macroinvertebrates in the spring index period (mid-February to late-May) from 67 sites (70 sample events) in an effort to calibrate and validate regional expectation criteria for benthic invertebrate communities in small headwater streams (1st–2nd order). Sites were chosen based on topographic maps, aerial photos, and landuse using Arcview GIS software and field reconnaissance. A reference site was determined adequate if it was primarily vegetated with relatively mature native forest, there was little or no residential development, and there were no permitted discharges (coal mining, oil/gas extraction, or sewage treatment plants). Non-reference, or test sites, were chosen to span a range of observed human impacts to the watershed, stream, or individual reach.

In 2000, we sampled 43 sites (25 reference, 18 non-reference, or test) scattered throughout the Kentucky portion of ecoregions 68 (Southwestern Appalachians), 69 (Central Appalachians), and 70

(Western Allegheny Plateau), collectively known as the Eastern Coalfield Region. Another 12 sites (9 reference, 3 test) were sampled in spring 2001, and 10 sites (6 reference, 4 test) were sampled in spring 2002 for validation purposes. Data from three historical sample events (two 1998 and 1999 reference sites) were also used as validation sites.

Landuse within the Eastern Coalfield Region is dominated by silviculture, mining, oil/gas extraction, and residential development. All reference streams were located in highly forested, undisturbed areas, whereas test sites ranged from slightly to severely impacted by regional landuses. Although the selected sites had catchment areas ranging from 50 to 880 ha (0.18 to 3.4 mi²), reference and test streams did not differ significantly in mean catchment area, riffle substrate size, stream width, elevation, slope, and distance-to-source (Mann-Whitney, p>0.1). In contrast, reference and test streams differed significantly in mean riffle embeddedness, riparian width, canopy score, pH, conductivity, and temperature (p< 0.01). Both stepwise discriminant function analysis (DFA) and principal components analysis (PCA) showed that conductivity, riparian width, canopy, and embeddedness best separated reference and test sites. In addition, EPA RBP habitat scores successfully distinguished reference from test sites.

Macroinvertebrates were collected with both semi-quantitative (composite of 4-0.25 m² kicknets) and multi-habitat qualitative techniques. Approximately 40,000 specimens representing more than 330 taxa from 75 families were collected from all sites combined. Multivariate ordination of reference sites using nonmetric multidimensional scaling (NMDS) showed no evident patterns in taxonomic composition with respect to geographic location. Another multivariate technique (Canonical Correspondence Analysis) clearly separated most test sites from reference sites based on genus-level abundances, indicating that taxonomic structure was considerably modified at test sites, and measures of conductivity, riparian zone width, canopy cover, embeddedness, and RBP habitat scores accounted for this variation.

Thirty-three (33) macroinvertebrate biological attributes (metrics) were calculated and evaluated for discrimination efficiency, sensitivity, redundancy, and variability. Effort was given to include metrics covering a wide scope of ecological attributes (e.g., structure, tolerance, habit, and function). The evaluation process selected seven metrics (taxa richness, EPT richness, mHBI, m%EPT, %Ephemeroptera, %Chironomidae+Oligochaeta, and %Clingers) for use in the Macroinvertebrate Bioassessment Index (MBI).

Three metric scoring methods were also evaluated for discriminatory power and simplicity of calculation: (1) the 25th %ile of the reference distribution, (2) quadrisection of metric values below the 95th %ile for all sites, and (3) percent of standard (95th %ile, 100-point scale) for all sites. All scoring methods were considered to be equally robust. The 100-point percent-of-standard scale was chosen for use in the MBI because of its ease of use and interpretation. Narrative ratings were assigned using the median (Excellent), 10th percentile (Good), and trisection (Fair, Poor, and Very Poor) of the reference distribution below the 10th percentile.

Correlation analysis and linear regression were used to evaluate the response of the MBI to habitat and human disturbance. A moderately strong correlation (r = 0.65, p < 0.0001) was seen with the MBI and habitat assessment scores, and an even stronger relationship (r = 0.81, p < 0.0001) was found when comparing the MBI to a perceived human disturbance gradient identified by the 1^{st} PCA axis. These analyses showed that the MBI responded negatively to increasing disturbance and was thus useful in distinguishing a range of impairment.

This index will be used to assess headwater streams for point and nonpoint source impacts, 305(b) use assessments, or to identify new high quality streams in need of protection as Exceptional Waters of the Commonwealth (401 KAR 5:030 Section 1 (Implementation of Antidegradation Policy)). In order for the MBI scores to be effective, adherence to sampling procedures and sample index period is important. Recommended time frames for sampling headwater streams ranges from mid-February to June. Samples collected before or after these dates may give inaccurate results and caution should be used when interpreting that data. In some cases (e.g., due to natural or investigator variability), best professional judgement or re-sampling may be warranted if index scores fall close to narrative-rating cutoffs.

A comparative study on the potential use of family-level taxonomy was also done. A 5-metric family-level MBI (F-MBI) was highly correlated ($r^2 = 0.93$, p < 0.0001) with the genus/species MBI. This modified index uses family taxa richness, family EPT richness, family HBI, %Ephemeroptera, and %Chironomidae + %Oligochaeta. Although family-level taxonomy would reduce time, effort and the need for more highly skilled taxonomists, a reduction in sensitivity of the MBI was detected. The use of the F-MBI is therefore recommended in headwater streams as a quick screening tool to delineate obvious impairment from the reference condition and to be used by non-KDOW personnel (e.g., volunteer Watershed Watch participants, private consultants, university students) that may lack adequate taxonomic skills. At this time, the F-MBI is not recommended for monitoring associated with permit compliance, enforcement cases, or to be used in larger, wadeable streams (e.g., 4^{th} or 5^{th} order) where diversity within individual families is much greater.

1.0 Introduction

Determining the ecological health of streams is a major focus of the various aquatic-monitoring programs in the Kentucky Division of Water (KDOW). This effort is mandated by the U.S. Environmental Protection Agency (EPA) under the Clean Water Act (CWA) and integrates the collection of physical, chemical, and biological elements to assess water pollution. Since the turn of the century, aquatic organisms have been used extensively in water quality monitoring and impact assessment (reviewed by Cairns and Pratt 1993), and macroinvertebrate assemblages have proven to be useful in detecting even subtle changes in habitat and water quality. To accurately characterize patterns of stream degradation, impact assessment procedures must be based on sound ecological principles and the ability to feasibly measure the response of a macroinvertebrate community to disturbance.

To address levels of impact to any given stream, a firm understanding of the inherent biological variability and natural potential of streams in a collective region is necessary. This is accomplished using a regional reference approach (Hughes 1995) that is based on the range of conditions found in a population of sites or streams with similar physical characteristics and minimal human impact. Many federal, state, and tribal agencies have used ecoregions (Omernik 1987) as a convenient, stratified means to understand regional differences in biological potential among waterbodies within their jurisdiction. The Reference Reach Program in the KDOW Water Quality Branch was initiated in 1991 to collect and analyze data from least-disturbed streams using an ecoregional framework; however, until now, data collection has focused primarily on larger, wadeable streams.

The reference condition collectively refers to the range of quantifiable ecological elements (i.e., chemistry, habitat, and biology) that are found in natural environments. In many regions of Kentucky, finding reference streams can be a difficult task because few regions are without areas of human disturbance. However, in small forested catchments in the mountainous area of the state, reference sites can be found with a relatively high level of confidence. The application of the reference condition involves its comparison to a stream reach exposed to environmental stress using defined sampling methodology and assessment criteria. Impairment of the test site would be detected if indicator measurements (e.g., species richness, habitat rating, nutrient concentrations) fall outside the range of threshold criteria established by the reference condition.

With this goal in mind, our intent was to numerically define reference conditions and document levels of water quality impairment in small, often intermittent, headwater stream reaches in the Eastern Coalfield Region of Kentucky. Small streams in this region are generally depicted as 1st or 2nd order streams on 7.5 minute USGS topographical maps (1:24,000 scale). With regard to biological integrity, this region has not been thoroughly assessed despite the CWA and regulatory actions associated with the Federal Surface Mining and Reclamation Control Act of 1977, Kentucky's 1998 Forest Conversation Act, and Kentucky's 1994 Agriculture Water Quality Act. Although these inter-

mittent streams often match the species composition of perennial streams (Delucchi 1988, Feminella 1996), they receive little attention with regard to land management and regulatory policy.

Headwater streams, as defined in this document, are 1st or 2nd order streams as depicted on 1:24,000 scale topographic maps and are generally < 3 to 5 mi² (~ 8 to 13 km²) in drainage area. These streams (either intermittent or perennial) and their ephemeral tributaries serve multiple functions often overlooked in environmental planning and landuse decision-making. They are the key interface between the surrounding landscape and larger waterbodies. Healthy headwater streams provide habitat to relatively distinct and diverse invertebrate assemblages, and by assimilating nutrients, organic matter, and sediments, they export high quality water in the form of goods and services (e.g., water supply, recreation, waste assimilation, flood control, and ecological values) (Yoder et al. 2000, Wallace and Meyer 2001). These streams are also closely connected to groundwater resources and provide thermal refuges to many organisms in both winter and summer. Despite possessing these attributes, little is known about the biological potential of small headwater streams in Kentucky.

The objectives of the study were to sample macroinvertebrate assemblages from 1st and 2nd order streams in the Eastern Coalfield Region using a standardized protocol and to develop an index of biotic integrity, the Macroinvertebrate Bioassessment Index (MBI), based on a multimetric approach (Karr et al. 1986, Gerritsen 1995, Barbour et al. 1999). The index would then accurately rank the quality of stream reaches affected by regional stressors such as mining, silviculture, residential and commercial development, or road and bridge construction. It would also identify those high quality or "Exceptional Waters" deserving regulatory protection under Kentucky's anti-degradation regulations (401 KAR 5:030 Section 1).

2.0 Study Area

The study region includes parts of the Central Appalachian (CA), Southwestern Appalachian (SA), and Western Allegheny Plateau (WA) Level III ecoregions (Omernik 1987, USEPA 2000) in Kentucky (Figure 1). These ecoregions lie within the Eastern Coalfield Physiographic Province (Appalachian Plateaus Province) and are characterized by highly dissected terrain with similar forest types, geology, and climate. Bedrock geology is sedimentary and consists of interbedded sandstones, siltstones, shale, and coal. The dominant vegetation is part of the mixed mesophytic forest classification (Braun 1950). Headwater streams in this region typically flow through constrained valleys with relatively high gradients and have boulder-cobble substrates. Precipitation patterns are generally uniform throughout the study region; however in summer 1999, the summer prior to this study, the eastern Kentucky region reached extreme drought status (Drought Mitigation Center 2000). The regional drought of 1999 fell near the 5th %ile for normal annual precipitation with a recurrence interval of >20 yr (Institute for Water Resources 2001).

A series of reference and test sites were selected from six relatively separate geographic areas scattered throughout the Eastern Coalfield region (Figure 1). This was done to document taxonomic

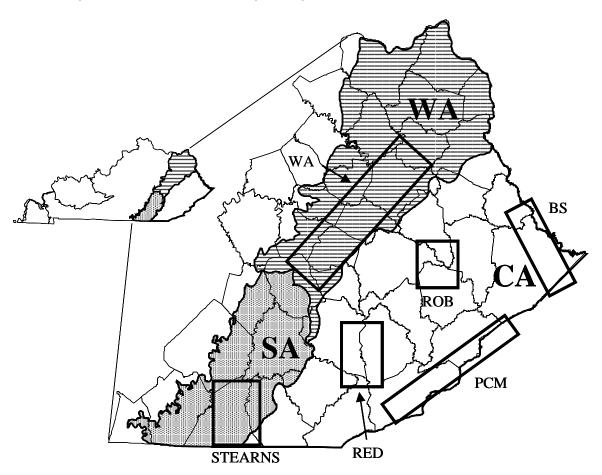


Figure 1. Generalized map of the 6 sampling areas showing ecoregions found within the Eastern Coalfield Region. CA=Central Appalachians, SA=Southwestern Appalachians, WA= Western Allegheny. See text for sampling area descriptions.

similarity, or dissimilarity, across the region. The actual selection of these areas conformed to both the availability of multiple reference sites and an intent to span the major river basins (Upper Cumberland, Kentucky, Licking, Big Sandy, Little Sandy). A previous KDOW study (Pond et al. 2000) showed that this region was taxonomically distinct from other physiographic regions in the Commonwealth and that the CA, SA, and WA ecoregions had the highest among-class similarity compared to other Kentucky ecoregions. For this reason, KDOW considers the Eastern Coalfields a relatively homogeneous region with regard to headwater stream macroinvertebrate communities.

Stream sizes (as drainage area) for all sites ranged from 0.18 to 3.4 mi² (Figure 2). Sites were chosen using GIS software (e.g., topographic maps, aerial photos, and landuse) and field reconnaissance. A reference site was determined adequate if it was primarily vegetated with relatively mature native forest, little or no residential development, and there were no permitted discharges (coal mining, oil/gas extraction, or sewage treatment plants). Non-reference, or test sites, were chosen to span a range of observed human impacts to the watershed, stream, or individual reach.

A calibration data set (from CA and SA ecoregions only) was collected in spring (March-April) 2000 from 25 reference streams located in highly forested watersheds with intact physical habitat and channel structure suggestive of least-disturbed conditions. An additional 18 test sites were sampled from streams that had subtle to obvious impacts ranging from channelization, sediment, nutrients, and loss of canopy and riparian vegetation. An independent validation data set was gathered in spring 2001 from 12 sites (9 reference, 3 test) and spring



Figure 2. Distribution of reference and test sites by drainage area. Duplicate sample events excluded.

2002 from 11 sites (7 reference, 4 test) in the CA, SA, and WA ecoregions. Two other sites were taken from 1998 and 1999 independent data sets (CA ecoregion). An attempt was made to include test sites ranging from what appeared to be slightly to heavily impacted. The total number of sites was biased toward reference sites since our primary goal was to document reference conditions.

Many of the sites were situated within the Daniel Boone National Forest (DBNF). The DBNF Stearns Ranger District (STRNS) area was located in the SA ecoregion whereas the DBNF Redbird

Ranger District (RED), Robinson Forest (ROB), Pine/Cumberland Mountain (PCM), Big Sandy (BS) areas, and other more scattered sites, were situated in the CA ecoregion. Additional reference sites in the WA ecoregion were also sampled. Site location information is shown in Appendix A.

3.0 Methods

3.1 Physical Measurements

A 100 m study reach was established for each site. At each of five transects spaced 20 m apart, riparian width and canopy cover, estimated bankfull width, and the two dominant substrate types (e.g., cobble-boulder, sand-gravel, bedrock-sand) were recorded. Canopy cover was scored on an ordinal scale (4=full, 2=partial, 0=open) and summed among transects (maximum score=20). We also recorded conductivity, pH, dissolved oxygen, and stream temperature with a portable Hydrolab meter (Hydrolab Corp., Austin, TX). Finally, habitat features were scored with the EPA Rapid Bioassessment Protocol (RBP) Habitat Assessment procedure following Barbour et al. (1999). This latter procedure qualitatively evaluates important habitat components such as epifaunal substrate quantity and quality, embeddedness, velocity/depth regimes, sediment deposition, channel flow status and channel alteration, stream bank stability, bank vegetation protection, and riparian zone width. Within individual benthic samples (see below), we estimated riffle embeddedness (i.e., the mean percent of cobble buried in fine sediment) and substrate size by removing the 5 largest stones found in each quadrat (n=20). An index of substratum size was determined by measuring the diagonal axis of individual stones where diagonal axis > length > width > depth. Substrate size estimation within individual samples was done to establish physical characteristics of the targeted riffle habitat and verify similarity among reference and test sites. Site distance-to-source, elevation, slope, and watershed size were determined from 7.5 minute USGS topographical maps (1:24,000 scale) using Arcview GIS software.

3.2 Macroinvertebrate Communities

Benthic invertebrates were collected during the spring index period (mid-February to late-May), as this period offers the highest potential for macroinvertebrate diversity and abundance in these small, headwater streams (Pond 2000, KDOW unpub. data). Moreover, samples collected in this season offer the maximum amount of information for assessment purposes in intermittent streams that may dry up in summer and fall seasons.

Quantitatively, macroinvertebrates were collected from four 0.25m² quadrat kicknet samples (800 x 900 μm mesh) stratified within the thalweg (path of deepest thread of water) of cobble-boulder riffle habitat. Two sample events in the validation data set were collected with a composite of four Surber samples (0.09 m² 800 x 900μm) that were stratified in a similar manner (Pond 2000). Riffle habitat was targeted to ensure the highest species richness and abundance of macroinvertebrates (Brown and Brussock 1991, Feminella 1996). The thalweg of a riffle also guarantees the most flow permanence and substrate stability in these often intermittent streams (pers. obs.). To reduce be-

tween-riffle variability, two kicknet samples were allocated to each of two distinct riffles separated by at least one pool or run. The four samples were composited into a 600 μ m mesh bottom bucket to yield a 1 m² quantitative sample. The composited sample was partially field processed using a US #30 sieve (600 μ m mesh) and wash bucket. Large stones, leaves, and sticks were individually rinsed and inspected for organisms and then discarded. Small stones and sediment were removed by elutriation using the wash bucket and US #30 sieve. Invertebrates were then picked from the remaining debris until approximately 1 pint or less of debris remained. This material was then preserved in 95% ethyl alcohol.

A qualitative composite sample of 3 leafpacks, 3 jabs in sticks/wood, 3 jabs in soft sediments, 3 jabs into undercut banks/submerged roots with an A-frame or D-frame dipnet (800 x 900 µm mesh), and hand-picking of 5 small pool boulders and approximately 2 linear meters of large woody debris was made (modified after Lenat 1988). All qualitative collections were made by the same investigator to reduce inter-observer variability. An effort was made to rinse, inspect, and discard leaves and sticks and sieve fine sediments so that 1 pint or less of material remained which was then preserved in 95% ethyl alcohol. A summary of these techniques is shown in Table 1. In the laboratory, all invertebrates were picked, identified to the lowest practicable taxon (usually genus/species), and enumerated (except qualitative sample). Chironomids were also identified to the genus/species level and oligochaetes to the family level.

Table 1. Summary of sampling methods for headwater, moderate/high gradient streams.					
Technique	Sampling Device	Habitat	Replicates		
1m ² Kicknet*	Kick Seine/Mesh Bucket	Riffle	4-0.25m ²		
Sweep Sample	Dipnet/Mesh Bucket	All Applicable			
Undercut Banks/Roots	Dipnet/Mesh Bucket		3		
Sticks/Wood			3		
Leaf Packs	Dipnet/Mesh Bucket	Riffle-Run-Pool	3		
Silt,Sand, Fine Gravel	Dipnet/Mesh Bucket	Margins	3		
Rock Pick	Forceps	Pool	5 sm. boulders		
Wood Sample	Forceps/Mesh Bucket	Riffle-Run-Pool	2 linear m		

4.0 Data Analysis

4.1 Environmental Parameters

Multivariate statistical procedures were used to identify a subset of environmental parameters that could distinguish *a priori* reference and test sites. This subset would also be used to evaluate MBI performance and offer insight into causes of stream impairment. To assure statistical normality, physical variables were transformed (log, sqrt, or arcsine), where appropriate, prior to entering them into a stepwise discriminant function analysis (DFA) and principal components analysis (PCA) (SYSTAT, Version 7.0, Evanston, Illinois). We also used box-and-whisker plots of all variables to look for discrimination on a more visual level, and tested whether variables were significantly different between reference and test sites using the nonparametric Mann-Whitney U-test.

4.2 Macroinvertebrate Communities

To test the hypothesis of regional taxonomic similarity, or homogeneity, we ordinated macroinvertebrate communities at reference sites using the Bray-Curtis dissimilarity index based on log_{10} abundance at the genus level, and subsequent nonmetric multidimensional scaling (NMDS) (Ludwig and Reynolds 1988). For these analyses, the genus-level of resolution was used to reduce the statistical variability sometimes inherent in species-level data (Maxted et al. 2000). In general, NMDS attempts to arrange objects or communities found at individual sites in a spatial orientation with a particular number of dimensions (two in our study) so as to reproduce the observed statistical distances. This allowed us to graphically identify either regional homogeneity, or geographic separation conforming to the *a priori* geographic designations shown in Figure 1.

We also ordinated all sites in a canonical correspondence analysis (CCA, ter Braak 1986), which combines transformed taxa-site data (correspondence analysis) and environmental-site data (weighted multiple regression) within one algorithm. All physical variables listed in Section 3.1 were used for this analysis. In a two-dimensional plot, taxonomic and site data are produced as points while environmental data are plotted as vectors. Vector length and direction are proportional to the statistical contribution of the variable to the ordination. This technique would provide insight into taxonomic shifts in relation to environmental differences among sites.

4.3 Metric Selection

Thirty-three (33) biological attributes, or metrics (Table 2), were evaluated for discrimination efficiency (DE), redundancy, variability, and sensitivity. These metrics spanned a broad range of community ecology including richness, composition, structure, tolerance, habit, and trophic, or functional feeding groups (Barbour et al. 1999). Richness metrics were calculated from both quantitative and qualitative collections combined, whereas all other metrics were calculated using the quantitative riffle samples only. **Discrimination Efficiency** was determined as the percent of the

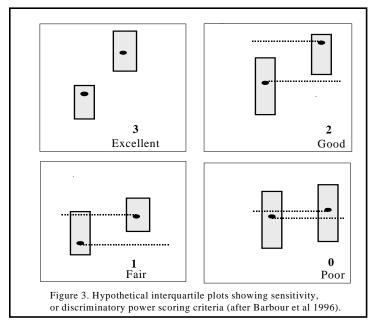
test site metric values (calibration data set) that fell below the 25th %ile or 75th %ile (depending on metric direction) of the reference distribution for a particular metric. Metrics having greater than 50% DE were initially retained for further evaluation (Maxted et al. 2000). **Redundancy** was determined for reference metric values with Pearson correlation coefficients. A high correlation (r>0.80, p<0.05) between metric pairs would suggest redundancy and be grounds for rejection of one of the metrics. **Variability** of reference metrics was assessed using the interquartile coefficient, which was calculated as the interquartile range (i.e., 75th %ile to 25th %ile) divided by the lower quartile (or upper quartile for negative metrics). This is analogous to the coefficient of variation and a value >1.0 would indicate high variability and thus be unfavorable. For **sensitivity**, or the ability of a metric to discriminate reference and test sites, we used a scoring system based on box-and-whisker plots after Barbour et al. (1996) shown in Figure 3. We considered metrics that scored a 2 or 3 to be sensitive and thus useful for the aggregate index.

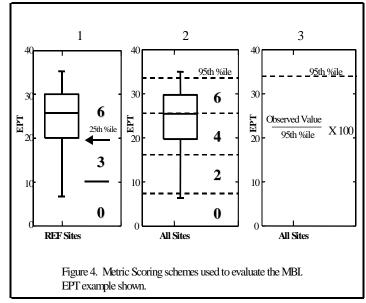
Table 2. Candidate metrics, abbreviations, and expected response to disturbance

Table 2. Candidate metrics, abbreviations, and expected response to disturbance.						
METRIC	Abbeviation	Response				
No. of Intolerant Taxa ¹	IntolTax	Decrease				
No. of Clinger Taxa ²	ClngTax	Decrease				
Rel. Abun. of Clingers	% Clingers	Decrease				
Modified Hilsenhoff Biotic Index ³	mHBI	Increase				
TotalTaxa Richness	TR	Decrease				
No. of Plecoptera Taxa	PlecoTax	Decrease				
No. of Trichoptera Taxa	TrichTax	Decrease				
No. of Ephemeroptera Taxa	EphemTax	Decrease				
No. of Ephemeroptera+Plecoptera+Trichoptera	EPT	Decrease				
Rel. Abun. of Chironomidae	% Chiro	Increase				
Rel. Abun. Of Chironomidae+Oligochaeta	%Chir+Olig	Increase				
Rel. Abun. Of Ephemeroptera	%Ephem	Decrease				
Rel. Abun. Of Tolerants ⁴	% Toler	Increase				
Proportion of 5 Dominant Taxa	% DOM ₅	Increase				
Rel. Abun. Of Tanytarsini	% Tany	Decrease				
Rel. Abun. Of Hydropsychidae	% Hydro	Increase				
Rel. Abun. Of Scrapers ⁵	% Scrapers	Decrease				
Ratio of EPT/ Chironomidae+Oligochaeta	EPT/C+O	Decrease				
Total Individuals	TotInd	Variable				
Rel. Abun. Of EPT	%EPT	Decrease				
Rel. Abun. Of EPT (minus Cheumatopsyche)	m%EPT	Decrease				
Rel. Abun. Of Trichoptera	% Trich	Variable				
Rel. Abun. Of Diptera	% Dip	Increase				
No. of Chironomidae Taxa	ChiroTax	Increase				
Rel. Abun. Of Plecotera	% Pleco	Decrease				
Rel. Abun. Of Oligochaeta	%Oligo	Increase				
Rel. Abun. Of Collector-Gatherers ⁵	% Cllct	Variable				
Rel. Abun. Of Shredders ⁵	% Shred	Decrease				
Shannon Diversity	Diversity	Decrease				
Rel. Abun. Filter Feeders ⁵	% Filtr	Variable				
Rel. Abun. Of Dominant Taxon	%1Dom	Decrease				
Rel. Abun. Of Baetidae	% Baetid	Increase				
No. of Diptera Taxa	DipTax	Variable				

¹Based on tolerance values <3.0

²Based on habit designations in Merritt and Cummins (1996)


³Based on tolerance values provided in Lenat (1993), Hilsenhoff (1988), and KDOW (unpub. data)


⁴Based on tolerance values >7.0

⁵Based on functional feeding groups designations in Merritt and Cummins (1996)

4.4 Metric Scoring and Index Development

Retained metrics were scored using 3 methods (Figure 4): (1) the 25th %ile (or 75th %ile depending on metric direction) of the reference values (Barbour et al. 1996), (2) a quadrisection of all (reference and test) site metric values below the 95th %ile (or 5th %ile) (DeShon 1995), and (3) the percent of standard method (95th or 5th %ile) for all sites. For the first method, we modified the traditional 5, 3, 1 scoring scheme (Karr et al. 1986, Barbour et al. 1996) after Maxted et al. (2000), so that a score of 6 was given to values falling at or above this criterion and was thus considered representative of reference conditions. Below the 25th %ile, metric values were bisected to yield scores of 3 (deviates from reference) and 0 (strongly deviates from reference). second method quadrisected all calibration site (reference and test) metric values (below or above the 95th or 5th %iles, respectively) using a 6, 4, 2, 0 scoring scheme. All metric scores are then summed to yield the total index value, or MBI. These unitless and weighted scoring methods not only rate metrics by water quality, but also overcome the problem of normalization so that metrics using counts, proportions, and logarithmic functions can be compared uniformly when

applied to the aggregate index. Finally, the percent-of-standard method used the entire range of metric values below the 95^{th} %ile, scored them on a continual scale of 0-100 percent, and averaged all metric scores (Gerritsen et al. 2000). If a calculated metric scored over 100 (i.e., a value above the 95^{th} %ile) then it was corrected to the maximum score of 100.

Initially, metric and MBI scoring criteria were established with the calibration dataset. Narrative ratings using the thresholds excellent (median of the reference data), good (10th %ile of reference data), fair (2/3 of the 10th %ile value of reference data), poor (1/3 of the 10th %ile value of reference data), and very poor (below 1/3 of the 10th %ile value of reference data), were also calculated. A

check on the discrimination efficiency of each MBI scoring method was done by calculating the percent of the validation reference and test site MBI scores that fell below the 10th %ile of the reference condition.

UT to Big South Fork (Stearns Ranger District)

Right Fork Big Double Creek (Redbird Ranger District)

Falling Rock Branch (UK Robinson Forest)

Steer Fork (Western Allegheny Ecoregion)

Representative headwater reference streams with sampling areas denoted. See Figure 1 for area locations.

5.0 Results

5.1 Environmental Parameters

We were interested in which environmental variables could distinguish between reference and test sites. Ideally, one would assume variables like catchment area, elevation, slope, latitude, longitude, and riffle substrate size to be similar between reference and test sites within the study area based on our study design. However, other variables known to change with the degree of impairment were a greater concern. PCA factor 1 (Table 3) accounted for nearly 35% of the total variance of the calibration data set, while axis 2 accounted for 16%. Variables with the highest factor loadings on the 1st axis were conductivity, total habitat score, pH, mean embeddedness, mean riparian width, and canopy cover score. Canopy cover and riparian width were slightly autocorrelated as were pH and conductivity. Factor 2 suggested a less significant stream size gradient and showed that stream width and catchment area were the most important; however, these variables were also highly correlated with one another.

The stepwise DFA model chose 4 variables: %embeddedness (F=3.47), canopy score (F=7.65), conductivity (F=12.02), and total habitat score (F=1.76) that classified the 43 a priori reference and test sites with 98% accuracy (Figure 5). An

Table 3. Correlations of transformed environmental variables on the first 2 PCA axes.

	Factor1	Factor2
% Variance	35%	16%
logConductivity (mS/cm)	0.903	0.083
logTotal Habitat Score	-0.859	-0.208
pH (S.U.)	0.796	-0.149
arcsine Embeddedness (%)	0.765	0.111
logRiparianWidth (m)	-0.638	-0.387
logCanopy Score*	-0.619	-0.478
Latitude (dec. deg.)	0.449	-0.572
logTemperature (C)	0.422	-0.252
logStream Width (m)	-0.361	0.5703
logDissolved Oxygen (mg/L)	0.356	0.003
Longitude (dec. deg.)	0.329	-0.448
logElevation (m)	-0.306	-0.313
logSubstrate Size (cm)	-0.291	0.569
logCatchment Area (ha)	0.175	0.675
* C 1 1 0 2	. 1 4 C 11	

* Canopy score based on 0=open, 2=partial, 4=full per transect

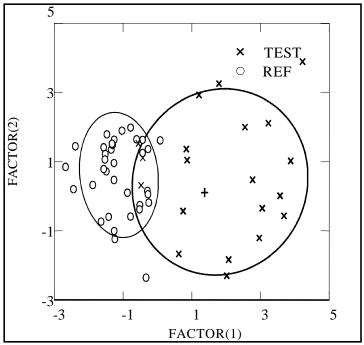


Figure 5. Discriminant root scores using %embeddedness, conductivity, canopy, and total habitat score (2000-2001 data).

internal jackknife test of the data also classified the sites with only a 6% misclassification rate. Overall, the 4-variable discriminant model was highly significant (Wilk's λ = 0.256, F= 37.05, p<0.0001).

Nonparametric univariate tests (Mann-Whitney U) and box-and-whisker plots showed similar trends in that variables influenced by disturbance were significantly different (p<0.01), whereas physical variables unassociated with disturbance were not (Figure 6). For the 2000 calibration data set, the PCA and DFA identified similar variables that were important to reference and test sites. Using the 4-variable discriminant model, we found that the 22 validation events (2001-2002) were classified with only an 8% misclassification rate. Environmental variables for all sites are listed in Appendix B. Habitat assessment scores (discussed below) are provided in Appendix C.

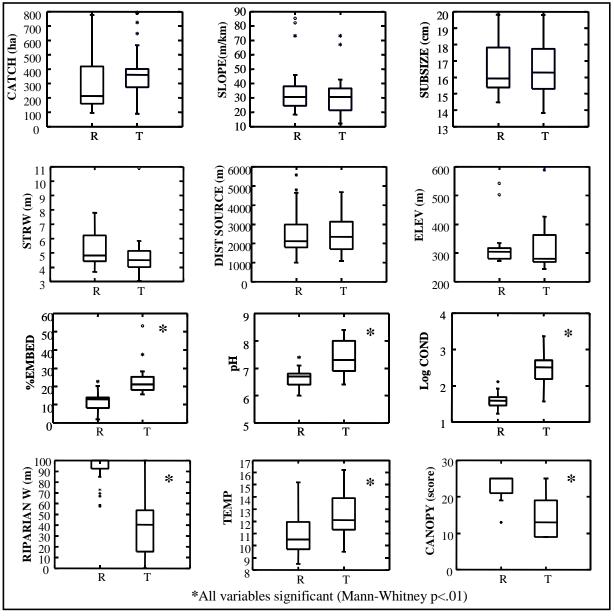


Figure 6. Box plots of selected environmental variables from reference and test sites (2000 calibration data).

5.2 Macroinvertebrate Communities

More than 330 taxa from 75 families were identified from the combined calibration samples and validation data sets. Approximately 40,000 organisms were enumerated for the entire study, and a synoptic list is shown in Appendix D. Riffle kicknet samples averaged 512 (±92, 95% CI) organisms per site with a range of 66 to 1671. Members of the insect orders Ephemeroptera, Plecoptera, and Trichoptera, or EPT, were most numerous in both numbers of individuals and taxa richness in the calibration samples. Among these sites, EPT richness ranged from 5 to 36, and total taxon richness values ranged from 21 to 68 (genus/species level resolution). Most of the validation sites also fell within these ranges for EPT richness and total taxon richness.

No strong patterns suggesting geographic affinities of the reference assemblages using the six regions were found with NMDS (Figure 7). When examining whether the scatter of sites in the

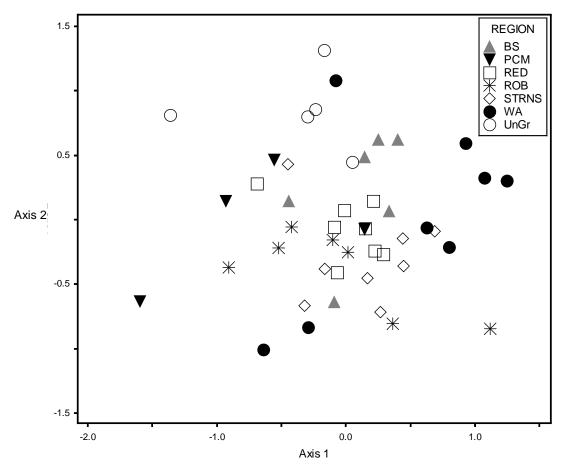


Figure 7. NMDS ordination (genus level) of all reference sites grouped by geographic region. ROB=Robinson Forest, RED=Redbird Ranger District, STRNS=Stearns Ranger District, PCM=Pine/Cumberland Mountains, BS=Big Sandy, WA=Western Allegheny and UnGr=Un- Grouped.

NMDS ordination could be correlated with any measured variable (Pearson correlation coefficient), we found pH and conductivity had the highest significant correlations (p>0.01) with Dimension 1 (r=0.51 and 0.55, respectively). Dimension 2 correlated best with slope and elevation area (r=0.50 and 0.33, respectively). We investigated this further in a separate analysis, where a stepwise DFA of

only reference sites in which invertebrate assemblages (genus level) were grouped by UPGMA cluster analysis (flexible β = -0.1) with the Bray-Curtis index. This analysis indicated that elevation and catchment area contributed the most to site groupings (KDOW unpub. data). We chose to ignore this issue since (1) the DFA model's classification efficiency was low (44%, 31% jackknifed) and somewhat counterintuitive with respect to the clusters; (2) NMDS patterns were weak; and (3) because the metric selection and calibration process would likely inhibit any effects caused by slight differences in taxonomic structure of reference sites.

Another multivariate technique (CCA) revealed a disturbance gradient pattern with regard to genuslevel taxonomic structure between reference and test sites. The CCA (Figure 8) confirmed the previous multivariate analyses by combining taxonomic and physical relationships into a single plot. The CCA revealed that test sites corresponded positively to environmental vectors along axis 1 (e.g., increasing %embeddedness, pH, and conductivity). An arrow's length is proportional to the variable's importance in the ordination.

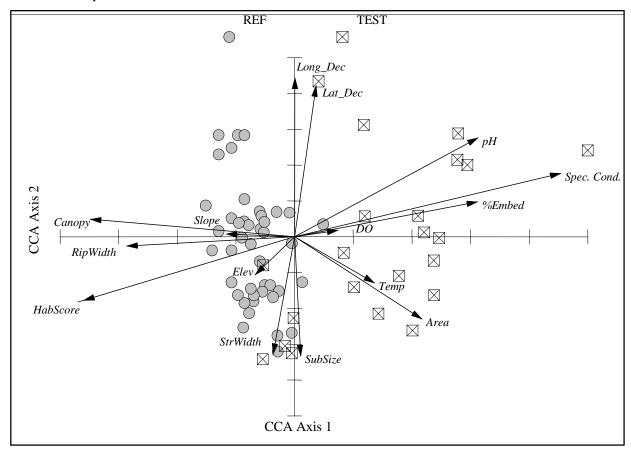


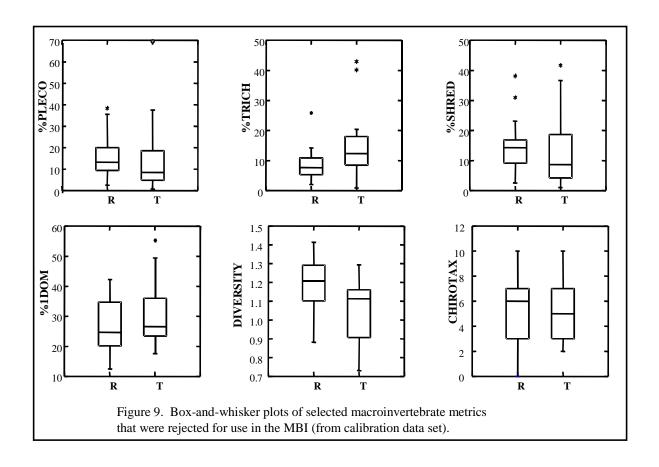
Figure 8. Canonical Correspondence Analysis (CCA) of all reference and test sites.

5.3 Metric Performance

Metrics were evaluated for various qualities that, when combined into an index, could distinguish site condition. Table 4 represents the list of metrics calculated from the 2000 calibration data set showing discrimination efficiency (DE), sensitivity (interquartile overlap), interquartile coefficient (variability), and redundancy. The DE ranged from 35%–94%, more than half the metrics had good

to excellent sensitivity (score of 2 or 3), only three metrics showed high variability (interquartile coefficient > 1.0) and several metrics showed some redundancy. This process helped identify a suite of metrics that could distinguish site condition. Box-and-whisker plots of particular metrics that were rejected and retained are shown in Figures 9 and 10, respectively. Through a process of elimination and professional judgement, seven core metrics were chosen for the mountain headwater MBI (taxa richness, EPT richness, mHBI, %Ephemeroptera, %Clingers and %Chironomidae +Oligochaeta). Raw metric values for all sites are shown in Appendix E. A Pearson correlation matrix of the seven recommended metrics from reference sites is shown in Table 5. Only TR and EPT richness were calculated from a composite of the quantitative and qualitative samples. The mHBI and the % compositional metrics were calculated from quantitative samples only. The mHBI used the formula:

$$m HBI = \frac{\sum n_i x a_i}{N}$$


where: n_i = number of individuals within a species (**maximum of 25**),

 a_i = tolerance value of the species,

 $N = \text{total number of organisms in the sample } (\text{adjusted for } n_i \ge 25).$

Table 4. Metrics evaluated for the MBI showing dicrimination efficiency (%DE), sensitivity score, interquartile coefficient (IQC), and redundancy, based on 2000 calibration dataset.

METRIC	DE	SENSITIVITY	IQC	REDUNDANT (r>0.80) WITH:
IntolTax	94.1	3	0.24	TR, EPT
ClngTax	94.1	3	0.18	TR, EPT, IntolTax
% Clingers	88.2	3	0.33	
HBI	88.2	3	0.15	%Tol
TR	88.2	3	0.24	IntolTax, DipTax, ClngTax, EPT
PlecoTax	88.2	3	0.29	
EPT	88.2	3	0.28	TR
TrichTax	82.4	3	0.22	
% mEPT	76.5	2	0.22	
% Chiro	76.5	2	0.71	%Ch+O
% Chir+Olig	76.5	3	0.71	% Chiro
% Ephem	70.6	2	0.37	
% Toler	70.6	3	0.58	HBI
%DOM5	70.6	2	0.18	Diversity
EphemTax	70.6	3	0.22	
% Hyro	70.6	2	0.75	% Trich
% Scrapers	64.7	3	0.91	
EPT/C+O	64.7	3	1.77	
TotInd	64.7	3	0.55	
%EPT	58.8	2	0.11	
% Trich	58.8	1	1.15	
% Dip	58.8	0	0.50	
ChiroTax	58.8	0	0.40	DipTax
% Pleco	52.9	0	0.90	% Shred
% Oligo	52.9	1	1.00	
% Cllct	52.9	2	0.37	
% Shred	52.9	0	0.77	% Pleco
Diversity	52.9	2	0.17	%DOM5
% Filtr	41.2	0	0.62	% Dip
%1Dom	41.2	0	0.38	
% Baetid	41.2	0	0.89	
DipTax	35.3	1	0.88	TR

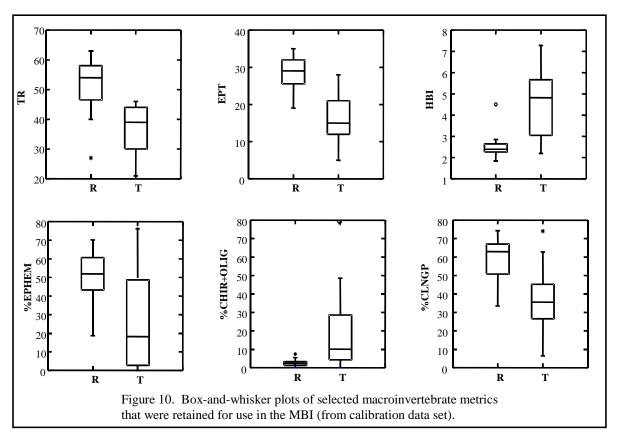


Table 5. Pearson correlation matrix for reference metrics used in the MBI.

	TR	EPT	mHBI	m%EPT	%Ephem	%Chir+Olig	%Clng
TR							
EPT	0.80						
mHBI	-0.22	-0.59					
m%EPT	0.12	0.42	-0.78				
%Ephem	0.07	0.34	-0.58	0.72			
%Chir+Olig	-0.16	-0.42	0.74	-0.74	-0.58		
%Clng	0.32	0.53	-0.50	0.34	0.58	-0.48	

Taxa richness and EPT richness were also evaluated to look at potential influence of drainage area on metric values. A simple linear regression of all reference sites showed no effect of stream size on taxa richness ($r^2 = 0.014$, p = 0.486) and EPT richness ($r^2 = 0.004$, p = 0.703). In fact, some of the smallest streams (e.g., <0.4 mi²) had taxa and EPT richness values roughly equal to or greater than many streams over 2 mi² (Appendix E). We recognize that when comparing headwater streams to larger, wadeable systems, stream size can influence richness (KDOW unpub. data) but within the range of sites used in our study (0.18 to 3.38 mi²), no influence was detected.

5.4 Scoring Formulae

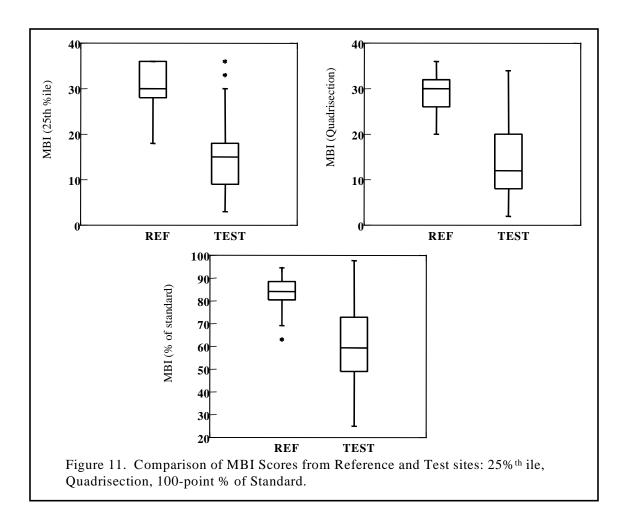

The calculated 95th %iles (or 5th %iles) and appropriate scoring formulae for the seven metrics are shown in Table 6. An example MBI calculation is provided for Bear Branch. Figure 12 (Section 5.4) shows narrative rating cutoff points for assigning water quality classifications.

Table 6. Metric scoring formulae and example calculation for the MBI.

Metric	95th or 5th %ile	Formula	Example for Bear Branch	Metric Score
Genus TR	63	$\frac{TR}{95th\% ile} X100$	$\frac{42}{63}X100$	66.67
Genus EPT	33	$\frac{EPT}{95th\% ile} X100$	$\frac{17}{33}X100$	51.54
mHBI	2.18	$\frac{10 - mHBI}{10 - 5th\% ile} X100$	$\frac{10 - 4.12}{10 - 2.18} X 100$	75.19
m%EPT	86.9	$\frac{m\% EPT}{95th\% ile} X100$	$\frac{63.81}{86.9}X100$	73.43
%Ephem	66.5	$\frac{\%Ephem}{95th\%ile}X100$	$\frac{18.09}{66.5}$ X100	27.2
%Chir+Olig	0.68	$\frac{100 - \% Chir + Olig}{100 - 5th\% ile} X100$	$\frac{100 - 9.53}{100 - 0.68}X100$	91.09
%Clingers	75.5	$\frac{\%Clingers}{95th\%ile}X100$	$\frac{34.82}{75.5}$ <i>X</i> 100	46.12
			MBI (Average Score) =	61.60

5.5 MBI Performance

Summed index scores for the three scoring methods were evaluated using box-and-whisker plots of calibration reference and test sites. Results indicated the three MBI scoring methods all have excellent sensitivity (Figure 11). For simplicity of calculation and interpretation, we chose the 100-point, percent of the 95th %ile standard method for use in the MBI. Currently, this scoring method is under development with algal and fish community data at KDOW.

An "Excellent" rating was achieved when a site scored at or above the median of the reference MBI (>83), while a "Good" rating fell between the median and 10th percentile (72–82). Below the 10th percentile, the reference MBI was further trisected to yield "Fair" (48-71), "Poor" (24-47), and "Very Poor" (<24) conditions. Figure 12 shows sensitivity of the MBI and narrative rating cut-off points. Although these criteria are arbitrary, we considered the cut-off points to be protective since reference sites were located within undisturbed watersheds. By assigning narrative water quality ratings we showed that 84% of the 2001 and 2002 validation sites were properly assigned to a priori designations. For both calibration and validation sites, the MBI correctly classified 84% of all test sites as impaired (Fair or Poor), and 91% of all reference sites as Good or Excellent.

Habitat assessment scores from all reference and test sites showed the excellent sensitivity of this assessment tool (Figure 13). The RBP habitat assessment scores for all sites were plotted against the MBI and are shown in Figure 14. A moderate relationship was found ($r^2=0.53$, n=57, p<0.00001) suggesting habitat quality was a good predictor of macroinvertebrate community health. In some cases where habitat was generally good at test sites, excessive conductivity, lack of canopy, or excess nutrients (inferred from excessive algal growth observations) were probable factors leading to low MBI scores. Pearson correlation matrix of individual metric values and environmental and habitat variables is shown in Appendix F.

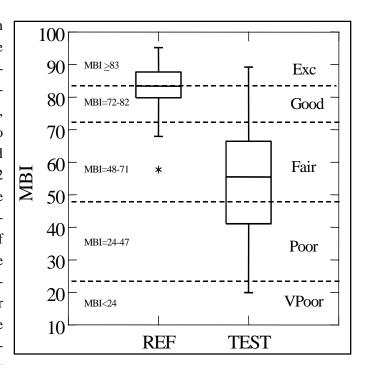


Figure 12. Box plot of MBI scores from reference and test sites (all sites) showing thresholds for narrative ratings.

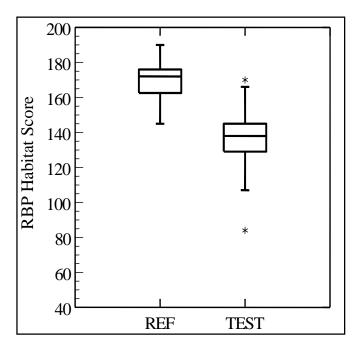


Figure 13. Box plot of RBP habitat scores from reference and test sites (2000-2002).

A further evaluation of MBI scores compared to perceived human disturbance was done using the PCA site scores for the first factor, or axis (Figure 15). This axis was most influenced by conductivity, pH, %embeddedness, total habitat score, riparian width, and canopy score (see Table 2). A strong relationship (r^2 =0.65, p<.00001) indicated that the MBI responded negatively to increasing human disturbance.

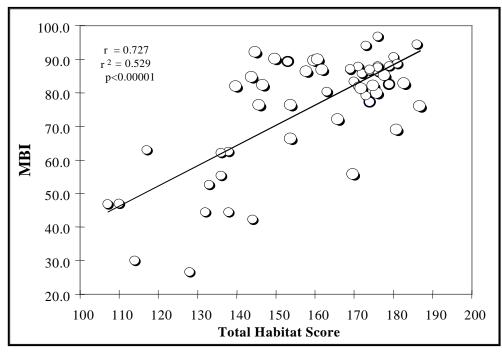


Figure 14. Relationship of MBI to Total Habitat Score (2000-2001 sites).

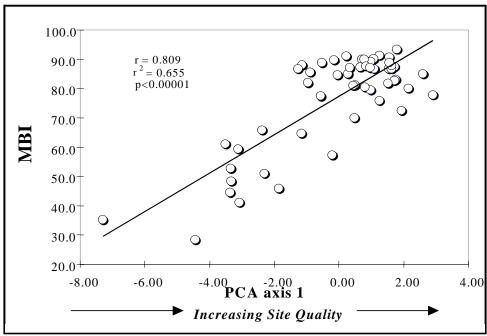


Figure 15. Relationship of the MBI to a perceived disturbance gradient as defined by PCA axis 1 (2000-2001 sites).

While the NMDS taxonomic ordination showed minimal variability among the six *a priori* regions, there were outlier streams within the WA and PCM regions. Similarly, reference MBI scores from those regions were the lowest on average (Figure 16), suggesting differences in biotic potential. None of the reference sites in the PCM and only two in the WA scored in the excellent range. After careful inspection of metrics and environmental factors from the WA and PCM, it was apparent that %Ephem values were markedly reduced compared to other regions. %Ephem values averaged 17.9% and 36% in the PCM and WA, respectively; other regions combined averaged 52%. Mayfly richness did not significantly differ among all regions, but we suspect that relatively lower pH in some PCM and WA streams (5.1 to 6.1 range) was responsible for decreased mayfly densities. Feldman and Conner (1992) and Moeykens and Voshell (2002) also found reduced mayfly abundances in small mountain streams with lower pH. Until more data can be gathered to elucidate this phenomenon, we are confident that the MBI can be used in the entire Eastern Coalfield Region. Users of the index should be cautious when assessing streams in the PCM and WA areas. MBI scores in the BS, RED, ROB, STRNS regions were not significantly different.

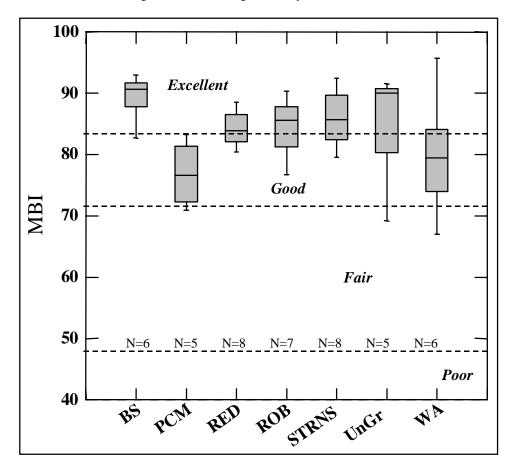


Figure 16. Box plot of reference MBI scores among study regions. Narrative ratings delineated by dashed lines. BS=Big Sandy, PCM=Pine/Cumberland Mountains, RED= Redbird District, ROB=Robinson Forest, STRNS=Stearns District, UnGr=UnGrouped, WA=Western Allegheny.

6.0 Discussion

6.1 EnvironmentalParameters

The regional variables modified by disturbance in this study are well-documented elsewhere in the literature (Branson and Batch 1972, Curtis 1973, Talak 1977, Dyer 1982, Sweeney 1993, Green et al. 2000). We were not surprised that conductivity and % embeddedness were the most significant factors in discriminating reference and test sites. Natural stream chemistry in small streams in this region is often low in dissolved ions and has slightly acidic to circumneutral pH. Mean conductivity of all reference sites was 55 µS/cm (range 16–159) compared to 505 µS/cm (range 37–2320) for test sites. Land disturbance and associated erosion typically increase streamwater ionic concentrations and subsequent conductivity (Curtis 1973, Dyer 1982, Dow and Zampella 2000). For example, surface water runoff and groundwater seepage from coal mining operations (particularly mining methods that place overburden into hollow- or valleyfills) contributes to this elevated conductivity and can add high amounts of sediment to receiving streams. In 2000, the Federal Office of Surface Mining estimated that approximately 320 miles of streams have been permanently buried by these mining practices in Kentucky alone (OSM unpub. data). However, this figure only takes into consideration those blue-line streams that are shown on 1:24000 scale topographic maps; hundreds of miles of other headwater streams have likely been filled. Oil and gas drilling also has the potential to elevate stream conductivity through leakage of underground brine water particularly high in chlorides. As of 2001, there were over 30,000 oil or gas wells in the Eastern Coalfield region (Kentucky Geological Survey unpub. data). Based on our study and data found in Green et al. (2000) and Howard et al. (2000), we think that conductivity values >400 µS/cm are excessive for headwater streams in the Eastern Coalfield Region.

Another problem associated with coal mining in this region is acid mine drainage (AMD), where impacted streams are stressed by low pH and high total metals. This condition occurs when coal mining exposes rock that is laden with pyrite that oxidizes into Fe(OH)₂ and H₂SO₄. We did not encounter this in the CA, but it is more common in the SA streams where the coal geology is different. In the Stearns region for example, several streams are impacted by AMD. We chose not to sample test sites affected by AMD because the streams are nearly "dead," with only scarce macroinvertebrate populations (e.g., McMurray and Schuster 2001, KDOW unpub. data) and thus not good candidates for testing the MBI. By contrast, many of the streams influenced by mining in our study displayed elevated pH compared to non-mined watersheds. In this case, an alkaline mine drainage phenomenon occurred and was associated with the differing coal geology in the region. A study by Eastern Kentucky University (1975) concluded, "Alkaline pollution caused by surface mining is as real as acid mine drainage pollution." Dyer (1982) and Green et al. (2000) also documented this occurrence. Relatively low pH at three reference sites (Bad Branch, pH=5.1, Presley House Branch, pH=6.1, Watts Branch, pH=6.0) is consistent with observations in forested streams draining the south side of Pine Mountain and the north side of Cumberland Mountain. Here geological phenomena are suspected, in that streams lack the capacity to buffer acidic rainfall. The patterns of potential acid deposition and acid neutralizing capacity of streams in this area deserve further investigation.

Although % embeddedness used in the DFA and PCA was estimated in thalweg quadrat samples only, we also scored relative embeddedness for the entire riffle with the RBP habitat assessment forms in which the metric showed excellent sensitivity. Sediment pollution from nonpoint sources is a serious problem in Kentucky (KDOW 2000) and elsewhere (Waters 1995). Small streams in the study area that have been exposed to mining and logging are subject to high sediment loading. Moreover, intensified bank erosion caused by hydrologic modification (e.g., impoundments, roads, bridges, and culverts) can substantially increase sedimentation in these streams.

Other factors, such as reduced canopy cover and riparian width, can have direct influences on macroinvertebrate communities that respond to stream temperature, bank habitat and stability, and seasonal changes in the food-energy base (Sweeney 1993). Furthermore, riparian buffers have shown to be critical in reducing the inflow of excessive nutrients, sediments, or contaminants into small streams (Brinson 1993, Sweeney 1993). With regard to canopy cover, our reference sites had the natural compliment of mature forest with dense canopies, albeit mostly second-growth, but this condition was met at very few of the test sites. In intermittent streams, many aquatic insect taxa are adapted to resist desiccation through resting or diapausing eggs, larvae or pupae (Sweeney 1984). We suggest that dense summer canopies may help to regulate high relative humidity and cooler temperatures in the dry streambed sediments, thus helping to assure recruitment of the insect community in subsequent years.

6.2 Macroinvertebrate Communities

The Eastern Coalfield region as a whole supports a rich and diverse macroinvertebrate fauna typical of the Appalachian Mountains. Many of these are EPT taxa, and their presence, as in most regions of the country, indicate relatively healthy ecological conditions. The headwater streams in the present study were dominated by EPT, even at many test sites, and EPT made up roughly 45% of the taxa collected overall. This further supports the notion of a large regional pool of EPT species. Our rapid sampling protocol yielded high taxonomic richness in some very small, intermittent streams often considered to have reduced diversity and richness (Harker et al. 1982). Pond (2000) showed results similar to ours and argued that a rich fauna adapted to resist seasonal desiccation can proliferate in these intermittent streams. Moreover, we found high faunal diversity and abundance despite the fact that the calibration communities were essentially recruited from the 1999 populations, those that endured one of the worst droughts on record in the Commonwealth. Finally, Feminella (1996) concluded that, because of the high diversity and faunal similarity to perennial streams, intermittent streams deserve adequate management or regulatory plans to protect species and their habitats.

Strong taxonomic differences in reference communities among the six study regions were not found, suggesting that geographic position and physical variation in these regions are not strikingly influencing macroinvertebrate composition and that higher physical (e.g., geology, topography) and zoogeographical (e.g., speciation, dispersal) factors drive these compositional and structural patterns on a larger spatial scale. Despite the identification of several outlier sites, the NMDS analysis gave

us confidence that our reference sites could be used to develop the index for the entire Eastern Coalfield region. The CCA ordination clearly separated reference and test sites, demonstrating that taxonomic composition was indeed altered in streams with varying degrees of impairment. Absence of key indicator taxa (particularly EPT) was frequently observed at test sites. For example, in modified watersheds with elevated stream conductivity (e.g., conductivity >400 μS/cm), Ephemeroptera (mayflies) were markedly reduced or absent. Other workers (Green et al. 2000; H. Howard, US EPA, Athens, GA, pers. comm.; KDOW unpub. data) have seen this phenomenon, and we speculate that many mayfly species are susceptible to high ionic strength that interferes with gill function. Another pattern observed at disturbed sites was an increase in the relative abundance of chironomids and oligochaetes. This pattern is also well documented by others in the region (Arnwine and Denton 2001, Gerritsen et al. 2000, Yoder and Rankin 1995) and signifies that these groups, in general, are tolerant of disturbance.

While the use of indicator species in bioassessment has drawn much criticism in the past (Cairns 1974, Roback 1974), the concept of indicator assemblages provide insight into taxonomic shifts between reference and impaired sites. We think it is also beneficial to look at the presence or absence of taxa frequently associated with reference sites as supplemental information for describing the reference condition. Table 7 reveals the 25 most common taxa found among the 45 reference sample events used in this study. Eighteen of these top 25 taxa were EPT. The mayflies *Ephemerella*, *Epeorus* and *Ameletus*, the stoneflies *Amphinemura* and *Leuctra*, and the caddisflies *Neophylax* and *Rhyacophila* made up the top seven taxa overall with the highest importance values (relative frequency + mean relative abundance). Several notable taxa with high frequencies but low abundances (i.e., <1%) were *Cambarus*, *Eurylophella*, *Pycnopsyche*, and *Tipula*.

Table 7. Top 25 taxa collected from all reference sites based on relative frequency + mean relative abundance (= relative importance value)

Family	ance (= relative importai Genus	Rel. Freq.	Rel Abun	Rel. Import.
Ephemerellidae	Ephemerella	95.2	13.8	109.0
Heptageniidae	Epeorus	97.6	9.2	106.8
Ameletidae	Ameletus	95.2	8.3	103.6
Nemouridae	Amphinemura	95.2 95.2	7.8	103.0
			2.0	
Uenoidae	Neophylax	97.6		99.7
Leuctridae	Leuctra	97.6	2.0	99.6
Rhyacophilidae	Rhyacophila	97.6	1.4	99.1
Cambaridae	Cambarus	97.6	0.7	98.3
Ephemerellidae	Eurylophella	97.6	0.5	98.1
Limnephilidae	Pycnopsyche	97.6	0.3	97.9
Tipulidae	Tipula	95.2	1.0	96.2
Hydropsychidae	Diplectrona	92.9	3.0	95.9
Tipulidae	Hexatoma	88.1	1.3	89.4
Perlodidae	Isoperla	85.7	1.5	87.2
Perlidae	Acroneuria	85.7	1.2	86.9
Psephenidae	Ectopria	83.3	1.5	84.9
Heptageniidae	Stenacron	83.3	0.3	83.7
Simuliidae	Prosimulium	78.6	3.8	82.4
Heptageniidae	Cinygmula	73.8	7.5	81.3
Lepidostomatidae	Lepidostoma	78.6	0.7	79.3
Simuliidae	Simulium	76.2	1.4	77.6
Dryopidae	Helichus	76.2	1.1	77.3
Polycentropodidae		76.2	0.4	76.6
Leptophlebiidae	Paraleptophlebia	73.8	2.6	76.4
Philopotamidae	Wormaldia	73.8	0.7	74.5

6.3 Metric Evaluation

The metrics chosen for inclusion in the MBI (Genus-TR, Genus-EPT, mHBI, %Ephem, %Chir+Olig, and %Clingers) have also been accepted as good indicators of ecological health in many regions of the U.S. (Plafkin et al. 1989, Resh and Jackson 1993, Kerans and Karr 1994, Barbour et al. 1999, Karr and Chu 1999, Gerritsen et al. 2000, Arnwine and Denton 2001), but contradictory statements on the use of metrics have been offered by Norris (1995) and Reynoldson et al. (1997). By testing metric sensitivity and calibrating scoring criteria, we were able to set regional expectations for macroinvertebrate communities of 1st and 2nd order streams typically between 0.15 to 5 mi² (0.5 to 13 km²) in catchment area.

The selected metrics all had high discrimination efficiency, good to excellent sensitivity, low variability, and an acceptable level of redundancy. The highest correlation (r = 0.80, p < 0.05) was found between EPT and TR. In our study area, EPT dominated the reference communities and accounted for this high redundancy. However, species richness is an important indicator used, by many opinion makers, to describe biodiversity in the current public debate about the importance of biodiversity in maintaining healthy ecosystems, and thus gave us impetus to include both metrics. Moreover, we think habitat diversity and niche partitioning in small streams can be better inferred with the TR metric. All other metric combinations had low to moderate correlations (range $\pm 0.12-0.74$, see Table 5) indicating that each metric contributed different information about the community.

Other metrics included in the MBI showed various responses to stream conditions. The mHBI, which is considered most sensitive to organic pollution (Hilsenhoff 1988, Lenat 1993), showed excellent utility in our study. Because assigned tolerance values indirectly integrate a wide variety of species responses to stress, the mHBI responded to impacts ranging from chronic sedimentation, elevated conductivity, to habitat degradation. The %Ephem metric showed the most sensitivity to coal mining and oil brine impacted streams, and was inversely related to %Chir+Olig. Chironomids and oligochaetes are generally tolerant of various forms of stream degradation including sediment, nutrients and organic wastes. In streams impacted by residential landuse with improper onsite sewage treatment, these organisms were frequently more abundant. The %Clinger metric responds primarily to siltation, as these organisms are adapted to "cling" to hard, stable substrates with minimal silt cover. In addition, they are reduced or absent from shifting sand or fine gravel habitat associated with sediment-impacted streams. This metric has recently been adopted for use in a multimetric index by Tennessee (Arnwine and Denton 2001), that shares similar ecoregions with Kentucky.

6.4 MBI Performance and Application

Overall, we conclude the aggregate index provides relevant information to characterize various landuse impacts inherent to the region. Moreover, the MBI responded to stressors associated with the burial and elimination of upstream tributaries from mining or construction practices (e.g., increased

conductivity and embeddedness). The final 100-point scale MBI utilized all available reference metric data from this study (calibration and validation data sets).

Using the 10^{th} %ile of the reference MBI as the threshold for separating impaired from unimpaired, we found that the MBI correctly classified 83% of *a priori* designated test sites as being impaired. Because we chose test sites ranging from slightly to heavily impacted, the MBI shows excellent promise for detecting a range of impairment. It should be emphasized that in some cases (e.g., due to natural or investigator variability, or minimal disturbance effects), best professional judgement or re-sampling may be warranted if index scores fall close to narrative-rating cutoffs. In the four test streams that rated as unimpaired, conductivity values were $<325 \mu \text{S/cm}$ (mean = $177.2 \mu \text{S/cm}$) and had RBP habitat scores >140 (mean = 145), values considered to not greatly deviate from the reference condition. Faunistically, these streams had taxa comparable to those found at most reference sites. The majority of the test streams in our study were derived from largely forested catchments; therefore, near- and in-stream disturbances adjacent to or upstream of the site likely influenced overall impairment ratings.

Regional stressors arising from mining and residential development are some of the most influential regarding headwater stream biointegrity in the Appalachian coal region. In mining regions of West Virginia, Green et al. (2000) found that biological conditions in mined and mined/residential watersheds were substantially more impaired than unmined watersheds. Our data showed that mined and mined/residential watersheds had the lowest MBI scores, and unmined sites were the ones likely to score Excellent or Good (Figure 17).

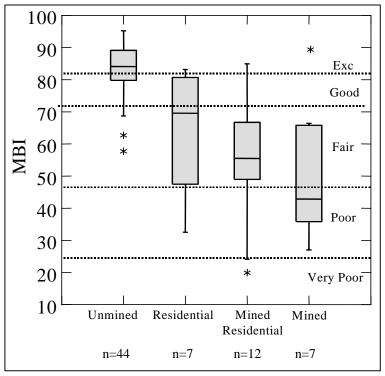


Figure 17. Boxplot of MBI scores among landuse types.

When used together with the EPA RBP Habitat Assessment scores and simple measurements such as canopy cover and conductivity, we feel the MBI can be both a powerful and practical tool for point and nonpoint source impact studies, 305(b) reporting, or to identify new high quality streams in need of protection as Exceptional Waters of the Commonwealth. Sample methodology and seasonality should be adhered to for the MBI to be effective, and we suggest sampling in the spring index period in this region, which ranges from mid-February to June.

It is anticipated that as new data are collected, metric scoring criteria may be refined during subsequent triennial reviews of water quality standards. Future needs include expanding the geographic area so that the quality of reference and disturbed sites in other parts of the Eastern Coalfield region can be assessed. Additional testing on the effects of annual variability on MBI scores, and to provide a check on the precision of the MBI, is also needed. Although very few sample events were replicated in this study, a preliminary analysis on one reference site showed promising results (Table 8). Here, MBI scores had very low variability despite two metrics (mHBI and %Chir+Olig) and total number of individuals having coefficient of variations over 20%.

Table 8. Variability in the MBI and metrics from revisit and duplicate samples at Lower Pigeon Branch (REF). SD=Standard Deviation, C.I.=Confidence Interval; CV=Coefficient of Variation.

Stream Name	CollDate	Narrative	MBI	TR	EPT	mHBI	m%EPT	%Ephem	%Chir+Olig	%Clng
Lower Pigeon Br	4/12/01	Exc	83.43	53	29	2.55	66.86	42.20	5.65	61.37
Lower Pigeon Br	5/15/02	Exc	87.74	45	30	1.68	91.71	54.15	1.95	54.15
Lower Pigeon Br	5/16/02	Exc	85.51	49	27	2.22	85.94	46.68	1.86	53.58
Mean			85.6	49.0	28.7	2.1	81.5	47.7	3.2	56.4
SD			2.2	4.0	1.5	0.4	13.0	6.0	2.2	4.3
95% C.I.			2.4	4.5	1.7	0.5	14.7	6.8	2.4	4.9
C.V. (%)			2.5	8.2	5.3	20.3	16.0	12.7	68.6	7.7

7.0 Application of Family-level Taxonomic Resolution

The level of taxonomic effort (i.e., family vs. genus/species) was compared to determine applicability and sensitivity of the MBI in headwater streams in the Eastern Coalfield Region. While it is well-accepted that a finer level of taxonomic resolution provides more detailed and defensible information than a coarser one (Hawkins et al. 2000, Guerold 2000, Lenat and Resh 2001), there are a number of studies that show the utility of family-level taxonomy in bioassessments (Bailey et al. 2001, Gerritsen et al. 2000, Green et al. 2000). In headwater mountain streams in Kentucky, we have observed reduced species diversity within individual invertebrate families (i.e., low genus/species: family ratios). Exceptions to this are, for example, the families Chironomidae, Heptageniidae, Hydropsychidae, Elmidae, and Perlodidae.

We modified the headwater stream MBI to use 5 metrics: family taxa richness, family EPT, family biotic index, % Ephem, and % Chir+Olig. The % Ephem and % Chir+Olig metric scoring criteria remained the same as in the original MBI since these metrics are derived at lower levels of taxonomic resolution. The %Clinger metric cannot be used since genus-level resolution is needed to designate many of the taxa's habit. The 95th or 5th %iles were recalculated for the remaining metrics and scored on the 100-point scale as described in Section 4.3. The family biotic index (FBI) is analogous to the mHBI, but it uses family-level tolerance values, which were based on the calculated mean tolerance value of all genus/species within a particular family. Metric scoring formulae and an example calculation for the family-level MBI (F-MBI) is provided in Table 9.

Table 9. Metric scoring formulae and example calculation for the F-MBI.

Metric	95 th or 5 th %ile	Formula	Example for Bear Branch	Metric Score
Family-TR	35.7	$\frac{FamTR}{95th\%ile}X100$	$\frac{26}{35.7}X100$	72.8
Family-EPT	21	$\frac{FamEPT}{95th\%ile}X100$	$\frac{11}{21}X100$	52.4
FBI	3.10	$\frac{10 - FBI}{10 - 5th\%ile} X100$	$\frac{10 - 4.84}{10 - 3.10} X100$	74.8
% Ephem	66.5	$\frac{\% Ephem}{95th\% ile} X100$	$\frac{18.1}{66.3}X100$	27.2
% Chir+Olig	0.68	$\frac{100 - \% Chir + Olig}{100 - 5th\% ile} X100$	$\frac{100 - 9.53}{100 - 0.68}X100$	91.08
			Final F-MBI	63.65

A strong relationship (r²=0.93) was found between the F-MBI and the original index (Figure 18). This, in conjunction with the strong discriminatory power of the F-MBI (Figure 19), suggested that the F-MBI could be used for bioassessment of headwater streams in this region. Narrative ratings were established with modified percentile thresholds found in Section 4.4. These values correspond to water quality ratings of Unimpaired (>75), Partially Impaired (50-74), and Impaired (<50).

Use of these three use-based water quality classifications acknowledges a conservative viewpoint because of the decreased sensitivity inherent in family level taxonomy. Using the 10th%ile of the

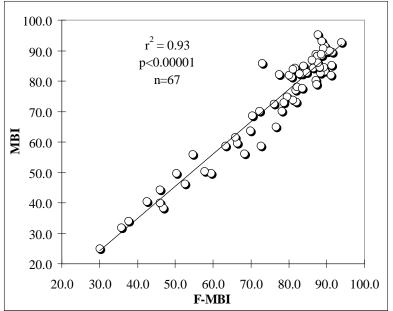


Figure 18. Relationship of Original MBI scores to the Family-level MBI (F-MBI)

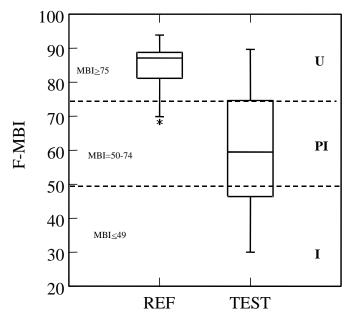


Figure 19. Box plot of F-MBI scores from reference and test sites (all sites) showing thresholds for use-support designations. U=Unimpaired, PI=Partially Impaired, I=Impaired.

reference F-MBI as the threshold for separating impaired from unimpaired, the MBI correctly classified 74% of *a priori* designated test sites (calibration and validation) as being impaired. Thus, a difference of 9% discrimination efficiency was noted when comparing the MBI to the F-MBI. In addition, there was a narrower central tendency in test site F-MBI assessments, whereas test streams assessed with the MBI showed a broader range of impairment. This also indicated a slight decrease in sensitivity of the F-MBI. Furthermore, MBI interquartiles showed better discrimination than with the F-MBI (Figure 20).

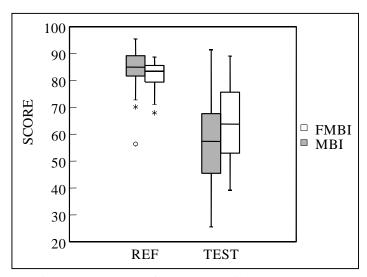


Figure 20. Box plot of MBI and Family-level MBI (F-MBI).

Despite a loss of discriminatory power, the F-MBI is recommended for use in mountain headwater streams as (1) a quick screening tool to delineate obviously impaired streams from the reference condition, (2) an assessment protocol for non-KDOW personnel (e.g., volunteer Watershed Watch, private consultants, university students) that may lack taxonomic expertise, and (3) a means for KDOW to assess a large number of headwater streams in a very short time with fewer personnel. Finally, KDOW asserts that genus/species level taxonomy should be made when the goal of biomonitoring is to show incremental improvements in water quality for permit compliance and enforcement or for other pollution abatement activities.

Toms Branch (Big Sandy Basin)

Puncheoncamp Branch (Stearns District)

Presley House Branch (Pine/Cumberland Mountain Region)

John Carpenter Branch (UK Robinson Forest)

Representative headwater reference streams with sampling areas denoted. See Figure 1 for area locations.

8.0 Literature Cited

- Arnwine, D.H. and G.M. Denton. 2001. Development of regionally-based numeric interpretations of Tennessee's narrative biological integrity criterion. Tennessee Department of Environment and Conservation. Nashville, TN.
- Bailey, R.C., R.H. Norris, and T.B. Reynoldson. 2001. Taxonomic resolution of benthic macroin-vertebrate communities in bioassessments. J. North Am. Benthol. Soc. 20:280-286.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish, second edition. EPA 841-B-99-002. US Environmental Protection Agency, Office of Water, Washington, DC.
- Barbour, M.T., J. Gerritsen, G.E. Griffith, R. Frydenborg, E. McCarron, J.S. White, and M.L. Bastian. 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. J. North Am. Benthol. Soc. 15(2):185-211.
- Branson, B. A. and D. L. Batch. 1972. Effects of strip-mining on small-stream fishes in east-central Kentucky. Proc. Biol. Soc.Wash. 84(59):507-518.
- Brinson, M. M. 1993. Changes in the functioning of wetlands along environmental gradients. Wetlands. 13:65-74.
- Braun, E. L. 1950. Deciduous forests of North America. Hafner, New York, NY.
- Brown, A.V. and P.P. Brussock. 1991. Comparisons of benthic invertebrates between riffles and pools. Hydrobiologia 220:99-108.
- Cairns, J., Jr. 1974. Indicator species vs. the concept of community structure as an index of pollution. Wat. Res. Bull. 10:338-347.
- Cairns, J., Jr. and J.R. Pratt. 1993. A history of biological monitoring using benthic macroinvertebrates. Pages 10--27 in D.M. Rosenberg and V.H. Resh (eds). Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York, NY.
- Curtis, W. R. 1973. Effects of strip-mining on the hydrology of small mountain watersheds in Appalachia *in* R.J. Hutnik and G. Davis (eds.). Ecology and reclamation of devastated lands, vol. 1. Gordon and Breach Publ. New York, NY.
- Delucchi, C.M. 1988. Comparison of community structure among streams with different temporal flow regimes. Canadian Journal of Zoology 66:579-586.
- Deshon, J.E. 1995. Development and application of the invertebrate community index (ICI). Pages 217-243 *in* W.S. Davis and T.P. Simon (eds.). Biological assessment and criteria: tools for water resource planning and decision making. Lewis Publishers, Boca Raton, Florida.
- Dow, C. L. and R.A. Zampella. 2000. Specific conductance and pH as indicators of watershed disturbance in streams of the New Jersey Pinelands, USA. Env. Mgmt. 26 (4):437-446.
- Drought Mitigation Center. 2001. http://enso.unl.edu/monitor/archive.html
- Dyer, K.L. 1982. Stream water quality in the coal region of eastern Kentucky. USDA Forest Serv. Techn. Rep. NE-74. Northeastern Forest Experiment Station, Berea, KY.
- Eastern Kentucky University, 1975. Surface mine pollution abatement and land use impact investigation: Research and demonstration of improved surface mining techniques in eastern Kentucky: v.2, watershed ranking, selection of the study area, analysis of the study area: Prepared for the Appalachian Regional Commission, Report ARC 71-66-T2, 279 p.
- Feldman, R.S., and E.F. Connor. 1992. The relationship between pH and community structure of invertebrates in streams of the Shenandoah National Park, Virginia, USA. Freshwater Biology, 27:261-276.

- Feminella, J. 1996. Comparison of benthic macroinvertebrate assemblages in small streams along a gradient of flow permanence. J. North Am. Benthol. Soc. 15:651--669.
- Gerritsen, J. 1995. Additive biological indices for resource management. J. North Am. Benthol. Soc. 14(3):451-457.
- Gerritsen, J., J. Burton, and M.T. Barbour. 2000. A stream condition index for West Virginia wadeable streams. Tetra Tech, Inc. Owing Mills, MD.
- Green, J., M. Passmore, and H. Childers. 2000. A survey of the condition of streams in the primary region of mountaintop mining/valley fill coal mining. Mountaintop Mining/Valley Fill Programmatic Environmental Impact Statement. U.S. Environmental Protection Agency, Region III. Wheeling, West Virginia.
- Guerold, F. 2000. Influence of taxonomic determination level on several community indices. Water Research 34 (2): 487-492.
- Harker, D.F., M.L. Warren, K.E. Camburn, S.M. Call, G.J. Fallo, and P. Wigley. 1982. Aquatic biota and water quality survey of the Upper Cumberland River basin. Kentucky Nature Preserves Commission Technical Report.
- Hilsenhoff, W.L. 1988. Rapid field assessment of organic pollution with a family level biotic index. J. North Am. Benthol. Soc. 7(1):65-68.
- Howard, H. S., B. Berrang, M. Flexner, G. Pond, S. Call. 2000. Kentucky Mountaintop Mining Benthic Macroinvertebrate Survey. U. S. Environmental Protection Agency, Science and Ecosystem Support Division, Ecological Assessment Branch, Athens, Ga.
- Hughes, R.M. 1995. Defining acceptable biological status by comparing with reference conditions. Pages 31-47 in W.S. Davis and T.P. Simon (eds.). Biological assessment and criteria: Tools for water resource planning and decision making. Lewis Publishers, Ann Arbor, Michigan.
- Hawkins, C. P., R.H. Norris, J.N. Hogue, and J.W. Feminella. 2000. Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications 10:1456-1477.
- Institute for Water Resources. 2001. http://www.wrsc.usace.army.mil/iwr/Atlas/Atlasintro.htm.
- Karr, J.R. and E.W. Chu. 1999. Restoring life in running waters: Better biological monitoring. Island Press, Washington, D.C.
- Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, and I.J. Schlosser. 1986. Assessing biological integrity in running waters: A method and its rationale. Special publication 5. Illinois Natural History Survey.
- Kentucky Division of Water. 2000. 1999 Kentucky Report to Congress on Water Quality: Frankfort, Kentucky Natural Resources and Environmental Protection Cabinet.
- Kerans, B.L. and J.R. Karr. 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecological Applications 4:768-785.
- Lenat, D.R. 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. North Am. Benthol. Soc. 7(3): 222-233.
- Lenat, D.R. 1993. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water quality ratings. J. North Am. Benthol. Soc. 12:279-290.
- Lenat, D.R., and V.H. Resh. 2001. Taxonomy and stream ecology the benefits of genus- and species-level identifications. J. North Am. Benthol. Soc. 20:287-298.
- Ludwig, J.A., and J.F. Reynolds. 1988. Statistical ecology: a primer on methods and computing. John Wiley and Sons. New York, NY.

- Maxted, J.R., M.T. Barbour, J. Gerritsen, V. Poretti, N. Primrose, A. Silvia, D. Penrose, and R. Renfrow. 2000. Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. J. North Am. Benthol. Soc. 14:440-450.
- McMurray, S.E. and G.A. Schuster. 2001. Macroinvertebrate, fish and physiochemical differences between an acid mine drainage impacted stream and a Kentucky Wild and Scenic River. J. Ky. Acad. Sci. 62: 125-141.
- Moeykens, M.D., R. Voshell. 2002. Studies of benthic macroinvertebrates for the Shenandoah National Park long-term ecological monitoring system: statistical analysis of LTEMS aquatic dataset from 1986 to 2000 on water chemistry, habitat, and macroinvertebrates. Virginia Tech Project No. 208-11-110A-007-374-1 (FRS# 432535).
- Norris, R.H. 1995. Biological monitoring: the dilemma of data analysis. J. North Am. Benthol. Soc. 14:440-450.
- Merritt, R.W. and K.W. Cummins (eds). 1996. An introduction to the aquatic insects of North America. 3rd ed. Kendall/Hunt, Dubuque, IA.
- Omernik, J. M. 1987. Ecoregions of the conterminous United States. Annals of the Association of American Geographers 77(1):118-125.
- Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. U.S. Environmental Protection Agency, Office of Water Regulations and Standards, Washington, D.C. EPA 440-4-89-001.
- Pond, G. J., J.F. Brumley, and R.E. Houp. 2000. Preliminary ordination of stream organisms in Kentucky. Abstract *in* Bull. North Am. Benthol. Soc. 17(1):448.
- Pond, G. J. 2000. Comparison of macroinvertebrate communities of two intermittent streams with different disturbance histories in Letcher County, Kentucky. J. Ky. Acad. Sci. 61(1):10-22.
- Resh, V.H. and J.K. Jackson. 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. Pages 195-233 in D.M. Rosenberg and V.H. Resh (eds.). Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York.
- Reynoldson, T. B., R.H. Norris, V.H. Resh, K.E. Day, and D.M Rosenberg. 1997. The reference condition: a comparison of multimetric and multivariate approaches to assess water-quality impairment using benthic macroinvertebrates. J. N. Am. Benthol. 16(4):833-852.
- Roback, S.S. 1974. Insects (Arthropoda: Insecta) *in* C.W. Hart and S.L.H. Fuller (eds.). Pollution ecology of freshwater invertebrates. Academic Press. New York, NY.
- Sweeney, B.W. 1984. Factors influencing life-history patterns of aquatic insects. Pages 56-100 in V.H. Resh and D.M. Rosenberg (eds.). The ecology of aquatic insects. Praeger, New York, NY.
- Sweeney, B.W. 1993. Effects of streamside vegetation on macroinvertebrate communities of White Clay Creek in Eastern North America. Proc. Acad. Nat Sci. of Phil. 144: 291-340.
- Talak, A. 1977. The recovery of stream insect communities following coal strip mining in the Cumberland mountains of Tennessee. M.S. Thesis. Univ. of Tenn, Knoxville. 81 pp.
- ter Braak, C.J.F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67:1167-1179.
- U.S. EPA. 2000. Level III ecoregions of the continental United States (revision of Omernik 1987). Corvallis, Oregon, USEPA-National Health and Environmental Effects Laboratory. Map-M-1, various scales.
- Wallace, J. B. and J. L. Meyer. 2001. Lost linkages and lotic ecology: rediscovering small streams. *In* Ecology: achievement and challenge. M. C. Press, N. J. Huntly, and S. Levin (eds.). Blackwell Science, London.

- Waters, T.F. 1995. Sediment in streams: sources, biological effects, and control. Am. Fish. Soc. Monogr. 7.
- Yoder, C.O., R.J. Miltner, and D. White. 2000. Using biological criteria to assess and classify urban streams and develop improved landscape indicators, pp. 32-44 *in* S. Minamyer, J. Dye, and S. Wilson (eds.), National Conference on Tools for Urban Water Resource Management and Protection. U.S. EPA, Offfc. Res. Dev., Cincinnatti, OH. EPA/625/R-00/001.
- Yoder, C. O. and E. T. Rankin. 1995. Biological response signatures and the area of degradation value: new tools for interpreting multimetric data, pp. 263-300 *in* W.S. Davis and T.P. Simon (editors). Biological assessment and criteria: Tools for water resource planning and decision making. Lewis Publishers, Ann Arbor, Michigan.

Appendix A. Site locations for reference and test sites. Groups refer to geographic location: BS=Big Sandy, WA=Western Allegheny, PCM=Pine/Cumberland Mountains, ROB=Robinson Forest, RED, Redbird District, STRNS= Stearns, UNG=Ungrouped. Ecoregion abbreviations are CA=Central Appalachians, SW=Southwestern Appalachians, WA=Western Allegheny Plateau.

1970-05 REP	SiteID	Condition	StreamName	Group	RM	Order	Area (mi²)	Basin	Ecoregion	County	Lat_Dec	Long_Dec	TOPO
	1007005					2	1.15	BIG SANDY	CA	MARTIN	37.69166	-82.40413	VARNEY
MODING MEXT TOMAS MEXT CALE PRINK MEX ME	1007006	REF	UT HOBBS FORK	BS	0.1	1	0.18	BIG SANDY	CA		37.6829	-82.40664	VARNEY
105002 REF LOWEP PEGEON RR													
100,000 TEST HATCHELD RE STONS 0.1 0.5 0.2 0.000 0.0													
2000/27 TST INCIDIEL BR STRNS 0.1 1 0.35 UPPER SW MICKERARY 36,0507 6.04BRELAND FALLS													
2006910 REP CANCECC STRESS 0.1 2 1.14 UPPER SW WITTLEY 50,00527 -82,791 SAWYER 2006111 REP CANCECC STRESS 0.1 1 0.65 UPPER SW WITTLEY 50,00527 -82,791 SAWYER 2006111 REP CANCECC STRESS 0.1 2 1.7 UPPER SW MCCERARY 56,0576 -84,099 CIDENTAL PART 2006010 REP PUNCHEONCAMP RR STRESS 0.1 2 1.7 UPPER SW MCCERARY 56,0576 -86,099 REP FUNCHEONCAMP RR STRESS 0.1 2 1.7 UPPER SW MCCERARY 56,0576 -86,099 REP FUNCHEONCAMP RR STRESS 0.1 0.5 UPPER SW MCCERARY 56,0576 -86,099 REP FUNCHEONCAMP RR STRESS 0.1 0.5 UPPER SW MCCERARY 56,0576 -86,099 REP FUNCHEONCAMP RR STRESS 0.1 0.5 UPPER SW MCCERARY 56,0576 -86,099 REP FUNCHEONCAMP RR STRESS 0.1 0.5 UPPER SW MCCERARY 56,0576 -86,099 REP FUNCHEONCAMP RR STRESS 0.1 0.5 UPPER SW MCCERARY 56,0576 -86,099 REP FUNCHEONCAMP RR STRESS 0.1 0.5 UPPER SW MCCERARY 56,0576 -86,099 REP SW MCCERARY 56,090													
200693 REP CANECK STENS 0.3 1 0.65 UPPER SW MCCERARY 36,6407 3													
2008107 REF ROCK CRI													
2008 S													
2008/07 REF PONCHEDNCAMP BR STRNS 0.1 2 0.7 UPPER SW MCCELLARY 36,6575 84,6491 BELL FARM 2008/07 REF ROCK CE2 STRNS 0.1 2 0.5 UPPER SW MCCELLARY 36,6559 84,62916 BELL FARM 2008/07 TEST CONTROL STRNS 0.1 2 0.5 UPPER SW MCCELLARY 36,6659 84,62836 BELL FARM 2008/07 TEST CONTROL STRNS 0.1 2 1.25 UPPER SW MCCELLARY 36,6659 84,62836 BELL FARM 2008/07 TEST CONTROL STRNS 0.1 2 1.25 UPPER SW MCCELLARY 36,6659 84,62836 BELL FARM 2008/07 TEST STRNS 0.3 1 0.66 UPPER SW MCCELLARY 36,6659 84,62836 BELL FARM 2008/07 TEST STRNS 0.3 1 0.66 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST CONTROL STRNS 0.3 1 0.66 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST CONTROL STRNS 0.3 1 0.66 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST CONTROL STRNS 0.3 1 0.66 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST CONTROL STRNS 0.3 1 0.66 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST CONTROL STRNS 0.3 1 0.66 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST CONTROL STRNS 0.3 0.0 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST ENTROL STRNS 0.3 0.0 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST ENTROL STRNS 0.3 0.0 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST ENTROL STRNS 0.3 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST ENTROL STRNS 0.3 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST STRNS 0.3 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST STRNS 0.3 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST STRNS 0.3 UPPER SW MCCELLARY 36,7366 84,4815 WITHING TEST STRNS 0.3 UPPER SW MCCELLARY 36,7366 STRNS 0.3 UPPER SW MCCELLARY 36,7366 STRNS 0.3 UPPER SW MCCEL													
2008901 REF ROCK CR2 STENS 0.1 2 0.63 LIPPER SW MCCEARY 36.6923 48.62916 BELL FARM 2008012 REF CIT SETS CONSIDERALND STENS 0.1 2 0.95 LIPPER SW MCCEARY 36.6923 48.62916 BELL FARM 2008012 REF CIT SETS CONSIDERALND STENS 0.1 2 0.95 LIPPER SW MCCEARY 36.7124 49.4525 BAATHELL 200901 REF STENS 0.1 2 0.95 LIPPER SW MCCEARY 36.7124 49.4525 BAATHELL 200901 REF STENS 0.1 2 2 2.0 LIPPER SW MCCEARY 36.7124 49.4525 BAATHELL 200901 REF STENS 0.1 2 2 2.0 LIPPER SW MCCEARY 36.736 49.4535 BAATHELL 200901 REF SW MCCEARY 36.7369 SA.7369 SA.7369 MCCEARY 36.7369 SA.7369 SA.													
2008 REF ROCK CR3 STRNS 0.1 2 0.37													
2008022 REF UT RS FX CUMBERLAND STRNS 0.1 2 0.39													
200803 TEST COPPEY BR STRNS 0.1 2 1.25 UIPPER SW MCCREARY 36.9982 44.51885 MARTHELL 2015004 REF DRY FORK USG 1.7 2 2.05 UIPPER SW JACKSON 73.9281 44.11898 JOININITTA 2015004 REF DRY FORK USG 1.7 2 2.05 UIPPER CA JACKSON 73.9281 44.11898 JOININITTA 2015007 TEST EWING CREE													
2014044 TEST RENNEN'S RR STRNS 0.3 1 0.66 UPPER SW MCCRARY 36,7366 -8448915 WHITLEY CITY 201501031 RIF BROWNIES CR CM 14.1 2 2.3 UPPER CA HARLAN 36,6981 -83,44046 EWING 2040031 RIF BROWNIES CR FCM 0.1 1 0.51 EWING EWING 2040032 REF WATTS CR FCM 0.2 2 0.88 UPPER CA HARLAN 36,6981 -83,44046 EWING 2040033 REF WATTS CR FCM 0.2 2 0.88 UPPER CA HARLAN 36,6981 -83,4599 EWING 2040042 REF WATTS CR FCM 0.2 2 0.88 UPPER CA HARLAN 36,6981 -83,37577 WALLING CREEK CA CA CA CA CA CA CA C													
2023094 REF DRY FORK													
2041003 RIFF BROWNISCR; PCM 14.1 2 2.3 UPPIR CA HARLAN 36,698 .83,44046 EWING 2041002 TEST EWING CR PCM 0.2 2 3.06 UPPER CA HARLAN 36,839 .83,37168 HARLAN 20,000 TEST EWING CR PCM 0.2 2 3.06 UPPER CA HARLAN 36,839 .83,37168 HARLAN 20,000 TEST EWING CR PCM 0.2 2 3.06 UPPER CA HARLAN 36,839 .83,37168 HARLAN CAPE CA						-							
2041004 TEST BROWNIES CR2 PCM 0.1 1 0.31 UPPER CA HARLAN 36,899 884,499 EWING													
2042002 TEST EWING CR PCM 0.2 2 3.06 UPPER CA HARLAN 36.8501 8.83.7767 MALLINS (CREEK)													
2042003 REF WATTS CR PCM 2.65 2 0.85 UPPER CA HARLAN 36.86211 33.37577 WALLINS CREEK 2046004 REF PRESILEY HOUSE BR PCM 0.25 2 2.6 UPPER CA LETCHER 37.0656 32.7916 WHITESBURG 2046005 TEST FRANKS CR PCM 3.0 2 1.36 UPPER CA LETCHER 37.0656 32.7916 WHITESBURG 2046005 TEST FRANKS CR PCM 3.0 2 1.36 UPPER CA LETCHER 37.0656 32.7916 WHITESBURG 2046005 REF STEER FORK WA 0.12 2 2.65 KENTUCKY WA WOLER 37.7272 38.54019 MCKEE 24.05007 MCKE													
2046002 REF BAD BR PCM 0.2 2 2.6 UPPER CA LETCHER 37,00616 52,77163 WHITESBURG 2046005 TEST FRANKS CR PCM 3.0 2 1.36 UPPER CA LETCHER 37,00606 52,77163 WHITESBURG 2046005 TEST FRANKS CR PCM 3.0 2 1.36 UPPER CA LETCHER 37,00502 52,8015 WHITESBURG 405007 REF EREFONK WA 0.2 2 3 KENTUCKY WA JACKSON 37,8525 -38,9016 MCKEE 405007 REF EREFONK WA 0.1 2 2.65 KENTUCKY WA WOLFE 377,2722 -38,66139 ZACHARIAH 4042016 TEST MER BER RUFFER WA 13 2 1.8 KENTUCKY WA WOLFE 377,2721 -38,66139 ZACHARIAH 4042016 TEST													
2046004 REF PRESILY HOUSE BR PCM 0.2 2 0.9 UPPER CA LETCHER 37,00566 32,7916 WHITTSBURG 4056007 REF STEER FORK WA 0.15 2 3 KINTUCKY WA WOLFE 37,72572 -83,6159 WHITTSBURG 4042003 REF STEER FORK WA 0.15 2 2.65 KINTUCKY WA WOLFE 37,72572 -83,6159 ZACHARIAH 405000 REF CHENDAS FORK ROB 3.0 2 2.66 KINTUCKY WA WOLFE 37,72572 -83,6159 ZACHARIAH 405000 REF CLEMONS FORK ROB 3.0 2 2.0 KINTUCKY WA WOLFE 37,72572 -83,6159 ZACHARIAH 405000 REF CLEMONS FORK ROB 3.0 2 2.0 KINTUCKY WA WOLFE 37,72572 -83,6159 ZACHARIAH 405000 REF CLEMONS FORK ROB 3.0 2 2.0 KINTUCKY WA WOLFE 37,72572 -83,6159 ZACHARIAH 405000 REF CLEMONS FORK ROB 0.1 1 0.45 KINTUCKY CA BREATHITI 37,4003 38,3233 NOBLE MODRE MODRE													
Additional Part Park P													
4049005 REF STERFORK													
4042003 REF													
405000													
4050002													
4050007 TEST													
495000													
4050009 TEST BEAR BR													
4050010 REF CLEMONS FORK ROB 3,9 2 0,8 KENTUCKY CA BREATHITT 37,48593 83,13222 NOBLE 4050012 REF FALLING ROCK BR ROB 0,1 1 0,41 KENTUCKY CA BREATHITT 37,48294 83,1388 NOBLE 4050013 REF SHELLY ROCK FORK ROB 0,1 1 0,55 KENTUCKY CA BREATHITT 37,48239 83,13831 NOBLE 4050014 REF MILLSEAT BR ROB 0,7 2 0,58 KENTUCKY CA BREATHITT 37,48249 83,12843 NOBLE 4050015 REF LITTLE MILLSEAT BR ROB 0,7 2 0,58 KENTUCKY CA BREATHITT 37,48242 83,15023 NOBLE 4050016 TEST LICK BR ROB 0,1 2 0,82 KENTUCKY CA BREATHITT 37,48242 83,15023 NOBLE 4050016 TEST LICK BR ROB 0,4 2 2,81 KENTUCKY CA PERRY 37,39266 83,13835 NOBLE 4050016 TEST LICK BR ROB 0,6 2 1,08 KENTUCKY CA PERRY 37,39266 83,13835 NOBLE 4050016 TEST LICK BR ROB 0,6 2 2,5 KENTUCKY CA PERRY 37,39266 83,13835 NOBLE 4050018 TEST CANEY CR ROB 0,7 2 1,5 KENTUCKY CA BREATHITT 37,44875 83,2611 HADDIX 4052018 REF REF BIG DOUBLE CR RED 0,7 2 1,6 KENTUCKY CA CLAY 37,08907 83,56184 CREEKVILLE 4052018 REF REF BIG DOUBLE CR RED 0,7 2 1,6 KENTUCKY CA CLAY 37,08907 83,56184 CREEKVILLE 4052020 REF REF BIG DOUBLE CR RED 0,5 2 2,5 KENTUCKY CA CLAY 37,08907 83,56184 CREEKVILLE 4052020 REF REF BIG DOUBLE CR RED 0,6 2 2,47 KENTUCKY CA LESILE 37,07628 83,51512 CREEKVILLE 4052021 REF BIG GOVERN RED 0,6 2 2,47 KENTUCKY CA LESILE 37,0925 83,51512 CREEKVILLE 4052021 REF BIG GOVERN RED 0,6 2 2,47 KENTUCKY CA LESILE 37,0925 83,51512 CREEKVILLE 4052023 REF REF BIG DOUBLE CR RED 0,6 2 2,47 KENTUCKY CA LESILE 37,0925 83,5152 CREEKVILLE 4052026 TEST LAWSON CR RED 0,6 2 1,41 KENTUCKY CA LESILE 37,0925 83,51530 CREEKVILLE 4052026 TEST LAWSON CR R						2							
4950011 REF		REF		ROB	3.9	2							
4050013 REF SHELLY ROCK FORK ROB 0.1 1 0.55 KENTUCKY CA BREATHITT 37.48426 -83.15128 NOBLE		REF		ROB		1							
4050014 REF MILLSEAT BR ROB 0,7 2 0.52 KENTUCKY CA BREATHITT 37,47242 -83,15023 NOBLE	4050012	REF	JOHN CARPENTER FORK	ROB	0.2	1	0.58	KENTUCKY	CA	BREATHITT	37.48239	-83.12843	NOBLE
4050015 REF	4050013	REF	SHELLY ROCK FORK	ROB	0.1	1	0.55	KENTUCKY	CA	BREATHITT	37.48165	-83.15128	NOBLE
4050016	4050014	REF	MILLSEAT BR	ROB	0.7	2	0.58	KENTUCKY	CA	BREATHITT	37.48242	-83.15023	NOBLE
4050017 TEST WILLIAMS BR ROB 0.6 2 1.08 KENTUCKY CA PERRY 37,39229 -83,15638 NOBLE	4050015	REF	LITTLE MILLSEAT BR	ROB	0.1	2	0.82	KENTUCKY	CA	BREATHITT	37.47224	-83.1466	NOBLE
4050018 TEST CANEY CR	4050016	TEST	LICK BR	ROB	0.4	2	2.81	KENTUCKY	CA	PERRY	37.39266	-83.13835	NOBLE
4052017 REF LITTLE DOUBLE CR RED 0.7 2 1.5 KENTUCKY CA CLAY 37,1312 -83.5983 BIG CREK	4050017	TEST	WILLIAMS BR	ROB	0.6	2	1.08	KENTUCKY	CA	PERRY	37.39329	-83.15638	NOBLE
4052018	4050018	TEST	CANEY CR	ROB	0.75		2.5	KENTUCKY	CA	BREATHITT	37.44875	-83.2611	HADDIX
A652019 REF	4052017	REF	LITTLE DOUBLE CR	RED	0.7	2	1.5	KENTUCKY	CA	CLAY	37.1312	-83.5983	BIG CREEK
MoS2020	4052018	REF	RF BIG DOUBLE CR2	RED	0.7		1.46		CA	CLAY	37.08907	-83.6184	CREEKVILLE
4052021 REF BIG MF ELISHA CR RED 0.2 1 0.82 KENTUCKY CA CLAY 37.0815 -83.51472 CREEKVILLE													
4052022 REF													
4052023 REF RF BIG DOUBLE CR RED 0.2 2 1.53 KENTUCKY CA CLAY 37.09037 -83.60673 CREEKVILLE													
4052024 TEST RED BIRD CR RED 86.05 2 1.4 KENTUCKY CA BELL 36.91241 -83.54094 BEVERLY 4052025 TEST MUD LICK BR RED 0.2 1 1.1 KENTUCKY CA BELL 36.91261 -83.53675 BEVERLY 4052026 TEST LAWSON CR RED 1.3 2 1.48 KENTUCKY CA BELL 36.92718 -83.53017 BEVERLY 4052027 TEST SPRUCE BR RED 0.1 2 0.95 KENTUCKY CA CLAY 36.95668 -83.53017 BEVERLY 4052028 TEST GILBERTS LITTLE CR RED 0.2 2 1.47 KENTUCKY CA CLAY 37.09083 -83.56353 CREEKVILLE 4052029 TEST ARNETTS FORK RED 0.9 2 1.42 KENTUCKY CA CLAY 37.11115 -83.56353 CREEKVILLE 4052029 TEST ARNODA BR													
4052025 TEST MUD LICK BR RED 0.2 1 1.1 KENTUCKY CA BELL 36.91261 -83.53675 BEVERLY 4052026 TEST LAWSON CR RED 1.3 2 1.48 KENTUCKY CA BELL 36.92718 -83.55332 BEVERLY 4052027 TEST SPRUCE BR RED 0.1 2 0.95 KENTUCKY CA CLAY 36.95668 -83.53017 BEVERLY 4052028 TEST GILBERTS LITTLE CR RED 0.2 2 1.47 KENTUCKY CA CLAY 37.09083 -83.56353 CREEKVILLE 4052029 TEST ARNETTS FORK RED 0.9 2 1.42 KENTUCKY CA CLAY 37.11115 -83.59735 CREEKVILLE 4052030 REF SUGAR CR RED 2.1 2 3.05 KENTUCKY CA LESLIE 37.12376 -83.5243 CREEKVILLE 4054005 REF CAWOOD BR RED 0.1 1 0.8 KENTUCKY CA LESLIE 37.12376 -83.5243 CREEKVILLE 4054007 TEST LF CAMP CR UNG 0.1 1 0.93 KENTUCKY CA LESLIE 37.113 -83.34711 CUTSHIN 4054008 TEST CAMP CR UNG 1.3 2 2.7 KENTUCKY CA LESLIE 37.10556 -83.34114 CUTSHIN 4054009 REF BILL BR UNG 0.2 2 2.3 KENTUCKY CA LESLIE 36.93219 -83.36634 BLEDSOE 4054010 REF HONEY BR UNG 0.1 2 0.82 KENTUCKY CA LESLIE 36.93219 -83.36634 BLEDSOE 4054010 REF HONEY BR UNG 0.1 2 0.82 KENTUCKY CA LESLIE 37.01735 -83.35649 CUTSHIN 4055002 REF UT LINE FORK UNG 0.2 1 0.22 KENTUCKY CA LESLIE 37.01735 -82.99397 ROXANA 5037002 REF BOTTS FORK WA 0.2 2 3.38 LICKING WA MENIFEE 37.94811 -83.50826 SCRANTON 5037004 REF WELCH FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37.94811 -83.50826 SCRANTON 5037004 REF WELCH FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37.94811 -83.50826 SCRANTON 5037004 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.08026 -83.00607 ISONVILLE 6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
4052026 TEST LAWSON CR RED 1.3 2 1.48 KENTUCKY CA BELL 36,92718 -83.55332 BEVERLY 4052027 TEST SPRUCE BR RED 0.1 2 0.95 KENTUCKY CA CLAY 36,95718 -83.55332 BEVERLY 4052028 TEST GILBERTS LITTLE CR RED 0.1 2 1.47 KENTUCKY CA CLAY 37.09083 -83.56353 CREEKVILLE 4052029 TEST ARNETTS FORK RED 0.2 2 1.42 KENTUCKY CA CLAY 37.10136 -83.56353 CREEKVILLE 4052030 REF SUGAR CR RED 0.1 2 3.05 KENTUCKY CA LESLIE 37.11376 -83.5243 CREEKVILLE 4054005 REF CAWOOD BR RED 0.1 1 0.8 KENTUCKY CA LESLIE 36,93714 -83.37117 BLEDSOE 4054007 TEST LFAMP CR <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
4052027 TEST SPRUCE BR RED 0.1 2 0.95 KENTUCKY CA CLAY 36,95668 -83.53017 BEVERLY 4052028 TEST GILBERTS LITTLE CR RED 0.2 2 1.47 KENTUCKY CA CLAY 37.09083 -83.56353 CREEKVILLE 4052029 TEST ARNETTS FORK RED 0.9 2 1.42 KENTUCKY CA CLAY 37.11115 -83.59735 CREEKVILLE 4052030 REF SUGAR CR RED 0.1 1 0.8 KENTUCKY CA LESLIE 37.12376 -83.5243 CREEKVILLE 4054005 REF CAWOOD BR RED 0.1 1 0.8 KENTUCKY CA LESLIE 36.93714 -83.37177 BLEDSOE 4054007 TEST LF CAMP CR UNG 0.1 1 0.93 KENTUCKY CA LESLIE 37.1035 -83.34114 CUTSHIN 4054008 TEST CAMP CR <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
4052028 TEST GILBERTS LITTLE CR RED 0.2 2 1.47 KENTUCKY CA CLAY 37.09083 -83.56353 CREEKVILLE 4052029 TEST ARNETTS FORK RED 0.9 2 1.42 KENTUCKY CA CLAY 37.11115 -83.59735 CREEKVILLE 4052030 REF SUGAR CR RED 2.1 2 3.05 KENTUCKY CA LESLIE 37.12376 -83.5243 CREEKVILLE 4054005 REF CAWOOD BR RED 0.1 1 0.8 KENTUCKY CA LESLIE 37.12376 -83.57177 BLEDSOE 4054007 TEST LF CAMP CR UNG 0.1 1 0.93 KENTUCKY CA LESLIE 37.113 -83.34741 CUTSHIN 4054008 TEST CAMP CR UNG 1.3 2 2.7 KENTUCKY CA LESLIE 37.10556 -83.34114 CUTSHIN 4054009 REF BIL BR UNG 0.2 2 2.3 KENTUCKY CA LESLIE 37.10556 -83.34114 CUTSHIN 4054010 REF HONEY BR UNG 0.1 2 0.82 KENTUCKY CA LESLIE 37.01735 -83.35649 CUTSHIN 4055002 REF UT LINE FORK UNG 0.2 1 0.22 KENTUCKY CA LESLIE 37.07736 -82.99397 ROXANA 5037002 REF BOTTS FORK WA 0.2 2 3.38 LICKING WA MENIFEE 37.94361 -83.50491 SCRANTON 5037004 REF WELCH FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37.94361 -83.50491 SCRANTON 6012003 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
4052029 TEST ARNETTS FORK RED 0.9 2 1.42 KENTUCKY CA CLAY 37.11115 -83.59735 CREEKVILLE 4052030 REF SUGAR CR RED 2.1 2 3.05 KENTUCKY CA LESLIE 37.12376 -83.5243 CREEKVILLE 4054005 REF CAWOOD BR RED 0.1 1 0.8 KENTUCKY CA LESLIE 36.93714 -83.37177 BLEDSOE 4054007 TEST LF CAMP CR UNG 0.1 1 0.93 KENTUCKY CA LESLIE 37.113 -83.34741 CUTSHIN 4054008 TEST CAMP CR UNG 0.1 2 2.7 KENTUCKY CA LESLIE 37.10556 -83.34114 CUTSHIN 4054009 REF BILL BR UNG 0.2 2 2.3 KENTUCKY CA LESLIE 37.01735 -83.35649 CUTSHIN 4054010 REF HONEY BR UNG													
4052030 REF SUGAR CR RED 2.1 2 3.05 KENTUCKY CA LESLIE 37.12376 -83.5243 CREEKVILLE 4054005 REF CAWOOD BR RED 0.1 1 0.8 KENTUCKY CA LESLIE 36.93714 -83.37177 BLEDSOE 4054007 TEST LF CAMP CR UNG 0.1 1 0.93 KENTUCKY CA LESLIE 37.1131 -83.34741 CUTSHIN 4054008 TEST CAMP CR UNG 1.3 2 2.77 KENTUCKY CA LESLIE 37.1055 -83.34114 CUTSHIN 4054009 REF BILL BR UNG 0.2 2 2.33 KENTUCKY CA LESLIE 37.1055 -83.3634 BLEDSOE 4054010 REF HONEY BR UNG 0.1 2 0.82 KENTUCKY CA LESLIE 37.01735 -83.35649 CUTSHIN 4055002 REF UT LINE FORK UNG 0.2 1 0.22 KENTUCKY CA LESLIE 37.01735 -83.35649 CUTSHIN 4055002 REF BOTTS FORK WA 0.2 2 3.38 LICKING WA MENIFEE 37.94811 -83.50491 SCRANTON 5037004 REF WELCH FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37.94811 -83.50491 SCRANTON 6012003 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.08026 -83.00607 ISONVILLE 6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
4054005 REF CAWOOD BR RED 0.1 1 0.8 KENTUCKY CA LESLIE 36,93714 -83.37177 BLEDSOE 4054007 TEST LF CAMP CR UNG 0.1 1 0.93 KENTUCKY CA LESLIE 37.113 -83.34741 CUTSHIN 4054008 TEST CAMP CR UNG 1.3 2 2.7 KENTUCKY CA LESLIE 37.10556 -83.34114 CUTSHIN 4054009 REF BILL BR UNG 0.2 2 2.3 KENTUCKY CA LESLIE 37.10556 -83.3641 BLEDSOE 4054010 REF HONEY BR UNG 0.1 2 0.82 KENTUCKY CA LESLIE 37.01735 -83.35649 CUTSHIN 4055002 REF UT LINE FORK UNG 0.2 1 0.22 KENTUCKY CA LESLIE 37.01735 -83.35649 CUTSHIN 4055002 REF BOTTS FORK WA 0.2 2 3.38 LICKING WA MENIFEE 37.9736 -82.9937 ROXANA 5037004 REF BOTTS FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37.94361 -83.50491 SCRANTON 6012003 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.0026 -83.00607 ISONVILLE 6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
4054007 TEST LF CAMP CR UNG 0.1 1 0.93 KENTUCKY CA LESLIE 37.113 -83.34741 CUTSHIN 4054008 TEST CAMP CR UNG 1.3 2 2.7 KENTUCKY CA LESLIE 37.10556 -83.34114 CUTSHIN 4054009 REF BILL BR UNG 0.2 2 2.3 KENTUCKY CA LESLIE 37.01735 -83.36644 BLEDSOE 4054010 REF HONEY BR UNG 0.1 2 0.82 KENTUCKY CA LESLIE 37.01735 -83.35649 CUTSHIN 4055002 REF UT LINE FORK UNG 0.2 1 0.22 KENTUCKY CA LETCHER 37.07736 -82.99397 ROXANA 5037002 REF BOTTS FORK WA 0.2 2 3.38 LICKING WA MENIFEE 37.94361 -83.50491 SCRANTON 5037004 REF WELCH FORK WA													
4054008 TEST CAMP CR UNG 1.3 2 2.7 KENTUCKY CA LESLIE 37.10556 -83.34114 CUTSHIN 4054009 REF BILL BR UNG 0.2 2 2.3 KENTUCKY CA LESLIE 36.93219 -83.30634 BLEDSOE 4054010 REF HONEY BR UNG 0.1 2 0.82 KENTUCKY CA LESLIE 37.01735 -83.35649 CUTSHIN 4055002 REF UT LINE FORK UNG 0.2 1 0.22 KENTUCKY CA LETCHER 37.07736 -82.99397 ROXAND 5037002 REF BOTTS FORK WA 0.2 2 3.38 LICKING WA MENIFEE 37.94811 -83.50826 SCRANTON 5037004 REF WELCH FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37.94811 -83.50491 SCRANTON 6012003 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.08026 -83.00607 ISONVILLE 6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
4054009 REF BILL BR UNG 0.2 2 2.3 KENTUCKY CA LESLIE 36,93219 -83.30634 BLEDSOE 4054010 REF HONEY BR UNG 0.1 2 0.82 KENTUCKY CA LESLIE 37,01735 -83.35649 CUTSHIN 4055002 REF UT LINE FORK UNG 0.2 1 0.22 KENTUCKY CA LETCHER 37,07736 -82.99397 ROXANA 5037002 REF BOTTS FORK WA 0.2 2 3.38 LICKING WA MENIFEE 37,94811 -83.50426 SCRANTON 5037004 REF WELCH FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37,94811 -83.50491 SCRANTON 6012003 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.08026 -83.00607 ISONVILLE 6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
4054010 REF HONEY BR UNG 0.1 2 0.82 KENTUCKY CA LESLIE 37.01735 -83.35649 CUTSHIN 4055002 REF UT LINE FORK UNG 0.2 1 0.22 KENTUCKY CA LETCHER 37.07736 -82.99397 ROXANA 5037002 REF BOTTS FORK WA 0.2 2 3.38 LICKING WA MENIFEE 37.94811 -83.50491 SCRANTON 5037004 REF WELCH FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37.94361 -83.50491 SCRANTON 6012003 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.08026 -83.00607 ISONVILLE 6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
4055002 REF UT LINE FORK UNG 0.2 1 0.22 KENTUCKY CA LETCHER 37.07736 -82.99397 ROXANA 5037002 REF BOTTS FORK WA 0.2 2 3.38 LICKING WA MENIFEE 37.94811 -83.50826 SCRANTON 5037004 REF WELCH FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37.94361 -83.50491 SCRANTON 6012003 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.0926 -83.00607 ISONVILLE 6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
5037002 REF BOTTS FORK WA 0.2 2 3.38 LICKING WA MENIFEE 37.94811 -83.50826 SCRANTON 5037004 REF WELCH FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37.94361 -83.50491 SCRANTON 6012003 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.08026 -83.00607 ISONVILLE 6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
5037004 REF WELCH FORK WA 0.1 2 1.5 LICKING WA MENIFEE 37.94361 -83.50491 SCRANTON 6012003 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.08026 -83.00607 ISONVILLE 6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
6012003 REF NICHOLS FORK WA 0.2 2 0.65 LITTLE SANDY WA ELLIOTT 38.08026 -83.00607 ISONVILLE 6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
6012004 REF MEADOW BR WA 0.3 2 0.93 LITTLE SANDY WA ELLIOTT 38.07261 -82.99451 MAZIE													
		REF	NICHOLS FORK	WA	0.2			LITTLE SANDY	WA	ELLIOTT	38.08026	-83.00607	ISONVILLE
6013014 REF NEWCOMBE CR UT WA 0.1 1 0.25 LITTLE SANDY WA ELLIOTT 38.10296 -83.06426 ISONVILLE	6012004	REF	MEADOW BR	WA	0.3	2	0.93		WA	ELLIOTT	38.07261	-82.99451	MAZIE
	6013014	REF	NEWCOMBE CR UT	WA	0.1	1	0.25	LITTLE SANDY	WA	ELLIOTT	38.10296	-83.06426	ISONVILLE

Appendix B. Mean physical and chemical variables from all sites Score Ξ Ξ (m/km) tationID Mi^2 Slope (Em 8 Ä 01007005 HOBBS FORK REF 4/11/01 1.15 9.14 7.2 18.5 17.25 16 15.2 62 54.1 4.2 11.21 256 UT HOBBS FORK2 REF 4/11/01 43 48.8 01007005 0.18 9 6.88 17 15.00 >100.02.2 18 12.80 292 01017001 LONG BR TEST 4/23/02 702 ND ND 231 36.5 0.36 10.1 8.6 15.6 5.0 1.0 ND 1022008 CALEB FORK 5/1/02 1.78 8.9 7.8 347.1 24.4 16.3 ND TEST ND 51.0 3.1 ND 341.3 01032001 TOMS BRANCH 4/12/01 REF 0.95 10.1 8.12 159 14.1 14.00 75.0 5.0 18 14.16 360 54.8 LOWER PIGEON BRANCH REF 402.3 60.9 01032002 4/12/01 0.89 9.95 7.88 119 13.3 14.00 55.5 5.1 18 ND 01032003 LOWER PIGEON BRANCH REF 5/15/02 0.89 ND 7 54 108 12.2 16.00 55.5 5.0 18 ND 402.3 60.9 LOWER PIGEON BRANCH 402.3 01032003 REF 5/16/02 0.89 ND 7.62 109 12.5 19.00 55.5 5.0 18 ND 60.9 ND 01032003 UPPER PIGEON BR TEST 5/16/02 2.01 ND 7.94 1410 14.7 35.00 50.7 4.9 12 390.1 24.4 42.7 02006027 HATCHELL BRANCH TEST 0.35 9.3 37.2 14 28.00 >100.0 3.59 20 16.48 280.4 4/19/00 6.4 02006030 JACKIE BRANCH REF 4/20/00 1.14 9.7 6.6 22.1 11.3 2.00 >100.07.55 20 18.38 274.3 30.5 4/25/00 02006031 REF 0.65 8.5 19.5 27.4 CANE CREEK 12 15.00 >100.0 4.26 20 18.48 292.6 6.2 02008017 UT ROCK CREEK1 REF 4/17/00 0.82 9.5 38.6 11.9 >100.0 4.53 14.48 39.6 6.3 13.00 18 304.8 WATTS BRANCH 27 30.5 02008018 REF 4/17/00 2.2 9.1 6.2 12.4 17.30 57.5 4.57 20 15.43 280.4 13.30 02008019 PUNCHEONCAMP BRANCH REF 4/18/00 1.7 10.7 6.7 26.2 10.4 7.80 20 15.34 39.6 >100.0280.4 02008020 UT ROCK CREEK3 REF 4/18/00 0.63 10.45 22.80 >100.0 15.27 274.3 82.3 10.6 6.7 38.9 3.74 18 02008021 UT ROCK CREEK2 REF 4/18/00 0.37 10.1 6.9 30.9 10.5 6.50 >100.0 3.97 16 18.12 271.3 73.2 REF 02008022 UT BS FK CUMBERLAND 4/18/00 0.89 9.7 41.8 11 12.30 20 15.93 54.9 7 >100.04.98 231.6 COFFEY BRANCH TEST 4/19/00 1.25 10.1 66.9 10.7 10 16.29 02008023 6.8 18.00 21.5 5.7 2743 36.6 02014004 JENNEYS BRANCH TEST 4/19/00 0.66 9.7 7.3 188.7 12.9 37.50 50.0 4 14.00 30.5 4.4 356.6 2.05 02023004 DRY FORK 4/19/01 11.27 8.02 50.9 3.37 12 ND 30.5 REF 68 12.2 6.25 386 BROWNIES CREEK 22.3 02041004 REF 4/26/00 2.3 10.2 60.2 10.2 5.50 85.0 20 17.59 493.8 6.8 6.66 02041005 BROWNIES CREEK2 TEST 4/26/00 0.31 8.7 6.7 95 13.1 9.30 >100.0 3.56 16 16.01 502.9 64.1 02042002 EWING CREEK TEST 4/26/00 3.06 485 15.5 16.50 59.0 10.9 4 16.16 353.6 25.3 8 7.4 0.85 02042003 WATTS CREEK 3/29/01 11.7 6.03 20 5.50 >100.0 30.5 REF 5.64 5.4 14 16.35 402.3 02046002 BAD BRANCH REF 4/27/00 2.6 8.7 16.7 7.5 20 19.97 79.2 5.1 8.00 >100.0 6.6 548.6 PRESLEY HOUSE BRANCH 0.9 2.50 >100.0 REF 4/27/00 10.2 8.6 20 85.3 02046004 6.1 17.1 4.8 18.03 542.5 4/27/00 FRANKS CREEK 324.4 02046005 TEST 1.36 9.1 7.1 11.7 15.75 2.6 5.8 16 15.30 588.2 73.1 04036017 STEER FORK REF 4/18/01 3.01 12 7.55 44 20 ND 36.6 8.75 16.00 >100.0 9.4 289.5 CHESTER CREEK REF ND 69 18 18.3 04042703 4/10/02 2.65 6.8 9.98 ND >100.06.1 ND 304.8 MF RED RIVER TEST 4/10/02 1.8 ND 7.5 132 14.3 ND 4.9 ND 277.4 24.4 04042016 4.0 8 04050002 CLEMONS FORK REF 5/19/98 2.0 77 ND 11.00 >100.0 ND ND ND 299.5 21.3 ND 7.2 04050007 FUGATE FORK 4/10/00 10.94 609.8 19.87 TEST 2.6 8.1 14.9 22.80 1.6 5.4 8 243.8 18.29 04050008 JENNY FORK 0.45 13.3 TEST 4/10/00 635.1 19.50 >100.0 5.1 16 14.64 36.58 11.3 7.6 268.2 1.54 04050009 BEAR BRANCH TEST 4/10/00 11.6 8 431.2 16.2 20.00 30.5 3.1 4 18 73 268.2 27.43 4/10/00 04050010 CLEMONS FORK REF 0.8 13 6.8 83.4 12.70 7.3 >100.07 20 15.81 316.9 18.3 04050011 FALLING ROCK BRANCH REF 4/11/00 0.41 13.3 6.7 41.4 8.9 13.30 >100.0 4.46 20 19.34 292.6 45.7 9.1 20 JOHN CARPENTER FORK REF 4/11/00 0.58 12.9 38.8 316.9 24.4 04050012 6.8 8.50 >100.0 4.59 15.84 0.55 04050013 SHELLY ROCK FORK REF 4/11/00 12.2 7.1 39.4 10.1 12.30 >100.04.62 20 15.08 304.8 36.6 04050014 REF 0.58 130.3 10.9 15.94 MILLSEAT BRANCH 4/11/00 12.7 7.4 9.50 >100.0 4.36 20 24.4 304.8 04050015 LITTLE MILLSEAT BRANCH REF 4/12/00 0.82 7.1 40.2 10.4 11.80 >100.0 20 14.70 280.4 24.4 10.9 4.1 04050016 LICK BRANCH TEST 4/12/00 2.81 13.4 2320 10.9 3.3 13.84 268.2 18.3 8.3 53.30 14.1 14 1228 04050017 WILLIAMS BRANCH TEST 4/12/00 1.08 15.7 10.5 23.80 10 8.4 30.5 3.1 14.61 268.2 18.3 CANEY CREEK 4/12/00 2.5 152.9 28.30 16.07 12.2 04050018 TEST 13.5 8.1 11.6 40.5 4.0 243.8 6 04052017 LITTLE DOUBLE CREEK REF 3/29/00 1.5 11.34 6.9 60 9.1 13.40 67.0 5.15 14 15.80 280.4 30.5 RIGHT FORK BIG DOUBLE CREEK2 REF 3/29/00 38.3 9.4 8 04052018 1.46 7.80 73.0 16.54 329.2 36.6 11 6.4 6.0 04052019 LEFT FORK BIG DOUBLE CREEK REF 3/29/00 0.6 11.2 48.4 10 18.60 >100.0 3.7 14 329.2 30.5 6.4 16.26 04052020 RIGHT FORK ELISHA CREEK REF 3/30/00 2.35 11.5 6.8 49.2 11 13.10 >100.0 16 16.59 18.3 6.7 316.9 54.3 04052021 BIG MIDDLE FORK ELISHA CREEK REF 3/30/00 0.82 13.1 >100.0 10.3 6.5 14.10 5.7 14 15.12 316.9 36.6 04052022 LEFT FORK ELISHA CREEK REF 3/30/00 2.47 9.8 45 15.2 10.60 58.8 20 15.72 329.2 18.3 6.4 6.1 04052023 RIGHT FORK BIG DOUBLE CREEK REF 4/5/00 1.53 12.4 6.4 35 8.5 20.30 18 18.12 24.4 69.5 6.0 316.9 04052024 RED BIRD CREEK TEST 4/5/00 13.7 6.9 505 11.9 25.30 0.4 17.62 420.6 30.5 1.4 4.4 6 04052025 MUD LICK BRANCH 4/ 5/00 156.5 19.40 4.5 30.5 TEST 1.1 11.1 6.5 12.1 53.9 10 16.03 414.5 04052026 LAWSON CREEK TEST 4/5/00 1.48 10.6 7 436 12.9 18.10 4 16.87 30.5 15.5 4.7 426.7 0.95 12.3 161 9.5 77.0 14 67.1 04052027 SPRUCE BRANCH TEST 9/6/00 7.3 21.30 4.7 18.26 362.7 52.2 04052028 GILBERTS LITTLE CREEK TEST 4/6/00 1.47 11.4 6.97 63 11.3 24.10 4.5 4 17.74 280.4 36.6 04052029 ARNETTS FORK TEST 4/6/00 1.42 56 13.9 16.30 52.5 4 98 18.30 292.6 21.3 10.6 6.7 8 04052030 SUGAR CREEK REF 4/6/00 3.05 10.9 6 26.3 12.5 13.10 >100.06.3 16 19.80 316.9 21.3 04054005 CAWOOD BRANCH REF 3/28/01 0.8 11.94 6.63 29 3.55 14 91.4 10.25 >100.0 5.5 18.67 420.56 3/27/01 04054007 LEFT FORK CAMP CREEK TEST 0.93 10.7 7.99 505 9.35 18.25 >100.0 4.7 73.1 16 16.29 292 CAMP CREEK 3/27/01 8.35 04054008 TEST 2.7 11.5 8.25 926 23.75 10.5 5.5 12 15.94 298.1 60.9 04054009 BILL BRANCH 3/28/01 2.3 23 5.04 73.1 REF 6.55 13.75 >100.0 8.5 14 457.2 11.66 16.67 04054010 HONEY BRANCH REF 3/28/01 0.82 11.05 6.83 42 8.64 11.50 52.1 4.9 14 17.05 347 5 48.8 UT LINE FORK 04055002 REF 4/16/98 0.22 12.1 7.57 52 12.9 ND >100.03.7 18 ND 350.5 91.4 05037002 BOTTS FORK REF 4/18/02 3.38 ND 7.58 132 15.85 ND >100.0 7.6 18 ND 246.9 12.2 REF 4/1802 05037004 WELCH FORK 1.5 ND 7.5 94 18.2 ND >100.0 4.87 18 ND 249.9 18.4 06012003 NICHOLS FORK REF 4/29/02 0.65 ND 6.65 47 12.02 ND >100.0 4.6 20 ND 259.1 12.2 MEADOW BRANCH 4/29/02 0.93 252.9 06012004 REF ND 6.3 46 11.99 ND >100 4.8 18 ND 9.2 06013014 UT NEWCOMBE CREEK REF 3/14/02 0.25 ND 7.9 89 ND >100 ND ND 213.36 36.6 11.05 18

Appendix C. RBP Habitat Assessment Scores from all sites.

Section Sect	StationID StreamName	Condition	CollDate	Total UabScor	n DankSta I D	Dank Sta D	DD onk Stobilt	Dank VacD I D	Dank VagD DD	Pank Vac	ChaFlows	Chan Altar	Embaddadnae	e EniEauSub	EracOfDiffloo	PinVocZW I P	DinVocZW DD	DinCoora	SadDan	Val/Dan Pagima
Part					_			y balik vegr-Lb 7	9											
Mathematic Mat								8	9											
Manual Control Process Manual Control Proc					9	9		2	3											
Part					8	7		9	4	13		10		16	16	10	2	12		
Martine Mart					8	10	18	9	10			20	16		19	10	10		10	
Control Cont					10			9	9							7				
Part		REF	5/15/02	167	9	8	17	9	10	19	15	18	16	17	18	8	10	18	14	15
MATCHIEL REANNELL MATC		TEST	5/16/02	138	10	8	18	9	4	13	15	14	12	13	19	10	2		8	14
MANISHINGKYS MASS					8	8		9	9			18			18	10	10		7	
Section Conference March					9	9		10	10							10	10		17	
Part					7	10			10											
Section Sect					8			9	9											
Profession Pro					9			9	9											
Part					9	9		9	9							10				
Minor Composition Mino					9	9		9	9											
Section Sect					8	8		9	9				14							
Section Properties Proper					8			9	9							10				
Part					7	7		5	5							5	7			
Mathematic Mat					7				8							0	9			
SHOWNEN SERENCE STATE 1968 1968 1968 1968 1968 1969 19					8			8	9							2	10	12	19	
Second					8			8	8							10				
Semicround Northerness Semicround Northern					6			8	8											
MATTS CREEK Fig. 19.00 178 19 19 19 19 19 19 19 1								2	2											
Month Mont					_			=	_							-				
Pursuary Humber Burkeney Hum																				
Seminary																				
MARCHE M					7											10				
Page					,			,	0							6	-			
Meed Note Meed					0				9											
March Marc									-								10			
March Marc					0			-	9	-						-	4			
Manual North Nor					7	-		-	9							10				
Manual New					7				9							0	-			
145000 CLEMONSFORK REF					7			•												
Manual													-			=				
Month Miles Month Mont									9											
1400013 SHELLY ROCK POOK REF					•			3	9											
MILSIA-T BRANCH REF 41100 17					,	-		8	9											
					9			9	9											
ABSOLIC LICK BRANCH TEST 41/200 114 9 9 18 6 6 12 15 16 3 9 17 2 6 8 6 10 ABSOLIC TEST 41/200 124 8 8 6 14 7 8 15 15 15 15 10 14 18 7 1 10 15 15 ABSOLIC LICK BRANCH TEST 41/200 124 8 8 16 7 8 15 7 12 15 15 10 14 18 7 1 10 15 15 ABSOLIC LICK BRANCH TEST 41/200 124 8 8 16 7 7 14 15 20 18 19 20 10 9 19 17 15 ABSOLIC LICK BRANCH TEST 41/200 124 8 8 16 7 7 14 15 20 18 19 20 10 9 19 17 15 ABSOLIC LICK BRANCH TEST 41/200 124 8 8 16 7 7 14 15 20 18 19 20 10 0 0 0 0 19 15 15 ABSOLIC LICK BRANCH TEST 41/200 124 8 8 16 7 7 14 15 18 16 15 19 10 10 0 20 14 15 ABSOLIC BOMINIA CREEK REF 3/2000 172 7 7 14 8 8 16 15 17 16 17 19 10 10 20 15 19 ABSOLIC BOMINIA CREEK REF 3/3000 16 7 7 7 14 8 8 16 15 18 16 15 18 16 17 19 10 10 20 12 15 ABSOLIC BOMINIA CREEK REF 3/3000 16 7 7 7 14 8 8 16 15 18 16 15 18 16 17 19 10 10 20 12 15 ABSOLIC BOMINIA CREEK REF 3/3000 174 2 3 3 5 3 3 6 15 18 16 15 18 16 17 19 10 10 20 11 18 ABSOLIC BOMINIA CREEK REF 4/500 134 9 9 18 8 6 14 15 15 15 15 19 10 10 10 20 11 18 ABSOLIC BOMINIA CREEK REF 4/500 136 9 9 18 9 9 18 15 15 16 17 19 10 10 10 20 11 18 ABSOLIC BOMINIA CREEK REF 4/500 136 9 9 18 9 9 18 15 15 16 17 19 10 10 20 11 14 19 ABSOLIC BOMINIA CREEK REF 4/500 136 9 9 18 9 9 18 15 15 16 11 17 19 10 10 20 11 14 19 ABSOLIC BOMINIA CREEK REF 4/500 136 9 9 18 9 9 18 15 15 16 17 19					8			9	9											
ASSONIT WILLIAMS BRANCH TEST 41/200 128 8 6 14 5 7 12 15 15 10 14 18 7 1 18 11 11 ASSONIT CREEK KEF 37/200 173 8 8 16 7 7 14 15 20 18 19 20 10 9 10 10 15 15 AUSTONIT FORK BIG DOUBLE CREEK KEF 37/200 172 9 9 18 9 9 18 15 20 15 18 19 20 10 9 10 10 20 14 AUSTONIT FORK BIG DOUBLE CREEK KEF 37/200 172 9 9 18 9 9 18 15 15 15 18 19 10 10 9 19 15 15 AUSTONIT FORK BIG DOUBLE CREEK KEF 37/200 174 9 9 18 9 9 18 15 15 16 15 17 19 10 10 10 20 14 15 AUSTONIT FORK BIG DOUBLE CREEK KEF 37/200 174 9 9 18 9 9 18 15 15 16 15 17 16 17 19 10 10 10 20 15 18 AUSTONIT FORK BIG DOUBLE CREEK KEF 37/200 174 9 9 18 9 9 18 15 15 16 15 17 16 17 19 10 10 10 20 17 15 15 AUSTONIT FORK BIG DOUBLE CREEK KEF 37/200 174 9 9 18 8 8 16 15 17 16 17 19 10 10 10 20 17 15 AUSTONIT FORK BIG DOUBLE CREEK KEF 37/200 174 9 9 18 18 8 8 16 15 17 16 17 19 10 10 10 20 17 18 AUSTONIT FORK BIG DOUBLE CREEK KEF 37/200 174 9 9 18 18 16 15 17 18 17 19 10 10 10 20 17 18 AUSTONIT FORK BIG DOUBLE CREEK KEF 37/200 174 9 9 9 18 8 8 8 16 15 17 18 17 19 10 10 10 20 17 18 AUSTONIT FORK BIG DOUBLE CREEK KEF 37/200 174 9 9 18 8 8 8 8 8 8 8 8					9	-		8	8											
ASSON RENER TEST 41/200					9	-							-			=	6	-		
4952018 RIGHT FORK BIG DOUBLE CREEK REF 3/29/00 172 9 9 18 9 9 18 15 20 18 19 20 10 9 19 17 15 15 16 10 10 10 10 10 10 10					8			-	/							•	1	-		
4052019 RIGHT FORK BIG DOUBLE CREEKZ RIF 3/29/00 162 7 7 14 7 7 14 15 15 15 15 15 10 10 9 19 15 15 15 10 10 10 20 14 15 15 10 10 10 10 20 14 15 15 10 10 10 10 10 10					8			,	8								1			
4052012 LEFT FORK BIG DOUBLE CREEK REF 3/30/00 162 7 7 14 7 7 14 15 18 14 18 20 10 10 20 14 15					8				/											
405202 RIGHT FORK ELISHA CREEK REF 3/3000 174 9 9 18 9 9 18 9 9 18 16 15 16 15 19 19 10 10 20 15 19 405202 RIGHT FORK ELISHA CREEK REF 3/3000 171 8 8 8 16 8 8 16 15 17 16 17 19 10 10 20 12 12 18 18 405202 RIGHT FORK ELISHA CREEK REF 3/3000 171 8 8 8 16 8 8 16 15 18 16 19 19 8 10 10 20 12 18 18 405202 RIGHT FORK BIGDOUBLE CREEK REF 4/500 147 2 3 3 5 3 5 3 6 15 15 15 15 15 19 20 10 10 20 14 18 18 18 18 16 19 19 8 8 10 18 18 16 18 18 18 16 19 19 8 8 10 18 18 16 18 18 18 16 19 19 8 8 10 18 18 16 18 18 18 18 10 18 18 16 18 18 18 18 18 18 18 18 18 18 18 18 18					9															
4052022 BIG MIDDLE FORK ELISHA CREEK REF 3/3000 161 7 7 14 8 8 8 16 15 17 16 17 19 10 10 20 12 15 4052022 ELF FORK ELISHA CREEK REF 3/3000 171 8 8 8 16 8 8 16 15 15 15 15 15 19 10 10 20 12 15 4052024 RED BIRD CREEK REF 4/500 133 8 6 14 8 8 6 14 15 15 15 15 15 19 20 10 10 20 11 14 19 4052025 MUD LICK BRANCH TEST 4/500 133 8 6 14 8 8 8 16 15 11 13 16 16 16 6 7 13 10 16 4052026 LAWSON CREEK TEST 4/500 136 9 9 18 7 7 14 15 11 14 11 15 9 6 6 15 17 19 4052027 SPRICE BRANCH TEST 4/600 150 6 6 12 6 8 14 15 15 16 11 17 19 10 10 20 7 19 4052028 GILBERTS LITTLE CREEK TEST 4/600 132 8 8 16 8 9 17 15 14 13 11 16 0 8 8 8 11 14 4052029 ARNEITS FORK TEST 4/600 154 9 8 17 7 8 15 15 15 16 17 19 10 10 20 7 19 4052030 SIGAR CREEK TEST 4/600 154 9 8 17 7 8 15 15 15 16 17 18 1 10 10 20 17 19 4052030 SIGAR CREEK TEST 4/600 181 9 9 18 9 9 18 15 15 15 16 17 18 1 10 10 20 17 19 4054007 LEFT FORK CAMP CREEK TEST 3/2701 170 10 10 20 7 9 16 15 15 16 17 19 10 10 10 20 17 19 4054008 CAMP CREEK TEST 3/2701 138 8 6 14 5 9 14 15 15 16 18 18 19 10 10 20 17 19 4054008 CAMP CREEK TEST 3/2701 138 8 6 14 5 9 14 15 15 16 18 18 19 10 10 20 17 19 4054008 CAMP CREEK TEST 3/2701 138 8 6 14 5 9 18 15 15 16 18 18 19 10 10 20 17 19 4054008 CAMP CREEK TEST 3/2701 138 8 6 14 5 9 18 15 15 15 16 16 10 10 20 15 15 4054008 CAMP CREEK TEST 3/2701 138 8 6 14 5								7	-7											
4052022 LEFT FORK ELISHA CREEK REF 4/500 147 2 3 5 3 3 6 15 15 15 19 19 19 10 10 10 20 14 18					9	-		9	9											
4052023 RIGHT FORK BIG DOUBLE CREEK REF 4/500 147 2 3 5 3 3 6 15 15 15 15 19 20 10 10 20 14 18 4052024 RED BIRD CREEK TEST 4/500 133 8 6 14 8 8 8 16 15 11 13 13 13 17 1 0 1 1 14 19 4052026 LAWSON CREEK TEST 4/500 136 9 9 18 8 8 14 15 11 13 16 16 6 6 7 13 13 13 17 1 10 10 10 10 10 10					7			8	8											
4052024 RED BIRD CREEK TEST 4/5/00 133 8 6 14 8 6 14 15 13 13 13 13 17 1 0 1 14 19 4052025 MUD LICK BRANCH TEST 4/5/00 144 9 9 18 8 8 8 16 15 11 13 16 16 6 7 13 10 16 4052026 LAWSON CREEK TEST 4/5/00 150 6 6 12 6 8 14 15 11 14 11 17 19 10 10 20 7 19 4052028 GILBERTS LITTLE CREEK TEST 4/6/00 150 6 6 12 6 8 14 15 15 16 11 17 19 10 10 20 7 19 4052028 GILBERTS LITTLE CREEK TEST 4/6/00 154 9 8 17 7 8 15 15 15 16 11 17 19 10 10 20 7 19 4052029 ARNETTS FORK TEST 4/6/00 154 9 8 17 7 8 15 15 15 16 17 18 1 10 10 20 17 19 4054005 CAWGOD BRANCH REF 4/6/00 181 9 9 18 9 9 18 15 19 17 19 19 10 10 20 17 19 4054005 CAWGOD BRANCH REF 3/28/01 181 10 10 20 10 10 20 15 19 17 17 19 19 10 10 20 10 10 4054009 BILL BRANCH REF 3/28/01 188 8 6 14 5 9 14 15 14 13 17 19 19 10 10 20 10 10 4054009 BILL BRANCH REF 3/28/01 188 8 6 14 5 9 14 15 14 13 17 19 19 10 10 20 10 10 4054009 BILL BRANCH REF 4/6/98 169 9 8 17 9 8 17 9 16 18 18 18 18 10 3 13 7 15 4054000 BOTTS FORK REF 4/16/98 169 9 8 17 9 8 17 9 8 17 15 18 18 18 18 10 10 20 14 18 4054009 BOTTS FORK REF 4/18/02 161 4 6 10 5 8 13 15 18 17 19 17 10 10 20 14 18 4054009 BOTTS FORK REF 4/18/02 168 7 8 15 7 8 15 15 19 17 18 18 10 10 20 15 16 4055002 TULINE FORK REF 4/18/02 168 7 8 15 7 7 14 17 18 16 16 16 10 10 20 15 16 4050300 WELCH FORK REF 4/18/02 168 7 8 15 7 7 14 17 18 16 16 16 10 10 20 15 16 4051000 WEL					-			8	8							-				
4052025 MUD LICK BRANCH TEST 4/500 144 9 9 18 8 8 16 15 11 13 16 16 6 7 13 10 16 4052026 LAWSON CREEK TEST 4/500 136 9 9 18 7 7 14 15 11 14 11 15 9 6 15 17 6 4052027 SPRUCE BRANCH TEST 4/600 150 6 6 12 6 8 14 15 16 11 17 19 10 10 20 7 19 4052028 GILBERTS LITTLE CREEK TEST 4/600 132 8 8 16 8 9 17 15 14 13 11 16 0 8 8 8 11 11 4052029 ARNETTS FORK TEST 4/600 154 9 8 17 7 8 15 15 15 16 17 18 1 19 10 10 20 17 19 4052030 SUGAR CREEK REF 4/600 181 9 9 18 9 9 18 15 15 15 16 17 18 1 9 10 10 20 17 19 4054030 LEFT FORK CAMP CREEK REF 4/600 181 9 9 18 9 9 18 15 19 17 19 19 10 10 20 17 19 4054030 LEFT FORK CAMP CREEK TEST 3/27/01 170 10 10 20 7 9 16 15 19 17 17 19 10 10 20 10 17 4054008 CAMPOD BRANCH REF 3/28/01 188 8 6 14 5 9 14 15 14 13 17 18 0 9 9 0 10 10 20 17 4054009 BILL BRANCH REF 3/28/01 170 10 10 20 10 10 20 15 16 18 18 18 10 10 20 16 15 4055002 UT LINE FORK REF 4/1609 160 4 6 10 5 8 17 9 15 18 19 16 16 16 10 10 20 14 18 4054004 BONTES FORK REF 4/1609 160 6 12 7 7 18 15 15 19 17 18 18 10 10 20 14 18 5037004 WELCH FORK REF 4/2902 168 6 6 12 7 7 14 17 18 16 16 16 10 10 20 10 20 10 10 6012003 MICHOLS FORK REF 4/3002 148 5 5 5 10 6 6 12 7 7 14 17 18 16 16 16 16 10 10 20 20 10 10 20 15 16 6012003 MICHOLS FORK REF 4/3002 148 5 5 5 10 6 6 6 12 7 7 14 17 18 16 16 15 15 16 10 10 20 20 10 20 20 20					2			3	3							10				
405202 LAWSON CREEK TEST 4/500 136 9 9 18 7 7 14 15 11 14 11 15 9 6 15 17 6 4052027 SPRUCE BRANCH TEST 4/600 150 6 6 12 6 8 14 15 16 11 17 19 10 10 20 7 19 4052028 GIBERTS LITTLE CREEK TEST 4/600 132 8 8 16 8 9 17 15 14 13 11 16 0 8 8 11 1 4052029 ARNETTS FORK TEST 4/600 154 9 8 17 7 8 15 15 15 16 17 18 1 9 10 10 20 17 19 405203 SUGAR CREEK REF 4/600 181 9 9 18 9 9 18 15 15 15 16 17 18 1 9 10 10 20 17 19 405405 CAWOOD BRANCH REF 3/28/01 181 10 10 20 10 10 20 15 19 17 19 19 10 10 20 14 17 405406 CAWOOD BRANCH REF 3/28/01 170 10 10 20 7 9 16 15 19 17 17 19 10 10 20 10 17 405408 CAMP CREEK TEST 3/27/01 138 8 6 14 5 9 14 15 14 13 17 18 0 9 9 0 0 18 4054009 BILL BRANCH REF 3/28/01 179 10 10 20 10 10 20 15 16 18 18 18 18 10 3 3 3 3 3 3 5 15 4055002 UT LINE FORK REF 4/16/98 169 9 8 17 9 8 17 15 18 19 16 16 10 10 20 14 18 5037004 WELCH FORK REF 4/18/02 168 7 8 15 7 8 15 15 19 17 18 18 10 10 20 15 16 6012003 MICHOLS FORK REF 4/18/02 168 7 8 15 7 8 15 15 19 17 18 18 10 10 20 16 15 6012004 MEADOW BRANCH REF 4/3002 148 5 5 5 10 6 6 12 7 7 14 17 18 16 16 16 10 10 20 10 20 15 16 6012004 MEADOW BRANCH REF 4/3002 148 5 5 5 10 6 6 12 16 12 16 20 15 15 15 15 16 10 10 20 10 20 15 16 6012004 MEADOW BRANCH REF 4/3002 148 5 5 5 10 6 6 6 12 16 15 15 15 15 15 15 15					8			8	6							1				
4052027 SPRUCE BRANCH TEST 4/600 150 6 6 6 12 6 8 14 15 16 11 17 19 10 10 10 20 7 19 4052028 GILBERTS LITTLE CREEK TEST 4/600 132 8 8 8 16 8 8 9 17 15 15 15 16 17 18 11 16 0 8 8 8 11 11 14 4052029 ARNETTS FORK TEST 4/600 154 9 8 17 7 7 8 15 15 15 15 16 17 18 1 1 9 10 10 20 17 19 4052030 SUGAR CREEK REF 4/600 181 9 9 18 9 9 18 15 19 17 19 19 10 10 10 20 17 19 4054005 CAWOOD BRANCH REF 3/28/01 181 10 10 20 10 10 20 15 19 19 19 18 19 10 10 10 20 14 17 4054007 LEFT FORK CAMP CREEK TEST 3/27/01 170 10 10 20 7 9 16 15 19 17 17 19 10 10 10 20 10 17 4054008 CAMP CREEK TEST 3/27/01 138 8 6 6 14 5 9 18 10 10 10 20 15 14 13 17 18 0 9 9 10 10 10 20 17 4054009 BILL BRANCH REF 3/28/01 179 10 10 10 20 10 10 20 15 14 13 17 18 0 9 9 10 10 10 20 10 17 4054001 HONEY BRANCH REF 3/28/01 158 9 9 18 10 10 10 20 15 16 18 18 18 10 3 3 13 7 15 405500 UT LINE FORK REF 4/16/98 169 9 8 17 9 8 17 15 18 19 16 16 10 10 20 16 15 15 15 15 15 15 15 15 15 15 15 15 15					9			8	8							6	•			
4052028 GILBERTS LITTLE CREEK TEST 4/600 132 8 8 8 16 8 9 17 15 14 13 11 16 0 8 8 11 11 16 4052029 ARNETTS FORK TEST 4/600 154 9 8 17 7 8 8 15 15 15 16 17 18 1 9 10 15 16 4052030 SUGAR CREEK REF 4/600 181 9 9 18 9 9 18 9 18 15 19 17 19 19 10 10 10 20 14 17 4054007 CAWOOD BRANCH REF 3/28/01 181 10 10 10 20 17 9 16 15 19 17 19 19 10 10 10 20 14 17 4054007 LEFT FORK CAMP CREEK TEST 3/27/01 138 8 6 6 14 5 9 16 15 19 17 17 19 10 10 10 20 10 17 4054008 CAMP CREEK TEST 3/27/01 138 8 6 6 14 5 9 16 15 19 17 17 19 19 10 10 10 20 10 17 4054008 DRANCH REF 3/28/01 179 10 10 10 20 10 10 20 15 14 13 17 18 0 9 9 6 18 4054009 BILL BRANCH REF 3/28/01 179 10 10 10 20 10 10 20 15 14 15 14 13 17 18 0 9 9 10 19 15 15 15 4054004 DRANCH REF 3/28/01 158 9 9 18 10 10 20 15 16 18 18 18 10 3 3 13 7 15 4055002 UT LINE FORK REF 4/16/98 169 9 8 8 17 9 8 17 15 18 19 16 16 16 10 10 20 16 15 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 16 15 15 10 10 10 20 15 16 16 10 10 10 20 15 16 10 10 20 15 16 10 10 10 20 15 15 10 10 10 10					9	9		7	7							9	6			
4052029 ARNETTS FORK REF 4/6/00 154 9 8 17 7 8 15 15 15 16 17 18 1 9 9 10 15 16 4052030 SUGAR CREEK REF 4/6/00 181 9 9 18 9 9 18 9 9 18 15 19 17 19 19 10 10 10 20 17 19 4054005 CAWOOD BRANCH REF 3/28/01 181 10 10 20 10 10 20 15 19 19 18 19 10 10 10 20 14 17 4054005 CAWOCD BRANCH REF 3/28/01 170 10 10 20 7 9 16 15 19 17 17 17 19 10 10 10 20 10 17 4054005 CAWOCD BRANCH REF 3/28/01 170 10 10 20 7 9 9 16 15 19 17 17 17 19 10 10 10 20 10 17 4054005 CAWOCD BRANCH REF 3/28/01 170 10 10 20 10 10 20 11 15 15 16 18 18 18 10 10 10 20 10 10 10 20 10 10 10 10 20 11	4052027 SPRUCE BRANCH	TEST		150	6	6	12	6	8	14				17	19	10	10	20	7	19
4052030 SUGAR CREEK REF 4/6/00 181 9 9 18 9 9 18 9 9 18 15 19 17 19 19 10 10 10 20 17 19 4054005 CAWOOD BRANCH REF 3/28/01 181 10 10 20 10 10 20 15 19 19 19 18 19 10 10 10 20 14 17 4054007 LEFT FORK CAMP CREEK TEST 3/27/01 170 10 10 20 7 9 16 15 19 17 17 19 10 10 10 20 10 17 4054007 LEFT FORK CAMP CREEK TEST 3/27/01 138 8 6 14 5 9 16 15 19 17 17 19 10 10 10 20 10 17 4054008 BALL BRANCH REF 3/28/01 179 10 10 20 10 10 20 15 20 15 15 16 18 18 18 10 3 3 13 7 15 4054001 HONEY BRANCH REF 3/28/01 158 9 9 18 10 10 20 15 20 15 16 18 18 18 18 10 3 13 7 15 4054002 UT LINE FORK REF 4/16/98 169 9 8 17 9 8 17 15 18 19 16 16 16 10 10 20 16 15 5037004 WELCH FORK REF 4/18/02 168 7 8 15 5 10 6 12 7 7 7 14 17 18 16 16 16 10 10 10 20 15 16 16 10 10 20 15 16 16 10 10 20 15 15 16 16 10 10 10 20 15 15 16 11 10 10 20 15 15 16 10 10 10 20 15 16 10 10 10 20 15 15 16 10 10 10 20 15 15 16 10 10 10 20 15 15 16 10 10 10 20 15 15 16 10 10 10 20 15 16 10 10 10 20 15 15 16 10 10 10 20 15 15 16 10 10 10 20 15 15 16 10 10 10 20 15 15 16 10 10 10 20 15 15 16 10 10 10 20 15 15 16 10 10 10 20 15 16 10 10 10 10 20 15 16 10 10 10 10 20 15 16 10 10 10								-	9							-				
4054005 CAWOOD BRANCH REF 3/28/01 181 10 10 20 10 10 20 15 19 19 18 19 10 10 10 20 14 17 4054007 LEFT FORK CAMP CREEK TEST 3/27/01 170 10 10 20 7 9 16 15 19 17 17 17 19 10 10 20 10 17 4054008 CAMP CREEK TEST 3/27/01 138 8 6 14 5 9 11 10 10 20 15 14 13 17 18 0 9 9 6 18 4054019 BILL BRANCH REF 3/28/01 179 10 10 20 10 10 20 15 20 17 19 19 9 10 19 15 15 4054010 HONEY BRANCH REF 3/28/01 158 9 9 18 10 10 20 15 16 18 18 18 10 3 13 7 15 405502 UT LINE FORK REF 4/16/98 169 9 8 17 9 8 17 15 18 19 16 16 16 10 10 20 16 15 5037002 BOTTS FORK REF 4/18/02 161 4 6 10 5 8 11 15 15 18 17 19 17 10 10 20 14 18 503704 WELCH FORK REF 4/29/02 156 6 6 6 12 7 7 7 14 17 18 16 16 16 10 10 20 10 20 15 16 6012003 NICHOLS FORK REF 4/29/02 158 5 5 10 6 6 6 12 7 7 7 14 17 18 16 16 16 10 10 20 10 20 17					9			•	8							-				
4054007 LEFT FORK CAMP CREEK TEST 3/27/01 138 8 6 6 14 5 9 16 15 19 17 17 19 10 10 10 20 10 17 4054008 CAMP CREEK TEST 3/27/01 138 8 6 6 14 5 9 14 15 14 13 17 18 0 9 9 6 18 4054009 BILL BRANCH REF 3/28/01 179 10 10 20 10 10 20 15 16 18 18 18 10 3 13 7 15 405401 HONEY BRANCH REF 3/28/01 158 9 9 18 10 10 20 15 16 18 18 18 10 3 13 7 15 405502 UT LINE FORK REF 4/16/98 169 9 8 17 9 8 17 15 18 19 16 16 16 10 10 20 16 15 5037002 BOTTS FORK REF 4/18/02 161 4 6 10 5 8 8 13 15 18 17 19 17 10 10 20 14 18 503704 WELCH FORK REF 4/18/02 168 7 8 15 7 8 15 15 19 17 18 18 18 10 10 10 20 15 16 601203 NICHOLS FORK REF 4/30/02 148 5 5 5 10 6 6 6 12 7 7 14 17 18 16 16 16 10 10 10 20 17 19 15 16 10 10 20 17 19 10 10 10 20 17 19 10 10 10 20 17 19 10 10 10 20 17 19 10 10 10 20 17 19 10 10 10 20 17 19 10 10 10 20 17 19 10 10 10 20 17 19 10 10 10 20 17 19 18 10 10 10 20 17 19 19 19 19 19 19 19 19 19 19 19 19 19					9	-		-	9											
4054008 CAMP CREEK TEST 3/27/01 138 8 6 14 5 9 14 15 14 13 17 18 0 9 9 6 18 4054009 BILL BRANCH REF 3/28/01 179 10 10 20 10 10 20 15 20 17 19 19 9 10 19 15 15 4054010 HONEY BRANCH REF 3/28/01 158 9 9 18 10 10 20 15 16 18 18 18 18 10 3 13 7 15 4054012 UT LINF FORK REF 4/16/98 169 9 8 17 9 8 17 15 18 19 16 16 16 10 10 20 16 15 5037002 BOTTS FORK REF 4/18/02 161 4 6 10 5 8 15 7 8 15 15 18 17 19 17 10 10 20 14 18 5037004 WELCH FORK REF 4/18/02 168 7 8 15 7 8 15 15 15 19 17 18 18 10 10 20 10 20 15 16 6012003 NICHOLS FORK REF 4/29/02 156 6 6 6 12 7 7 7 14 17 18 16 16 16 16 10 10 20 10 20 10 17 6012004 MEADOW BRANCH REF 4/30/02 148 5 5 5 10 6 6 6 12 7 7 14 17 18 16 16 16 10 10 10 20 9 15																				
4054009 BILL BRANCH REF 3/28/01 179 10 10 20 10 10 20 15 20 17 19 19 9 10 10 19 15 15 15 4054010 HONEY BRANCH REF 3/28/01 158 9 9 18 10 10 20 15 16 18 18 18 18 10 3 13 7 15 405502 UT LINFORK REF 4/16/98 169 9 8 17 9 8 17 15 18 19 16 16 16 10 10 20 16 15 503704 WELCH FORK REF 4/18/02 161 4 6 10 5 8 15 7 8 15 15 15 15 15 17 19 17 10 10 20 14 18 503004 WELCH FORK REF 4/18/02 168 7 8 15 7 8 15 15 15 15 15 16 16 10 10 20 10 20 15 16 6012003 NICHOLS FORK REF 4/29/02 156 6 6 6 12 7 7 7 14 17 18 16 16 16 10 10 10 20 10 17 16 10 10 10 20 10 17 16 10 10 10 10 10 10 10 10 10 10 10 10 10					10	10		7	9							10	10		10	
4054010 HONEY BRANCH REF 3/28/01 158 9 9 18 10 10 20 15 16 18 18 18 10 3 13 7 15 405502 UT LINE FORK REF 4/16/98 169 9 8 17 9 8 17 15 18 19 16 16 16 10 10 20 16 15 5037002 BOTTS FORK REF 4/18/02 161 4 6 10 5 8 115 7 8 15 15 18 17 19 17 10 10 20 14 18 503704 WELCH FORK REF 4/29/02 156 6 6 12 7 7 7 14 17 18 16 16 16 10 10 20 17 6012/04 MEADOW BRANCH REF 4/30/02 148 5 5 10 6 6 6 12 7 7 7 14 17 18 16 16 16 10 10 20 17																				
4055002 UT LINE FORK REF 4/16/98 169 9 8 17 9 8 17 15 18 19 16 16 10 10 20 16 15 5037002 BOTTS FORK REF 4/18/02 161 4 6 10 5 8 13 15 18 17 19 17 10 10 20 14 18 503704 WELCH FORK REF 4/18/02 168 7 8 15 7 8 15 15 19 17 18 18 10 10 20 15 16 6012003 NICHOLS FORK REF 4/29/02 156 6 6 12 7 7 7 14 17 18 16 16 16 16 10 10 20 10 17 6012004 MEADOW BRANCH REF 4/30/02 148 5 5 10 6 6 6 12 16 20 15 15 15 16 10 10 20 9 15					10				10							9				
5037002 BOTTS FORK REF 4/18/02 161 4 6 10 5 8 13 15 18 17 19 17 10 10 20 14 18 5037004 WELCH FORK REF 4/18/02 168 7 8 15 7 15 19 17 18 18 10 10 20 15 16 6012003 NICHOLS FORK REF 4/29/02 156 6 6 12 7 7 14 17 18 16 16 10 10 20 10 17 6012004 MEADOW BRANCH REF 4/30/02 148 5 5 10 6 6 12 16 20 15 15 16 10 10 20 9 15					9				10											
5037004 WELCH FORK REF 4/18/02 168 7 8 15 7 8 15 15 19 17 18 18 10 10 20 15 16 6012003 NICHOLS FORK REF 4/29/02 156 6 6 12 7 7 14 17 18 16 16 16 10 10 20 10 17 6012004 MEADOW BRANCH REF 4/30/02 148 5 5 10 6 6 12 16 20 15 15 16 10 10 20 9 15	4055002 UT LINE FORK	REF	4/16/98	169	9	8	17	9	8	17	15	18	19	16	16	10	10	20	16	15
	5037002 BOTTS FORK	REF	4/18/02	161	4	6	10	5	8	13	15	18	17	19	17	10	10	20	14	18
6012004 MEADOW BRANCH REF 4/30/02 148 5 5 10 6 6 12 16 20 15 15 16 10 10 20 9 15	5037004 WELCH FORK	REF	4/18/02	168	7	8	15	7	8	15	15	19	17	18	18	10	10	20	15	16
	6012003 NICHOLS FORK	REF	4/29/02	156	6	6	12	7	7	14	17	18	16	16	16	10	10	20	10	17
6013014 UT NEWCOMBE CREEK REF 3/14/02 171 10 10 20 10 10 20 15 16 16 17 19 9 9 20 14 16	6012004 MEADOW BRANCH	REF	4/30/02	148	5	5	10	6	6	12	16	20	15	15	16	10	10	20	9	15
	6013014 UT NEWCOMBE CREEK	REF	3/14/02	171	10	10	20	10	10	20	15	16	16	17	19	9	9	20	14	16

	ce Value, Clinger habit d		1	T	T	
Order	Family	FinalID	TV	Clinger	REF	TEST
Tricladida	Planariidae	Unidentified Planariid	5.0	**	3	1
Hoplonemertea	Prostomidae	Prostoma sp	6.1	X	0	2
Lymnophila	Ancylidae	Ferrissia rivularis	6.6 7.0		3	0
Lymnophila Lymnophila	Lymnaeidae Lymnaeidae	Fossaria sp Lymnaea sp	7.0 7.0		0	1 7
Lymnophila	Lymnaeidae	Stagnicola sp	8.2		0	1
Lymnophila	Lymnaeidae	Unidentified Lymnaeid	7.0		0	1
Basommatophora	Physidae	Physella sp	8.8		0	8
Heterodonta	Sphaeriidae	Pisidium sp	6.5		3	0
Heterodonta	Sphaeriidae	Sphaerium sp	7.6		8	3
Lumbriculida	Lumbriculidae	Eclipidrilus sp	7.3		1	1
Lumbriculida	Lumbriculidae	Unidentified Lumbriculid	7.3		31	19
Haplotaxida	Naididae	Nais sp	8.9		1	0
Haplotaxida	Naididae	Unidentified Naidid	9.1		6	1
Haplotaxida	Tubificidae	Unidentified Tubificidae	9.0		1	0
Ephemeroptera	Leptophlebiidae	Choroterpes sp	2.3	X	2	0
Ephemeroptera	Leptophlebiidae	Habrophlebia vibrans	0.5		6	0
Ephemeroptera	Leptophlebiidae	Leptophlebia sp	6.2		1	0
Ephemeroptera	Leptophlebiidae	Paraleptophlebia sp	0.9		28	8
Ephemeroptera	Isonychiidae	Isonychia sp	3.5		3	7
Ephemeroptera	Heptageniidae	Cinygmula subequalis	0.0	X	32	4
Ephemeroptera	Heptageniidae	Epeorus sp	1.3	X	38	8
Ephemeroptera	Heptageniidae	Leucrocuta aphrodite	2.4	X	2	0
Ephemeroptera	Heptageniidae	Leucrocuta juno	2.8	X	2	0
Ephemeroptera	Heptageniidae	Leucrocuta sp	2.4	X	2	0
Ephemeroptera	Heptageniidae	Stenacron carolina	1.1	X	2	0
Ephemeroptera	Heptageniidae	Stenacron gildersleevi	2.5	X	9	0
Ephemeroptera	Heptageniidae	Stenacron interpunctatum	6.9	X	8	2
Ephemeroptera	Heptageniidae	Stenacron minnetonka	4.0	X	6	1
Ephemeroptera	Heptageniidae	Stenacron pallidum	2.7	X	12	1
Ephemeroptera	Heptageniidae	Stenacron sp	4.0	X	7	1
Ephemeroptera	Heptageniidae	Stenonema femoratum	7.2	X	4	3
Ephemeroptera	Heptageniidae	Stenonema ithaca	3.6 0.1	X X	1 11	0
Ephemeroptera Ephemeroptera	Heptageniidae	Stenonema medicatum	5.5	X	2	
Ephemeroptera Ephemeroptera	Heptageniidae Heptageniidae	Stenonema modestum Stenonema pudicum	2.0	X	0	2 1
Ephemeroptera Ephemeroptera	Heptageniidae	Stenonema vicarium	1.3	X	19	5
Ephemeroptera Ephemeroptera	Siphlonuridae	Siphlonurus sp	5.8	Λ	19	0
Ephemeroptera Ephemeroptera	Ameletidae	Ameletus sp	2.4		37	15
Ephemeroptera	Tricorythidae	Tricorythodes sp	5.1		0	1
Ephemeroptera	Ephemeridae	Ephemera guttulata	0.0		11	1
Ephemeroptera	Ephemeridae	Ephemera simulans	2.2		6	2
Ephemeroptera	Ephemeridae	Ephemera sp	1.1		3	2
Ephemeroptera	Ephemerellidae	Attenella attenuata	1.6	X	1	0
Ephemeroptera	Ephemerellidae	Drunella cornutella	0.0	X	2	0
Ephemeroptera	Ephemerellidae	Drunella sp	0.7	X	21	6
Ephemeroptera	Ephemerellidae	Ephemerella dorothea	1.7	X	1	0
Ephemeroptera	Ephemerellidae	Ephemerella sp	2.0	X	36	16
Ephemeroptera	Ephemerellidae	Eurylophella funeralis	2.1	X	4	0
Ephemeroptera	Ephemerellidae	Eurylophella macdunnoughi	1.5	X	1	0
Ephemeroptera	Ephemerellidae	Eurylophella sp	4.3	X	35	17
Ephemeroptera	Ephemerellidae	Serratella sp	2.7	X	3	0
Ephemeroptera	Ephemerellidae	Timpanoga lita	0.0	X	1	0
Ephemeroptera	Caenidae	Caenis latipennis	7.4		0	1
Ephemeroptera	Caenidae	Caenis sp	7.4		1	6
Ephemeroptera	Baetidae	Acentrella ampla	3.6		17	8
Ephemeroptera	Baetidae	Acentrella sp	3.6		8	0
Ephemeroptera Ephemeroptera	Baetidae	Acentrella turbida	3.6		9	7
Ephemeroptera	Baetidae	Acerpenna macdunnoughi	5.4		2	1
Ephemeroptera Ephemeroptera	Baetidae Baetidae	Baetis brunneicolor	5.4 6.6		1 10	0
Ephemeroptera Ephemeroptera	Baetidae Baetidae	Baetis flavistriga	5.0		10	0 2
Ephemeroptera Ephemeroptera	Baetidae Baetidae	Baetis intercalaris Baetis sp	5.0 5.4		8	5
Ephemeroptera Ephemeroptera	Baetidae	Baetis sp #1	5.4		8 1	0
Ephemeroptera Ephemeroptera	Baetidae	Baetis tricaudatus	1.6		5	3
Ephemeroptera Ephemeroptera	Baetidae	Callibaetis sp	9.8		1	0
Ephemeroptera Ephemeroptera	Baetidae	Centroptilum sp	6.6		5	4
г			0.0		-	•

order Collected. TV= Tolerar	nce Value, Clinger habit of Family	lenoted by "X". FinalID	TV	Clinger	REF	TEST
Ephemeroptera	Baetidae	Diphetor hageni	1.6	Chilger	10	1 1 1
Ephemeroptera Ephemeroptera	Baetidae	Plauditus dubius	5.4		10	1
Ephemeroptera	Baetidae	Plauditus sp	5.4		6	4
Ephemeroptera	Baetidae	Procloeon sp	5.0		4	0
Ephemeroptera	Baetidae	Unidentified Baetid	5.0		1	Ö
Ephemeroptera	Baetiscidae	Baetisca lacustris	1.0		1	0
Ephemeroptera	Baetiscidae	Baetisca sp	2.1		1	1
Odonata	Coenagrionidae	Argia moesta	8.2		0	1
Odonata	Coenagrionidae	Argia sedula	8.5		0	1
Odonata	Coenagrionidae	Argia sp	8.2		0	3
Odonata	Coenagrionidae	Argia tibialis	8.2		0	1
Odonata	Coenagrionidae	Enallagma sp	8.9		0	1
Odonata	Coenagrionidae	Ischnura sp	9.5		0	1
Odonata	Calopterygidae	Calopteryx maculata	7.8		13	14
Odonata	Aeshnidae	Boyeria grafiana	6.1		14	5
Odonata	Aeshnidae	Boyeria vinosa	5.9		1	5
Odonata	Gomphidae	Gomphus sp	5.8		1	2
Odonata	Gomphidae	Lanthus parvulus	1.8		1	0
Odonata	Gomphidae	Lanthus sp	1.8		10	1
Odonata	Gomphidae	Progomphus obscurus	8.2		0	1
Odonata	Gomphidae	Stylogomphus albistylus	4.7		20	11
Odonata	Corduliidae	Unidentified Corduliid	6.6		0	1
Odonata	Libellulidae	Libellula sp	9.6		3	1
Odonata	Cordulegastridae	Cordulegaster erronea	5.7		1	1
Odonata	Cordulegastridae	Cordulegaster maculata	5.7		0	2
Odonata	Cordulegastridae Pteronarcyidae	Cordulegaster sp	5.7	v	24	13
Plecoptera	Pieronarcyidae Perlodidae	Pteronarcys proteus	1.7 4.7	X X	4 14	0 2
Plecoptera		Clioperla clio	4.7 2.7	X		
Plecoptera	Perlodidae Perlodidae	Diploperla robusta Isoperla bilineata	5.4	X X	18 1	9 0
Plecoptera Plecoptera	Perlodidae	Isoperia bilineata Isoperia holochlora	0.0	X	24	6
Plecoptera	Perlodidae	Isoperla noiocinora	1.8	X	29	14
Plecoptera	Perlodidae	Malirekus hastatus	1.2	X	8	4
Plecoptera	Perlodidae	Remenus bilobatus	0.3	X	12	1
Plecoptera	Perlodidae	Yugus sp	0.0	X	18	1
Plecoptera	Capniidae	Allocapnia sp	2.5	Λ	0	1
Plecoptera	Capniidae	Paracapnia angulata	0.1		1	0
Plecoptera	Peltoperlidae	Peltoperla arcuata	1.0	X	19	4
Plecoptera	Peltoperlidae	Tallaperla sp	1.2	X	1	0
Plecoptera	Nemouridae	Amphinemura delosa	3.3		2	0
Plecoptera	Nemouridae	Amphinemura nigritta	3.3		0	2
Plecoptera	Nemouridae	Amphinemura sp	3.3		36	20
Plecoptera	Nemouridae	Amphinemura wui	3.3		2	0
Plecoptera	Nemouridae	Ostrocerca sp	2.5		11	6
Plecoptera	Nemouridae	Paranemura perfecta	2.0		2	1
Plecotera	Nemouridae	Soyedina vallicularia	0.0		2	0
Plecoptera	Leuctridae	Leuctra ferruginea	0.7		1	0
Plecoptera	Leuctridae	Leuctra sibleyi	0.7		2	0
Plecoptera	Leuctridae	Leuctra sp	0.7		36	13
Plecoptera	Leuctridae	Paraleuctra sp	2.8		1	0
Plecoptera	Taeniopterygidae	Strophopteryx sp	2.7		1	1
Plecoptera	Taeniopterygidae	Taenionema atlanticum	5.0		3	1
Plecoptera	Taeniopterygidae	Taeniopteryx sp	5.4		0	1
Plecoptera	Perlidae	Acroneuria abnormis	2.1	X	14	2
Plecoptera	Perlidae	Acroneuria carolinensis	0.0	X	23	6
Plecoptera	Perlidae	Acroneuria sp	1.4	X	0	1
Plecoptera	Perlidae	Eccoptura xanthenes	3.7	X	12	4
Plecoptera	Perlidae	Perlesta sp	4.7	X	1	0
Plecoptera	Chloroperlidae	Alloperla sp	1.2	X	6	1
Plecoptera	Chloroperlidae	Haploperla brevis	1.0	X	26	3
Plecoptera	Chloroperlidae	Sweltsa sp	0.0	X	23	6
Hemiptera	Corixidae	Unidentified Corixid	9.0		1	1
Hemiptera	Veliidae	Microvelia sp	9.0		1	0
Hemiptera	Notonectidae	Notonecta sp	8.7	37	0	1
Megaloptera	Corydalidae	Corydalus cornutus	5.2	X	0	11
Megaloptera	Corydalidae	Nigronia fasciatus	5.6	X	19	5
Megaloptera Megaloptera	Corydalidae	Nigronia serricornis	5.0	X	9	9
Megaloptera Trichoptera	Sialidae Limpophilidae	Sialis sp	7.2 0.1		6 14	6 0
Trichoptera	Limnephilidae	Goera sp	0.1		14	U

	nce Value, Clinger habit d		1	T	1	
Order	Family	FinalID	TV	Clinger	REF	TEST
Trichoptera	Limnephilidae	Ironoquia sp	7.7		5	5
Trichoptera	Limnephilidae	Pycnopsyche gentilis	0.6 2.5		6 13	1
Trichoptera Trichoptera	Limnephilidae Limnephilidae	Pycnopsyche sp Pycnopsyche sp1	2.5		28	3 7
Trichoptera	Limnephilidae	Pycnopsyche sp2	2.5		12	1
Trichoptera	Molannidae	Molanna blenda	2.0		4	0
Trichoptera	Hydroptilidae	Hydroptila sp	6.2	X	5	2
Trichoptera	Hydroptilidae	Ochrotrichia sp	4.0	X	1	0
Trichoptera	Hydroptilidae	Stactobiella sp	1.3	X	1	0
Trichoptera	Lepidostomatidae	Lepidostoma sp	0.9		33	5
Trichoptera	Lepidostomatidae	Theliopsyche sp			1	0
Trichoptera	Leptoceridae	Nectopsyche exquisita	4.1		1	0
Trichoptera	Leptoceridae	Oecetis sp	4.7		0	1
Trichoptera	Leptoceridae	Triaenodes marginatus	4.5		0	1
Trichoptera	Leptoceridae	Triaenodes sp	4.5		2	0
Trichoptera	Calamoceratidae	Anisocentropus pyraloides	0.9		5	0
Trichoptera	Calamoceratidae	Heteroplectron americanum	3.2		3	0
Trichoptera	Rhyacophilidae	Rhyacophila carolina	1.0	X	25	8
Trichoptera	Rhyacophilidae	Rhyacophila fuscula	1.9	X	3	1
Trichoptera	Rhyacophilidae	Rhyacophila glaberrima	0.8	X	3	0
Trichoptera	Rhyacophilidae	Rhyacophila invaria gp	0.0	X	29	8
Trichoptera	Rhyacophilidae	Rhyacophila ledra/fenestra	3.9	X	9	1
Trichoptera	Rhyacophilidae Rhyacophilidae	Rhyacophila lobifera	2.5 0.0	X X	2 9	0
Trichoptera Trichoptera	• •	Rhyacophila minor	0.0	X X	1	0
Trichoptera	Rhyacophilidae Rhyacophilidae	Rhyacophila nigrita Rhyacophila sp	0.8	X	4	1
Trichoptera	Rhyacophilidae	Rhyacophila torva	1.6	X	2	0
Trichoptera	Helicopsychidae	Helicopsyche borealis	5.0	X	2	0
Trichoptera	Uenoidae	Neophylax sp	2.2	X	39	10
Trichoptera	Glossosomatidae	Agapetus sp	0.0	X	10	2
Trichoptera	Glossosomatidae	Glossosoma intermedium	1.6	X	1	0
Trichoptera	Glossosomatidae	Glossosoma sp	1.6	X	2	0
Trichoptera	Hydropsychidae	Ceratopsyche bronta	2.7	X	1	5
Trichoptera	Hydropsychidae	Ceratopsyche cheilonis	1.4	X	0	1
Trichoptera	Hydropsychidae	Ceratopsyche slossonae	0.0	X	1	1
Trichoptera	Hydropsychidae	Ceratopsyche sp	1.4	X	1	0
Trichoptera	Hydropsychidae	Ceratopsyche sparna	3.2	X	1	3
Trichoptera	Hydropsychidae	Ceratopsyche ventura	0.0	X	5	0
Trichoptera	Hydropsychidae	Cheumatopsyche sp	6.2	X	25	17
Trichoptera	Hydropsychidae	Diplectrona metaqui	2.0	X	1	0
Trichoptera	Hydropsychidae	Diplectrona modesta	2.2	X	37	15
Trichoptera	Hydropsychidae	Homoplectra doringa	3.0 7.8	X X	2 13	1 15
Trichoptera	Hydropsychidae	Hydropsyche betteni	7.8 4.0	X	13	13
Trichoptera Trichoptera	Hydropsychidae Psychomyiidae	Hydropsyche sp Lype diversa	4.1	X	7	1
Trichoptera	Psychomyiidae	Psychomyia flavida	2.9	X	2	0
Trichoptera	Odontoceridae	Psilotreta sp	0.0	X	1	0
Trichoptera	Philopotamidae	Chimarra aterrima	2.0	X	3	4
Trichoptera	Philopotamidae	Chimarra sp	2.8	X	3	8
Trichoptera	Philopotamidae	Dolophilodes distinctus	0.8	X	10	2
Trichoptera	Philopotamidae	Wormaldia moesta	0.7	X	1	0
Trichoptera	Philopotamidae	Wormaldia sp	0.7	X	30	1
Trichoptera	Polycentropodidae	Nyctiophylax sp	0.9	X	7	2
Trichoptera	Polycentropodidae	Phylocentropus carolinus	5.6		2	0
Trichoptera	Polycentropodidae	Polycentropus sp	3.5	X	30	9
Coleoptera	Dryopidae	Helichus basalis	4.6	X	23	7
Coleoptera	Dryopidae	Helichus fastigiatus	4.6	X	15	10
Coleoptera	Dryopidae	Helichus lithophilus	4.6	X	3	1
Coleoptera	Psephenidae	Ectopria sp larva	4.2	X	33	5
Coleoptera	Psephenidae	Psephenus herricki	2.4	X	27	15
Colcoptera	Ptilodactylidae	Anchytarsus bicolor	3.6	X	13	1
Coleoptera	Hydrophilidae	Cymbiodyta sp	8.3		1	0
Coleoptera	Hydrophilidae	Hydrobius tumidus	8.3 9.7		0	1 3
Coleoptera Coleoptera	Hydrophilidae Hydrophilidae	Tropisternus sp (larvae) Unidentified Hydrophilid	6.3		0	3 1
Coleoptera	Gyrinidae Gyrinidae	Dineutus assimilis	5.5		0	1
Coleoptera	Dytiscidae	Agabus punctatus	8.9		1	0
Coleoptera	Dytiscidae	Hydroporus sp	8.6		2	0
Coleoptera	Dytiscidae	Neoporus sp	8.9		1	1
	_ <i>j</i>	r	0.7		-	-

1	Order	Family	FinalID	TV	Clinger	REF	TEST
		2					
			Dubiraphia vittata	4.1	X	0	5
			Macronychus glabratus	4.6	X	0	3
			Microcylloepus pusillus	2.1	X	1	0
	Coleoptera	Elmidae	Optioservus ovalis	2.4	X	7	9
	Coleoptera	Elmidae	Optioservus sp	2.4	X	2	0
	Coleoptera	Elmidae	Optioservus sp(larvae)	2.4	X	26	12
	-	Elmidae	Optioservus trivittatus	2.4	X	2	0
		Elmidae	Oulimnius latiusculus	1.8	X	14	0
	1		Promoresia elegans	2.2	X	2	0
				2.4	X	1	0
			Promoresia sp (larvae)				
			Promoresia tardella	0.0	X	1	1
	Coleoptera		Stenelmis crenata	5.1	X	25	3
	Coleoptera	Elmidae	Stenelmis sp(larvae)	5.1	X	10	7
	Diptera	Muscidae	Limnophora sp	8.4		0	1
	Diptera	Chaoboridae	Chaoborus sp	8.5		0	1
			Antocha sp	4.3	X	11	7
	Diptera	=	Dicranota sp	0.0		10	2
	Diptera		Dolichopeza sp	5.5		1	0
	-						
	Diptera		Hexatoma sp	4.3		35	7
	Diptera	-	Limnophila sp	4.9		3	1
	Diptera	Tipulidae	Limonia sp	9.6		2	3
	Diptera	Tipulidae	Ormosia sp	4.9		5	1
	Diptera	Tipulidae	Pedicia sp	4.9		1	0
	Diptera		Pseudolimnophila sp	7.2		21	3
	Diptera		Tipula sp	7.3		37	20
	•						20
	Diptera		Tipula sp1	7.3		3	
			Unidentified Tipulid	5.0		9	3
		1	Chelifera sp	8.1		3	0
	Diptera	Empididae	Clinocera sp	8.1	X	8	3
	Diptera	Empididae	Hemerodromia sp	8.1		4	14
			Unidentified Empidid	8.1		2	2
	Diptera	*	Atherix sp	2.1		2	1
	-		Dixa sp	2.6		5	0
	1		•				
	1		Dixella sp	5.0		4	1
	Diptera		Ablabesmyia mallochi gr	7.2		2	1
	Diptera		Ablabesmyia sp	7.2		1	0
	Diptera	Chironomidae	Brillia flavifrons	5.2		1	0
	Diptera	Chironomidae	Cardiocladius sp	5.9	X	0	1
	Diptera	Chironomidae	Chaetocladius sp			1	0
	Diptera		Chironomus sp	9.6		0	2
	Diptera		Corynoneura sp	6.0		0	1
	Diptera		Cricotopus annulator	7.0		1	0
	-						
	Diptera		Cricotopus bicinctus gr	8.5		0	3
	Diptera		Cricotopus sp	7.0		4	4
	Diptera		Cricotopus trifascia gr	2.8		1	0
	Diptera	Chironomidae	Cricotopus/Orthocladius gr	7.1		11	17
	Diptera	Chironomidae	Cryptochironomus sp	6.4		2	0
	Diptera	Chironomidae	Diamesa sp	8.1		10	15
	Diptera		Dicrotendipes sp	8.1		1	1
			Diplocladius sp	7.0		1	0
	Diptera		Endochironomus sp	7.8		1	0
				2.0		2	0
	Diptera		Epoicocladius sp				
	Diptera		Eukiefferiella sp	3.4		14	7
	Diptera		Euryhapsis sp			0	1
	Diptera		Heleniella sp	0.0		2	0
	Diptera	Chironomidae	Heterotrissocladius marcidus gr	5.4		0	1
	Diptera		Larsia sp	9.3		2	1
	Diptera		Lopescladius sp	1.7		2	0
	Diptera		Mesosmittia sp	1.,		0	1
				1.5		15	_
	Diptera		Microspectra sp	1.5			3
	1		Microtendipes pedellus gr	5.5		4	0
	Diptera		Microtendipes rydalensis gp	5.5		2	0
	Diptera	Chironomidae	Microtendipes sp	5.5		18	5
	Diptera	Chironomidae	Nanocladius sp	7.1		1	0
			Natarsia sp	10.0		1	1
	Diptera		Nilotanypus sp	3.9		1	0
	Diptera Diptera		Orthocladius sp	7.3		2	1
							•
	1		Parachaetocladius sp	0.0		8	1
	Diptera	Chironomidae	Parametriocnemus lundbecki	3.7		30	18

Order	erance Value, Clinger habit Family	FinalID	TV	Clinger	REF	TEST
Diptera	Chironomidae	Parametriocnemus sp	3.7		2	1
Diptera	Chironomidae	Paratendipes albimanus	9.2	X	0	1
Diptera	Chironomidae	Phaenopsectra sp	6.5		4	0
Diptera	Chironomidae	Phaenopsectra/Tribelos sp	6.8		0	1
Diptera Diptera	Chironomidae Chironomidae	Polypedilum aviceps Polypedilum fallax	3.7 6.4		4 2	1 1
Diptera Diptera	Chironomidae	Polypedilum flavum	5.3		12	4
Diptera Diptera	Chironomidae	Polypedilum illinoense	9.0		0	1
Diptera	Chironomidae	Polypedilum scalaenum gr	8.4		0	2
Diptera Diptera	Chironomidae	Polypedilum sp	6.8		3	1
Diptera	Chironomidae	Polypedilum tritum	6.8		1	1
Diptera	Chironomidae	Potthastia longimanus	6.5		1	0
Diptera	Chironomidae	Potthastia sp	6.4		3	1
Diptera	Chironomidae	Rheocricotopus sp	7.3		5	5
Diptera	Chironomidae	Rheotanytarsus sp	6.4	X	8	2
Diptera	Chironomidae	Stempellina sp	0.0		9	0
Diptera	Chironomidae	Stenochironomus sp	6.5		0	1
Diptera	Chironomidae	Stilocladius sp	5.0		1	0
Diptera	Chironomidae	Symposiocladius sp	5.4		1	1
Diptera	Chironomidae	Sympotthastia spinifera	5.7		0	1
Diptera	Chironomidae	Tanytarsus sp	6.7		23	10
Diptera	Chironomidae	Thienemanniella sp	5.9		1	3
Diptera	Chironomidae	Thienemannimyia gr	5.9		34	15
Diptera	Chironomidae	Tvetenia bavarica gr	3.7		2	0
Diptera	Chironomidae	Tvetenia discoloripes gr	3.6		0	1
Diptera	Chironomidae	Tvetenia sp	3.6		11	3
Diptera	Chironomidae	Unidentified Chironomid	5.0		4	2
Diptera	Chironomidae	Unidentified Larvae	5.0		1	0
Diptera	Chironomidae	Unidentified Podonominae			1	0
Diptera	Chironomidae	Unidentified Pupae	7.0		0	1
Diptera	Ephydridae	Unidentified Ephydrid	9.0		1	2
Diptera	Dolichopodidae	Unidentified Dolichopodid	5.0		1	0
Diptera	Psychodidae	Pericoma sp	10.0		1	0
Diptera	Psychodidae	Psychoda alternata	9.9		1	2
Diptera	Ptychopteridae	Ptychoptera sp	7.0		1	0
Diptera	Simuliidae	Prosimulium magmun	2.6	X	1	0
Diptera	Simuliidae	Prosimulium sp	4.0	X	30	9
Diptera	Simuliidae	Simulium sp	4.4	X	33	13
Diptera	Stratiomyidae	Myxosargus sp	10.0		0	1
Diptera	Stratiomyidae	Odontomyia sp	10.0		0	2
Diptera	Stratiomyidae	Stratiomys sp	8.1		0	1
Diptera	Tabanidae	Chrysops sp	6.7		2	1
Diptera Diptera	Tabanidae Tabanidae	Tabanus sp Unidentified tabanid	9.2 8.6		1 6	1 0
Diptera Diptera	Tabanidae Ceratopogonidae	Bezzia/Palpomyia gr	8.0 6.9		10	-
Diptera Diptera	Ceratopogonidae	Culicoides sp	7.7		0	2 1
Diptera Diptera	Ceratopogonidae	Dasyhelea sp	6.7		2	0
Diptera Diptera	Ceratopogonidae	Monohelea sp	6.8		1	1
Diptera	Ceratopogonidae	Probezzia sp	6.9		2	2
Diptera	Sciaridae	Unidentified Sciarid	5.0		13	3
Hydracarina	Hydrachnidae	Unidentified Hydracarina (mite)	5.5		1	0
Amphipoda	Crangonyctidae	Crangonyx sp	8.0		3	1
Amphipoda	Gammaridae	Gammarus sp	8.0		2	0
Amphipoda	Talitridae	Hyalella azteca	7.8		1	1
Isopoda	Asellidae	Caecidotea sp	9.1		9	2
Isopoda	Asellidae	Lirceus fontinalis	7.9		7	3
Decapoda	Cambaridae	Cambarus bartonii cavatus	4.6		17	5
Decapoda	Cambaridae	Cambarus buntingi	4.9		2	1
Decapoda	Cambaridae	Cambarus cumberlandensis	4.1		3	2
Decapoda	Cambaridae	Cambarus distans	3.9		21	9
Decapoda	Cambaridae	Cambarus parvoculus	3.2		9	2
Decapoda	Cambaridae	Cambarus robustus	4.9		13	7
Decapoda	Cambaridae	Cambarus rusticiformis	4.0		3	1
Decapoda	Cambaridae	Cambarus sciotensis	6.4		0	2
Decapoda	Cambaridae	Cambarus sp	4.9		15	4
Decapoda	Cambaridae	Cambarus sphenoides	4.9		2	0
Decapoda	Cambaridae	Cambarus striatus	4.9		0	1
Decapoda	Cambaridae	Orconectes cristavarius	5.5		3	11
Decapoda	Cambaridae	Orconectes sp	5.5		1	6

StationID	Program	StreamName	CollDate	Area (Mi2)	MBI	Genus TR	Genus EPT	mHBI	m%EPT	%Ephem	%Chir+Olig	%Clng	Family TR	Family EP	Г ГВІ
1007005	REF	HOBBS FORK	4/11/01	1.15	91.7	56	31	2.77	78.95	56.43	2.05	69.59	27	17	3.53
1007006	REF	HOBBS FORK2	4/11/01	0.18	90.6	48	29	2.18	87.07	54.96	0.86	66.38	30	17	3.10
1017001	TEST	LONG BRANCH	4/23/02	0.36	41.1	41	9	5.61	44.21	0.00	26.45	10.74	18	8	5.36
1022008	TEST	CALEB FORK	5/ 1/02	1.78	19.9	21	4	6.70	0.88	0.88	54.39	2.63	14	3	7.07
1032001	REF	TOMS BRANCH	4/12/01	0.95	93.4	58	32	2.62	82.53	59.34	3.46	67.30	30	17	3.84
1032002	REF	LOWER PIGEON BRANCH	4/12/01	0.89	83.4	53	29	2.55	66.86	42.20	5.65	61.37	28	19	3.96
1032003	REF	LOWER PIGEON BRANCH	5/15/02	0.89	87.7	45	30	1.68	91.71	54.15	1.95	54.15	27	19	3.33
1032003	REF	LOWER PIGEON BRANCH	5/16/02	0.89	85.5	49	27	2.22	85.94	46.68	1.86	53.58	27	18	3.51
1032003	TEST	UPPER PIGEON BRANCH	5/16/02	2.01	28.4	35	8	6.33	9.13	6.25	69.23	15.87	20	6	6.27
2006027	TEST	HATCHELL BRANCH	4/19/00	0.35	57.5	29	18	3.69	46.25	30.63	0.30	16.52	16	14	3.92
2006030	REF	JACKIE BRANCH	4/20/00	1.14	82.2	53	25	2.94	62.53	43.40	4.85	69.81	29	18	3.90
2006031	REF	CANE CREEK	4/24/00	0.65	79.6	52	26	2.66	77.95	32.29	3.56	50.11	29	17	3.21
2008017	REF	UT ROCK CREEK1	4/12/00	0.82	85.5	57	30	3.25	62.02	40.87	2.56	75.48	29	20	3.90
2008018	REF	WATTS BRANCH	4/17/00	2.2	90.2	46	25	3.14	84.97	66.67	1.78	74.32	26	16	3.82
2008019 2008020	REF REF	PUNCHEONCAMP BRANCH UT ROCK CREEK3	4/18/00 4/18/00	1.7 0.63	92.4 89.2	55 56	30 26	2.89	82.29 74.92	70.19 52.10	2.68 1.95	64.20 76.88	27 30	19 19	3.68 3.79
2008020	REF	UT ROCK CREEK2	4/18/00	0.03	85.9	39	19	2.47	81.82	70.74	0.85	69.03	24	19	3.53
2008021	REF	UT BS FK CUMBERLAND	4/18/00	0.89	82.5	37	21	2.98	86.52	73.35	3.05	51.52	22	15	3.51
2008022	TEST	COFFEY BRANCH	4/19/00	1.25	75.5	41	21	3.24	78.65	48.54	11.24	45.62	25	17	3.80
2014004	TEST	JENNEYS BRANCH	4/19/00	0.66	48.2	37	13	5.71	27.74	6.19	28.54	53.49	17	9	5.63
2023004	REF	DRY FORK	4/19/01	2.05	65.6	34	18	3.67	34.49	25.93	0.54	68.78	23	14	4.15
2041003	REF	BROWNIES CREEK	4/26/00	2.3	70.9	52	31	2.93	50.10	18.38	2.22	34.55	31	22	3.85
2041004	TEST	BROWNIES CREEK2	4/26/00	0.31	61.4	39	24	2.53	36.32	18.25	0.71	23.21	24	18	3.74
2042002	TEST	EWING CREEK	4/26/00	3.06	42.7	25	11	4.88	32.20	20.34	33.90	18.64	16	9	5.49
2042003	REF	WATTS CREEK	3/29/01	0.85	83.2	61	34	2.19	68.11	17.27	6.71	66.19	35	20	3.33
2046002	TEST	BAD BRANCH	4/27/00	2.6	60.8	38	18	3.02	79.61	7.54	4.47	17.04	28	20	3.35
2046004	REF	PRESLEY HOUSE BRANCH	4/27/00	0.9	73.7	46	24	2.64	72.14	26.01	2.79	42.41	24	14	3.62
2046005	TEST	FRANKS CREEK	4/27/00	1.36	81.1	42	25	3.41	80.24	56.99	5.32	50.91	27	16	3.71
4036017	REF	STEER FORK	4/18/01	3	95.7	59	36	3.03	84.80	62.12	4.70	76.72	26	19	4.27
4042016	TEST	MF RED RIVER	4/10/02	1.80	69.3	57	28	4.14	50.44	37.24	29.91	38.12	26	18	3.79
4042703	REF	CHESTER CREEK	4/10/02	2.65	84.1	58	30	2.42	68.67	32.53	10.24	68.37	27	16	4.72
4050002	REF	CLEMONS FORK	5/14/99	2.0	80.5	66	32	3.12	59.80	35.78	12.99	51.72	25	18	3.57
4050007	TEST	FUGATE FORK	4/10/00	2.6	55.7	43	13 19	3.87	45.65 84.05	1.85	16.89	49.08	27 19	20 9	4.08 4.91
4050008 4050009	TEST TEST	JENNY FORK BEAR BRANCH	4/10/00 4/10/00	0.45 1.54	65.8 61.6	42 42	17	3.05 4.12	63.81	2.37 18.09	9.70 9.53	42.46 34.82	24	14	4.91
4050009	REF	CLEMONS FORK	4/10/00	0.8	90.3	59	30	2.55	74.12	51.97	2.69	68.74	19	11	4.84
4050010	REF	FALLING ROCK BRANCH	4/11/00	0.41	88.9	57	32	2.79	71.69	46.86	2.37	68.76	30	19	3.46
4050012	REF	JOHN CARPENTER FORK	4/12/00	0.58	76.7	40	22	2.98	59.94	42.98	0.88	63.16	30	21	3.46
4050013	REF	SHELLY ROCK FORK	4/11/00	0.55	85.6	38	20	2.41	78.84	62.09	0.70	73.26	23	17	3.57
4050014	REF	MILLSEAT BRANCH	4/11/00	0.58	82.0	53	31	2.45	75.42	24.92	7.41	61.95	23	15	3.10
4050015	REF	LITTLE MILLSEAT BRANCH	4/12/00	0.82	86.8	44	28	2.61	79.69	57.59	0.45	60.71	25	20	3.57
4050016	TEST	LICK BRANCH	4/12/00	2.81	34.9	21	8	6.87	35.77	0.00	48.54	40.51	26	18	3.15
4050017	TEST	WILLIAMS BRANCH	4/12/00	1.08	21.7	25	5	5.82	1.74	0.00	75.96	12.89	11	6	5.83
4050018	TEST	CANEY CREEK	4/12/00	2.5	37.0	36	10	5.42	9.62	5.13	44.23	28.85	13	4	6.10
4052017	REF	LITTLE DOUBLE CREEK	3/29/00	1.5	80.4	27	19	2.16	94.26	64.09	0.00	49.93	16	7	6.03
4052018	REF	RF BIG DOUBLE CREEK2	3/29/00	1.46	81.1	46	22	2.39	68.77	46.53	3.00	63.25	16	13	3.08
4052019	REF	LF BIG DOUBLE CREEK	3/29/00	0.6	87.4	52	25	2.55	74.42	54.09	1.53	69.69	23	15	3.59
4052020	REF	RF ELISHA CREEK	3/30/00	2.35	83.1	48	31	2.63	72.03	47.97	4.49	50.00	27	17	3.59
4052021	REF	BM FORK ELISHA CREEK	3/30/00	0.82	83.2	57	28	2.82	74.35	55.90	5.54	38.01	28	21	3.70
4052022	REF	LF ELISHA CREEK	3/30/00	2.47	85.7	42	25	2.52	81.80	69.32	0.52	50.95	33	18	3.81
4052023 4052024	REF TEST	RF BIG DOUBLE CREEK RED BIRD CREEK	4/ 5/00 4/ 5/00	1.53	84.6 49.7	40 28	22 13	2.45 4.66	82.23 42.14	59.31 13.21	4.71 10.06	64.67 27.67	21 24	16 15	3.39
4052025	TEST	MUD LICK BRANCH	4/ 5/00	1.1	85.2	42	24	2.49	75.52	60.00	0.90	63.58	19	11	4.88
4052026	TEST	LAWSON CREEK	4/ 5/00	1.48	59.3	33	15	4.65	49.65	31.91	4.26	35.46	24	15	3.48
4052027	TEST	SPRUCE BRANCH	4/ 6/00	0.95	91.8	43	26	2.39	88.17	76.10	1.16	74.25	20	10	4.77
4052028	TEST	GILBERTS LITTLE CREEK	4/ 6/00	1.47	33.6	32	11	5.33	5.94	2.74	28.31	6.39	23	16	3.48
4052029	TEST	ARNETTS FORK	4/ 6/00	1.42	74.6	27	20	2.09	97.06	51.47	0.00	30.15	16	9	5.90
4052030	REF	SUGAR CREEK	4/6/00	3.05	88.5	54	29	2.79	73.04	52.07	2.30	70.28	16	13	2.99
4054005	REF	CAWOOD BRANCH	3/28/01	0.8	69.2	38	20	2.95	58.12	21.57	3.81	58.12	28	18	3.73
4054007	TEST	LF CAMP CREEK	3/27/01	0.93	53.9	36	18	4.29	67.74	5.99	19.59	18.43	22	15	3.58
4054008	TEST	CAMP CREEK	3/27/01	2.7	41.4	29	15	4.36	22.94	5.29	51.76	32.94	20	12	4.82
4054009	REF	BILL BRANCH	3/28/01	2.3	91.9	43	28	1.99	91.16	59.18	2.04	82.99	16	9	5.05
4054010	REF	HONEY BRANCH	3/28/01	0.82	90.0	40	26	2.83	86.42	65.34	2.34	81.73	22	19	2.85
4055002	REF	UT LINE FORK	2/ 9/99	0.22	90.7	60	31	1.92	81.94	50.29	10.49	64.85	22	17	3.60
4055002	REF	UT LINE FORK	4/16/98	0.22	80.3	57	26	2.84	79.44	55.36	11.60	28.34	30	18	4.13
05037002	REF	BOTTS FORK	4/18/02	3.38	80.4	55	31	3.31	63.86	37.28	13.90	60.16	27	21	3.51
05037004	REF	WELCH FORK	4/18/02	1.5	83.1	62	36	2.62	67.47	28.80	8.00	56.80	26	19	4.18
06012003	REF	NICHOLS BRANCH	4/29/02	0.65	75.8	49	25	2.95	73.83	31.46	4.05	43.93	28	21	3.53
06012004	REF	MEADOW BRANCH	4/30/02 3/14/02	0.93	74.0 67.0	53 41	24 17	3.10	73.65 77.38	29.64 28.31	5.09 2.31	36.23 31.69	27	18	3.44
06013014	REF	UT NEWCOMBE CREEK	3/14/02	0.23	07.0	41	1/	5./1	11.38	20.31	2.31	31.09	29	17	3.52

Appendix F. Pearson correlation coefficients for biological attributes and environmental/habitat variables for all sites. Values in italics are statistically significant (p<0.01).

	MBI	Genus TR	Genus EPT	mHBI	m%EPT	%Ephem	%Chir+Olig	%Clng
Area (mi ²)	-0.26	-0.19	-0.19	0.34	0.12	-0.17	0.32	-0.18
DO	-0.23	-0.15	-0.22	0.25	0.02	-0.19	0.41	0.00
pН	-0.43	-0.24	-0.35	0.51	-0.39	-0.33	0.62	-0.21
Spec. Cond.	-0.66	-0.51	-0.59	0.71	-0.50	-0.53	0.73	-0.36
Temp	-0.06	0.04	-0.06	0.14	0.09	0.02	0.00	-0.20
%Embed	-0.59	-0.51	-0.60	0.75	-0.44	-0.39	0.58	-0.37
RipWidth (m)	0.55	0.53	0.59	-0.61	0.49	0.31	-0.50	0.36
StrWidth (m)	0.17	0.14	0.21	-0.12	0.11	0.15	-0.09	0.14
Canopy Score	0.60	0.51	0.65	-0.59	0.39	0.43	-0.46	0.44
SubSize (cm)	-0.11	-0.14	-0.16	-0.09	-0.19	-0.15	-0.16	-0.18
Tot HabScore	0.76	0.56	0.67	-0.73	0.52	0.46	-0.60	0.44
Bank Stabilty Score	0.20	0.22	0.23	-0.18	0.09	0.05	-0.22	0.16
BankVeg Score	0.44	0.46	0.49	-0.46	0.32	0.20	-0.44	0.32
ChanAlter Score	0.51	0.45	0.52	-0.56	0.40	0.32	-0.39	0.41
Embeddedness Score	0.61	0.55	0.66	-0.69	0.47	0.40	-0.55	0.38
EpiFauSub Score	0.65	0.50	0.64	-0.73	0.56	0.51	-0.56	0.42
FreqOfRiffles Score	0.19	0.07	0.16	-0.30	0.10	0.19	-0.20	0.07
RipScore Score	0.62	0.46	0.59	-0.66	0.52	0.46	-0.53	0.45
SedDep Score	0.40	0.37	0.37	-0.43	0.40	0.31	-0.41	0.24
Vel/Dep Regime Score	0.41	0.30	0.44	-0.45	0.36	0.32	-0.34	0.24