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Abstract There are many monitoring environments, such as railway control, in which lapses of

attention can have tragic consequences. Problematically, sustained monitoring for rare targets is

difficult, with more misses and longer reaction times over time. What changes in the brain underpin

these ‘vigilance decrements’? We designed a multiple-object monitoring (MOM) paradigm to

examine how the neural representation of information varied with target frequency and time

performing the task. Behavioural performance decreased over time for the rare target (monitoring)

condition, but not for a frequent target (active) condition. There was subtle evidence of this also in

the neural decoding using Magnetoencephalography: for one time-window (of 80ms) coding of

critical information declined more during monitoring versus active conditions. We developed new

analyses that can predict behavioural errors from the neural data more than a second before they

occurred. This facilitates pre-empting behavioural errors due to lapses in attention and provides

new insight into the neural correlates of vigilance decrements.

Introduction
When people monitor displays for rare targets, they are slower to respond and more likely to miss

those targets relative to frequent target conditions (Wolfe et al., 2005; Warm et al., 2008;

Rich et al., 2008; Reason, 1990; Reason, 2000). This effect is more pronounced as the time doing

the task increases, which is often called a ‘vigilance decrement’. Theoretical accounts of vigilance

decrements fall into two main categories. ‘Cognitive depletion’ theories suggest performance drops

as cognitive resources are ‘used up’ by the difficulty of sustaining attention under vigilance condi-

tions (Helton and Warm, 2008; Helton and Russell, 2011; Warm et al., 2008). In contrast, ‘mind

wandering’ theories suggest that the boredom of the task tends to result in insufficient involvement

of cognitive resources, which in turn leads to performance decrements (Manly et al., 1999;

Smallwood and Schooler, 2006; Young and Stanton, 2002). Either way, there are many real-life sit-

uations where such a decrease in performance over time can lead to tragic consequences, such as

the Paddington railway disaster (UK, 1999), in which a slow response time to a stop signal resulted in

a train moving another 600 m past the signal into the path of an oncoming train. With the move

towards automated and semi-automated systems in many high-risk domains (e.g., power-generation

and trains), humans now commonly need to monitor systems for infrequent computer failures or

errors. These modern environments challenge our attentional systems and make it urgent to under-

stand the way in which monitoring conditions change the way important information about the task

is encoded in the human brain.
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To date, most vigilance and rare target studies have used simple displays with static stimuli. Tra-

ditional vigilance tasks, inspired by radar operators in WWII, require participants to respond to infre-

quent visual events on otherwise blank screens, and show more targets are missed as time on task

increases (Mackworth, 1948). More recent vigilance tasks have participants detect infrequent target

stimuli among non-targets, and typically show an increase in misses as time on task increases. In

Temple et al., 2000, for example, with only 20% targets, after 10 min target detection rates

declined from 97% to 93% for high contrast (easy) and from 95% to 83% for low (hard) contrast tar-

gets. Other approaches have been to test for vigilance effects using frequent responses to non-tar-

gets, which have the advantage of more data points for analysis. The Sustained Attention to

Response Task (SART), for example, requires participants to respond to each non-target item in a

rapid stream of stimuli and occasionally withhold a response to a target item (Beck et al., 1956;

Rosenberg et al., 2013). These approaches usually show effects on reaction times (RTs), which

increase and become more variable with time on task (Rosenberg et al., 2013; Möckel et al., 2015;

Singleton, 1953), although others have found RTs decrease (Rubinstein, 2020). Faster RTs also

occur for ‘target absent’ responses in rare target visual search (Wolfe et al., 2005; Rich et al.,

2008). Overall, vigilance decrements in terms of poorer performance can be seen in both accuracy

and in RTs, depending on the task.

Despite these efforts, modern environments (e.g., rail and air traffic control) have additional chal-

lenges not encapsulated by these measures. This includes multiple moving objects, potentially

appearing at different times, and moving simultaneously in different directions. When an object

moves in the space, its neural representation has to be continuously updated so we can perceive the

object as having the same identity. Tracking moving objects also requires considerable neural com-

putation: in addition to spatial remapping, for example, we need to predict direction, speed, and

the distance of the object to a particular destination. These features cannot be studied using static

stimuli; they require objects that shift across space over time. In addition, operators have complex

displays requiring selection of some items while ignoring others. We therefore need new approaches

to study vigilance decrements in situations that more closely resemble the real-life environments in

which humans are now operating. Developing these methods will provide a new perspective on fun-

damental questions of how the brain implements sustained attention in moving displays, and the

way in which monitoring changes the encoding of information compared with active task involve-

ment. These new methods may also provide avenues to optimise performance in high-risk monitor-

ing environments.

The brain regions involved in maintaining attention over time has been studied using functional

magnetic resonance imaging (fMRI), which measures changes in cerebral blood flow (Adler et al.,

2001; Benedict et al., 2002; Coull et al., 1996; Gilbert et al., 2006; Johannsen et al., 1997;

Ortuño et al., 2002; Périn et al., 2010; Schnell et al., 2007; Sturm et al., 1999; Tana et al., 2010;

Thakral and Slotnick, 2009; Wingen et al., 2008). These studies compared brain activation in task

vs. resting baseline or sensorimotor control (which involved no action) conditions and used univariate

analyses to identify regions with higher activation under task conditions. This has the limitation that

there are many features that differ between the contrasted (subtracted) conditions, not just the mat-

ter of sustained attention. Specifically, this comparison cannot distinguish whether the activation dur-

ing sustained attention is caused by the differences in the task, stimuli, responses, or a combination

of these factors. As it is challenging to get sufficient data from monitoring (vigilance) tasks in the

scanner, many previous studies used tasks with relatively frequent targets, in which vigilance decre-

ments usually do not occur. However, despite these challenges, Langner and Eickhoff, 2013

reviewed vigilance neuroimaging studies and identified a network of right-lateralised brain regions

including dorsomedial, mid- and ventrolateral prefrontal cortex, anterior insula, parietal and a few

subcortical areas that they argue form the core network subserving vigilant attention in humans. The

areas identified by Langner and Eickhoff, 2013 show considerable overlap with a network previ-

ously identified as being recruited by many cognitively challenging tasks, the ‘multiple demand’

(MD) regions, which include the right inferior frontal gyrus, anterior insula, and intra-parietal sulcus

(Duncan and Owen, 2000; Duncan, 2010; Fedorenko et al., 2013; Woolgar et al., 2011;

Woolgar et al., 2015a; Woolgar et al., 2015b).

Other fMRI studies of vigilance have focused on the default mode network, composed of discrete

areas in the lateral and medial parietal, medial prefrontal, and medial and lateral temporal cortices

such as posterior cingulate cortex (PCC) and ventral anterior cingulate cortex (vACC), which is
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thought to be active during ‘resting state’ and less active during tasks (Greicius et al., 2003;

Greicius et al., 2009; Raichle, 2015). Eichele et al., 2008 suggested that lapses in attention can be

predicted by decrease of deactivation of this default mode network. In contrast, Weissman et al.,

2006 identified deactivation in the anterior cingulate and right prefrontal regions in pre-stimulus

time windows when targets were missed. Ekman et al., 2012 also observed decreased connectivity

between sensory visual areas and frontal brain areas on the pre-stimulus time span of incorrect trials

in colour/motion judgement tasks. More recently, Sadaghiani et al., 2015 showed that the func-

tional connectivity between sensory and ‘vigilance-related’ (cingulo-opercular) brain areas decreased

prior to behavioural misses in an auditory task while between the same sensory area and the default-

mode network the connectivity increased. These findings suggest that modulation of interactions

between sensory and vigilance-related brain areas might be related to behavioural misses in moni-

toring tasks.

Detecting changes in brain activation that correlate with lapses of attention can be particularly

challenging with fMRI, given that it has poor temporal resolution. Electroencephalography (EEG),

which records electrical activity at the scalp, has much better temporal resolution, and has been the

other major approach for examining changes in brain activity during sustained attention tasks. Fre-

quency band analyses have shown that low-frequency alpha (8–10.9 Hz) oscillations predict task

workload and performance during monitoring of simulated air traffic (static) displays with rare tar-

gets, while frontal theta band (4–7.9 Hz) activity predicts task workload only in later stages of the

experiment (Kamzanova et al., 2014). Other studies find that increases in occipital alpha oscillations

can predict upcoming error responses (Mazaheri et al., 2009) and misses (O’Connell et al., 2009)

in go/no-go visual tasks with target frequencies of 11% and 9%, respectively. These changes in signal

power that correlate with the task workload or behavioural outcome of trials are useful, but provide

relatively coarse-level information about what changes in the brain during vigilance decrements.

Understanding the neural basis of decreases in performance over time under vigilance conditions

is not just theoretically important, it also has potential real-world applications. In particular, if we

could identify a reliable neural signature of attentional lapses, then we could potentially intervene

prior to any overt error. For example, with the development of autonomous vehicles, being able to

detect when a driver is not engaged, combined with information about a potential threat, could

allow emergency braking procedures to be initiated. Previous studies have used physiological meas-

ures such as pupil size (Yoss et al., 1970), body temperature (Molina et al., 2019), skin conduc-

tance, and blood pressure (Lohani et al., 2019) to indicate the level of human arousal or alertness,

but these lack the fine-grained information necessary to distinguish transient dips from problematic

levels of inattention in which task-related information is lost. In particular, we lack detail on how

information processing changes in the brain during vigilance decrements. This knowledge is crucial

to develop a greater understanding of how humans sustain vigilance.

In this study, we developed a new task, multiple-object monitoring (MOM), which includes key

features of real-life situations confronting human operators in high-risk environments. These features

include moving objects, varying levels of target frequency, and a requirement to detect and avoid

collisions. A key feature of our MOM task is that it allows measurement of the specific decrements in

performance during vigilance (sustaining attention in a situation where only infrequent responses are

needed) separate from more general decreases in performance simply due to doing a task for an

extended period. Surprisingly, this is not typically the case in vigilance tasks. We recorded neural

data using the highly sensitive method of magnetoencephalography (Baillet, 2017) and used multi-

variate pattern analyses (MVPA) to determine how behavioural vigilance decrements correlate with

changes in the neural representation of information. We used these new approaches to better

understand the way in which changes between active and monitoring tasks affect neural representa-

tion, including functional connectivity. We then examined the potential for using these neural meas-

ures to predict forthcoming behavioural misses based on brain activity.

Results
Participants completed the MOM task during which they monitored several dots moving on visible

trajectories towards a centrally presented fixed object (Figure 1A). The trajectories spanned from

corners of the screen towards the central object and deflected at 90˚ before contacting the central

object. The participants’ task was to keep fixation on the central object and press the button to
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deflect the moving dot if it violated its trajectory and continued towards the central object after

reaching the deflection point. They were tasked to do so before the object ‘collided’ with the central

object. In each block, only dots of one colour (either green or red; called Attended vs. Unattended)

was relevant and should be responded to by the participants (~110 s). Either 50% or 6% of the

attended dots (cued colour) were targets (i.e., violated their trajectory requiring a response; see

Materials and methods) generating Active and Monitoring conditions, respectively.

Behavioural data: The MOM task evokes a reliable vigilance decrement
In the first block of trials (i.e., the first 110 s, excluding the two practice blocks), participants missed

29% of targets in the Active condition and 40% of targets in the Monitoring condition. However,

note the number of targets in any single block is necessarily very low for the Monitoring (for a single

block, there are 16 targets for Active but only two targets for Monitoring). The pattern becomes

more robust over blocks, and Figure 2A shows the miss rates changed over time in different direc-

tions for the Active vs. Monitoring conditions. For Active blocks, miss rates decreased over the first

five blocks and then plateaued at ~17%. For Monitoring, however, miss rates increased throughout

the experiment: by the final block, these miss rates were up to 76% (but again, the low number of

targets in Monitoring mean that we should use caution in interpreting the results of any single block

alone). There was evidence that miss rates were higher in the Monitoring than Active conditions

from the fourth block onwards (BF >3; Figure 2A). Participants’ RTs on correct trials also showed

evidence of specific vigilance decrements, increasing over time under Monitoring but decreasing

under Active task conditions (Figure 2B). There was evidence that RTs were slower for Monitoring

Attend green
Distractor: no response needed

Ac�ve: 50% of uncued dots

Monitoring: 6% of uncued dots

Event: no response needed

Ac�ve: 50% of cued dots

Monitoring: 94% of cued dots

Target: press bu!on to prevent collision!

Ac�ve: 50% of cued dots

Monitoring: 6% of cued dots

Time

A

B

d1
d2

d15

d1
d2

d15

Figure 1. The multiple-object monitoring (MOM) task and types of information decoded. (A) At the start of a

block, the relevant colour is cued (here, green; distractors in red). Over the on-task period (~30 min per task

condition), multiple dots entered from either direction, each moving along a visible individual trajectory towards

the middle object. Only attended dots that failed to deflect along the trajectories at the deflection point required

a response (Target: bottom right display). Participants did not need to press the button for the unattended dot

(Distractor: top right display) or the dots that kept moving on the trajectories (Event: middle right panel). Each dot

took ~1226 ms from appearance to deflection. (B) Direction of approach information (left display: left vs. right as

indicated by dashed and solid lines, respectively) and distance to object information (right display). Note the blue

dashed lines and orange arrows were not present in the actual display. d1, d2, etc. denote the ‘distance units’

used to train the classifier for the key distance to object information. A demo of the task can be found here

[https://osf.io/5aw8v/].
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compared with Active from the sixth block onwards (BF >3, except for Block #11). The characteristic

pattern of increasing miss rates and slower RTs over time in the Monitoring relative to the Active

condition validates the MOM task as effectively evoking vigilance decrements.

Neural data: Decoding different aspects of task-related information
We used multivariate pattern analysis (i.e., decoding) to extract two types of information from MEG

data about each dot’s movement on the screen: information about the direction of approach

(whether the dot was approaching the central object from left or right side of the screen) and dis-

tance to object (how far was the dot relative to the central object; Figure 1B; see Materials and

methods).

With so much going on in the display at one time, we first needed to verify that we can success-

fully decode the major aspects of the moving stimuli, relative to chance. The full data figures and

details are presented in Supplementary materials: We were able to decode both direction of

approach and distance to object from MEG signals (see Figure 3—figure supplement 1). Thus, we

can turn to our main question about how these representations were affected by the Target Fre-

quency, Attention, and Time on Task.

The neural correlates of the vigilance decrement
As the behavioural results showed (Figure 2), the difference between Active and Monitoring condi-

tions increased over time, showing the greatest difference during the final blocks of the experiment.

To explore the neural correlates of these vigilance decrements, we evaluated information represen-

tation in the brain during the first five and last five blocks of each task (called early and late blocks,

respectively) and the interactions between the Target Frequency, Attention, and the Time on Task

using a three-way Bayes factor ANOVA.
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B

BF > 3

1/3 < BF < 3

BF < 1/3

Block #

Active

Monitoring

Block #

Active vs. Monitoring Active vs. Monitoring

Figure 2. Behavioural performance on the MOM task. The percentage of miss trials (A), and correct reaction times (B), as a function of block. Thick lines

show the average across participants (shading 95% confidence intervals) for Active (blue) and Monitoring (red) conditions. Each block lasted for 110 s

and had either 16 (Active) or 2 (Monitoring) targets out of 32 cued-colour and 32 non-cued colour dots. Bayes factors (BF) are shown in the bottom

section of each graph: Filled circles show moderate/strong evidence for either hypothesis and empty circles indicate insufficient evidence when

evaluating the contrast between Active and Monitoring conditions.
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Effects of target frequency on direction of approach information
Direction of approach information is a very clear visual signal (‘from the left’ vs. ‘from the right’) and

therefore is unlikely to be strongly modulated by other factors, except perhaps whether the dot was

in the cued colour (Attended) or the distractor colour (could be ignored: Unattended). There was

moderate or strong evidence for a main effect of Attention (Figure 3A; BF >3, Bayes factor ANOVA,

cyan dots) starting from 265 ms and lasting until dots faded. This is consistent with maintenance of

information about the attended dots and attenuation of the information about unattended dots (Fig-

ure 3—figure supplement 1A). The large difference in coding attributable to attention remained for

as long as the dots were visible.

In contrast, there was no sustained main effect of Target Frequency on the same direction of

approach coding. For the majority of the epoch there was moderate or strong evidence for the null

hypothesis (BF <1/3; Bayes factor ANOVA, Figure 3A, purple dots). The sporadic time point with a

main effect of Target Frequency, observed before the deflection (BF >3), likely reflects noise in the

data as there is no clustering. Recall that we only focus on time points prior to deflection, as after

this point there are visual differences between Active and Monitoring, with more dots deflecting in

the Monitoring condition.

There was also no sustained main effect of the Time on Task on information about the direction

of approach (BF <3; Bayes factor ANOVA, green dots; Figure 3A). There were no sustained two-

way or three-way interactions between Attention, Target Frequency, and Time on Task (BF <3; Bayes

factor ANOVA). Note that the number of trials used in the training and testing of the classifiers were

equalised across the eight conditions and equalled the minimum available number of trials across

those conditions shown in Figure 3. Therefore, the observed effects cannot be attributed to a differ-

ence in the number of trials across conditions.

Effects of target frequency on critical distance to object information
The same analysis for the representation of the task-relevant distance to object information showed

strong evidence for a main effect of Attention (BF > 10; Bayes factor ANOVA) at all 15 distances, no

effect of Time on Task (BF < 0.3; Bayes factor ANOVA) at any of the distances, and an interaction

between Time on Task and Target Frequency at one of the distances (BF = 6.7, Figure 3B). The

interaction between Target Frequency and Time on Task at distance 13 (time-window: 160 to 240

ms after stimulus onset, BF = 6.7) reflected opposite effects of time on task in the Active and Moni-

toring conditions. In Active blocks, there was moderate evidence that coding was stronger in late

blocks than in early blocks (BF = 3.1), whereas in the Monitoring condition, decoding declined with

time and was weaker in late than in easy blocks (BF = 4.3). However, as there was only moderate evi-

dence for this interaction at one of the time-windows, we do not overinterpret it. Decoding of

attended information tended to be lower in late compared to early Monitoring blocks (Figure 3B

lower panel red dotted line) in several time-windows across the trial, which may echo the behavioural

pattern of performance (Figure 2). As there was moderate evidence for no interaction between

Attention and Target Frequency (BF < 0.3, 2-way Bayes factor ANOVA) except for distance 6

(BF = 3.3; no consistent pattern (insufficient evidence for pairwise comparisons: BFs 2.4-2.8)), no

interaction between Attention and Time on Task (BF < 0.3, 2-way Bayes factor ANOVA) or simulta-

neously between the three factors (BF < 0.3, 3-way Bayes factor ANOVA), we do not show those sta-

tistical results in the figure.

Although eye-movements should not drive the classifiers due to our design, it is still important to

verify that the results replicate when standard artefact removal is applied. We can also use eye-

movement data as an additional measure, examining blinks, saccades and fixations for effects of our

attention and vigilance manipulations.

First, to make sure that our neural decoding results replicate after eye-related artefact removal,

we repeated our analyses on the data after eye-artefact removal, which provided analogous results

to the original analysis (see the decoding results with and without artefact removal in Figure 3—fig-

ure supplement 2). Specifically, for our crucial distance to object data, the main effect of Attention

remained after eye-artefact removal, replicating our initial pattern of results. Moderate evidence

(BF = 4.2) for an interaction between Target Frequency and Time on Task was also found, but now

at distance 6 instead of distance 13. This interaction again reflected a larger effect of Time on Task
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Figure 3. Impact of different conditions and their interactions on information on correct trials (all trials except

those in which a target was missed or there was a false alarm). (A) Decoding of direction of approach information

(less task-relevant) and (B) decoding of distance to object information (most task-relevant). Left two columns:

Attended dots; Right two columns: Unattended (‘distractor’) dots. Thick lines show the average across participants

Figure 3 continued on next page
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in Monitoring compared to Active blocks (Monitoring: weaker coding in late relative to early blocks

(BF = 3.1); Active: insufficient evidence for change in coding from early to late (BF = 2.0)).

Second, we conducted a post hoc analysis to explore whether eye movement data showed the

same patterns of vigilance decrements and therefore could explain our decoding results. We

extracted the proportion of eye blinks, saccades, and fixations per trial as well as the duration of

those fixations from the eye-tracking data for correct trials (�100 to 1400 ms aligned to the stimulus

onset time), and statistically compared them across our critical conditions (Figure 3—figure supple-

ment 3). We saw strong evidence (BF = 4.8e8) for a difference in the number of eye blinks between

attention conditions: There were more eye blinks for the Unattended (distractor) than Attended

(potentially targets) colour dots. We also observed moderate evidence (BF = 3.4) for difference

between the number of fixations, with more fixations in Unattended vs. Attended conditions. These

suggest that there are systematic differences in the number of eye blinks and fixations due to our

attentional manipulation, consistent with previous observations showing that the frequency of eye

blinks can be affected by the level of attentional recruitment (Nakano et al., 2013). However, there

was either insufficient evidence (0.3 < BF <3) or moderate or strong evidence for no differences (0.1

< BF <0.3 and BF <0.3, respectively) between the number of eye blinks and saccades across our

Active, Monitoring, Early, and Late blocks, where we observed our ‘vigilance decrement’ effects in

decoding. Therefore, this suggests that the main vigilance decrement effects in decoding, which

were evident as an interaction between Target frequency (Active vs. Monitoring) and Time on the

task (Early vs. Late; Figure 3), are not primarily driven by eye movements. However, artefact removal

algorithms are not perfect, making it is impossible to fully rule out all potentially meaningful eye-

related artefacts from the MEG data (e.g. the difference in the number of eye blinks between

attended and unattended conditions). Thus, although the results are similar with and without stan-

dard eye-artefact removal, it is impossible to fully rule out all potential eye movement effects.

Together, these results suggest that while vigilance conditions had little or no impact on coding

of the direction of approach, they did impact the critically task-relevant information about the dis-

tance of the dot from the object, albeit only for one 80ms time-window. In this time-window, coding

declined as time on task increased specifically when the target events happened infrequently, form-

ing a possible neural correlate for our behavioural vigilance decrements.

Is informational brain connectivity modulated by Attention, Target
Frequency, and Time on Task?
Using graph-theory-based univariate connectivity analysis, it has been shown that the connectivity

between relevant sensory areas and ‘vigilance-related’ cognitive areas changes prior to lapses in

attention (behavioural errors; Ekman et al., 2012; Sadaghiani et al., 2015). Therefore, we asked

whether vigilance decrements across the time course of our task corresponded to changes in

Figure 3 continued

(shading 95% confidence intervals). Horizontal dashed line refers to theoretical chance-level decoding (50%).

Vertical dashed lines indicate critical times in the trial. Bottom panels: Bayesian evidence for main effects and

interactions, Bayes factors (BF): Filled circles show moderate/strong evidence for either hypothesis and empty

circles indicate insufficient evidence. Main effects and interactions of conditions calculated using BF ANOVA

analysis. Cyan, purple, green, and red dots indicate the main effects of Attention, Target frequency, Time on Task,

and the interaction between Target frequency and Time on Task, respectively. The results of BF analysis (i.e., the

main effects of the three conditions and their interactions) are from the same three-way ANOVA analysis and are

therefore identical for attended and unattended panels. Early = data from the first five blocks (~10 min). Late =

data from the last five blocks (~10 min). Note the different scales of the BF panels, and the down-sampling, for

clearer illustration.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Impact of different conditions in the direction of approach and distance to object
information coding and their Bayesian evidence for difference from chance.

Figure supplement 2. Impact of different conditions and their interactions on information processing on correct
trials (all trials except those in which a target was missed or there was a false alarm) without and with standard
eye-artefact removal.

Figure supplement 3. The statistical relationship between the proportion of eye-related measures and Target
Frequency, Attention, and Time on the task factors.
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multivariate informational connectivity, which evaluates the similarity of information encoding,

between frontal attentional networks and sensory visual areas. In line with attentional effects on sen-

sory perception, we predicted that connectivity between the frontal attentional and sensory net-

works should be lower when not attending (vs. attending; Goddard et al., 2019). Behavioural errors

were also previously predicted by reduced connection between sensory and ‘vigilance-related’ fron-

tal brain areas (Ekman et al., 2012; Sadaghiani et al., 2015). Therefore, we predicted a decline in

connectivity when targets were lower in frequency, and with increased time on task, as these led to

increased errors in behaviour, specifically under vigilance conditions in our task (i.e., late blocks in

Monitoring vs. late blocks in Active; Figure 2). We used a simplified version of our method of RSA-

based informational connectivity to evaluate the (Spearman’s rank) correlation between distance

information RDMs across the peri-frontal and peri-occipital electrodes (Goddard et al., 2016;

Figure 4A).

Results showed strong evidence (Bayes factor ANOVA, BF = 6.5e3) for higher informational con-

nectivity for trials with Attended compared to Unattended dots, and moderate evidence for no

effect of Target Frequency (Bayes factor ANOVA, BF = 0.11; Figure 4B). There was insufficient evi-

dence to determine whether there was a main effect of Time on Task (Bayes factor ANOVA, BF =

0.72). There was evidence in the direction of the null for the two-way interactions between the

Figure 4. Relationship between informational connectivity and Attention, Target Frequency, Time on Task, and the behavioural outcome of the trial (i.

e., correct vs. miss). (A) Calculation of connectivity using Spearman’s rank correlation between RDMs obtained from the peri-frontal and peri-occipital

sensors as indicated by coloured boxes, respectively. RDMs include decoding accuracies obtained from testing the 105 classifiers trained to

discriminate different distance to object categories. (B) Connectivity values for the eight different conditions of the task and the results of three-way

Bayes factor ANOVA with factors Time on Task (Early, Late), Attention (Attended, Unattended), and Target Frequency (Active, Monitoring), using only

correct trials. (C) Connectivity values for the Active and Monitoring, Early and Late blocks of each task for correct and miss trials (attended condition

only), and the result of Bayes factor ANOVA with factors Target Frequency (Active, Monitoring), Time on Task (Early, Late), and behavioural outcome

(correct, miss) as inputs. Number of trials are equalised across conditions in B and C separately. Bars show the average across participants (error bars

95% confidence intervals). Bold fonts indicate moderate or strong evidence for either the effect or the null hypothesis.
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factors (Bayes factor ANOVA, two-way Time on Task-Target Frequency: BF = 0.36; Time on Task-

Attention: BF = 0.39; Target Frequency-Attention: BF = 0.15) and insufficient evidence regarding

their three-way interaction (BF = 0.95). These results suggest that [–deleted text–] trials in which the

dots are in the distractor (Unattended) colour, in which the attentional load is low, result in less infor-

mational connectivity between occipital and frontal brain areas compared to [–deleted text–]

Attended trials. This is consistent with a previous study (Alnæs et al., 2015), which suggested that

large-scale functional brain connectivity depends on the attentional load, and might underpin or

accompany the decrease in information decoding across the brain in the unattended condition.,

which suggested that large-scale functional brain connectivity depends on the attentional load, and

might underpin or accompany the decrease in information decoding across the brain in these

conditions.

We also compared the connectivity for the correct vs. miss trials (Figure 4C). This analysis was

performed only for Attended condition as there are no miss trials for Unattended condition, by defi-

nition. There was moderate evidence for no difference in connectivity on miss compared to correct

trials (Bayes factor ANOVA, BF = 0.11). In addition, there was moderate evidence for no effect of

Time on Task and Target Frequency (BF = 0.11 and BF = 0.10, respectively), as well as for two-way

and three-way interactions between the three factors (Bayes factor ANOVA, Behaviour-Target Fre-

quency: BF = 0.14; Behaviour-Time on Task: BF = 0.14; Target Frequency-Time on Task: BF = 0.15;

their 3-way interaction BF = 0.14). Therefore, in contrast to an auditory monitoring task which

showed decline in univariate graph-theoretic connectivity before behavioural errors

(Sadaghiani et al., 2015), we observed no change in informational connectivity on error. Note that,

the number of trials is equalized across the 8 conditions in each of our analyses separately.

Is neural representation different on miss trials?
The results presented in Figure 3, which used only correct trials, showed changes due to target fre-

quency to the representation of task-relevant information when the task was performed successfully.

We next move on to our second question, which is whether these neural representations change

when overt behaviour is affected, and therefore, whether we can use the neural activity as measured

by MEG to predict behavioural errors before they occur. We used our method of error data analysis

(Woolgar et al., 2019) to examine whether the patterns of information coding on miss trials differed

from correct trials. For these analyses we used only attended dots, as unattended dots do not have

behavioural responses, and we matched the total number of trials in our implementation of correct

and miss classification.

First, we evaluated the representation of the less relevant information – the direction of approach

measure (Figure 5A). The results for correct trials provided information dynamics very similar to the

Attended condition in Figure 3A, except for higher overall decoding, which is explained by the

inclusion of the data from the whole experiment (15 blocks) rather than just the five early and late

blocks (note the number of trials is still matched to miss trials).

For the direction of approach information, there was moderate or strong evidence (i.e., BF >3) in

both Active and Monitoring conditions after ~100 ms for above-chance decoding. However, when

the classifiers were tested on miss trials, from onset to deflection, the pattern of information dynam-

ics were different, even though we had matched the number of trials. Specifically, while the level of

information was comparable to correct trials with spurious instances (but no sustained time windows)

of difference (BF >3 as indicated by black dots) before 500 ms, decoding traces were much noisier

for miss trials with more variation across trials and between nearby time points (Figure 5A). Note

that after the deflection, the visual signal is different for correct and miss trials, so the difference

between their decoding curves (BF >3) is not meaningful. These results suggest a noisier representa-

tion of direction of approach information for the missed dots compared to correctly deflected dots.

We then repeated the same procedure on the representation of the most task-relevant distance

to object information on correct vs. miss trials (Figure 5B). On correct trials, the distance information

for both Active and Monitoring conditions was above chance (Figure 5B left panels; BF > 104). For

miss trials, the corresponding distance information was still above chance (Figure 5B right panels;

BF > 103) but the direct comparison revealed that distance information dropped on miss trials com-

pared to correct trials (Figure 5B; Black dots; BF >3 across all distances; Active and Monitoring

results were averaged for correct and miss trials separately before Bayes analyses).
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Figure 5. Decoding of information on correct vs miss trials. (A) Decoding of direction of approach information (less task-relevant). (B) Decoding of

distance to object information (most task-relevant). The horizontal dashed lines refer to theoretical chance-level decoding. Left panels: Decoding using

correct trials; Right panels: Decoding using miss trials. In both right and left panels, the classifiers were trained on correct trials and tested on (left out)

correct and all miss trials, respectively. Thick lines show the average across participants (shading 95% confidence intervals). Vertical dashed lines

Figure 5 continued on next page
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In principle, the average decoding levels could be composed of ‘all or none’ misses or graded

drops in information, and it is possible that on some miss trials there is a good representation but

the target is missed for other reasons (e.g., a response-level error). As neural data are noisy and mul-

tivariate decoding needs cross-validation across subsamples of the data, and because each trial, at

each distance, can only be classified correctly or incorrectly by a two-way classifier, we tend not to

compare the decoding accuracies in a trial-by-trial manner, but rather on average

(Grootswagers et al., 2017). However, if we look at an individual data set and examine all the miss

trials (averaged over the 15 distances and cross-validation runs) in our distance-to-object decoding,

we can get some insights into the underlying distributions (Figure 5—figure supplement 1). Results

showed that, for all participants, the distribution of classifier accuracies for both correct and miss tri-

als followed approximate normal distributions. However, while the distribution of decoding accura-

cies for correct trials was centred around 60%, the decoding accuracies for individual miss trials were

centred around 56%. We evaluated the difference in the distribution of classification accuracies

between the two types of trials using Cohen’s d. Cohen’s d ranged from 0 to 2.5 across participants

and conditions. 14 out of 21 subjects showed moderate (d > 0.5) to large (d > 0.8; Cohen, 1969) dif-

ferences between the distribution of correct and miss trials in either Active or Monitoring condition

or both. Therefore, although the miss trials vary somewhat in levels of information, only a minority of

(< 24%) miss trials are as informative as the least informative correct trials. These results are consis-

tent with the interpretation that there was less effective representation of the crucial information

about the distance from the object preceding a behavioural miss.

Please note that the results presented so far were from correct and miss trials and we excluded

early, late, and wrong-colour false alarms to be more specific about the error type. However, the

false alarm results (collapsed across all three types of false alarms) were very similar (Figure 5—fig-

ure supplement 2) to those of the missed trials (Figure 5): noisy information about the direction of

approach and at-chance information about the distance to object. This may suggest that both miss

and false alarm trials are caused by impaired processing of information, or at least, are captured sim-

ilarly by our decoding methods. The average number of miss trials was 58.17 (±21.63 SD) and false

alarm trials was 65.94 (±21.13 SD; out of 1920 trials).

Can we predict behavioural errors using neuroimaging?
Finally, we asked whether we could use this information to predict the behavioural outcome of each

trial. To do so, we developed a new method that classified trials based on their behavioural out-

comes (correct vs. miss) by asking how well a set of classifiers, pre-trained on correct trials, would

classify the distance of the dot from the target (Figure 6A). To achieve this, we used a second-level

classifier which labelled a trial as correct or miss based on the average accumulated accuracies

obtained for that dot at every distance from the first-level decoding classifiers which were trained on

correct trials (Figure 6A,B). If the accumulated accuracy for the given dot at the given distance was

less than the average accuracy obtained from testing on the validation set minus a specific threshold

(based on standard deviation), the testing dot (trial) was labelled as correct, otherwise miss. In this

analysis, the goal was to maximise the accuracy of predicting behaviour. For that purpose, we accu-

mulated classification accuracies along the distances. Moreover, as each classifier performs a binary

classification for each testing dot at each distance, the accumulation of classification accuracies also

avoided the spurious classification accuracies to drive the decision, providing smooth ‘accumulated’

accuracies for predicting the behaviour. As Figure 6B shows, there was strong evidence (BF >10)

Figure 5 continued

indicate critical events in the trial. Bayes factors (BF) are shown in the bottom section of each graph: Filled circles show moderate/strong evidence for

either hypothesis and empty circles indicate insufficient evidence. They show the results of BF analysis when evaluating the difference of the decoding

values from chance for Active (blue) and Monitoring (red) conditions separately, the comparison of the two conditions (green), and the comparison of

correct and miss trials (black). Note that for the comparison of correct and miss trials, Active and Monitoring conditions were averaged separately. Note

the different scales of the BF panels, and down-sampling, for clearer illustration.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Distribution of decoding accuracies for every individual correct and miss trial in the Active and Monitoring conditions for all 21
subjects.

Figure supplement 2. Decoding of information on correct vs false alarm trials.
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Figure 6. Prediction of behavioural outcome (correct vs miss) trial-by-trial using decoding of distance to object information. (A) Sample classifiers’

accuracies (correct or incorrect classification of current distance as indicated by colours) for a miss (left panel; average accuracy ffi 43% when the dot

reached the deflection point) and a correct trial (right panel; average accuracy ffi 67% at the deflection point). The classifiers were trained on the data

from correct trials and tested on the data from correct and miss trials. For the miss trials, around half the classifiers categorised the dot’s distance

incorrectly by the time it reached the deflection point. (B) Accumulation of classifiers’ accuracies over decreasing dot distances/time to deflection. This

shows stronger information coding of the crucial distance to object information on the correct trials over miss trials. A variable threshold used in (C) is

shown as a green dashed line. (C) Prediction of behavioural outcome as a function of threshold and distance using a second-level behavioural outcome

classification. Results showed highest prediction accuracies on the participant set at around the threshold of 0.4SD under the decoding level for correct

Figure 6 continued on next page
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that decoding accuracy of distances was higher for correct than miss trials with the inclusion of more

classifier accuracies as the dot approached from the corner of the screen towards the centre. This

clear separation of accumulated accuracies for correct vs. miss trials allowed us to predict with

above-chance accuracy the behavioural outcome of the ongoing trial (Figure 6D). To find the opti-

mal threshold for each participant, we evaluated the thresholds used for all other participants except

for a single testing participant for whom we used the average of the best thresholds that led to high-

est prediction accuracy for other participants. This was ~0.4 standard deviation below the average

accuracy on the other participants’ validation (correct trial) sets (Figure 6C).

The prediction accuracy of behavioural outcome was above chance level (59% vs. 50%; BF > 10)

even when the dot had only been on the screen for 80 ms, which corresponds to our furthest dis-

tance #15 (1160ms prior to deflection point; Figure 6D). The accuracy increased to 65.4% as the dot

approached the centre of the screen, with ~64% accuracy with still 800 ms to go before required

response. Importantly, the prediction algorithm showed generalisable results across participants; the

threshold for decision obtained from the other participants could predict the accuracy of an inde-

pendent participant’s behaviour using only their neural data.

The prediction of behavioural outcome (Figure 6) was performed using the data from the whole

data set. To test if prediction accuracy depended on the stage of the experiment, we performed the

behavioural prediction procedure on data sets obtained from the first 5 (early) and the last 5 (late)

stages of the experiment separately (Figure 6—figure supplement 1). There was no evidence for a

change in the prediction power in the late vs. early blocks of trials.

Discussion
This study developed new methods to gain insights into how attention, the frequency of target

events, and the time doing a task affect the representation of information in the brain. Our new

MOM task evoked reliable specific vigilance decrements in both accuracy and RT in a situation that

more closely resembles real-life modern tasks than classic vigilance tasks. Using the sensitive analysis

method of MVPA, we showed that neural coding was stronger for attended compared to distractor

information. There was also one time-window where the interaction between the time on the task

and target frequency affected decoding, with a larger decline in coding under monitoring condi-

tions, which may reflect a neural correlate of the behavioural vigilance decrements. We also devel-

oped a novel informational brain connectivity analysis, which showed that the correlation between

information coding across peri-occipital and peri-frontal areas varied with different levels of attention

but did not change with errors. Finally, we utilised our recent error data analysis to predict forthcom-

ing behavioural misses based on the neural data. In the following sections, we explain each of these

findings in detail and compare them with relevant literature.

First, the MOM task includes key features of real-world monitoring situations that are not usually

part of other vigilance tasks (e.g., Mackworth, 1948; Temple et al., 2000; Beck et al., 1956;

Rosenberg et al., 2013), and the results show clear evidence of vigilance decrements. Behavioural

performance, measured with both RT and accuracy, deteriorated over time in Monitoring (infrequent

targets) relative to Active (frequent targets) conditions. One important additional advantage of the

MOM task over conventional vigilance tasks is that it allows us to be specific about the vigilance dec-

rements (by comparing Active and Monitoring conditions) separate from general time on task effects

which affect both Active and Monitoring conditions (c.f. Figure 3). These vigilance decrements dem-

onstrate that the MOM task can be used to explore vigilance in situations more closely resembling

Figure 6 continued

validation trials, increasing at closer distances. (D) Accuracy of predicting behavioural outcome for the left-out participant using the threshold obtained

from all the other participants as function of distance/time from the deflection point. Results showed successful (~=59%) prediction of behavioural

outcome of the trial as early as 80 ms after stimulus appearance. Thick lines and shading refer to average and one standard deviation around the mean

across participants, respectively. Bayes factors (BF) are shown in the bottom section of each graph: Filled circles show moderate/strong evidence for

either hypothesis and empty circles indicate insufficient evidence (black dots under B and D).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Accuracy of predicting behavioural outcome of trials in the early (first 5) vs late (last 5) blocks of trials before eye-blink removal.
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modern environments, namely those involving moving stimuli and selection of relevant from irrele-

vant information, giving a useful tool for future research.

Second, the high sensitivity of MVPA to extract information from neural signals allowed us to

investigate the temporal dynamics of information processing along the time course of each trial. The

manipulation of attention showed a strong overall effect with enhanced representation of both the

less important direction of approach and the most task-relevant distance to object information for

cued dots, regardless of how frequent the targets were (Figure 3). The improved representation of

information under attention extends previous findings from us and others (Woolgar et al., 2015b;

Goddard et al., 2019; Nastase et al., 2017) to moving displays, in which the participants monitor

multiple objects simultaneously. When targets were infrequent, modelling real-life monitoring situa-

tions, there was a strong behavioural drop in performance (i.e., vigilance effects in both accuracy

and RT; Figure 2) and a hint in the brain activity data of a change in neural coding (namely one time-

window showing evidence of an interaction between Target Frequency and Time on Task). We need

more data to fully test this effect, however, our main finding is that of being able to use the differ-

ence in decoding between correct and miss trials to predict behaviour. Although the results repli-

cated after standard eye-artefact removal, as algorithms of artefact removal are not perfect, there is

still the possibility that our MEG data could be affected by some residual patterns of eye movements

across conditions. In a real-world setting, it may be possible to combine information from the brain

and eye-movements to further improve the prediction accuracy.

When people miss targets, they might process or encode the relevant sensory information less

effectively than when they correctly respond to targets. This is consistent with our finding that on

the majority of miss trials, there was less effective representation about the task-relevant information

in the neural signal, in contrast to the consistently more effective representation on correct trials.

Note that our vigilance decrement effects are defined as the difference between Active and Moni-

toring conditions, which allows us to be sure that we are not interpreting general task (e.g., partici-

pant fatigue) or hardware-related effects as vigilance decrements.

It is important to note that previous studies have tried other physiological/behavioural measures

to determine participants’ vigilance or alertness, such as pupil size (Yoss et al., 1970), response time

variability (Rosenberg et al., 2013), blood pressure and thermal energy (Lohani et al., 2019) or

even body temperature (Molina et al., 2019). We used highly sensitive analysis of neuroimaging

data so that we could address two questions that could not be answered using these more general

vigilance measures. We tested for changes in the way information is processed in the brain, particu-

larly testing for differences in the impact of monitoring on the relevance of the information, rather

than whether the participants were vigilant and alert in general. Moreover, we could also investigate

how the most relevant and less relevant information was affected by the target frequency and time

on the task, to find neural correlates for the behavioural vigilance decrements observed in many pre-

vious studies (e.g., Dehais et al., 2019; Wolfe et al., 2005; Wolfe et al., 2007; Kamzanova et al.,

2014; Ishibashi et al., 2012). The less relevant information about direction of approach was modu-

lated by attention, but its representation was not detectably affected by target frequency and time

on task, and was noisier, but not noticeably attenuated, on error trials. The relative stability of these

representations might reflect the large visual difference between stimuli approaching from the top

left vs bottom right of the screen. In contrast, the task-relevant information of distance to object was

affected by attention and was attenuated on errors. The difference might reflect the fact that only

the distance information is relevant to deciding whether an item is a target, and/or the classifier hav-

ing to rely on much more subtle differences to distinguish the distance categories, which collapsed

over stimuli appearing on the left and right sides of the display, removing the major visual signal.

Our information-based brain connectivity method showed moderate evidence for no change in

connectivity between correct and error trials. Informational connectivity is unaffected by differences

in absolute levels of information encoding (e.g., lower coding on miss vs. correct trials). It could be

sensitive to different levels of noise between conditions, but there was no evidence for that in this

case. Apart from sensory information coding and sensory-based informational connectivity, which

were evaluated here, there may be other correlates we have not addressed. Effects on response-

level selection, for example, independently or in conjunction with sensory information coding, could

also affect performance under vigilance conditions, and need further research.

Our connectivity method follows the recent major recent shift in literature from univariate to mul-

tivariate informational connectivity analyses (Goddard et al., 2016; Karimi-Rouzbahani et al., 2017;
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Anzellotti and Coutanche, 2018; Goddard et al., 2019; Kietzmann et al., 2019; Karimi-

Rouzbahani et al., 2019; Basti et al., 2020; Karimi-Rouzbahani et al., 2021). This is in contrast

with the majority of neuroimaging studies using univariate connectivity analyses which can miss exist-

ing connectivity across areas when encountering low-amplitude activity on individual sensors

(Anzellotti and Coutanche, 2018; Basti et al., 2020). Informational connectivity, on the other hand,

is measured either through calculating the correlation between temporally resolved patterns of

decoding accuracies across a pair of areas (Coutanche and Thompson-Schill, 2013) or the correla-

tion between representational dissimilarity matrices (RDMs) obtained from a pair of areas

(Kietzmann et al., 2019; Goddard et al., 2016; Goddard et al., 2019; Karimi-Rouzbahani et al.,

2019; Karimi-Rouzbahani et al., 2021). Either one measures how much similarity in information cod-

ing there is between two brain areas across conditions, which is interpreted as reflecting their poten-

tial informational connectivity, and is less affected by absolute activity values compared to

conventional univariate connectivity measures (Anzellotti and Coutanche, 2018). The method we

used here evaluated the correlation between RDMs, which has provided high-dimensional informa-

tion about distance to object, obtained from multiple sensors across the brain areas. This makes our

analysis sensitive to different aspects of connectivity compared to conventional univariate analyses.

Fourth, building upon our recently developed method of error analysis (Woolgar et al., 2019),

we were able to predict forthcoming behavioural misses based on the decoding data, before the

response was given. Our method is different from the conventional method of error prediction, in

which people directly discriminate correct and miss trials by feeding both types of trials to classifiers

in the training phase and testing the classifiers on the left-out correct and miss trials (e.g., Bode and

Stahl, 2014). Our method only uses correct trials for training, which makes its implementation plausi-

ble for real-world situations since we usually have plenty of correct trials and only few miss trials (i.e.,

cases when the railway controller diverts the trains correctly vs. misses and a collision happens).

Moreover, it allows us to directly test whether the neural representations of correct trials contain

information which is (on average) less observable in miss trials. We statistically compared the two

types of trials and showed a reliable advantage in the level of information contained at individual-

trial-level in correct vs. miss trials.

Our error prediction results showed a reliable decline in the crucial task-relevant (i.e., distance to

object) information decoding on miss vs. correct trials but less decline in the less task-relevant infor-

mation (i.e., direction of approach). A complementary analysis allowed the prediction of behaviour-

ally missed trials as soon as the stimulus appeared on the screen (after ~80 ms), which was ~1160 ms

before the time of response. This method was generalisable across participants, with the decision

threshold for trial classification based on other participants’ data successful in predicting errors for a

left-out participant. A number of previous studies have shown that behavioural performance can be

correlated with aspects of brain activity even before the stimulus onset (Bode and Stahl, 2014;

Eichele et al., 2008; Eichele et al., 2010; Weissman et al., 2006; Ekman et al., 2012;

Sadaghiani et al., 2015). Those studies have explained the behavioural errors by implicit measures

such as less deactivation of the default-mode network, reduced stimulus-evoked sensory activity

(Weissman et al., 2006; Eichele et al., 2008), and even the connectivity between sensory and vigi-

lance-related/default-mode brain areas (Sadaghiani et al., 2015). It would be informative, however,

if they could show how (if at all) the processing of task-relevant information is disrupted in the brain

and how this might lead to behavioural errors. To serve an applied purpose, it would be ideal if

there was a procedure to use those neural signatures to predict behavioural outcomes. Only three

previous studies have approached this goal. Bode and Stahl, 2014, Sadaghiani et al., 2015, and

Dehais et al., 2019 reported maximum prediction accuracies of 62%, 63%, and 72% (with adjusted

chance levels of 50%, 55%, and 59%, respectively). Here, we obtained up to 65% prediction (with a

chance level of 50%), suggesting our method accesses relevant neural signatures of attention lapses,

and may be sensitive in discriminating these. The successful prediction of an error from neural data

more than a second in advance of the impending response provides a promising avenue for detect-

ing lapses of attention before any consequences occur.

The overall goal of this study was to understand how neural representation of dynamic displays

was affected by attention and target frequency, and whether reliable changes in behaviour over

time could be predicted on the basis of neural patterns. We observed that the neural representation

of critically relevant information in the brain was particularly poor on trials where participants missed

the target. We used this observation to predict behavioural outcome of individual trials and showed
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that we could predict behavioural outcome more than a second before action was needed. These

results provide new insights about how momentary lapses in attention impact information coding in

the brain and propose an avenue for predicting behavioural errors using novel neuroimaging analysis

techniques.

Materials and methods

Participants
We tested 21 right-handed participants (10 male, 11 female, mean age = 23.4 years [SD = 4.7 years],

all Macquarie University students) with normal or corrected to normal vision. The Human Research

Ethics Committee of Macquarie University approved the experimental protocols and the participants

gave informed consent before participating in the experiment. We reimbursed each participant AU

$40 for their time completing the MEG experiment, which lasted for 2 hr including setup.

Apparatus
We recorded neural activity using a whole-head MEG system (KIT, Kanazawa, Japan) with 160 coax-

ial first-order gradiometers, at a sampling rate of 1000 Hz. We projected the visual stimuli onto a

mirror at a distance of 113 cm above participants’ heads while they were in the MEG. An InFocus

IN5108 LCD back projection system (InFocus, Portland, Oregon, USA), located outside the magneti-

cally shielded room, presented the dynamically moving stimuli, controlled by a desktop computer

(Windows 10; Core i5 CPU; 16 GB RAM; NVIDIA GeForce GTX 1060 6 GB Graphics Card) using

MATLAB with Psychtoolbox 3.0 extension (Brainard, 1997; Kleiner et al., 2007). We set the refresh

rate of the projector at 60 Hz and used parallel port triggers and a photodiode to mark the begin-

ning (dot appearing on the screen) and end (dot disappearing off the screen) of each trial. We

recorded participant’s head shape using a pen digitiser (Polhemus Fastrack, Colchester, VT) and

placed five marker coils on the head which allowed the location of the head in the MEG helmet to

be monitored during the recording – we checked head location at the beginning, half way through

and the end of recording. We used a fibre optic response pad (fORP, Current Designs, Philadelphia,

PA, USA) to collect responses and an EyeLink 1000 MEG-compatible remote eye-tracking system

(SR Research, 1000 Hz monocular sampling rate) to record eye position. We focused the eye-tracker

on the right eye of the participant and calibrated the eye-tracker immediately before the start of

MEG data recording.

Task and stimuli
Task summary
The task was to avoid collisions of relevant moving dots with the central object by pressing the

space bar if the dot passed a deflection point in a visible predicted trajectory without changing

direction to avoid the central object (see Figure 1A; a demo can be found here https://osf.io/

5aw8v/). A text cue at the start of each block indicated which colour of dot was relevant for that

block. The participant only needed to respond to targets in this colour (Attended); dots in the other

colour formed distractors (Unattended). Pressing the button deflected the dot in one of two possible

directions (counterbalanced) to avoid collision. Participants were asked to fixate on the central

object throughout the experiment.

Stimuli
The stimuli were moving dots in one of two colours that followed visible trajectories and covered a

visual area of 3.8 � 5˚ of visual angle (dva; Figure 1A). We presented the stimuli in blocks of 110 s

duration, with at least one dot moving on the screen at all times during the 110 s block. The trajecto-

ries directed the moving dots from two corners of the screen (top left and bottom right) straight

towards a centrally presented static ‘object’ (a white circle of 0.25 dva) and then deflected away

(either towards the top right or bottom left of the screen; in pathways orthogonal to their direction

of approach) from the static object at a set distance (the deflection point).

Target dots deviated from the visible trajectory at the deflection point and continued moving

towards the central object. The participant had to push the space bar to prevent a ‘collision’. If the

response was made before the dot reached the centre of the object, the dot deflected, and this was
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counted as a ‘hit’. If the response came after this point, the dot continued straight, and this was

counted as a ‘miss’, even if they pressed the button before the dot totally passed through central

object.

The time from dot onset in the periphery to the point of deflection was 1226 ± 10 (mean ± SD)

ms. Target (and distractor event) dots took 410 ± 10 (mean ± SD) ms to cross from the deflection

point to the collision point. In total, each dot moved across the display for 2005 ± 12 (mean ± SD)

ms before starting to fade away after either deflection or travel through the object. The time delay

between the onsets of different dots (ISI) was 1660 ± 890 (mean ± SD) ms. There were 1920 dots

presented in the whole experiment (~56 min). Each 110 s block contained 64 dots, 32 (50%) in red,

and 32 (50%) in green, while the central static object and trajectories were presented in white on a

black background.

Conditions
There were two target frequency conditions. In ‘Monitoring’ blocks, target dots were ~6.2% of cued-

colour dots (2 out of 32 dots). In ‘Active’ blocks, target dots were 50% of cued-colour dots (16 out

of 32 dots). The same proportion of dots in the non-cued colour failed to deflect; these were distrac-

tors (see Figure 1A, top right panel). Participants completed two practice blocks of the Active con-

dition and then completed 30 blocks in the main experiment (15 Active followed by 15 Monitoring

or vice versa, counterbalanced across participants).

The time between the appearance of target dots varied unpredictably, with distractors and

correctly deflecting dots (events) intervening. In Monitoring blocks, there was an average time

between targets of 57.88 (±36.03 SD) s. In Active blocks, there was an average time between targets

of 7.20 (±6.36 SD) s.

Feedback: On target trials, if the participant pressed the space bar in time, this ‘hit’ was indicated

by a specific tone and deflection of the target dot. There were three types of potential false alarm,

all indicated by an error tone and no change in the trajectory of the dot. These were if the partici-

pant responded: (1) too early, while the dot was still on the trajectory; (2) when the dot was not a

target and had been deflected automatically (‘event’ in Figure 1A, middle right); or (3) when the dot

was in the non-cued colour (‘distractor’ in Figure 1A, top right) in any situation. Participants had

only one chance to respond per dot; any additional responses resulted in ‘error’ tones. As multiple

dots could be on the screen, we always associated the button press to the dot which was closest to

the central object.

Pre-processing
MEG data were filtered online using band-pass filters in the range of 0.03–200 Hz and notch-filtered

at 50 Hz. We then imported the data into MATLAB and epoched them from �100 to 3000 ms rela-

tive to the trial onset time. We performed all the analyses once without and once with standard eye-

artefact removal (post hoc, explained below) to see if eye movements and blinks had a significant

impact on our results and interpretations. Finally, we down-sampled the data to 200 Hz for the

decoding of our two key measures: direction of approach and distance to object (see below).

Eye-related artefact removal
There are two practical reasons that the effects of eye-related artefacts (e.g. eye-blinks, saccades,

etc.) should not be dominantly picked up by our classification procedure. First, the decoding analysis

is time-resolved and computed in small time windows (5 ms and 80 ms, for direction and distance

information decoding, respectively). For eye-related artefacts to be picked up by the classifier, they

would need to occur at consistent time points across trials of the same condition, and not in the

other condition, which seems implausible. Second, our MEG helmet does not have the very frontal

sensors where eye-related artefacts most strongly affect neural activations (Mognon et al., 2011).

However, to check that our results were not dominantly driven by eye-movement artefacts, we also

did a post hoc analysis in which we removed these using ‘runica’ Independent Components Analysis

(ICA) algorithm as implemented by EEGLAB. We used the ADJUST plugin (Mognon et al., 2011) of

EEGLAB to decide which ICA components were related to eye artefacts for removal. This toolbox

extracts spatiotemporal features from components to quantitatively measure if a component is

related to eye movements or blinks. For all subjects except two, we identified only one component
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which were attributed to eye artefacts (i.e., located frontally and surpassing the ADJUST’s threshold)

which we removed. For the two other participants, we identified and removed two components with

these characteristics. The body of the paper presents the results of our analyses on the data without

eye-artefact removal, but the corrected data can be found in the Supplementary materials.

Multivariate pattern analyses
We measured the information contained in the multivariate (multi-sensor) patterns of MEG data by

training a linear discriminant analysis (LDA) classifier using a set of training trials from two categories

(e.g., for the direction of approach measure, this was dots approaching from left vs. right, see

below). We then tested to see whether the classifier could predict the category of an independent

(left-out) set of testing data from the same participant. We used a 10-fold cross-validation approach,

splitting the data into training and testing subsets. Specifically, we trained the LDA classifier on 90%

of the trials and tested it on the left-out 10% of the trials. This procedure was repeated 10 times

each time leaving out a different 10% subset of the data for testing (i.e., 10-fold cross validation).

We decoded two major task features from the neural data: (1) the direction of approach (left vs.

right); and (2) the distance of each moving dot from the centrally fixed object (distance to object),

which correspond to visual (retinal) information changing over time. Our interest was in the effect of

selective attention (Attended vs. Unattended) and Target Frequency conditions (Active vs. Monitor-

ing) on the neural representation of this information, and how the representation of information

changed on trials when participants missed the target.

We decoded left vs. right directions of approach (as indicated by yellow arrows in Figure 1B)

every 5 ms starting from 100 ms before the appearance of the dot on the screen to 3000 ms later.

Please note that as each moving dot is considered a trial, trial time windows (epochs) overlapped for

62.2% of trials. In Monitoring blocks, 1.2% of target trials overlapped (two targets were on the

screen simultaneously but lagged relative to one another). In Active blocks, 17.1% of target trials

overlapped.

For the decoding of distance to object, we split the trials into the time windows corresponding to

15 equally spaced distances of the moving dot relative to the central object (as indicated by blue

lines in Figure 1B), with distance 1 being closest to the object, and 15 being furthest away (the dot

having just appeared on the screen). Each distance covered a time window of ~80ms (varied slightly

as dot trajectories varied in angle) which consisted of 4 or 5 signal samples depending on which of

the 15 predetermined distances was temporally closest to each signal sample and therefore could

incorporate it. Next, we concatenated the MEG signals from identical distances (splits) across both

sides of the screen (left and right), so that every distance included data from dots approaching from

both left and right side of the screen. This concatenation ensures that distance information decoding

is not affected by the direction of approach. Finally, we trained and tested a classifier to distinguish

between the MEG signals (a vector comprising data from all MEG sensors, concatenated over all

time points in the relevant time window), pertaining to each pair of distances (e.g., 1 vs. 2) using a

leave-one-out cross-validation procedure. As within-trial autocorrelation in signals could inflate clas-

sification accuracy (signal samples closer in time are more similar than those farther apart), we

ensured that in every cross-validation run and each distance, the training and testing sets used sam-

ples from distinct sets of trials. To achieve this, trials were first allocated randomly into 10 folds, with-

out separating their constituent signal samples. This way, the 4 or 5 signal samples from within each

distance of a given trial remained together across all cross-validation runs and were never split

across training and testing sets. We obtained classification accuracy for all possible pairs of distances

(105 combinations of 15 distances). To obtain a single decoding value per distance, we averaged

the 14 classification values that corresponded to that distance against other 14 distances. For exam-

ple, the final decoding accuracy for distance 15 was an average of 15 vs. 14, 15 vs. 13, 15 vs. 12, and

so on until 15 vs. 1. We repeated this procedure for our main Target Frequency conditions (Active

vs. Monitoring), Attention conditions (Attended vs. Unattended), and Time on Task (first and last five

blocks of each task condition, which are called early and late blocks here, respectively). This was

done separately for correct and miss trials and for each participant separately.

Note that the ‘direction of approach’ and ‘distance to object’ information cannot be directly com-

pared on an analogous platform as the two types of information are defined differently. There are

also different number of classes in decoding for the two types of information: only two classes for
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the direction information (left vs. right), compared to the 15 classes for the distance information (15

distances).

Informational connectivity analysis
To evaluate possible modulations of brain connectivity between the attentional networks of the fron-

tal brain and the occipital visual areas, we used a simplified version of our recently developed RSA-

based informational connectivity analysis (Goddard et al., 2016; Goddard et al., 2019; Karimi-

Rouzbahani, 2018; Karimi-Rouzbahani et al., 2019). Specifically, we evaluated the informational

connectivity, which measures the similarity of distance decoding patterns between areas, across our

main Target Frequency conditions (Active vs. Monitoring), Attention conditions (Attended vs. Unat-

tended), and Time on Task (first and last five blocks of each task condition, which are called early

and late blocks here, respectively). There are a few considerations in the implementation and inter-

pretation of our connectivity analysis. First, it reflects the similarity of the way a pair of brain areas

encode ‘distance’ information during the whole trial. This means that we could not use the compo-

nent of time in the evaluation of our connectivity as we have implemented elsewhere (Karimi-

Rouzbahani et al., 2019; Karimi-Rouzbahani et al., 2021). Second, rather than a simple correlation

of magnitudes of decoding accuracy between two regions of interest, our connectivity measure

reflects a correlation of the patterns of decoding accuracies across conditions (i.e., distances here).

Finally, our connectivity analysis evaluates sensory information encoding, rather than other aspects

of cognitive or motor information encoding, which might have also been affected by our experimen-

tal manipulations.

Connectivity was calculated separately for correct and miss trials, using RDMs

(Kriegeskorte et al., 2008). To construct the RDMs, we decoded all possible combinations of dis-

tances from each other yielding a 15 by 15 cross-distance classification matrix, for each condition

separately. We obtained these matrices from peri-occipital and peri-frontal areas to see how the

manipulation of Attention, Target Frequency, and Time on Task modulated the correlation of infor-

mation (RDMs) between those areas on correct and miss trials. We quantified connectivity using

Spearman’s rank correlation of the matrices obtained from those areas, only including the lower tri-

angle of the RDMs (105 decoding values). To avoid bias when comparing the connectivity on correct

vs. miss trials, the number of trials were equalised by subsampling the correct trials to the number of

miss trials and repeating the subsampling 100 times before finally averaging them for comparison

with miss trials.

Error data analysis
Next, we asked what information was coded in the brain when participants missed targets. To study

information coding in the brain on miss trials, where the participants failed to press the button when

targets failed to automatically deflect, we used our recently developed method of error data analysis

(Woolgar et al., 2019). Essentially, this analysis asks whether the brain represents the information

similarly on correct and miss trials. For that purpose, we trained a classifier using the neural data

from a proportion of correct trials (i.e., when the target dot was detected and manually deflected

punctually) and tested on both the left-out portion of the correct trials (i.e., cross-validation) and on

the miss trials. If decoding accuracy is equal between the correct and miss trials, we can conclude

that information coding is maintained on miss trials as it is on correct trials. However, if decoding

accuracy is lower on miss trials than on correct trials, we can infer that information coding differs on

miss trials, consistent with the change in behaviour. Since correct and miss trials were visually differ-

ent after the deflection point, we only used data from before the deflection point.

For these error data analyses, the number of folds for cross-validation were determined based on

the proportion of miss to correct trials (number of folds = number of miss trials/number of correct

trials). This allowed us to test the trained classifiers with equal numbers of miss and correct trials to

avoid bias in the comparison.

Predicting behavioural performance from neural data
We developed a new method to predict, based on the most task-relevant information in the neural

signal, whether or not a participant would press the button for a target dot in time to deflect it on a

particular trial. This method includes three steps, with the third step being slightly different for the
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left-out testing participant vs. the other 20 participants. First, for every participant, we trained 105

classifiers using ~80% of correct trials to discriminate the 15 distances. Second, we tested those clas-

sifiers using half of the left-out portion (~10%) of the correct trials, which we called validation trials,

by simultaneously accumulating (i.e., including in averaging) the accuracies of the classifiers at each

distance and further distances as the validation dot approached the central object. The validation

set allowed us to determine a decision threshold for predicting the outcome of each testing trial:

whether it was a correct or miss trial. Third, we performed a second-level classification on testing tri-

als which were the other half (~10%) of the left-out portion of the correct trials and the miss trials,

using each dot’s accumulated accuracy calculated as in the previous step. Accordingly, if the testing

dot’s accumulated accuracy was higher than the decision threshold, it was predicted as correct, oth-

erwise miss. For all participants, except for the left-out testing one, the decision threshold was cho-

sen from a range of multiples (0.1 to 4 in steps of 0.1) of the standard deviation below the

accumulated accuracy obtained for the validation set on the second step. For determining the opti-

mal threshold for the testing participant, however, instead of a range of multiples, we used the aver-

age of the best performing multiples (i.e., the one which predicted the behavioural outcome of the

trial more accurately) obtained from the other 20 participants. This avoided circularity in the analysis.

To give more detail on the second and third steps, when the validation/testing dots were at dis-

tance #15, we averaged the accuracies of the 14 classifiers trained to classify dots at distance #15

from all other distances. Accordingly, when the dot reached distance #14, we also included and

averaged accuracies from classifiers which were trained to classify distance #14 from all other distan-

ces leading to 27 classifier accuracies. Therefore, by the time the dot reached distance #1, we had

105 classifier accuracies to average and predict the behavioural outcome of the trial. Every classi-

fier’s accuracies were either 1 or 0 corresponding to correct or incorrect classification of dot’s dis-

tance, respectively. Note that accumulation of classifiers’ accuracies, as compared to using classifier

accuracy on every distance independently, provides a more robust and smoother classification mea-

sure for deciding on the label of the trials. The validation set, which was different from the testing

set, allowed us to set the decision threshold based on the validation data within each subject and

from the 20 participants and finally test our prediction classifiers on a separate testing set from the

21st individual participant, iteratively. The optimal threshold was 0.4 (± 0.07) times the SD below the

decoding accuracy on the validation set across participants.

Statistical analyses
To determine the evidence for the null and the alternative hypotheses, we used Bayes analyses as

implemented by Krekelberg (https://klabhub.github.io/bayesFactor/) based on Rouder et al., 2012.

We used standard rules for interpreting levels of evidence (Lee and Wagenmakers, 2005;

Dienes, 2014): Bayes factors of >10 and <1/10 were interpreted as strong evidence for the alterna-

tive and null hypotheses, respectively, and >3 and <1/3 were interpreted as moderate evidence for

the alternative and null hypotheses, respectively. We interpreted the Bayes factors which fell

between 3 and 1/3 as reflecting insufficient evidence either way.

Specifically, for the behavioural data, we asked whether there was a difference between Active

and Monitoring conditions in terms of miss rates and RTs. Accordingly, we calculated the Bayes fac-

tor as the probability of the data under alternative (i.e., difference) relative to the null (i.e., no differ-

ence) hypothesis in each block separately. In the decoding, we repeated the same procedure to

evaluate the evidence for the alternative hypothesis of a difference between decoding accuracies

across conditions (e.g., Active vs. Monitoring and Attended vs. Unattended) vs. the null hypothesis

of no difference between them, at every time point/distance. To evaluate evidence for the alterna-

tive of above-chance decoding accuracy vs. the null hypothesis of no difference from chance, we cal-

culated the Bayes factor between the distribution of actual accuracies obtained and a set of 1000

random accuracies obtained by randomising the class labels across the same pair of conditions (null

distribution) at every time point/distance.

To evaluate the evidence for the alternative of main effects of different factors (Attention, Target

Frequency, and Time on Task) in decoding, we used Bayes factor ANOVA (Rouder et al., 2012).

This analysis evaluates the evidence for the null and alternative hypothesis as the ratio of the Bayes

factor for the full model ANOVA (i.e., including all three factors of Target Frequency, Attention, and

the Time on Task) relative to the restricted model (i.e., including the two other factors while exclud-

ing the factor being evaluated). For example, for evaluating the main effect of Time on Task, the
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restricted model included Attention and Target Frequency factors but excluded the factor of Time

on Task.

The priors for all Bayes factor analyses were determined based on Jeffrey-Zellner-Siow priors (Jef-

freys, 1961; Zellner and Siow, 1980) which are from the Cauchy distribution based on the effect

size that is initially calculated in the algorithm using a t-test (Rouder et al., 2012). The priors are

data-driven and have been shown to be invariant with respect to linear transformations of measure-

ment units (Rouder et al., 2012), which reduces the chance of being biased towards the null or alter-

native hypotheses.
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Data availability

We have shared the Magnetoencephalography data (i.e. time series) as well as behavioral data in

Matlab ’.mat’ format on the Open Science Framework website at https://osf.io/5aw8v/ with the DOI:

10.17605/OSF.IO/5AW8V. We have also uploaded a video of the "Multiple-Object-Monitoring" par-

adigm, developed for this study, for easier understanding of the task at the same address. The men-

tioned address is dedicated to this project and we will regularly update the contents to make them

easier to follow for other researchers.
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Molina E, Sanabria D, Jung TP, Correa Á. 2019. Electroencephalographic and peripheral temperature dynamics
during a prolonged psychomotor vigilance task. Accident Analysis & Prevention 126:198–208. DOI: https://doi.
org/10.1016/j.aap.2017.10.014, PMID: 29061281

Nakano T, Kato M, Morito Y, Itoi S, Kitazawa S. 2013. Blink-related momentary activation of the default mode
network while viewing videos. PNAS 110:702–706. DOI: https://doi.org/10.1073/pnas.1214804110,
PMID: 23267078

Nastase SA, Connolly AC, Oosterhof NN, Halchenko YO, Guntupalli JS, Visconti di Oleggio Castello M, Gors J,
Gobbini MI, Haxby JV. 2017. Attention selectively reshapes the geometry of distributed semantic
representation. Cerebral Cortex 27:4277–4291. DOI: https://doi.org/10.1093/cercor/bhx138, PMID: 28591837

O’Connell RG, Dockree PM, Robertson IH, Bellgrove MA, Foxe JJ, Kelly SP. 2009. Uncovering the neural
signature of lapsing attention: electrophysiological signals predict errors up to 20 s before they occur. Journal
of Neuroscience 29:8604–8611. DOI: https://doi.org/10.1523/JNEUROSCI.5967-08.2009, PMID: 19571151
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Appendix 1

Supplementary materials
Source text file for Figure 3—figure supplement 1

Our first analysis was to verify that our analyses could decode the important aspects of the display,

relative to chance, given the overlapping moving stimuli. Here, we give the detailed results of this

analysis.

We started with the information about the direction of approach (top left or bottom right of

screen) which is a strong visual signal but not critical to the task decision. From 95 ms post-stimulus

onset onwards, this visual information could be decoded from the MEG signal for all combinations

of the factors: Attended and Unattended dots, both Target Frequency conditions (Active, Monitor-

ing), and both our Time on Task durations (Early – first 5 blocks; Late – last 5 blocks; all BF > 3, dif-

ferent from chance).

All conditions were decodable above chance until at least 385 ms post-stimulus onset (BF > 3;

Figure 3—figure supplement 1A), which was when the dots came closer to the centre, losing their

visual difference. There was a rapid increase in information about the direction of approach between

50 ms and 150 ms post-stimulus onset, consistent with an initial forward sweep of visual information

processing (VanRullen, 2007; Karimi-Rouzbahani et al., 2017; Karimi-Rouzbahani et al., 2019).

For attended dots only (but regardless of the Target Frequency or Time on Task), the information

then increased again before the deflection time, and remained different from chance until 1915 ms

post-stimulus onset, which is just before the dot faded (Figure 3—figure supplement 1A). The sec-

ond rise of decoding, which was more pronounced for the attended dots, could reflect the increas-

ing relevance to the task as the dot approached the crucial deflection point, but it could also be due

to higher visual acuity in foveal compared to peripheral areas of the visual field. The decoding peak

observed after the deflection point for the attended dots was most probably caused by the large

visual difference between the deflection trajectories for the dots approaching from the left vs. right

side of the screen (see the deflection trajectories in Figure 1A).

The most task-relevant feature of the motion is the distance between the moving dot and the

central object, with the deflection point of the trajectories being the key decision point. We there-

fore tested for decoding of distance information (distance to object, see Materials and methods).

There was a brief increase in decoding of distance to object for attended dots across the other fac-

tors (Target Frequency and Time on Task) between the 15th and 10th distances and for the unat-

tended dots across the other factors between 15th and the 12th distances. This corresponds to the

first 400 ms for the attended dots and the first 240 ms for the unattended dots after the onset (Fig-

ure 3—figure supplement 1B). Distance decoding then dropped somewhat before ascending again

as the dot approached the deflection point. The second rise of decoding, which was more pro-

nounced for the attended dots, could reflect the increasing relevance to the task as the dot

approached the crucial deflection point, but it could also be due to higher visual acuity in foveal

compared to peripheral areas of the visual field. There was moderate or strong evidence that decod-

ing of distance information for all attended conditions was greater than chance (50%, BF > 3) across

all 15 distance levels with the exception of distance 8 in the late monitoring condition (Figure 3—fig-

ure supplement 1B, left panels). There were also timepoints with greater than chance decoding for

the unattended conditions but these were far less consistent (Figure 3—figure supplement

1B, right panels).
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