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Abstract The accidental endogenization of viral elements within eukaryotic genomes can 
occasionally provide significant evolutionary benefits, giving rise to their long- term retention, 
that is, to viral domestication. For instance, in some endoparasitoid wasps (whose immature 
stages develop inside their hosts), the membrane- fusion property of double- stranded DNA 
viruses have been repeatedly domesticated following ancestral endogenizations. The endoge-
nized genes provide female wasps with a delivery tool to inject virulence factors that are essential 
to the developmental success of their offspring. Because all known cases of viral domestication 
involve endoparasitic wasps, we hypothesized that this lifestyle, relying on a close interaction 
between individuals, may have promoted the endogenization and domestication of viruses. By 
analyzing the composition of 124 Hymenoptera genomes, spread over the diversity of this clade 
and including free- living, ecto, and endoparasitoid species, we tested this hypothesis. Our anal-
ysis first revealed that double- stranded DNA viruses, in comparison with other viral genomic 
structures (ssDNA, dsRNA, ssRNA), are more often endogenized and domesticated (that is, 
retained by selection) than expected from their estimated abundance in insect viral communities. 
Second, our analysis indicates that the rate at which dsDNA viruses are endogenized is higher in 
endoparasitoids than in ectoparasitoids or free- living hymenopterans, which also translates into 
more frequent events of domestication. Hence, these results are consistent with the hypothesis 
that the endoparasitoid lifestyle has facilitated the endogenization of dsDNA viruses, in turn, 
increasing the opportunities of domestications that now play a central role in the biology of many 
endoparasitoid lineages.
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Introduction
The recent boom of genome sequencing programs has revealed the abundance of DNA fragments 
of viral origin within eukaryotic genomes. These so- called Endogenous Viral Elements (EVEs) stem 
from endogenization events that not only involve retroviruses as donors (as could be expected from 
their natural lifecycle) but also viruses that do not typically integrate into their host chromosomes 
(Katzourakis and Gifford, 2010; Feschotte and Gilbert, 2012; Aswad et al., 2021). In insects, where 
retroviruses have yet to be found, endogenization events have involved various non- retroviral viruses: 
three families of large double- stranded (ds) DNA viruses, at least 22 families of RNA viruses, and three 
families of single- stranded (ss) DNA viruses (Gilbert and Belliardo, 2022). Degeneracy and loss are 
likely the fate of most EVEs, since they do not a priori benefit their hosts. Still, several studies have 
reported that EVEs can be retained by selection, thus becoming domesticated (Koonin and Krupovic, 
2018). The functions involved include defensive properties against related viruses in mosquitoes (Yan 
et al., 2009; Suzuki et al., 2020), against macroparasites in some Lepidoptera (Gasmi et al., 2021), 
or modifications in the expression of genes involved in dispersal in aphids (Gasmi et al., 2021; Parker 
and Brisson, 2019). Beyond insects, the membrane fusion capacity of viruses, allows their entry into 
host cells, have been repeatedly co- opted in three metazoan clades: mammals, viviparous lizards, and 
parasitoid wasps. In placental mammals and viviparous Scincidae lizards, domestication of the syncytin 
protein from retroviruses has allowed the emergence of the placenta, through the development of 
the syncytium (composed of fused cells) involved in metabolic exchanges between the mother and 
the fetus (Lavialle et  al., 2013; Cornelis et  al., 2017). A similar fusogenic property was repeat-
edly co- opted by parasitoids belonging to the Hymenoptera order through the endogenization and 
domestication of complex viral machineries deriving from large dsDNA viruses (Drezen et al., 2017; 
Gilbert and Belliardo, 2022). The numerous retained viral genes allow parasitoid wasps to produce 
virus- like structures (VLS) within their reproductive apparatus. These are injected into the wasp’s host, 
together with their eggs, and protect the wasp progeny against the host immune response. This 
protection is achieved thanks to the ability of VLS to deliver virulence factors in the form of genes 
(in which case VLS are called polydnavirus - PDV) or proteins (in which case VLS are called Virus- like 
particles - VLPs) to host immune cells (reviewed in Gauthier et al., 2018; Drezen et al., 2022). So far, 
five independent cases of such viral domestication have been detected in parasitoid wasps, four of 
them falling within the Ichneumonoidea superfamily (Bézier et al., 2009; Volkoff et al., 2010; Pichon 
et al., 2015; Burke, 2019) and one in the Cynipoidea superfamily (Di Giovanni et al., 2020). The four 
cases where the donor virus family has been unequivocally identified point towards dsDNA viruses. 
More specifically, the domesticated EVEs (hereafter, dEVEs) derive from the Nudiviridae family in 
three cases (Bézier et al., 2009; Pichon et al., 2015; Burke, 2019) while the fourth involves a puta-
tively new viral family denoted ‘LbFV- like’ (Di Giovanni et al., 2020). Notably, all these domestication 
events took place in endoparasitoids, that is, in species that deposit their eggs inside the hosts, as 
opposed to ectoparasitoids that lay on their surface.

Beyond these well- characterized events of viral domestication in Hymenoptera, additional cases 
of endogenization have been uncovered, in studies that enlarged the taxonomic focus of either the 
hosts (Ter Horst et al., 2019; Cheng et al., 2020; Kondo et al., 2019) or the viruses that were consid-
ered (Flynn and Moreau, 2019; Ter Horst et al., 2019; Irwin et al., 2022; Li et al., 2022). Here, we 
complement this earlier work by expanding the range of both the hosts and viruses under study, and 
by further analyzing which endogenization cases have been followed by a domestication event.

To this end, we developed a bioinformatic pipeline to detect endogenization events involving any 
kind of viruses (DNA/RNA, single- stranded, double- stranded), at the scale of the whole Hymenop-
tera order. This analysis first allowed us to test whether the propensity of viruses to enter Hymenop-
tera genomes, and to be domesticated, depend on their genomic structure (in line with the pattern 
observed so far, where only dsDNA viruses have been involved in domestication events as described 
above). We then tested whether the lifestyle of the species (free- living, endoparasitoid, ectopara-
sitoid) correlates with their propensity to integrate and domesticate viruses. Our working hypothesis 
was that the endoparasitoid lifestyle may be associated with a higher rate of viral endogenization and/
or a higher rate of domestication events, for two non- exclusive reasons related either to the exposure 
to new viruses and the adaptive value of the endogenized elements.

First, a higher endogenization rate may simply stem from a higher exposure to viruses. Such an 
effect could be at play in endoparasitoids due to the intimate interaction between the parasitoid egg 
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or larva and the host. In other words, the endoparasitic way of life may facilitate the acquisition of new 
viruses deriving from the hosts. Notably, this lifestyle may also facilitate the maintenance and spread 
of newly acquired viruses within wasp populations. Indeed, endoparasitoid wasps often inject not only 
eggs but also venomic compounds (typically produced in the venom gland or in calyx cells) where 
viruses can be present and may thus be vertically transmitted (Martinez et al., 2016). In addition, the 
confinement of the several developing wasps within a single host may facilitate viral horizontal trans-
mission and its subsequent spread in wasps populations (e.g. Varaldi et al., 2003).

Second, a higher rate of domestication in endoparasitoids may be the consequence of a particular 
selective regime. This is expected since, these insects are facing the very special challenge of resisting 
the host immune system, contrary to other lifestyles. This selective pressure may promote the co- op-
tion of viral functions such as the above- mentioned membrane fusion activity, that provide a very 
effective mean to deliver virulence factors.

Our analysis reveals numerous new instances of endogenization events, some of which are also 
characterized by signatures of molecular domestication. We found a clear enrichment in endogeniza-
tion events deriving from dsDNA viruses as compared to those with other genomic structures. While 
the data did not reveal a significant effect of Hymenoptera lifestyles on the acquisition of dsRNA, 
ssRNA, or ssDNA viruses, it supports the hypothesis that genes from dsDNA viruses are more often 
endogenized and domesticated in endoparasitoids than in free- living and ectoparasitoid species.

Results
We screened for EVEs 124 Hymenoptera genome assemblies, including 24 ectoparasitoids, 37 
endoparasitoids, and 63 free- living species (the list can be found in Supplementary file 2). EVEs were 
identified using a sequence- homology approach based on a comprehensive viral protein database. 
Different confidence levels (ranging from A to D) were associated with the various EVEs inferred, 
where the A score indicates a maximal confidence level for endogenization. This confidence index 
is based upon sequencing depth combined with the presence of eukaryotic genes and/or transpos-
able elements in the genomic environment of the candidate loci (as detailed in the Material and 
methods section). By default, the four categories are included in the analysis, but unless otherwise 
stated statistical tests based on the A category only led to the same conclusions (see Figure 1—
figure supplements 2–7 for more details). Since several EVEs may enter into the genome during a 
single endogenization event, we grouped into the same event EVEs that were localized in the same 
scaffold (only for viruses having similar genomic structure), and/or that derived from the same puta-
tive viral family. Our analysis further included an inference of the phylogenetic relationships among 
homologous EVEs, that was used to map endogenization events on the Hymenoptera species tree. 
Finally, inferences of domestication events relied upon signatures of purifying selection in the inte-
grated genes (based on dN/dS estimates) and/or on expression data. An important objective of our 
analysis is to detect and enumerate not only EVEs but also endogenization events that can explain 
the presence of these EVEs. Indeed, an EVE denotes a single gene of viral origin in a single species. 
Several neighboring EVEs in a genome most likely result from the endogenization of a single viral 
genome, and homologous EVEs shared by several closely related species may further stem from a 
single ancestral endogenization event. This distinction is critical when it comes to examining the effect 
of various factors on the probability of integrating EVEs, which implies counting events rather than 
EVEs. As an example, let’s consider the single endogenization event involving 13 EVEs that occurred 
in the common ancestor of Leptopilina species (Di Giovanni et al., 2020). In this wasp genus, based 
on previous findings, we expect the 39 EVEs to be grouped into a single endogenization event. Our 
pipeline appropriately detected 36 EVEs (out of 39) and correctly aggregated them into a single 
endogenization event mapped on the branch leading to the Leptopilina genus. Thus, in Figure 1, we 
can observe a pie chart at the node corresponding to the common ancestor of the three Leptopilina 
species (L.boulardi, L.clavipes, and L.heterotoma). Most of this pie chart is blue, which corresponds 
to the putative donor viral family, i.e., LbFV- like, and is surrounded by a black border, indicating that 
the genes involved are inferred as domesticated. The number of EVEs and dEVEs (n=12/13) for each 
of the 3 species is then plotted along the horizontal bar plots with the same color code (see Figure 1 
and Figure 1—figure supplement 3 for more canonical examples).

In total, the pipeline correctly detected 88.4% (152/172) of the EVEs involved in our four ‘posi-
tive controls,’ previously described as mediating the protection of young wasps against their host 
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Figure 1. Endogenous Viral Elements (EVEs ) and their domestication status in Hymenoptera. Lifestyles are displayed next to species names (blue: 
free- living, green: endoparasitoid, yellow: ectoparasitoid, gray: unknown). The number of EVEs and domesticated EVEs (dEVEs) found in each species 
are represented respectively by the first and second facets of the horizontal histograms. Colors along these histograms indicate the potential donor 
viral families (where blue tones correspond to viral double- stranded DNA (dsDNA) viruses, red tones to single- stranded DNA (ssDNA) viruses, orange/

Figure 1 continued on next page

https://doi.org/10.7554/eLife.85993
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immune system. Among them, 71.82% were inferred as being domesticated. Out of the 152 positive 
controls EVEs, 147 were grouped into four independent endogenization events, as was expected. 
The remaining five genes had peculiar histories that led our pipeline to infer two additional spurious 
events (Supplementary file 3). All detailed results regarding EVEs and dEVEs can be found in the 
Supplementary file 4.

Endogenizations involve all viral genomic structures
A total of 1261 EVEs have been inferred in the whole dataset (Supplementary file 1, Figure 1). These 
come from 367 endogenization events, the majority of which involved ssRNA and dsDNA viruses (41% 
and 35%, respectively) (Supplementary file 1). Among the 124 species under study, 113 underwent at 
least one endogenization event, with a maximum of 14 events and a median of 3 (Figure 1). In total, 
91% of the events (331) occurred on tip branches, and the remaining 9% are shared by at least two 
closely related species (Supplementary file 1, Figure 1). To assess the validity of the procedure used 
to aggregate multiple EVEs into a single shared ancestral endogenization, we assessed whether EVEs 
inferred as homologous shared a common genomic environment. We thus tested for the presence 
of homologous loci in descendant species around the shared ancestral EVEs (using blastn searches 
between the corresponding scaffolds, see details in Materials and methods). Among the 36 endog-
enization events that involved at least two species, 31 were found to carry more homologous loci 
around the insertion sites than expected by chance (see details in Materials and methods). Notably, 
the majority of endogenization events involved a single EVE (a single gene) and only 12 (all from 
dsDNA viruses), involved the concomitant integration of more than four viral genes (Figure 2C) .

A total of 40 different viral clades (usually families) were inferred as putative donors. Most of them 
(34) are known to infect insects (Figure 2B) and these account for the majority of the 331 endogeni-
zation events. However, we found 36 EVEs (24 endogenization events), including 20 high- confidence 
ones (A- ranked), that derived from six viral families not previously reported to infect insects (Phycod-
naviridae, Herpesviridae, Caulimoviridae, Asfaviridae, Bornaviridae, and Mypoviridae). However, in 
those cases, the true viral donors may belong to unknown clades that do infect insects. Indeed, 
although the homology with viral proteins was convincing (median e- value was 9.4095e- 12 [min = 
9.212e- 129, max = 3.305e- 08]), the average percentage identity was relatively low (38% [min = 23.2%, 

brown tones to dsRNA viruses, and green tones to ssRNA genomes). EVEs shared by multiple species and classified within the same event are 
represented by circles whose size is proportional to their number; those that are considered as dEVEs are surrounded by a black border. Numbers in 
the white boxes correspond to the number of endogenization events inferred. As an example, Megastigmus dorsalis and Megastigmus stigmatizans are 
ectoparasitoids (yellow) sharing a common endogenization event (within the Cluster21304, see Figure 1—figure supplement 1) that likely originated 
from an unclassified dsRNA virus (gray color in circle), and shows no sign of domestication (no black border around the gray part of the circle). The figure 
was inspired by the work of Peters et al., 2017. Details on the phylogenetic inference and time calibration can be found in the Material an methods 
section; bootstrap information can be found in Figure 1—figure supplement 7; details on lifestyle assignation can be found in Supplementary file 2. 
All Cluster sequence alignments from loci scored from A to X can be found within the Figure 1—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. File including all aligned cluster sequences scored from A to X.

Figure supplement 1. Example of endogenization events.

Figure supplement 2. Simplified summary of the bioinformatics pipeline for the detection and validation of candidates for endogenization and 
domestication.

Figure supplement 3. Canonical examples of endogenization events inferred by our pipeline.

Figure supplement 4. IVSPER genes identified in the Campopleginae genome.

Figure supplement 5. Cladogram of the Ophioniformes group, illustrating the two independent endogenization events of two unknown viruses in 
Banchinae and Campopleginae lineages.

Figure supplement 6. Ultra conserved element (UCE) trees built to assign to species the unknown Chalcidoidea sequenced with the pool of P. 
orseoliae.

Figure supplement 7. Source of the datasets and availability of the reads.

Figure supplement 8. Representation of the score distribution among different virus genome types.

Figure supplement 9. Heatmap representing the viral genes known to be domesticated by Hymenoptera.

Figure 1 continued
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Figure 2. Endogenization involves all types of viral genomic structures. In all three panels, events inferred as corresponding to domestications are 
displayed in orange, while events not inferred as domestications are displayed in yellow. (A) Distribution of the number of events inferred, according 
to the four categories of viral genomic structures. The crosses refer to the expected number of endogenization events for each category based on its 
estimated relative abundance in insects (see details in Materials and methods and virus- infecting data in Supplementary file 5). The data used in this 
figure can be found in Supplementary file 6 in the ‘Figure_data’ sheet. (B) Distribution of the various viral families involved in endogenization events. 
The polarity of single- stranded RNA (ssRNA) viruses is displayed next to the family name. Events involving multiple putative families (i.e. where several 
viral families are present in the same scaffold) have been excluded from the count. The star next to the family name indicates that the viral family is 
known to infect insects. (C) Distribution of the number of endogenous viral elements (EVEs) per event across viral categories.
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max = 79.1%]), suggesting that these loci may originate from unknown viruses that are only distantly 
related to their closest relatives in public databases.

dsDNA viruses are over-represented in endogenization events
Most of the endogenization events recorded involve ssRNA and dsDNA viruses. But do these propor-
tions simply mirror the diversity and respective abundances of the different kinds of viruses encoun-
tered by insects? The analysis summarized in (Figure  2A) (see details in Materials and methods) 
indicates this is not the case. More specifically, it shows that dsDNA viruses are more frequently 
endogenized than expected on the basis of their representation in the database, while ssRNA viruses 
are under- represented ( χ

2
 =56.9  and 30.9, respectively, for endogenization events and domestica-

tion events, d.f.=3, both p- value <2.2e- 7) (see data in Supplementary file 6). Notably, this result is 
not purely driven by the presence in our data set of the four positive controls (previously described 
cases of viral domestication, that all involve dsDNA viruses as donors, both p- value <2.2e- 7). Finally, 
among endogenization events involving ssRNA viruses, we found an over- representation of negative- 
stranded ssRNA compared to their relative abundance in public databases (72.2% compared to 32.5% 
in the databases,  χ

2
 =147.29, d.f.=1, p- value <2.2e- 16).

Endogenizations of dsDNA viruses are more frequent in endoparasitoid 
species
Next, we sought to characterize the factors that could explain the patterns of endogenization events 
inferred (Figure 1). To this end, for each viral genomic structure, we assessed whether endogenization 
events were evenly distributed among the three wasp lifestyles, taking into account their respective 
frequencies in the dataset. No significant departure from the null hypothesis was detected for endog-
enization involving ssDNA, dsRNA, or ssRNA viruses (Fisher exact test p- values BH corrected >0.05). 
On the contrary, we detected a highly significant enrichment of dsDNA viruses endogenization 
events in endoparasitoid species, and conversely a deficiency in free- living and ectoparasitoid species 
(corrected p- value = 7.8e- 04, Figure 3A)(see data in Supplementary file 6).
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Figure 3. Endogenization and domestication of double- stranded DNA (dsDNA) viruses are most prevalent in endoparasitoid species. (A) Distribution of 
viral endogenization events (Event) and B of domestication events (dEVEs) across Hymenoptera lifestyles. Crosses indicate the expected proportion of 
events associated with the different lifestyles, based on the respective frequencies in our database (ectoparasitoid = 24/124, endoparasitoid = 37/124, 
free- living = 63/124). The p- values are the results of Fisher’s tests comparing the observed and expected distributions. Numbers inside the bars indicate 
the absolute numbers of events inferred. The ancestral states of the nodes, in terms of lifestyle, were inferred in a Bayesian analysis (see details in 
Materials and methods). The data used in this figure can be found in Supplementary file 6.
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To further test the apparent correlation between Hymenoptera lifestyle and the rate of endogeni-
zation events, we inferred ancestral lifestyles along the phylogeny using a Bayesian model (see details 
in Materials and methods). We then constructed a generalized linear model where the dependent 
variable is the number of endogenization events inferred on each branch, while branch length and life-
style are the explanatory variables (see details in Materials and methods). Branch length was included 
as an additive effect to remove the expected effect of time on the number of endogenization events, 
thus allowing the decomposition of the remaining variance according to the lifestyle (free- living, ecto-
parasitoid or endoparasitoid).

We first tested whether the rate of endogenization events deriving from any virus (that is, regardless 
of their genomic structures) was structured by lifestyles, and found no significant effect (Figure 4—
figure supplement 1A left side). We then split the dataset according to the genomic structure of 
the donor viruses. For RNA or ssDNA viruses, the analysis did not reveal evidence of a correlation 
between wasps’ lifestyles and the rate of endogenization events (Figure 4—figure supplement 1G,I 
and K). On the contrary, in the case of dsDNA viruses, we found a highly significant effect of the wasp 
lifestyle: endogenization rates appear to be 2.47 times higher in endoparasitoids than in free- living 
species (89% CI [1.56–3.56], Figure 4A). The corresponding probability of direction (pd, an index 
representing the confidence in the direction of an effect) was equal to 99.9%. In contrast, ectoparasit-
oids did not differ from free- living species (Figure 4A). Accordingly, more than 98% of the MCMC iter-
ations led to a higher coefficient value for endoparasitoids than for ectoparasitoids (so- called  PMCMC  
in Figure 4A). This effect was consistently found using high- confidence scaffolds only (A- ranked scaf-
folds, Figure 4—figure supplement 1C middle side). We also carried out the same analysis without 
the 4 domestication cases previously mentioned in the literature (because including them in our data 
set could have skewed the results) and reached the same conclusion (Figure 4—figure supplement 
1E middle and left sides). Overall, these results show that dsDNA viruses are more often endogenized 
in endoparasitoids than in free- living and ectoparasitoid species. All model summaries can be found 
in the Supplementary file 6 in the ‘GLM_lifestyle_EVEs_dEVEs’ sheet.

Domestications of dsDNA viruses are most prevalent in endoparasitoid 
species
We then investigated whether lifestyles may explain the abundance of domestication events. A simple 
Fisher’s exact test approach revealed an enrichment in endoparasitoid species of domestication 
events involving dsDNA viruses (Benjamini- Hochberg adjusted p- value = 1.8e- 03), whereas no devia-
tion from the null hypothesis was detected for the other viral genomic structures (Figure 3B) (see data 
in Supplementary file 6).

We built upon the generalized linear models described above, in a Bayesian framework, to test 
whether lifestyle could also be a factor explaining the propensity of Hymenoptera to domesticate 
(and not simply endogenize) viral genes (see details in Materials and methods). We found that the 
domestication of dsDNA viruses are 3.68 times more abundant in endoparasitoids than in with free- 
living species (89% CI [1.72–6.17], pd = 99.9%, Figure 4B). This effect was also detected when only 
high- confidence candidates were considered (Figure 4—figure supplement 1D middle side), or if we 
removed the four known cases of domestication (Figure 4—figure supplement 1F left and middle 
side). In other viral categories, no convincing effect of the wasp lifestyle was detected (all pd <99%) 
(Figure 4—figure supplement 1H and J) except for a lower rate of domestication of ssRNA viruses in 
ectoparasitoids compared to other lifestyles (Figure 4—figure supplement 1L).

Two non- mutually exclusive hypotheses may explain the high frequency of dsDNA virus domesti-
cation in endoparasitoids. First, it may simply stem from the higher rate of endogenization outlined 
above: a higher rate of entry would overall translates into a higher rate of domestication. Second, it 
may result more specifically from differences in the rate at which viral elements are domesticated after 
being endogenized. To disentangle these hypotheses, we built a binomial logistic regression model 
in a Bayesian framework, focusing on events involving dsDNA viruses, and specifying the number of 
domesticated events relative to the total number of endogenization events inferred. By controlling for 
the endogenization input (the denominator), these binomial models make it possible to test whether 
the probability of domestication after endogenization of dsDNA viruses is correlated with the lifestyle.

Based on this analysis, the probability that an endogenization event will lead to a domestication 
event is not significantly different between endoparasitoids and free- living species (Figure 4—figure 

https://doi.org/10.7554/eLife.85993
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Figure 4. Endogenization and domestication of double- stranded DNA (dsDNA) viruses are more frequent in endoparasitoid species. Violin plots 
represent the posterior distribution of the coefficients obtained under the different GLM models (after exponential transformation to obtain a rate 
relative to free- living species). The coefficients are derived from 1000 independent GLM models, where 1000 probable scenarios of ancestral states at 
nodes were sampled randomly among the MCMCM iterations (see details in Materials and methods). Branches from nodes older than 160 million years 
were removed from the dataset. The %pd is the probability of direction and indicates the proportion of the posterior distribution where the coefficients 
have the same sign as the median coefficient.  PMCMCM   indicates the proportion of MCMC iterations where the coefficient obtained for endoparasitoid 
species is higher than for ectoparasitoid species. All statistical summaries of the Bayesian GLM models can be found in Supplementary file 6.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Violin plots of the posterior distribution of GLM coefficients in relation to Hymenoptera lifestyle.

Figure supplement 2. Violin plots of the posterior distribution of dEvents GLM coefficients in relation to wasp lifestyle (corrected for Events rates).

Figure supplement 3. Violin plots of the posterior distribution of GLM coefficients in relation to Hymenoptera lifestyle.

https://doi.org/10.7554/eLife.85993
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supplement 2A, pd = 89.18%). However, the probability of domestication was found to be significantly 
higher in endoparasitoids than in ectoparasitoids (Figure 4—figure supplement 2A,  PMCMC =99.81%). 
The same trend was observed if we focused on high- confidence scaffolds and/or if we removed the 
four known controls from the dataset (Figure 4—figure supplement 2B,C and D, pd <86%).

Together, these findings show that the endoparasitoid lifestyle is associated with an increased 
rate of dsDNA viruses endogenization. Endoparasitoids are also characterized by an elevated 
frequency of domestication events that does not appears to be explained by an elevated rate of post- 
endogenization domestication.

Conclusions hold when eusociality is taken into account
Our analysis relied on a simplification of Hymenoptera lifestyles (free- living, endoparasitoid, ecto-
parasitoid). We may thus wonder whether adding complexity to this view would change our main 
conclusion. In particular, a significant proportion of our free- living species are in fact eusocial (ants, 
some bees). We thus tested the robustness of our conclusion by including an ‘eusociality’ category in 
our analysis (see new categories in Supplementary file 2).

First, the new models did not reveal any significant effect of the lifestyle in the number of Events 
or domestication Events involving ssRNA and ssDNA viruses (Figure 4—figure supplement 3G,H 
and K,L). Second, for dsRNA viruses, eusocial insects had a reduced number of dEvents compared 
to free- living, ecto, or endoparasitoid species(pd >99%) (Figure 4—figure supplement 3I,J). Most 
importantly, this analysis revealed again a greater number of endogenization events or domestica-
tion events involving dsDNA viruses in endoparasitoid compared to free- living species (pd >99%, 
Figure  4—figure supplement 3C,D). The conclusions remained unchanged when controls were 
removed from the dataset (Figure 4—figure supplement 3E and F). When we only considered loci 
annotated with an A score (highly confident EVEs), we found the exact same pattern, although the 
effect was only marginally significant for the number of events (pd = 98.6%) (Figure 4—figure supple-
ment 3C and D). In addition, more than 98% of the MCMC iterations led to a higher coefficient value 
for endoparasitoids compared to ectoparasitoid or eusocial species in that combination.

When combining both filters (only A score and without the controls), the same tendency was 
observed, although the effects were only marginally significant (pd min = 96%) (Figure 4—figure 
supplement 3E and F). In addition, more than 99% of the MCMC iterations led to a higher coeffi-
cient value for endoparasitoids compared to ectoparasitoid or eusocial species in that combination. 
In conclusion, when a eusocial category is added, the same conclusion is reached: dsDNA viruses are 
more often endogenized and domesticated in endoparasitoids than in free- living, ectoparasitoid, and 
eusocial species.

New remarkable cases of endogenization and domestication
Here, we describe in more detail specific cases identified by our pipeline. We found a massive entry 
of genes from dsDNA viruses in an undescribed species belonging to the Campopleginae subfamily 
(‘Campopleginae sp’ in Figure  1). In Ophioniformes (a clade that includes Campopleginae), two 
lineages that have previously been shown to host domesticated viruses (the Campopleginae species 
Hyposoter didymator (Volkoff et al., 2010), and the Banchinae species Glypta fumiferanae Béliveau 
et al., 2015). It has been advocated that these so- called ichnoviruses found in Hyposoter didymator 
and Glypta fumiferanae may derive from the same endogenization event (Béliveau et al., 2015). In 
our unknown Campopleginae species, we identified homologs of 35 out of the 40 ichnovirus genes 
present in the genome of H. didymator (so- called IVSPER genes, Volkoff et al., 2010). Those genes 
show conserved synteny in the two species (Figure 1—figure supplement 4), strongly suggesting 
that they derive from the same endogenization event. However, our analysis did not identify viral 
homologs in the two Ophioninae and Cremastinae subfamilies, that are internal to the clade including 
Campopleginae and Banchinae wasps. Together with previous studies that does not reveal the pres-
ence of IVSPER in other internal clades, this result argues against the view of a single event at the root 
of Ophioniformes, and supports the alternative view (Burke et al., 2021) that the so- called IVSPER 
genes in the Campopleginae and Banchinae subfamilies stem from independent events, despite 
their striking structural similarities (see Figure 1—figure supplement 5 for illustration). We found no 
trace of the previously suggested remnants of ichnoviruses in the related species Venturia canescens 
(Pichon et al., 2015), whereas the presence of nudiviral genes in this species was confirmed.

https://doi.org/10.7554/eLife.85993
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Additionally, we found five new cases of endogenization involving multiple EVEs from dsDNA 
viruses belonging to Nudiviridae, LbFV- like, and AmFV- like families.

Two of them involve parasitoid species, i.e., Platygaster orseoliae and an Aprostocetus species. For 
Aprostocetus, we detected six EVEs related to nudiviruses branching between the Chalcidoidea and 
the Diaprioidea superfamilies (Figure 5—figure supplement 1D). Among these EVEs we found four 
with an annotation: lef- 4, Ac68/pif- 6, GrBNV_gp19/60/61- like proteins, and a rep- like protein. In the 
absence of closely related sequences or RNA seq data, we cannot investigate if these elements have 
been domesticated.

The P. orseoliae case involves the recently characterized putative family of filamentous viruses 
(Lepetit et al., 2016). The free- living LbFV virus is the only representative of this putative family and 
has been identified as a source of adaptive genes in Leptopilina wasps that parasitize Drosophila 
flies, with 13 virally- derived genes involved in the production of VLPs protecting the wasp’s eggs 
from encapsulation (Di Giovanni et al., 2020). In P. orseoliae, 15 genes homologous to LbFV were 
detected (out of 108 ORFs in the LbFV genome; median E- value=9.39e- 21 [min = 2.617e- 76, max 
= 4.225e- 08]) (Figure 5—figure supplement 2A). Among these 15 genes, five were also endoge-
nized in Leptopilina species (named LbFV_ORF58:DNApol, LbFV_ORF78, LbFV_ORF60:LCAT, LbFV_
ORF107, and LbFV_ORF85) (Di Giovanni et al., 2020). Assuming the ancestral donor virus contained 
the same 108 genes as LbFV, the number of shared genes in these two independent domestication 
events is higher than expected by chance (one- sided binomial test: x=5, n=15, p=13/108, p=0.02682), 
suggesting that similar functions could have been retained in both lineages. Notably, we also found 
within the P. orseoliae assembly 12 scaffolds that were annotated as free- living viruses (F- X scaffolds). 
They had a different sequencing depth compared to BUSCO containing scaffolds and encoded 136 
complete ORFs for which 21 presented homology with LbFV ORFs (min bit score = 50, min ORF size 
= 150 pb, max overlaps = 23 pb). ORF density was 82.7% which is in the range of expected values for 
related free- living viruses. In order to identify additional scaffolds possibly belonging to this free- living 
virus, we searched for homology between the 136 putative viral proteins, and the scaffolds obtained 
from the assembly of P. orseoliae. These results allowed us to identify two additional scaffolds (scaf-
fold_117128 and scaffold_18896). Because the total size of the 14 putative ‘free- living’ scaffolds were 
within the expected range for a dsDNA virus genome (136,801 bp) and because the average coverage 
was much higher than BUSCO- containing scaffolds (mean cov = 95.6 X [sd = 5.05 X] compared to 
33  X in BUSCOs) and homogeneous (Figure  5—figure supplement 1A), we believe that this set 
of scaffolds corresponds to the whole genome of a new virus, related to LbFV, which we propose 
to call Platygaster orseoliae filamentous virus (PoFV) (see Figure 5). This virus is the closest relative 
to the EVEs found in P. orseoliae. Using this putative whole genome viral sequence to search for 
homologous genes in the P. orseoliae genome, we were able to detect a total of 139 convincing EVEs 
(deriving from 89 of the 136 ORFS found in PoFV). A large proportion of the EVEs (22.7%) presented 
premature stop codons within the sequences, further suggesting that these virally- derived genes are 
indeed endogenized since abundant pseudogenization is not expected in free- living virus genomes 
(Figure 5—figure supplement 2A). 44 of these 89 PoFV- derived EVEs presented signs of domesti-
cation, as the dN/dS (inferred using paralogs) were significantly lower than 1 (see Ac81 and Integrase 
gene phylogenies in Figure  5—figure supplement 3). Among the 81/139 apparently intact EVEs 
(with ORF length >= 50% of the PoFV ORF), some are likely implicated in DNA replication (integrase), 
in transcription (lef- 8, lef- 9, lef- 5, lef- 4), in packaging and envelopment (ac81, 38 k) and in infectivity 
(pif- 1, pif- 2, pif- 3). Among the 139 PoFV- related EVEs found in P. orseoliae, 104 corresponded to 
putative paralogs whereas none of these 104 ORFs were present in multiple copies within the PoFV 
genome, suggesting that a major post- endogenization duplication event occurred or that multiple 
endogenization events did occur. Although functional studies are clearly needed to confirm that these 
virus- derived genes are involved in the production of VLPs as in Leptopilina (Di Giovanni et al., 2020), 
we see Platygaster orseoliae endogenous viral elements (PoEFVs) as good candidates for viral domes-
tication, which could possibly be involved in counteracting the immune system of its dipteran host 
(from the Cecidomyiidae family Buhl and Hidayat, 2016). To our knowledge, this is the first report 
of a massive viral endogenization and putative domestication within the Platygastroidea superfamily.

The other three cases involved ant species: Harpegnathos saltator (EsEFV) (12EVEs/6dEVEs), Pseu-
domyrmex gracilis (PgEFV) (9EVEs/1dEVE) (Figure 5—figure supplement 1C and Figure 5—figure 
supplement 4), Aphaenogaster picea (ApEFV) (7EVEs) (Figure  5—figure supplement 4). These 

https://doi.org/10.7554/eLife.85993
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Figure 5. Phylogenetic relationships among endogenized and ‘free- living’ double- stranded DNA (dsDNA) viruses. Specifically, this figure shows the 
relationships between Naldaviricetes double- stranded DNA viruses and endogenous viral elements (EVEs) from hymenopteran species, where at least 
three endogenization events were found. This tree was computed using maximum likelihood in Iqtree (v2) from a 38,293- long protein alignment based 
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All free- living dsDNA viruses used in this phylogeny were obtained from published complete viral genomes. More details on the phylogenetic inference 
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Cluster sequence alignments can be found in the Figure 5—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. File including all aligned cluster sequences included in the Naldaviricetes phylogenetic analysis.

Figure supplement 1. G+C% Coverage distribution of scaffold containing multiple endogenous viral elements (EVEs) Events.

Figure supplement 2. Genomic environment for the endogenous viral elements (EVEs) detected in Platygaster orseoliae.

Figure supplement 3. Phylogenies of LbFV- like proteins under purifying selection in Platygaster orseoliae genome.

Figure supplement 4. Candidate endogenous viral elements (EVEs) in two ant species.

https://doi.org/10.7554/eLife.85993
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endogenized elements are related to a poorly characterized family of filamentous viruses denoted 
AmFV (Hartmann et al., 2015; Yang et al., 2022). In H. saltator, nine genes deriving from an AmFV- 
like virus were detected (including three genes that have been previously identified by Flynn and 
Moreau, 2019). Intriguingly, all these genes presented numerous paralogs within the genomes (135 
in total) (Figure 5—figure supplement 1B), with 22 copies for AmFV_0062 (pif- 1), 18 for AmFV_0102 
(pif- 2), 51 for AmFV_0090 (pif- 3), 24 for AmFV_0044 (integrase), 13 for AmFV_0079 (p74), five for 
AmFV_0047 (RNA polymerase Rpb1, domain 2), 19 for AmFV_0126 (Unknown), 23 for AmFV_0168 
(Unknown), and seven for AmFV_0154 (Unknown). Most paralogs were found in scaffolds exceeding 
the expected size for any virus sequence (min = 23,726 bp, mean = 326,262 bp, max = 2,693,376 
bp). In addition, all scaffolds do include transposable elements and eukaryotic genes making them 
undoubtedly endogenized. Accordingly, our pipeline attributed the highest confidence index A for 
104 of them (out of 135). The P.gracilis genome revealed nine EVEs, including homologs of pif- 1, pif- 3, 
RNA polymerase, ac81, integrase, and odv- e56 (Figure 5—figure supplement 4). Notably, one of the 
9 EVEs (AmFV_059, of unknown function) shows both a dN/dS <1 (mean = 0.1747, p- value 5.877e- 02), 
and a very high TPM value (362,836 TPM from whole body tissues). Finally, in A. picea, seven EVEs 
were detected, including homologs of pif- 1, pif- 3, integrase, odv- e56, and p74 (Figure 5—figure 
supplement 4). No raw reads data were available for this species, precluding coverage- based infer-
ences. Since there were neither orthologs or paralogs for these genes to compute dN/dS analyses, 
nor transcriptomic data, it was not possible to infer their domestication status. At this stage, it is thus 
not possible to conclude as to the functions of these genes in H. saltator, P. gracilis, and A. picea, but 
this surely deserves further attention.

Discussion
All kinds of viruses can integrate arthropod genomes, although the mechanisms underlying these 
phenomena remain unclear (Katzourakis and Gifford, 2010; Gilbert and Belliardo, 2022). Prior to 
the present analysis, 28 viral families had been described as involved in endogenization in arthro-
pods (Gilbert and Belliardo, 2022). Our study of hymenopteran genomes which relied on sequence 
homology search, further revealed the ubiquity of this phenomenon, with 1261 EVEs found, belong 
to at least 40 viral families (or family- like clades). Because the identification of EVEs necessitates the 
availability of related viruses in the database, we should see these numbers as an underestimation of 
the real number of EVEs. In addition, our pipeline necessitates the availability of either related species 
sharing the same EVEs (or at least the presence of paralogs within a single species) or the availability 
of RNAseq data to infer domestication. Because these last conditions were only met for 701 out 
1261 EVEs, the results we obtained here regarding domestication should be seen as an underesti-
mation of the prevalence of the phenomenon. Of the 1,261 EVEs found, the average identity with 
the closest known viral proteins was 36.32% [min = 15.7%, max = 99.1%]. Although this large overall 
divergence suggests ancient events, it does not exclude the possibility that some of the integrations 
are recent, because free- living viral relatives of the true donors may be unknown or extinct (Junglen 
and Drosten, 2013).

In the following section, we will first discuss a hypothesis for why double- stranded DNA viruses, 
in comparison with other viral genomic structures (ssDNA, dsRNA, ssRNA), are more often endoge-
nized than expected. We will then discuss hypotheses that could explain why we found a higher rate 
of endogenization of dsDNA viruses in endoparasitoids compared to ectoparasitoids or free- living 
hymenopterans, which also translates into more frequent events of domestication.

dsDNA viruses are more frequently involved in endogenization than 
expected by chance
Despite the observations that all viral genomic structures can be involved in endogenization, we 
clearly identified differences in their propensity to do so. Based on a comparison between the respec-
tive proportions of the various viral categories in the inferred endogenization events and in public 
databases, we found that dsDNA viruses are much more represented than expected, while ssRNA 
viruses are under- represented (Figure 2A). We acknowledge that current knowledge on the actual 
diversity of free- living viruses (as approximated through the NCBI taxonomy database) remains incom-
plete, but the strength of the effect reported here makes this conclusion rather robust to variations 

https://doi.org/10.7554/eLife.85993


 Research article      Evolutionary Biology | Genetics and Genomics

Guinet et al. eLife 2023;12:e85993. DOI: https:// doi. org/ 10. 7554/ eLife. 85993  14 of 30

in the null distribution. On the basis of current knowledge, RNA viruses, and in particular ssRNA 
viruses, appear to be much more diversified and prevalent than DNA viruses in insects. We note that 
viral- metagenomic studies often focus either on DNA or RNA viruses, and as such do not provide an 
accurate and unbiased picture of the extent of viral diversity. To gain insights on this topic, we may 
thus focus on model systems where long- lasting research efforts have likely produced a more reliable 
picture. The Honeybee Apis mellifera is probably the most studied of all hymenopteran species. In 
honeybees, the great majority of known viruses belong to the RNA world (Chen and Siede, 2007), 
with very few exceptions (Yang et al., 2022). Similarly, until 2015, only RNA viruses were known to 
infect the fruit fly Drosophila melanogaster, despite the extensive research conducted on this model 
system (Webster et al., 2015). A very limited set of DNA viruses has now been described from this 
species (Wallace et al., 2021) but clearly, RNA viruses dominate the Drosophila viral community, both 
in terms of diversity and prevalence. In support of this view, recent studies revealed the very elevated 
absolute diversity of RNA viruses. For instance, a survey of 600 insect transcriptomes recovered more 
than 1,213 RNA viruses belonging to 40 different families (Wu et al., 2020). Although, obviously, 
this study does not inform on the diversity of DNA viruses, it shows that the RNA virome of insects is 
both prevalent (e.g. in this study, 15% of all insects were infected by a single Mononegales- like virus) 
and extremely diversified (Wu et al., 2020). Actually, this view appears to hold at the larger scale 
of eukaryotes (Koonin et al., 2015). Taking into account this patent abundance of ssRNA viruses in 
insects, our study indicates they are by far less frequently endogenized than their dsDNA counterparts 
in hymenopterans. Notably, a similar trend was recently reported in a study including a diverse set of 
eukaryotes (Irwin et al., 2022).

Most of the major endogenization events characterized so far in hymenopterans involve dsDNA 
viruses from the Nudiviridae family (Cheng et al., 2020; Burke, 2019; Pichon et al., 2015; Bézier 
et al., 2009; Cheng et al., 2014; Zhang et al., 2020; Gilbert and Belliardo, 2022). Our study further 
confirms that this viral family represents a major source of exogenous and sometimes adaptive genes 
for Hymenoptera. Indeed, 28 new independent endogenization events involve in this family, among 
which 9 are shared by at least two related species (Figure 2B, Figure 1). The major contribution of 
nudiviruses to endogenization may be explained by their wide host range in arthropods (Wang et al., 
2007). Their nuclear replication constitutes another plausible explanatory factor (Velamoor et  al., 
2020), since it may facilitate contact with host DNA. In addition, their tropism for gonads may favor 
the endogenization in germinal cells (Burand, 2009). In fact, nuclear replication is a feature shared by 
nearly all families of dsDNA viruses found in our analysis: Baculoviridae, Iridoviridae, Phycodnaviridae, 
Nimaviridae Caulimoviridae, Herpesviridae, Asfaviridae (although nuclear replication occurs only at 
early time post- infection) (Schmid et  al., 2014; Harrison et  al., 2020; Alonso, 2023; Teycheney, 
2023; Verbruggen et al., 2016), Apis- filamentous- like (Clark, 1978) and LbFV- like families (Varaldi 
et al., 2006) (the Poxviridae viruses, that replicate in the cytoplasm, are thus the only exception). 
In contrast, most RNA viruses replicate in the cytoplasm. Nuclear replication may thus constitute a 
general explanation for the elevated propensity of DNA viruses to endogenization. Additionally, we 
may expect that a DNA molecule, rather than an RNA molecule, is more likely to integrate the insect 
genome, because the latter requires reverse transcription before possible endogenization.

The Poxviridae case indicates that cytoplasmic replication does not necessarily impede endoge-
nization. These viruses do not require nuclear localization to propagate (Moss, 2013; Schmid et al., 
2014) and were nevertheless found to be involved in many endogenization events (n=28). A similar 
pattern was observed in a recent study focusing on ant genomes (Flynn and Moreau, 2019). Within 
Poxviridae, entomopoxviruses were particularly involved in endogenization events (n=18) with four 
cases of EVEs shared between several closely related species (Figure 2B).

Factors behind variation in endogenization and domestication rates
Several recent studies have uncovered abundant EVEs in insect genomes (Flynn and Moreau, 2019; 
Ter Horst et  al., 2019; Russo et  al., 2019), with huge variations in abundance between species. 
For instance, in their analysis based on 48 arthropod genomes, Ter Horst et al., 2019 found that 
the number of EVEs ranged between 0 and 502. Although insect genome size and assembly quality 
may partly explain this variation (Gilbert and Belliardo, 2022), the underlying biological factors are 
generally unknown. In this study, we tested the hypothesis that the insect lifestyle may influence both 
the endogenization and domestication rates. We used a Bayesian approach to reconstruct ancestral 
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states throughout the phylogeny of Hymenoptera, thus accounting for uncertainty, and found that 
endoparasitoidism, in comparison with other lifestyles, tends to promote dsDNA viral endogeniza-
tion. Notably, this conclusion was not the artefactual consequence of differences in genome assembly 
quality. In fact, the quality of genome assemblies was correlated with the lifestyle in our data set, but 
the genomes of endoparasitoid species were generally less well assembled than those of free- living 
species. If anything, this difference should reduce the power for detecting endogenization events in 
endoparasitoids, where our analysis detected an excess of such events. Our estimate of the effect 
sizes (with 2.47 times more endogenization events in endoparasitoids than in free- living species) 
should thus be seen as conservative.

Why do endoparasitoid wasps tend to undergo more endogenization than others? We initially had 
in mind two non- exclusive hypotheses that remain plausible explanations for the observed pattern. 
First, endoparasitoids may be more intensively exposed to viruses. However, if this effect is at play, 
we expect to have an ‘endoparasitoid’ effect for all viruses, whatever their genomic structure. For 
instance, we would expect such an effect to be detected for ssRNA viruses, which are involved in 
the greatest number of endogenization events (Figure 2A). This was not the case, since only dsDNA 
viruses were more frequently endogenized in endoparasitoids. Thus, we argue that this hypoth-
esis is unlikely to explain the observed pattern. In addition, or alternatively, endoparasitoids may 
have a higher propensity to endogenize and retain viral genes. This second hypothesis posits that 
endoparasitoids are more frequently selected for retaining virally- derived genes than ectoparasitoid 
or free- living hymenopterans. In our analysis, domestication events are most frequently observed in 
endoparasitoids (over three times more frequently than in other hymenopterans). Obviously, this may 
be at least partly explained by the higher input discussed above (the higher endogenization rate). Yet, 
once this effect is controlled for, a trend towards a higher rate of domestication remains. More specif-
ically, the likelihood of domestication following endogenization was significantly higher in endopara-
sitoids than in ectoparasitoids, but was not significantly higher than in free- living species. This latter 
lack of significant difference may be biologically explained if a single domestication event precludes 
the domestication of additional EVEs, while not affecting the rate of non- adaptive endogenization. 
This would ‘dilute’ the signal along branches involved in domestication. If this effect is at play, then it 
reduces considerably the power of our analysis to detect any difference in the rate of domestication 
between lifestyles. Indeed, in all known cases, only one domesticated virus has been documented, 
suggesting that further domestications are not beneficial once a viral machinery has been recruited 
by a wasp lineage.

Whether or not the rate of domestication per se is higher in endoparasitoids than in other 
hymenopterans, the selective advantages brought by these viral genes in endoparasitoids should be 
discussed. It has been demonstrated in a few model systems that EVEs may confer antiviral immu-
nity against related ‘free- living’ viruses via the piRNA pathway (Suzuki et al., 2020; Whitfield et al., 
2017). Yet, to our knowledge, such an effect has only been demonstrated against RNA viruses, so 
that it would not explain the excess of DNA viruses documented here. Furthermore, the sequence 
identities with known viral sequences, which is needed for this mechanism to work, is generally low in 
our dataset. Accordingly, previous work revealed that EVE- derived piRNAs studied in 48 arthropod 
species were also probably too divergent to induce an efficient antiviral response (Ter Horst et al., 
2019). At that stage, the ability of EVEs to generate PIWI- interacting RNAs that play a functional 
role in antiviral immunity seems questionable. Further studies involving small RNA sequencing in 
hymenopterans would be required to shed light on this issue. Protection of the eggs and larvae 
against the host immune system is recognized as an important trait, where EVEs play a critical role. 
Because of their peculiar lifestyle, endoparasitoids are all targeted by the host immune system, a 
matter of life or death to which other hymenopterans are not exposed to. Several cases of endogeni-
zation and domestication in endoparasitoids, all involving dsDNA viruses, are thought to be related to 
this particular selective pressure (Bézier et al., 2009; Volkoff et al., 2010; Pichon et al., 2015; Burke, 
2019; Di Giovanni et al., 2020). The parasitoids appear to have co- opted the viral fusogenic property 
to address their own proteins (VLPs) or DNA fragments (polydnaviruses) to host immune cells, thereby 
canceling the host cellular immune response. The above- hypothesized high exposure of endopar-
asitoids to viruses, together with this unique selective pressure, may act in concert to produce the 
pattern documented here: a strong input, that is, a diverse set of putative genetic novelties, combined 
with a strong selective pressure for retaining some of them. The observed excess of dsDNA viruses 
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may be an indication that these viruses display a better potential for providing adaptive material in 
this context. In the cases of polydnaviruses (found in some Braconidae and some Campopleginae), 
it appears that one way to efficiently deliver virulence factors to the host cell is by addressing DNA 
circles that ultimately integrate into the host immune cells and get expressed (Chevignon et  al., 
2014; Chevignon et al., 2018). The DNA which is packed into the mature particles typically encodes 
virulence proteins deriving from the wasp (Espagne et al., 2004). This means that, at least for these 
cases, the viral system should be able to pack DNA, which is most likely a feature that DNA viruses 
may provide. Such an argument does not hold in the VLP systems, where only proteins are packed 
in viral particles, and it is unclear why EVEs deriving from dsDNA viruses would be more able to 
fulfill such a function. Here other features of dsDNA viruses come into mind as possibly important 
factors: their large genome size, and their large capsids and envelopes (Chaudhari et  al., 2021). 
These may predispose dsDNA viruses to be domesticated, since abundant quantities of venoms have 
to be transmitted in order to efficiently suppress the host immune response. In conclusion our analysis 
has revealed a large set of new virally- derived genes in Hymenoptera genomes. Those genes were 
deriving from viruses with any genomic structures, although dsDNA viruses were disproportionately 
involved in endogenization and domestication. Importantly, our analysis revealed that endogenization 
rate and the absolute number of domestication events involving dsDNA viruses were increased for 
endoparasitoids compared to other lifestyles. Among the new cases of endogenization and domes-
tication, we uncovered new events revealing common features with previously known cases of viral 
domestication by endoparasitoids, such as in the Platygastroidea Platygaster orseoliae. This is to our 
knowledge the first case reported in the superfamily Platygastroideae, thus extending the diversity 
of Hymenoptera concerned by viral domestication. We propose that the higher rate of endogeniza-
tion and higher number of domestication events in endoparasitoids is a consequence of the extreme 
selective pressure exerted by the host immune system on endoparasitoids. This extreme selective 
pressure may select endoparasitoids for retaining a viral machinery that could helps them address 
virulence factors in their hosts. We expect this process to be widespread among insect species sharing 
the same lifestyle.

Materials and methods
Genome sampling, assembly correction, and assembly quality
A bioinformatic pipeline mixing sequence homology search, phylogeny, genomic environment, and 
selective pressure analysis was built to search for viral endogenization and domestication events in 
Hymenoptera genomes. We used 133 genome assemblies in total, of which 101 were available on 
public repositories (NCBI and BIPPA databases) and 32 were produced by our laboratory (all SRA 
reads and assemblies available under the NCBI submission ID: SUB11373855). Concerning the last 
32  samples, DNA was extracted on single individuals (usually one female) or a mix of individuals 
when the specimens were too small using Macherey- Nagel extraction kit, the DNA was then used 
to construct a true seq nano Illumina library at Genotoul platform (Toulouse, France). The sequences 
were generated from HiSeq 2500 or HiSeq 3000 machines (15 Gb/sample). The paired- end reads 
were then quality trimmed using fastqmcf (- q15 –qual- mean 30 -D150, GitHub) and assembled using 
IDBA- UD (Peng et al., 2012). All sample information can be found in Supplementary file 8 and are 
available under the NCBI Biosample number: SUB11338872.

The size of the 133 assemblies ranged from 106.14 mb to 2102.30 mb. We kept only genome 
assemblies containing at least 70% non- missing BUSCO genes (124/133 genomes, Simão et  al., 
2015) (all genome information can be found in Supplementary file 2). In addition, when the raw 
reads were available, we used the MEC pipeline (Wu et al., 2018) to correct possible assembly errors. 
Although some genomes were highly fragmented (such as the 32 genomes we generated since they 
were obtained using short reads only), the N50 values (min: 3542 bp) were equal to or larger than the 
expected sizes of genes known to be endogenized and domesticated (average size = 1244,4 bp (sd = 
1105 bp)) indicating that most of the putative EVEs should be detected entirely.

Out of the 32 samples sequenced by our laboratory for this study, one (corresponding to Platy-
gaster orseoliae) gave unexpected results. After assembly and BUSCO analysis, two sets of contigs 
were identified: one with only 4x coverage on average, and one with 33x on average. The phylogeny 
of these different BUSCOs gene sets showed that the low- coverage scaffolds likely belong to an early 
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diverging lineage of Chalcidoidea (Figure 1), whereas the 33x scaffolds belong to the target species 
P. orseoliae. This result suggests that the pool of 10 individuals used for sequencing was likely a 
mix of two species. A phylogenetic study based on Ultra Conserved Elements (UCEs) obtained from 
several species of Chalcidoidea (Rasplus et al., 2020; Cruaud et al., 2019) allowed us to identify 
the unknown species as a sister to Aprostocetus sp (Eulophidae). These UCEs (along with 400 bp of 
flanking regions) were extracted from the low coverage scaffolds with a custom script. We used a two- 
step process to assign the unknown sample to species. First, UCEs+ flanking regions were analyzed 
with a set of UCEs+ flanking regions were obtained from early diverging families of Chalcidoidea by 
Cruaud et al., 2019; Rasplus et al., 2020 to assign the unknown sample to a family. Then, unknown 
sequences were analyzed with a larger set of species belonging to the identified family (Eulophidae; 
loci taken from Rasplus et al., 2020). In both cases, only loci that had a sequence for at least 75% 
of the samples included in the analysis were retained. Loci were aligned with MAFFT (- linsi option; 
Katoh and Standley, 2013). Positions with >90% gaps and sequences with >25% gaps were removed 
from the alignments using SEQTOOLS (package PASTA; Mirarab et al., 2015). The concatenation of 
all loci was analyzed with IQ- TREE v 2.0.6 (Minh et al., 2020) without partitioning. Best models were 
selected with the Bayesian Information Criterion (BIC) as implemented in ModelFinder (Kalyaana-
moorthy et al., 2017). FreeRate models with up to ten categories of rates were included in tests. The 
candidate tree set for all tree searches was composed of 98 parsimony trees +1 BIONJ tree and only 
the 20 best initial trees were retained for the NNI search. Statistical support of nodes was assessed 
with ultrafast bootstrap (UFBoot) (Minh et al., 2013) with a minimum correlation coefficient set to 
0.99 and 1000 replicates of SH- aLRT tests (Guindon et al., 2010). Results of the phylogenetic analyses 
are presented in Figure 1—figure supplement 6. Placement of the unknown species in trees shows 
that samples of P. orseoliae were likely mixed up with a species belonging to the genus Aprostocetus 
(Eulophidae, Tetrastichinae). Given its small size, color, and abundance (265 species described just in 
Europe), it seems plausible that one specimen of Aprostocetus sp. remained unnoticed in the pool of 
P. orseoliae (see phylogeny in Figure 1—figure supplement 6). In the figures and tables, the name 
putative_ Aprostocetus_sp was consequently assigned to the unknown sample. However, since the 
lifestyle and identity of this species are uncertain, we did not include the corresponding scaffolds in 
the main analysis. The scaffolds belonging to this putative_Aprostocetus_sp. (i.e. all scaffolds with a 
mean coverage <10 X) were removed from the P. orseoliae assembly file hosted in NCBI.

Pipeline outline
EVEs were identified from the 124 Hymenoptera assemblies using a sequence- homology approach 
against a comprehensive viral protein database (including all categories of viruses: ssDNA, dsDNA, 
dsRNA, and ssRNA). In order to validate viral endogenization within Hymenoptera genomes, we devel-
oped an ‘endogenization confidence index’ ranging from A to X (Figure 1—figure supplements 2–7). 
This index takes into consideration the presence of eukaryotic genes and/or transposable elements 
around candidate loci, and scaffolds coverage information (coverage for a valid candidate should be 
similar to that found in BUSCO containing scaffolds). Finally, the pipeline also included an assessment 
of the evolutionary history and of the selective regime shaping the candidates (based on dN/dS and/
or expression data).

Hymenoptera phylogeny
The phylogenetic reconstruction of the 124 Hymenoptera species was performed based on a concat-
enation of the 375 BUSCO proteins. The analysis was conducted by maximum likelihood via Iqtree2 
(Minh et al., 2020) selecting the best model (Kalyaanamoorthy et al., 2017). The tree was rooted 
via two species of the Coleoptera order (Anoplophora glabripennis and Tribolium castaneum). Boot-
strap scores were evaluated using the UFboot approach (Hoang et al., 2018). The results found were 
consistent with a previous, more comprehensive study (Peters et al., 2017).

Search for viral homology
We collected all protein sequences available in the NCBI virus database (Hatcher et  al., 2017), 
removing phage and polydnavirus (virulence genes from wasp origin found within PDVs) sequences. 
This database contained 849,970 viral protein sequences (download date: 10/10/2019), to which 
the 40 putative viral proteins encoded by the Hyposoter didymator genome were added (so- called 
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IVSPER sequences, Volkoff et al., 2010). The sequence homology search was performed with a BlastX 
equivalent implemented in Mmseqs2 (Steinegger and Söding, 2017) using each genome assembly 
as queries and the viral proteins collected as a database. The result gave a total of 81,953,678 viral 
hits (max E- value 5e- 04 with an average of 660,916 hits per genome). We kept only candidates with a 
percentage coverage of the viral protein ≥ 30%, an identity score ≥ 20% and an E- value score <5e- 04 
(Figure 1—figure supplement 2). The threshold parameters were optimized to maximize the detec-
tion of the 13 endogenous viral sequences within the genus Leptopilina (Di Giovanni et al., 2020). 
Once all the viral hits were recovered, we formed putative EVEs loci (n=238,108) corresponding to 
the overlap of several viral hits on the same scaffold using the GenomicRanges R package (Lawrence 
et al., 2013; Figure 1—figure supplement 2). To remove false positives corresponding to eukaryotic 
genes rather than viral genes, we then performed another generalist sequence homology search 
against the Nr database (downloaded the 09/11/20) using mmseqs2 search (- s 7.5, E- value max = 
0.0001) (Figure 1—figure supplements 2–3). We did not select our candidate based on the best hit, 
since it does not necessarily reflect the true phylogenetic proximity. Instead, candidates with more 
than 25 hits with either eukaryotic non- hymenoptera species or prokaryotic species were removed, 
except if they also had hits with at least 10 different virus species (bits ≥ 50). We chose to eliminate 
Hymenoptera hits from the database because if a real endogenization event concerns both one of the 
124 species of our dataset and some species in the NCBI database, then an apparent ‘Hymenoptera’ 
hit will be detected, possibly leading to its (unfair) elimination. Since viral diversity is poorly known, we 
also kept sequences with even one single viral hit, as long as it did not have more than 5 eukaryotic 
or prokaryotic hits. Using these filtering criteria we removed a total of 234,036/238,108 (98,3%) candi-
date loci leaving 4,072 candidates with convincing homology to viral proteins. Note that among these 
loci a certain proportion actually corresponded to non- endogenized ‘free- living’ viruses. To study 
the evolutionary history of these candidate EVEs, we then performed a general protein clustering of 
all the candidates and the NCBI viral proteins (Figure 1—figure supplements 2–4, Mmseqs cluster; 
thresholds: E- value 0.0001, cov% 30, options: –cluster- mode 1 –cov- mode 0 –cluster- reassign –single- 
step- clustering Steinegger and Söding, 2018).

We eliminated from the dataset the chuviral glycoproteins that have been captured by LTR retro-
transposons (Dezordi et al., 2020), as these loci have complex histories mostly linked to the transposi-
tion activity after endogenization. For this purpose, we systematically searched among the candidates 
for the presence of TEs within or overlapping with the EVE (more details in Supplementary file 9). 
Only one cluster (Cluster4185) was concerned by such a situation (chuviral glycoproteins overlapping 
to Gypsy/LTRs). It was detected in 89/124 species (1074 total copies, median = 7 copies/species, max 
= 244, min = 1), and was probably similar to the one described in Li et al., 2015.

Evolutionary history and selection pressure acting on endogenous loci
Arguments for endogenization
Among all the candidates for endogenization there were probably false positives that corresponded 
either to natural contaminants (infecting viruses sequenced at the same time as the eukaryotic 
genome) or laboratory contaminants (virus accidentally added to the samples). One way to filter these 
cases was to study (i) the genomic environment (are there other eukaryotic genes or transposable 
elements on the same scaffolds?) and (ii) metrics such as G+C% (used only for read coverage/GC 
plots) and scaffold coverage depth around candidate loci (are they the same as scaffolds containing 
housekeeping genes?). All of these data were used to establish confidence in the endogenization 
hypothesis, scaled from A to X (Figure 1—figure supplements 2–7).

Scaffolds sequencing depth (Figure 1—figure supplements 2–5):
In order to support the hypothesis that a scaffold containing candidate EVEs was part of the Hyme-
noptera genome, we studied the sequencing depth of the scaffolds. If the sequencing depth of a 
candidate scaffold was not different from the depth observed in scaffolds containing BUSCO genes, 
then this scaffold was likely endogenized into the Hymenoptera genome. Hence, when DNA reads 
were available (Figure 1—figure supplement 7), we measured this metric by mapping the reads on 
the assemblies using hisat2 v 2.2.0 (Kim et al., 2019). An empirical p- value was then calculated for 
each scaffold containing a candidate EVE. To calculate this empirical p- value, we sampled 500 loci 
of the size of the scaffold of interest within BUSCO scaffolds. These 500 samples represented a null 
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distribution for a scaffold belonging to the Hymenoptera genome. The p- value then corresponded to 
the proportion of BUSCO depth values that were more extreme than the one observed in the candi-
date scaffold (two- sided test). We used a threshold of 5% and a 5% FDR (multiply python package 
Puoliväli et al., 2020).

Genomic environment and scaffold size (Figure 1—figure supplements 
2–6):
Another way to rule out contaminating scaffolds were to look for the presence of eukaryotic genes 
and transposable elements in the scaffolds containing candidate EVEs, assuming that their presence 
in a viral scaffold is unlikely. Indeed, so far, very few viral genomes have been shown to contain trans-
posable elements (Miller and Miller, 1982; Gilbert et al., 2014; Gilbert et al., 2016; Gilbert and 
Cordaux, 2017; Loiseau et al., 2020) because TE insertions are mostly deleterious and are, there-
fore, quickly eliminated by negative selection (Gilbert et al., 2016; Gilbert and Cordaux, 2017). We 
searched for transposable elements with a BlastX- like approach (implemented in Mmseqs2 search -s 
7.5), taking as query the scaffolds of interest and as database the protein sequences of the transpos-
able element (TE) available in RepeatModeler database (RepeatPeps, v2.0.2) (Flynn et al., 2020). We 
only kept hits with an E- value <1e- 10 and with a query alignment greater than 100 amino acids. We 
then merged all overlapping hits and counted the number of TEs for each scaffold. To find eukary-
otic genes within genomes we used Augustus v3.3.3 (Stanke et al., 2004) with BUSCO training and 
then assigned a taxonomy to these genes via sequence homology with Uniprot/Swissprot database 
using mmseqs2 search (Steinegger and Söding, 2017), and only retained genes assigned to insects. 
Accordingly, the scaffolds were scored as follows (Figure 1—figure supplements 2–7):

• A: scaffolds with a corrected coverage p- value >0.05 and at least one eukaryotic gene and/or 
one repeat element,

• B: scaffolds with at least one eukaryotic gene and/or one repeat element but no coverage data 
available,

• C: scaffolds with a corrected coverage p- value >0.05 and neither eukaryotic gene nor transpos-
able element,

• D: scaffolds with a corrected coverage p- value <0.05 and whose coverage value was higher 
than the average of the scaffolds containing BUSCOs (as it is difficult to imagine that an endog-
enized scaffold presents a lower coverage than expected, whereas a higher coverage could 
correspond to the presence of repeated elements that inflate the coverage of the scaffold for 
example) but with at least five eukaryotic genes and/or a repeated element (in total),

• E: scaffolds presenting no DNA seq coverage data available and no eukaryotic gene nor trans-
posable element detected,

• F: scaffolds presenting a corrected p- value of coverage  <0.05  and less than five eukaryotic 
genes without any transposable elements; this category may rather correspond to free- living 
viruses.

• X: scaffolds with a corrected p- value <0.05  and neither eukaryotic gene nor transposable 
element; This category may rather correspond to free- living viruses.

Only scaffolds scored as A, B, C, or D were considered as endogenized, whereas E scaffolds were 
not sufficiently supported by the data to be considered as endogenized. They were thus discarded 
from the main analysis. Scaffolds scored as F and X were rather considered as free- living viruses.

Inference of endogenization events
Because several EVEs may derive from the same endogenization event, we sought to aggregate EVEs 
into unique events. We aggregated into a single event, firstly (i) all the EVEs present on the same scaf-
folds, and secondly (ii) all the EVEs that presented the same taxonomic assignment at the level of the 
viral family. These two steps were sufficient to aggregate EVEs in the simplest case of events involving 
only one species (but possibly several EVEs).

To further characterize the endogenization events including more than one Hymenoptera species, 
we also relied on phylogenetic inference. To this end, the protein sequences belonging to each 
of the clusters (containing both viral proteins and candidate EVEs) were first aligned with clustalo 
v1.2.4 (Sievers et al., 2011) in order to merge possible candidate loci (which may in fact correspond 
to various HSPs). All loci (=HSPs) within the same scaffold presenting no overlap in the alignment 
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were thus merged, as they probably correspond to multiple HSPs and are not duplications. We then 
performed a new codon alignment from the augmented sequences in the clusters using the MACSE 
v2 alignsequence program (Ranwez et al., 2018; Figure 1—figure supplements 2–8). This alignment 
allowed us to obtain a protein and nucleotide codon alignment. We used the protein alignment to 
infer the phylogeny of each cluster with the program Iqtree2 v2.1.2 (Minh et al., 2020) (- m MFP -alrt 
1000 (partitioned))(Figure 1—figure supplements 2–9). No trimming was performed at the amino- 
acid level, since this may result in a loss of topology information (Tan et  al., 2015; Ranwez and 
Chantret, 2020). However, since it can affect branch length, only codon alignment was trimmed at 
the protein level via Trimal v1.2 (Figure 1—figure supplement 2) (- backtrans -automated1) (Capella- 
Gutiérrez et al., 2009). We then exploited the information from the cluster phylogenies to form the 
endogenization events. EVEs potentially deriving from the same event should be supported by the 
formation of the same well- supported monophyletic clade (bootstrap score >80) both in the gene tree 
and the Hymenoptera tree (allowing gene losses in 20% of the species concerned by the monophyletic 
group). EVEs were possibly aggregated within the same event only if the Hymenoptera belonged to 
the same family. (Figure 1—figure supplement 2). Finally, the clustering of multiple EVEs within the 
same scaffold in one species was used to aggregate the homologous EVEs found in a related species 
within the same shared event, even if they were on different scaffolds (Figure 1—figure supplement 
2). For details, see some canonical examples in Figure 1—figure supplement 3.

The majority of EVEs were found within scaffolds considered as endogenized (A- D score) 
(Figure 1—figure supplement 8B). Besides, the distribution of EVEs among scores was roughly iden-
tical for each viral genomic structures (Figure 1—figure supplement 8). The main difference was in 
the fraction of EVEs annotated as X or F. This fraction was higher for DNA viruses compared to RNA 
viruses (Figure 1—figure supplement 8B). Because these scaffolds likely belong to free- living viruses 
that have been sequenced together with the insect DNA, it is not a surprise to observe an excess of 
DNA viruses, since DNA and not RNA were sequenced.

For events shared by several species, we were also able to analyze gene synteny around putative 
EVEs. To do this, we conducted the equivalent of an all vs all TblastX (Mmseqs2 search –search- type 4, 
max E- value=1e- 07) between all the candidate loci within a putative event (deduced from the phylo-
genetic inference), and then looked for hits (HSPs) between homologous EVEs around the insertions. 
Because it is possible to find homology between two genomic regions that does not correspond to 
orthology, for example, because of the presence of conserved domains, we had to define a threshold 
to identify with confidence the orthology signal. We, therefore, conducted simulations to define this 
value, based on the well- assembled genome of Cotesia congregata (GCA_905319865.3) by simply 
performing the same all vs all blast analysis against itself (as if the two species considered had the 
same genome). Based on this, we defined two types of simulated EVEs, (i) independently endoge-
nized EVEs in the genomes of the two ‘species’. This is simply simulated by randomly selecting two 
different regions in the genomes, and (ii) a shared simulated EVE that was acquired by their common 
‘ancestor’. This is simulated by selecting the same random genomic location in both ‘genomes’. We 
then counted the total length of the HSPs found around the simulated insertions all along the corre-
sponding scaffold (i and ii). As the result will obviously depend on scaffold length, we performed these 
simulations on several scaffold lengths (100000000 bp, 100,00,000 bp, 100,00,00 bp, 100,000 bp and 
10,000 bp). We conducted 500 simulations in each scenario, and we measured the cumulative length 
of homologous sequences by counting the sum of HSPs (bit score >50). We then defined a threshold 
for each windows size in order to minimize for the false- positive (FP) and maximize true- positifs (TP) 
(thresholds 100,000,000 bp = 172737 bp (FP = 0.012, TP = 0.922); 100,00,000 bp = 74262 bp (FP = 
0.012, TP = 0.878); 100,00,00 bp = 21000 bp (FP = 0.014, TP = 0.28); 100,000 bp = 1332 bp (FP = 
0.012 TP = 0.198) and 10,000 bp = 180 bp (FP = 0.008, TP = 0.208)).

Events were linked to viral families based on the closest match information between the viral blastx 
(GenBank accession number and/or viral protein and/or viral species) and the classification proposed 
in Shi et al., 2016.

Arguments for domestication
One way to test for the domestication of an EVEs (dEVEs) was to estimate the ratio (omega) of the 
number of nonsynonymous substitutions per non- synonymous site (dN), to the number of synony-
mous substitutions per synonymous site (dS). If EVEs are evolving neutrally, then the ratio is expected 
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to be equal to 1, whereas if the EVE is under purifying selection, dN/dS is expected to be lower than 
1. We conducted this analysis on trimmed codon alignments from (Figure 1—figure supplement 2) 
via the codeml algorithm from PAML Yang, 2007 used through the ETE3 package (Huerta- Cepas 
et al., 2016) (model Muse and Gaut, 1994). We then used a branch model to test the deviation from 
the null model in which marked branches (called foreground) wich corresponded to the monophyletic 
EVE clade evolved under a neutral scenario ( χ

2
  test). The dN/dS estimated for the whole clade is then 

the average of each branch of the clade. The p- values were then adjusted by selecting an FDR of 0.05 
(Puoliväli et al., 2020), and we estimated the standard errors of dN/dS that maximized the likelihood 
(option getSE = 1). dN/dS with dS greater than 10 were removed, since this indicates substitution 
saturation (Figure 1—figure supplement 2).

The other way we choose to study the domesticated nature of a viral gene was to study their 
expression profile (Figure 1—figure supplement 2). We reasoned that domesticated genes are likely 
to be significantly expressed. To test this, when RNAseq reads were available on NCBI (SRA), we 
mapped them on the assembled genomes (until reaching 300x coverage as far as possible). Using 
the TPMCalculator program (Vera Alvarez et  al., 2019), we measured expression in ovaries and 
the whole body if available or alternatively in any tissue (see Supplementary file 10). An EVE was 
considered as domesticated if the gene was expressed with a Transcripts Per Kilobase Million (TPM) 
index above 1000. This threshold was chosen based on the median value observed for control EVEs 
(718.70 TPM), rounded up to 1000 TPM to be conservative. We measured the accuracy of this metric 
using EVEs for which both TPM and dN/dS calculations were possible: among the 36 genes having a 
TPM >1000, 33 also had a dN/dS significantly below 1 suggesting that inferring domestication based 
on TPM >1000 was consistent with dN/dS test with a 0.9166 probability. Finally, based on the idea 
that an active EVE should encode a protein with a similar length to the donor virus, we calculated the 
actual viral protein sequence length using the orfipy algorithm (Singh and Wurtele, 2021; Figure 1—
figure supplement 2).

A possible bias when comparing the effect of lifestyles on domesticated elements could come from 
a difference of RNAseq reads availability depending on the lifestyle, which may result in a different 
number of EVEs considered as domesticated. A GLM binomial analysis did not reveal any correlation 
between RNAseq data availability and lifestyle (endoparasitoid = Slope(SE)=0.21 (0.62), p=0.73; free- 
living=Slope(SE)=0.40 (0.57), p=0.49 using ectoparasitoid as intercept).

Sensitivity and specificity of the analysis
Capacity to find EVEs
Among the species included in our dataset, seven were known to contain a domesticated virus (two 
with similar PDV (Bézier et al., 2009), and five with different VLPs (Pichon et al., 2015; Burke, 2019; 
Di Giovanni et  al., 2020), corresponding to four independent endogenization events). Our pipe-
line was able to detect the vast majority of the corresponding virally- derived genes (88.6%, details 
in Supplementary file 3 and Figure 1—figure supplement 9). The 11.14% false negatives corre-
sponded to sequences that were too divergent or with a region of similarity is too small to be detected 
by our pipeline. We found that 88.7% of the control EVEs were located within that scaffolds scored as 
A (i.e. having a depth of coverage falling within the distribution of those containing BUSCO genes, as 
well as having one or more eukaryotic genes and/or transposable elements in the vicinity). Since the 
remaining 11.3% were scored either C (7.64%) or D (3.66%) (Supplementary file 3), we considered 
candidates within the range A- D as valid candidates for endogenization. On the contrary, scaffolds 
annotated as F or X were rather considered as free- living viruses since they did not show eukaryotic 
genes or TE in their vicinity and had different coverage compared to BUSCO- containing scaffolds. 
Scaffolds classified as E were of unclear status and discarded. Capacity to find domesticated EVEs 
(dEVEs) An EVE was considered as domesticated if the dN/dS ratio was significantly below 1 or if TPM 
was above 1000. When dN/dS computations were possible (for 75/152 control EVEs), our pipeline 
considered the control EVEs as being under purifying selection in 70.39% of the cases. Overall, by 
combining the two metrics (dN/dS and TPM), our pipeline identified 69.04% of the control locus as 
being domesticated (Supplementary file 3). Capacity to infer events of endogenization (EVEs events) 
Among the control species, the pipeline correctly inferred the expected four independent events: 
(1) Leptopilina boulardi/Leptopilina clavipes/Leptopilina heterotoma (Di Giovanni et al., 2020), (2) 
Venturia canescens (Pichon et al., 2015), (3) Fopius arisanus (Burke et al., 2018), and (4) Cotesia 
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vestalis/Microplitis demolitor (Bézier et al., 2009; Supplementary file 3). However, in addition to 
the expected unique shared event concerning the M. demolitor and C. vestalis species, our pipeline 
inferred two additional events, each specific to one lineage. This was due to the fact that two genes 
were not detected by our pipeline as shared by M. demolitor and C. vestalis, either because they are 
effectively not shared (for three of them: HzNVorf118, like-pif- 4 (19 kda), fen- 1), or because of some 
false negative in one of the two lineages (for one of them:p33 (ac92)). For a canonical examples in our 
dataset result, please see (Figure 1—figure supplement 3).

Assessing the distribution of virus infecting insects
We estimated the number of viral species infecting insect species based on the virushostdb database 
(version of 24/03/2023 on Mihara et al., 2016) which lists a wide diversity of viral species associated 
with their putative hosts. We kept only viruses found in interaction with insects. Genomic structures 
were retrieved through the ICTV report (V2022_MSL38) and information available in ViralZone (all 
viral species details can be found in Supplementary file 5). We counted the number of viruses per 
genomic structure, and viruses from unknown genomic structures were discarded. Importantly, the 
distribution of viruses among genomic structures found in Hymenoptera was not different from the 
distribution found in the whole Insecta class ( chi2 = 6.39 , d.f.=3, p- value = 0.094).

To study the distribution of negative versus positive- stranded viruses among RNA viruses infecting 
insects, we also relied on virushostdb complemented by two important exploratory studies focusing 
on RNA viruses (Shi et al., 2016; Wu et al., 2020). In total, 2609 viral species infecting insects were 
considered (detail: ssRNA(-) = 597 sp, ssRNA(+) = 1240 sp, ssDNA = 78 sp, dsRNA = 401 sp, dsDNA 
= 145 sp, Unknown = 148 sp). The Partiti- Picobirna, Narna- Levi, Mono- Chu, Bunya- Arenao, Luteo- 
Sobemo, Hepe- Virga, and Picorna- Calici clades correspond to viral clades proposed by Shi et al., 
2016.

Naldaviricetes phylogenetic inference
In order to infer the phylogeny of Naldaviricetes, we retrieved all predicted ORFs from a set of 25 
dsDNA viruses including Baculoviridae, Nudiviridae, Hytrosaviridae, the LbFV- like and AmFV- like 
viruses, and Nimaviridae were used as outgroup. We then merged these ORFs with all the candi-
date EVEs extracted from Hymenoptera genomes and performed an all versus all blastp analysis 
using Mmseqs2 (Steinegger and Söding, 2017). All sequences sharing at least an alignment bit 
score  >50  and a coverage  >15% were then clustered together. We kept only clusters with more 
than three species (n=142 clusters). Each cluster (or partition) were then aligned using clustalo v1.2.4 
(Sievers et al., 2011) and trimmed using Trimal v1.2 (- automated1) (Capella- Gutiérrez et al., 2009). 
Each partition was then concatenated to form one unique protein alignment using the  catfasta2phyml. 
pl script. The Naldaviricetes phylogeny was then inferred using Iqtree2 (Minh et al., 2020) using the 
best model for each partition (Kalyaanamoorthy et al., 2017) (- m MFP -alrt 1000 -bb 1000).

Divergence time estimation
We time- calibrated the inferred phylogenetic tree using a Bayesian approach on RevBayes v1.1.1 
(Höhna et al., 2014) and information on five fossils selected by Peters et al., 2017. Reduction of 
the supermatrix became necessary to overcome computational limitations when estimating node 
ages resulting from the large size of the concatenated BUSCO supermatrix (nsites = 228,009). We 
then generated one fasta file with a random draw without the replacement of 20,000 sites from the 
supermatrix. Evaluation of the phylogenetic likelihood being the most expensive operation when 
calculating the posterior density, we decided to use the method developed in Szöllõsi et al., 2022 to 
reduce computational cost and approximate the phylogenetic likelihood using a two- step approach. 
In the first step, the posterior distribution of branch lengths measured in the expected number of 
substitutions is obtained for the fixed unrooted topology of using a standard MCMC analysis (100,000 
iterations, three chains, 5000 burn- in, tuningInterval = 200). The obtained posterior distribution is 
then used to calculate the posterior mean and posterior variance of the branch length for each branch 
of the unrooted topology. In the second step, we date the phylogeny using a relaxed clock model 
and calibrations (500,000 iterations, four chains, 5000 burn- in, tuningInterval = 200). Calibration of 
the root was done using a uniform law between 300 and 412 Mya. To verify that MCMC analyses 
converged to the same posterior distribution, for both steps we computed the effective sample size 
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and applied the Kolmogorov- Smirnov test using the package convenience v1.0.0 with a minimum ESS 
threshold of 100 (however, due to an excessive demand for resources, we were unable to achieve the 
sampling value of an ESS of a minimum of 100 for 46/389 parameters (min = 44.25)).

Ancestral state reconstruction
To explore the dynamics of EVEs gain in relation to lifestyle, we first had to reconstruct the ancestral 
lifestyle states of the Hymenoptera used in this study. This was achieved using a Bayesian approach 
implemented in RevBayes v1.1.1 (Höhna et  al., 2014). The lifestyles of the Hymenoptera species 
used in this study were deduced from various sources (details and sources in Supplementary file 2). 
Since lifestyle characters are probably not equally likely to change from any one state to any other 
state, we choose the Mk model with relaxed settings allowing unequal transition rates. Thus, we 
assumed six different rates with an exponential prior distribution. Before running the MCMC chains, 
we made a preliminary MCMC simulation used to auto- tune the moves to improve the mixing of the 
MCMC analysis with 1000 generations and a tuning interval of 300. We then ran two independent 
MCMC analyses, each set to run for 200,000 cycles, sampling every 200 cycles, and discarding the 
first 50,000 cycles as burn- in. To verify that MCMC analyses converged to the same posterior distri-
bution, we computed the effective sample size and applied the KolmogoRov- Smirnov test using the 
package convenience v1.0.0 with a minimum ESS threshold of 100. The MCMC chain was subsam-
pled to provide 1000 samples. At each sample, ancestral states were reconstructed for all nodes of 
the phylogeny. We assumed that the state assigned to a node was constant throughout the branch 
leading to that node.

Test of the lifestyle effect on viral endogenization and domestication
In order to test the lifestyle effect on the propensity to integrate and domesticate viral elements, we 
first randomly sampled 1000 probable ancestral state scenarios to take into account the uncertainty 
in the estimates of the ancestral states of the nodes. Because a lot of branches had no EVE endogeni-
zation inferred, we ran zero- inflated negative- binomial GLM model, for each of these 1000 scenarios 
such that (GLM(Number EVEs ~free- living + endoparasitoid + ectoparasitoid * Branch_length, family 
= zero- inflated neg binomial)). We eliminated all branches older than 160 million years because they 
are too old for our analysis to detect events (the oldest event detected by our analysis is around 
140 mya) that could artificially inflates the zero count. The model was implemented in stan language 
using the R package brms (seed = 12345,, thin = 5, nchains = 4, niter = 10000) (Bürkner, 2017; 
Bürkner, 2018). The same analysis was carried out by splitting the free- living category into two sub- 
categories, namely eusocial and free- living. A new GLM model was then built (GLM(Number EVEs 
~free- living+eusocial + endoparasitoid + ectoparasitoid * Branch_length, family = zero- inflated neg 
binomial)). Posterior predictive check was done using the package brmsfit in order to check that the 
model was correctly predicting the proportion of zeros. Indices relevant to describe and characterize 
the posterior distributions were computed using the R package BayestestR (Makowski et al., 2010). 
Autocorrelation was studied using the effective sample size index (ESS) with a value greater than 1000 
being sufficient for stable estimates (Bürkner, 2017). The convergence of Markov chains was evalu-
ated by a Rhat statistic equal to 1. All the posterior coefficient estimated values were then pooled 
together (after checking the convergence of all chains via the GelmanRubin function in R Bolstad, 
2009) and compared between the free- living, endoparasitoid and ectoparasitoid modalities.

To calculate the rate of domestication independent of the rate of endogenization, we built a bino-
mial logistic regression model in a Bayesian framework, specifying the number of domesticated EVEs 
(or Events) (the numerator) relative to the total number of EVEs or Events inferred by our pipeline (the 
denominator). These binomial models allowed us to test whether the probability of domestication 
after endogenization correlated with lifestyle by controlling for the endogenization input (the denom-
inator). Thus, for each of the 1000 lifestyle scenarios, we ran a binomial brms model with a logit link 
such that brms(Number dEVEs/dEvents | trials(Number EVEs/Events)~lifestyle + Branch length).

Before analyzing the data, we checked that the inferences did not depend on the quality of the 
genomes selected for analysis. We found a significant effect of the lifestyle on the N50 and percentage 
of complete + partial BUSCO in the assemblies (Kruskal- Wallis rank sum test p- values, respectively 
= 3.192e- 10 and 1.26e- 14). Furthermore, a pairwise Wilcoxon test with p- values adjusted with the 
Bonferroni method revealed a significantly higher values of N50 and %complete + partial BUSCO in 
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genome assemblies from free- living species compared to endo and ectoparasitoids species (p- value 
<0.05). The same test using the total assembly length in bp did not reveal any difference between 
the three lifestyles (p- value >0.05). Overall, free- living species have better assemblies. Because better 
assembly quality should facilitate the discovery of endogenous viral elements both by sequence 
homology detection and by a better assessment of the endogenized nature of the EVE (scaffolds A, 
B, C, and D), we should thus underestimate the number of EVEs in endo and ectoparasitoid species 
compared to free- living species. Since our analysis led to the opposite conclusion, our results cannot 
be explained by this feature of the dataset.

In our main analysis, we only considered EVEs with scores from A to D as confidently endoge-
nized. To test the impact of this scoring system on our conclusions, we ran the very same analysis 
on either top- confidence EVEs (A score) (Figure 4—figure supplement 1), or on a more relaxed 
dataset also including poorly- scored EVEs (A- F). The main conclusions of the manuscript, in particular 
regarding the link between endoparasitoidism and dsDNA virus endogenization and domestication, 
were consistently reached (see all statistical summaries of the Bayesian GLM models in the Supple-
mentary file 6).
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