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1. Introduction

Many complex systems from physics, biology, society. . . exhibit a 1/ f power
spectrum in their time variability so that it is tempting to regard 1/ f noise
as a unifying principle in the study of time. The principle may be useful
in reconciling two opposite views of time, the cyclic and the linear one,
the philosophic view of eternity as opposed to that of time and death. The
temporal experience of such complex systems may only be obtained thanks
to clocks which are continuously or occasionally slaved. Here time is discrete
with a unit equal to the averaging time of each experience. Its structure is
reflected into the measured arithmetical sequence. They are resets in the
frequencies and couplings of the clocks, like in any human made calendar.
The statistics of the resets shows about constant variability whatever the
averaging time: this is characteristic of the flicker (1/f) noise. In a number
of electronic experiments we related the variability in the oscillators to
number theory, and time to prime numbers. In such a context, time (and
1/ f noise) has to do with Riemann hypothesis that all zeros of the Riemann
zeta function are located on the critical line, a mathematical conjecture still
open after 150 years.

2. The Experience of Time from Electronic Oscillators

2.1. ASYNCHRONOUS OSCILLATORS:
THE OPEN LOOP AND CONTINUED FRACTIONS

Low frequency noise of electronic oscillators is usefully interpreted in terms
of arithmetic[1]: this is because the measurement of the frequency f(t) of
an oscillator under test is meaured versus the one fj of a reference oscillator



thanks to a nonlinear mixing set-up and a filter. The beat frequency

fB=1pifo—qf(t)|, with p; and ¢; integers, (1)

follows from the continued fraction expansion of the frequency ratio v =

f—fo = lag; a1, ag, ...ai,a, ... =ap+1/{a1+1/{ag+....+1/{ai+1/{a...}}}} =
zzgg) ~ ’q’—: of the input oscillators. Here amin < @ < Gmax, With amin =

L%J, Gmax = {%J and f. and f; are the low and high frequency cut-
oizf of the filter. Sdince a > 1 in typical measurements, the beat note is
well approximated by the convergent p;/g; used in (1) which restricts to
the partial quotient a; in the expansion. Fig.1 shows a schematic of the

resulting intermodulation spectrum.
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Figure 1. 'The intermodulation spectrum at the output of the mixer+filter set-up.

It may happen that the partial quotients after a don’t play any role
and frequency jumps occurs randomly at definite values of a leading to a
large white frequency noise arising from the detection set-up instead of the
oscillator under test[1].

This can be compared to the measurement of time from a moon-sun
calendar. Early calendars have been devised from the motion of moon and
sun as observed from the earth. The continued fraction expansion of the
ratio v between the sun year and the moon year is

365242191

= 12:2.1,2,1,1,17,.. . 2
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The first approximation v = 12 (with 354 days) can be corrected by adding
one month every two years, the second one (with 369 days) may be corrected
by adding one month every three years and so on. Fluctuation of the integer
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a in the frequency measurement set-up has the same aim to correct the
measurement versus time.

2.2. SYNCHRONOUS OSCILLATORS:
THE PHASE LOCKED LOOP AND THE PRIME NUMBERS

By controlling the frequency of the test oscillator from the error signal at the
output of the detector, one gets phase locking at each harmonic p;/g; over
a frequency window of width twice the open loop gain K. If one neglects
harmonic interactions the phase difference between input oscillators is given
from an Arnold map

9n+1 =0, +27mQ — ¢ sinb,, (3)

where Q0 = f/fo is the bare frequency ratio, ¢ = K/ fy and K is the open
loop gain at the fundamental basin p;/¢; = 1/1 . Such a nonlinear map is
studied by introducing the winding number v = lim, (6, — 0y)/(27n).
The limit exists everywhere as long as ¢ < 1, the curve v versus () is a
devil’s staircase with steps attached to rational values of Q = p;/¢; and
with width increasing with the coupling coefficient c¢. The phase locking
zones may overlap if ¢ > 1 leading to chaos from quasi-periodicity. In the
experiments we used an open loop gain K < fy so that the variability of
the beat signal, shown in Fig.2, is of a different origin.
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Figure 2. Beat frequency between two radiofrequency oscillators close to phase locking.

We looked at the Allan variance of beat frequency measurements, that is
the mean squared value o2(7) of the relative frequency deviations between



adjacent samples in the time series, counted over an integration time 7.
We found it was a constant (i.e. a 1/f noise), scaled by a nonlinear law,
reflecting the dependance of the beat frequency versus the bare frequency
deviation and the open loop gain[2]. A mechanism for the variability should
come from the harmonic interactions that have been neglected so far in
(3). To appreciate the impact of harmonics on the coupling coefficient one
should observe that each harmonic of denominator g; leads to the same
fluctuating frequency 6 fp = ;0 f(t). There are ¢(g;) of them, where ¢(g¢;)
is Euler totient function, that is the number of integers less or equal to
¢; and prime to it; the average coupling coefficient is thus expected to be
1/6(q:)-

We developed a more refined model based on the properties of primes
by defining the coupling coefficient as ¢* = c¢A(n;q;, p;) with

A(n;qi,pi) =
Inb if n =b* b a prime and n = p; mod(q;), (4)
0 otherwise.

This means a non zero coupling to harmonics at times n = p;+¢; [, [ integer
whenever n is a power of a prime; the coupling at the fundamental mode
is the so-called von Mangoldt function A(n)[3].

According to the generalized Riemann hypothesis, at large ¢, one gets
the average[4]

1 1
o=~ An; g, p;) = + (1), 5
a / t nz::l ( 1 ’L) (b(%) ( ) ( )
with e(t) = 0(¢~/2In?(t)) which is a good approximation as long as ¢; < /1.
A better estimate may also be obtained at larger g;[4].
For p;/q; = 1/1 the fluctuating term may be expressed in terms of the
zeros of the Riemann zeta function ((s) which is defined as

¢(s) = Z % = H % where R(s) > 1. (6)
n=1

b prime bs
Formula (5) is obtained by taking the logarithmic derivative —CI((:)) =
S A(n)n=* = s [ t7571(t)dt and by inverting this latter Mellin inte-
gral[3]. The error term results as

tP

1 _
e(t):fln(27r)f§ln(17t 3 - 4 o

(7)



The first term at the right hand side of (7) is due to the pole of {(s) at
s = 1. The second term in €(t) is due to the trivial zeros of {(s) which
are located at s = —2[ (I a positive integer). The third term is due to
the remaining zeros of ((s). Billions of them have been computed; all are
found to be located on the line s = % Riemann hypothesis is the (unsolved)
conjecture that all non trivial zeros belong to the critical line. These zeros
are very irregularly spaced and are responsible for the very irregular shape
of the error term[1]. For arbitrary p;/g;, Riemann zeta function extends to
a Dirichlet series and the generalized Riemann hypothesis holds[4].

The power spectral density of €(t) roughly looks like that of a 1/ f noise
as shown in Fig.3 (lower curve). In the context of phase locking experi-
ments[2], the 1/f noise of the coupling coefficient in (5) is responsible of
the desynchronization of the oscillators and of the 1/f noise found in the
beat frequency fp.

3. Time, 1/f Noise, Ramanujan Sums and the Golden Ratio

From its definition 1/f noise comes from the use of the fast Fourier trans-
form (FFT). But the FFT refers to the fast calculation of the discrete
Fourier transform (DFT) with a finite period ¢ = 2!, [ a positive integer. In
the DFT one starts with all ¢*" roots of the unity exp(2imp/q), p=1...q
and the signal analysis of the arithmetical sequence x(n) is performed by
projecting onto the n'" powers (or characters of Z/qZ)with well known
formulas|[5].

=ex iwI—)n
ep(n) = exp(2 . ), (8)

The signal analysis based on the DFT is not well suited to aperiodic
sequences with many resonances (by nature a resonance is a primitive root
of the unity: (p,q) = 1), and the FFT may fail to discover the underlying
structure in the spectrum. We recently introduced a new method based on
Ramanujan sums|6],[8]

q
cq(n) = Z exp(2i7r£n), (9)
p=1 !
(p.a)=1

which are n'® powers of the ¢ primitive roots of the unity. The sums may

be evaluated as|6]
B q ?(q)
=5 s (] "
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Figure 3.  Power spectral density (FFT) of the error term of Mangoldt function

A(n)(lower curve), of the error term in new Mangoldt function b(n)(upper curve) and
the comparison to the power law 1/f2, with o = (\/(5) —1)/2 the golden mean.
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Figure 4. Ramanujan-Fourier transform (RFT) of the error term (upper curve) of new
Mangoldt function b(n) in comparison to the function p(q)/¢(q)(lower curve).

where (g, n) means the greatest common divisor of ¢ and n and the M&bius

function follows from the unique prime number decomposition n =[], n? k
(ng prime) of the integer n

0 if n contains a square G > 1,
lifn=1,

(—1)¥ if n is the product (11)
of k distinct primes.

p(n) =

The sums are quasiperiodic versus the time n (c; = 1;
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—1,—1,2, where the bar indicate the period; for example c3(4) = —1) and
aperiodic versus the order ¢ of the resonance. In particular ¢;(n) = u(q)
whenever (n,q) = 1.

Mobius function can be considered as a coding sequence for prime num-
bers, as it is the case of Mangoldt function. Well known formulas are the
inverse zeta function 1/{(s) = >_,~; p(n)/n® and a formulation of Riemann
hypothesis as M (t) = Y4 _, p(n) = O(t*/?%€), whatever e. Mangoldt func-
tion is related to Mébius function thanks to the Ramanujan sums expansion
found by Hardy|7]

#(n) (
n #(q)

We call such a type of Fourier expansion a Ramanujan-Fourier transform
(RFT). General formulas are given in our recent publication[8] and in the
paper by Gadiyar[7]. This author also reports on a stimulating conjecture
relating the autocorrelation function of b(n) and the problem of prime pairs.
In the special case (12), it is clear that u(q)/¢(g) is the RFT of the modified
Mangoldt sequence b(n). It is thus of high interest to compare the results
of the RFT and of the FFT on b(n). Let consider the summatory function

b(m) = 2 Ay = 3 4D ), (12)
q=1

t
B(t) =) An)¢(n)/n = t(1+ep(t)). (13)
n=1

The fast Fourier transform Sp(t) of the error term ep(t) is shown on Fig.3
(upper curve) and follows the approximate power law expansion

Sp(t) ~ [, (14)

with a = (1/(5) —1)/2=1/(1+1/(1+1/[1 +...))). This spectrum shows
a possible connexion between the golden ration a and p(g) and thus a
possible relationship between the theory of diophantine approximations for
quadratic irrational numbers such as « and prime number theory. The RFT
of ep(t) looks similar to the one u(q)/¢(q) of the new Mangoldt function
b(n) as shown in Fig.4.

Conclusion

In our description, time and its structure is revealed from the (non linear)
interaction of two oscillators. The strength of this interaction fluctuates
from universal principles, which also depend on the observer and its ob-
servation prism. Counting is the trace of observables, so that one should
not be too much surprised that number theory, the Queen of Mathematics,
takes part in the play.



The measured time durations over the integration time 7 shows Allan
deviation o(7) very similar to the Weber constant K(7) of physiological
perception[9]. The best perception occurs over a window (Tiin, Tmax) Of
constant variability, also called flicker(1/f) noise. The flicker floor of time
discrimination also depends on the sharpness of time measurements. In
quartz oscillators, the sharpness is measured as the relative width 1/Q of the
resonant line , with Q = 10° the quality factor of the acoustic resonator. It is
far higher that the one Q = 10? of a conventional LC electronic resonator.
Inversely microwave cavities may have wonderful sharp lines used in the
design of atomic clocks and the physical determination of the second. May
be the price to pay for consciousness is a very large relative bandwidth
1/Q > 1 of our brain, the case @ < 1 meaning a meditation experience,
and @ = 0 being the signature of death, the ultimate time experience of
the Heidegger philosophy.

Time also lies at the boundary between order and chaos leading to
the Golden ratio a, the most irrational number. A measure of time is the
chambered snail Nautilus[10], that nature designed as a logarithmic spiral,
each chamber being an up-scaled replica of the preceding chamber, with
a constant scale factor equal to a. According to the extended relativity in
C—spaces[11], the average dimension of our world 4 4+ o ~ 4.236 would
also be related to a. And there is our newly proposed tautology that time
= prime numbers = « = the Ramanujan-Fourier spectrum p(q) and the
Riemann hypothesis.
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