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STATIONKEEPING ANALYSIS FOR SPACECRAFT
IN LUNAR NEAR RECTILINEAR HALO ORBITS

Davide Guzzetti∗, Emily M. Zimovan†, Kathleen C. Howell‡, Diane C. Davis§

Near Rectilinear Halo Orbits (NRHOs), a subset of the halo orbits characterized by favorable
stability properties, are strong candidates for a future inhabited facility in the lunar vicinity.
To maintain such orbits in this regime, however, requires a reliable maintenance strategy.
Two low-cost, reliable, stationkeeping strategies for maintaining long-term NRHO-like be-
havior in the ephemeris regime are investigated. Orbit determination errors, orbital perturba-
tions, and spacecraft noise are incorporated into the higher-fidelity simulation environment.
As a complement, a real-time warning in the event of a diverging path is presented.

INTRODUCTION

Since the return of the Apollo 17 spacecraft to Earth in December of 1972, no humans have traveled be-
yond low Earth orbit. The National Aeronautics and Space Administration (NASA) is focused on a new era
of human exploration of the solar system. As a staging ground for such exploration, a current focus of investi-
gation is the development of the capability to sustain a crew in an orbit nearby the Moon. This agenda is also
promoted by other international space agencies, as seen in the 2013 Global Exploration Roadmap.1, 2 One of
the current orbits of interest as a destination for a habitat spacecraft in cislunar space is a Near Rectilinear
Halo Orbit (NRHO). A subset of the halo family of orbits, the NRHOs are attractive as staging orbits for
several reasons, including advantageous transfers from Earth and to destinations beyond the Earth’s vicinity,
availability of communications links, the potential to limit time in eclipse, and favorable access to the lunar
surface.3

The current investigation explores the feasibility of an Earth-Moon NRHO as a destination for a crewed
spacecraft in a long-term orbit in cislunar space from the perspective of orbit maintenance. As are many
libration point orbits, the NRHOs are sensitive to perturbations and, thus, a stationkeeping scheme is required
to ensure a spacecraft remains in an NRHO long-term. While multiple robotic missions–including ACE,
SOHO, WIND,4 WMAP,5 GENESIS,6 and JWST,,7 which exploited Sun-Earth libration point orbits, and
ARTEMIS,8 the first Earth-Moon libration point orbiter–successfully implemented stationkeeping algorithms
in both analysis and operations, the NRHO regime is less explored from an orbit maintenance perspective.
In addition, maintaining a manned spacecraft offers additional challenges in the form of orbital perturbations
due to a human presence, for example, expulsion of waste products. To validate the NRHO as a viable desti-
nation for a habitat spacecraft, cost-effective stationkeeping algorithms must be identified that will maintain
the spacecraft reliably in orbit within the available ∆V budget.

Various approaches to orbit maintenance may be developed as a response to competing requirements. For
example, identifying the cheapest stationkeeping solution, in terms of propellant costs, may require signifi-
cant numerical effort. However, a maintenance strategy that requires a smaller computational load may be
beneficial for a successful on-board implementation, rapid correction of errors that may be hazardous to the
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human crew, or to offset an escaping path. Dynamical systems theory is applied to exploit an understanding
of the dynamics in the NRHO regime, allowing for smaller computational loads, through an exploration of
stationkeeping via the Cauchy-Green Tensor (CGT). Alternatively, stationkeeping methodologies previously
applied to robotic libration point orbiters are adapted to the NRHO to explore costs associated with correc-
tions of additional errors related to a noisy, human-crewed spacecraft. Considering the many uncertainties in
the current mission definition, demonstrating multiple strategies that can successfully maintain NRHO mo-
tion is very useful. Development of an optimal stationkeeping method from a cost perspective is not pursued
in this investigation, rather, the focus is on the generation of multiple maintenance strategies in response to
various mission objectives.

DYNAMICAL MODELS

To develop a stationkeeping process for lunar near rectilinear halo orbits, dynamical models that offer
different levels of fidelity are employed. The Circular Restricted Three-Body Problem (CR3BP) provides
an autonomous approximation to Earth-Moon dynamics, enabling an understanding of underlying dynamical
structures. The ephemeris model allows for higher-fidelity simulations.

The CR3BP dynamical model serves as a reasonable approximation to higher-fidelity dynamical models in
the Earth-Moon system. Within this application of the CR3BP, the motion of a massless spacecraft under the
gravitational influence of the Earth and Moon is considered. These two primary bodies, modeled as point-
masses, are assumed to move in circular orbits about their common barycenter. The motion of the spacecraft
is then described relative to a coordinate frame that rotates with the motion of the Earth and Moon. By
convention, quantities in the CR3BP are nondimensionalized such that the Earth-Moon distance, as well as
the mean motion of the primaries, are both equal to a constant value of unity. In addition, the Earth and Moon
have nondimensional masses equal to 1 − µ and µ, respectively, where the paramenter µ equals the ratio of
the mass of the Moon to the total mass of the system. The CR3BP admits five relative equilibrium points:
the collinear points L1, L2, and L3, located along the Earth-Moon line, and two equilateral points, L4 and
L5, forming equilateral triangles with the two primaries. Since the CR3BP is autonomous, a constant energy
integral exists relative to the rotating frame and is defined as the Jacobi constant, such that JC = 2U − v2,
where U is the psuedo-potential function and v is the velocity magnitude relative to the rotating frame.9

For applications to actual mission scenarios where high-fidelity modeling accuracy is required, N -body
differential equations and planetary ephemerides are employed. The N -body dynamics generally render
the motion of a particle of interest (e.g., a spacecraft) in an inertial frame relative to a central body under the
gravitational influence of the same central body and other additional perturbing particles. Within this analysis,
the relative position of each perturbing body with respect to the central body is instantaneously computed by
employing NAIF SPICE ephemeris data. The Moon is selected as the central body for numerical integration
in the J2000 inertial frame. The Earth, Moon, Sun, and Jupiter are incorporated in the N -body ephemeris
model. For additional resolution in some simulations, the Moon’s gravity is modeled using the GRAIL
(GRGM660PRIM) model truncated to degree and order 8.

NEAR RECTILINEAR HALO ORBITS

Near rectilinear halo orbits10 in the vicinity of the Moon are identified as potential long-term orbits for a
crewed vehicle in the cislunar region. The NRHOs offer advantages such as relatively inexpensive transfer
options from the Earth, feasible transfer options to the lunar surface as well as other orbits in cislunar space
and beyond, and advantageous eclipsing properties.3, 11 Comprising a portion of the larger family of L2

halo orbits, depicted in Figure 1(a), the NRHO subset can be approximately bounded by specific locations
reflecting changes in the linear stability across the L2 halo family; these bifurcation orbits are indicated in
red and by colored arrows in Figure 1(a).

Stability

Within the context of the CR3BP, it is relatively straightforward to determine the linear stability associated
with periodic orbits. Linear stability for a periodic solution in any autonomous dynamical system is assessed
by the eigenvalues of the State Transition Matrix (STM) evaluated after precisely one periodic interval, i.e.,
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(a) The L2 halo family in configuration
space.

(b) Stability index across the L2 halo
family.

Figure 1: Definition of NRHO segment for the L2 halo family within the Earth-Moon system (CR3BP).

the monodromy matrix. The STM is essentially a linear mapping and reflects the convergence or divergence
of variations relative to a reference solution. Two well-known properties of the monodromy matrix, as applied
within the context of the CR3BP, are necessary to analyze the stability of NRHOs: (1) The eigenvalues of
the monodromy matrix always appear in reciprocal pairs, and (2) one pair of eigenvalues is always equal to
unity due to the periodicity of the orbit and the existence of a family of such orbits with precisely periodic
behavior. Excluding the trivial pair, two reciprocal pairs of eigenvalues, (λi, 1/λi), may be combined into a
single metric for the purpose of describing the stability of the corresponding mode. A stability index is then
defined as νi = 1

2 (λi + 1/λi) for i = 1, 2. If the stability indices, νi, are both less than one in modulus, then
the orbit is marginally stable in a linear sense; the orbit is otherwise unstable. For a diverging path, a larger
value of the stability index corresponds to a faster departure from the reference.

The linear stability characteristics associated with the halo family in the CR3BP serve to delineate the
NRHO boundaries. Within the L2 halo orbit family, the NRHOs are identified as a specific segment within
the family between two distinct markers. Across the family in the region of interest near the smaller primary,
three stability switches–a transition from marginally stable to unstable or vice versa–are indicated by colored
arrows in Figure 1(a). Thus, for the purpose of this investigation, an L2 NRHO is defined within the Earth-
Moon system as a halo orbit between the first and third stability changes, marked with green and pink arrows
in Figure 1(a) and green and pink boxes in Figure 1(b). This definition equivalently applies to both the
northern and southern members of the L2 halo family. Geometry also distinguishes an NRHO from the larger
set of halo orbits; the NRHOs are characterized by an elongated shape that resembles an ellipse when it is
plotted in the CR3BP rotating frame; the orbits are also dominated by their out of plane component. Earth-
Moon L2 NRHOs are characterized by perilune radii ranging from approximately 1850 km to 17350 km. The
orbital periods of the L2 NRHOs range from about 6 days to just over 10 days.

The NRHOs corresponding to stability indices |νi| > 1 are unstable. The divergence rate is, however,
significantly slower than other halo orbits that are closer to the L2 Lagrangian point, as evaluated in the
Earth-Moon system. The temporal scale for the instability is roughly predicted by the modulus of the stability
index. When both the stability indices are close to unity in modulus, such as for an NRHO, divergence is slow.
Within the NRHO range, both stability indexes remain bounded and nearly equal to one. A reference metric
for the temporal scale of the dominant diverging motion may be derived by considering the time constant, τ ,
as measured in number of revolutions for the nominal orbit, defined as

τ [rev] =
1

Re(ln(λmax(Φ(P, 0))))

1

P
(1)

where λmax( ) is an operator that returns the largest eigenvalue of the argument matrix, Φ(P, 0) denotes the
STM over precisely one period of the orbit, and P is the period of the corresponding orbit. Note that the
time constant is infinite for a marginally stable orbit, i.e., λmax(Φ(P, 0)) = 1. The value τ is interpreted
as the time necessary to amplify a given initial perturbation by a factor of approximately 3, assuming that
the growth is proportional to the exponential function e

t[rev]
τ [rev] . The time constant associated with NRHOs is
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displayed in Figure 2. Favorable stability properties and the time scale of divergence within the CR3BP
suggest the possibility of maintaining NRHO motion for a long duration while consuming few propellant
resources. Leveraging this opportunity requires the introduction of a stationkeeping algorithm to maintain
NRHO-like motion in a higher-fidelity environment.

Figure 2: Linear time constant for theL2 NRHO region within the Earth-Moon system. Blue regions indicate
marginally stable orbits, red regions indicate unstable orbits. Colored arrows correspond to the marked red
orbits in Figure 1(a).

Apse Angle

Given periodic NRHOs in the CR3BP, transition to a higher-fidelity ephemeris force model yields quasi-
periodic motion. The transition can result in either “tight,” nearly-periodic orbits or “loose,” more variable
revolutions along a trajectory. A metric is defined for convenience to describe the spread of the orbit from a
perfectly periodic CR3BP analog. The metric is denoted the apse angle, α, and is depicted in Figure 3. The
apse angle reflects how closely each revolution along an ephemeris trajectory mirrors the previous revolution
or the evolution of an ephemeris trajectory relative to a periodic CR3BP NRHO in terms of orientation in the
yz-plane. By definition, a CR3BP periodic NRHO retains a constant apse angle, α = 0◦. The apse angle
is evaluated as the osculating argument of periapsis, as computed at the closest approach of the ephemeris
trajectory relative to the Moon, minus 90◦; thus, it is evaluated once every revolution. Figure 3(a) reflects
the fact that the apse angle along a converged ephemeris trajectory can vary widely, as illustrated by the 3:1
synodic resonant NRHO converged using only a continuity constraint. Alternatively, as apparent in Figure
3(b), some ephemeris NRHOs closely resemble their CR3BP counterparts. Additionally, since the NRHOs in
Figures 3(a) and 3(b) are, in fact, a 3:1 synodic resonant orbit and a 4:1 synodic resonant orbit, respectively,
some cyclic behavior in apse angle can be observed in the plots of α in Figures 3(a) and 3(b). The plots
also serve to identify the resonances when visual inspection, e.g., in Figure 3(a), may not reveal obviously
repeating behavior.

Escape Warning

In a human spaceflight application, monitoring the effects of perturbations on the planned path is vital to
the timing of correction maneuvers and to ensure crew safety. A significant consideration also explored in
this investigation is the potential to anticipate, or predict, an escaping path. An escape warning is useful,
particularly if escape can be predicted prior to any visual evidence of any apparent diverging states. Thus,
defining a simple quantity to detect an escape with a sufficient time margin can be a key capability. Initially,
consider the following scalar quantity along a trajectory constructed in the CR3BP, i.e.,

MIΓ(t) =

∫ t

t0

x(τ)ẋ(τ) + y(τ)ẏ(τ) + z(τ)ż(τ)dτ (2)

where x, y, z are the position coordinates relative to the rotating frame and ẋ, ẏ, ż are the corresponding
velocity components, which are functions of a single independent time variable, τ . The expression in Eq. (2)
is effectively a line integral for the position vector field computed between the initial epoch, t0, and current
epoch, t. For convenience, the quantity defined in Eq. (2) is termed the momentum integral. The momentum
integral along a closed orbit is equal to the circulation of the position vector as observed in the CR3BP rotat-
ing frame. For a trajectory that is periodic with respect to the CR3BP rotating frame, the momentum integral
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(a) An ephemeris trajectory with a wider spread relative to
a corresponding CR3BP orbit, as determined by the large
range of the apse angle and the “loose” appearance in the
Earth-Moon rotating frame.

(b) An ephemeris trajectory with a narrow spread that re-
mains close to a corresponding CR3BP orbit, as determined
by the small range of the apse angle and the “tight” appear-
ance in the Earth-Moon rotating frame.

Figure 3: Computation of the apse angle to quantify the evolution of a converged ephemeris trajectory in
comparison to a corresponding CR3BP NRHO.

is null when it is computed over one period as follows from the fundamental theorem of calculus. As an
example, the momentum integral evolves along a CR3BP NRHO with perilune radius equal to 3500 km, and
returns to zero after one revolution of the orbit, as demonstrated in Figure 4(a). Within the present analysis,
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(a) Momentum integral along an NRHO
in the CR3BP over one revolution.
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(b) Representative time history for the mo-
mentum integral along a trajectory in the
ephemeris model.

Figure 4: Momentum integral in the CR3BP (a) and ephemeris model (b)

the integral in Eq. (2) is solved numerically by applying the trapezoid rule with a small integration step along
a numerically constructed reference path. The momentum integral may also be evaluated for an ephemeris
trajectory; as an ephemeris trajectory is not likely to precisely return to the initial state, the momentum in-
tegral is not expected to be zero after each revolution. However, the momentum integral is bounded if the
orbital motion is bounded.

Comparing the momentum integral profile for a baseline trajectory to a slightly perturbed path that departs
from the reference orbital path illustrates the evolution of the momentum integral over many revolutions. For
this scenario, the time history for the momentum integral is plotted in Figure 4(b). The blue curve, repre-
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senting the nominal path, is bounded and approximately repeats over each revolution. The red curve reflects
the perturbed trajectory. After approximately 30 revolutions, the perturbed path begins diverging. As the
departure evolves, the momentum integral profile is no longer bounded and does not approximately repeat
over each revolution of the nominal orbit.

Observing the two curves in Figure 4(b), a good metric to detect divergence is the instantaneous differ-
ence between the momentum integral computed for a perturbed trajectory verses a given long-term baseline
trajectory. The difference is defined as

∆MI(t) = log |MIΓ̃(t)−MIΓ(t)| (3)

where Γ̃ refers to the perturbed trajectory and Γ refers to the reference orbit; a logarithm function is intro-
duced to reveal the order of magnitude for the momentum integral difference. For the difference in Eq. (3)
to be valid, the momentum integral for the reference trajectory, MIΓ(t), and for the perturbed orbit, MIΓ̃(t),
must be evaluated originating from the same initial state and epoch. Since the metrics MIΓ(t) and MIΓ̃(t) are
integral, or cumulative, quantities, they conserve any initial discrepancy. If the momentum integrals MIΓ(t),
and MIΓ̃(t) are computed from different initial conditions, the resulting profiles are offset by a constant bias
and, possibly, a phase difference.
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(a) Representative time history for the mo-
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(b) Warning margin between the escape
detection time and the orbit life.

Figure 5: Escape prediction using the momentum integral difference.

A valid instantaneous vari-
ation, along a logarithmic
scale, for a perturbed momen-
tum integral (red curve in Fig-
ure 4(b)) relative to a base-
line profile (blue curve in Fig-
ure 4(b)) appears in Figure
5(a). When the orbital mo-
tion begins diverging, the or-
der of magnitude of ∆MI rises
quickly. In Figure 5(a), the
vertical line indicates where
the osculating eccentricity rel-
ative to the Moon is equal to
unity. At the moment when
the lunar osculating eccentricity is unitary, the trajectory has already diverged from the reference NRHO,
and a ∆V to recover the desired motion near the Moon may be excessively large. As a rule of thumb, the
diverging path should be corrected, at minimum, 3-4 revolutions prior to the osculating eccentricity relative
to the Moon reaching a unitary value. Advance anticipation of the correction maneuver may be beneficial
in terms of crew safety and propellant cost. Monitoring of the momentum integral difference offers a valid
means to predict, with a sufficient time margin, the divergence of the current trajectory relative to the base-
line motion. A threshold on the difference in the momentum integral, ∆MI , can be employed to indicate
divergence. In this case, the horizontal dashed line marks a threshold that indicates the initiation of divergent
behavior from the baseline path. As a proof of concept, Figure 5(b) depicts the warning margin between
escape detection using the momentum integral difference and that using osculating eccentricity over multiple
trials. The advance warning based on the momentum integral difference is between four and six revolutions.

STATIONKEEPING FOR LIBRATION POINTS ORBITS: PREVIOUS CONTRIBUTIONS

There exists a relatively large collection of previous investigations concerning control of libration point
orbits. Such reports often elaborate on existing strategies for application to a specific stationkeeping prob-
lem in a multi-body regime, or combine pieces from different procedures to create an alternative approach.
Therefore, it is not straightforward to uniquely classify previous contributions into a rigid list of possible sta-
tionkeeping techniques. While the following summary is not all-inclusive, and some methods may partially
overlap or combine, it is representative of some recent trends that are useful for stationkeeping for libration
point orbits:
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1. Classical Control Theory.12–16 Methods from classical control theory are adapted and applied to the
stationkeeping problem in a multi-body regime.

2. Floquet Mode Control.9, 17–21 Stationkeeping maneuvers are designed to cancel the unstable mode for
a reference solution or otherwise leverage knowledge of the invariant structures.

3. Target Point.19, 20, 22–24 Specific future position and velocity states (i.e., target points) along a precom-
puted reference trajectory are targeted.

4. Hamiltonian Preserving Strategy.9, 21, 25 An artificial, instantaneous center manifold is created to main-
tain a spacecraft in oscillatory motion nearby a reference trajectory. The maneuver is constructed
by combining the projections of the position error along the unstable and stable local, instantaneous
modes.

5. Continuation Strategy.26–28 Each maneuver is determined to ensure the continuation of the orbit for
several revolutions downstream or to achieve some specific parameter values that are then targeted
downstream, for example, energy level, osculating orbital elements, epoch, or position and velocity
states. The underlying theme is leveraging the asymptotic behaviors of the natural dynamics.

6. Crossing Control.14, 29–31 Maneuvers are designed to control conditions at the next crossing of some or-
bit near-symmetry plane. It is a common practice to target an approximate perpendicular crossing of the
xz-plane within the instantaneous CR3BP rotating frame (i.e., limit the rotating x-velocity component
at the plane crossing).

For this current application involving a crewed vehichle, a stationkeeping strategy to maintain the behavior
in an NRHO is constructed through the understanding of previously successful approaches while solving
specific challenges that are associated with NRHO dynamics within the Earth-Moon system.

STATIONKEEPING FOR NEAR RECTILINEAR HALO ORBITS

Previous robotic mission applications, such as ARTEMIS26 and GENESIS,22 along with other simulated
scenarios, have demonstrated that employing a virtual baseline and selecting a target state that is located a
certain number of revolutions downstream may be beneficial. A “virtual baseline” broadly refers to the con-
cept of targeting a type of reference motion rather than a specific, fixed trajectory that is pre-planned from
the initial to final epoch. A virtual baseline also allows opportunities for updates of the reference to maintain
the validity of linear variational strategies. Targeting further downstream leverages the long-term natural flow
to achieve a desired final state. A virtual baseline may simplify stationkeeping operations particularly since
targeting long horizon goals may reduce the ∆V cost. A single-step stationkeeping approach can serve to
both generate this virtual baseline and target the baseline in one step. A typical implementation plan for a
single-step approach to stationkeeping includes: the selection of a CR3BP solution as an initial guess to a
corrections algorithm; the definition of target conditions many revolutions downstream along the orbit; the
application of orbit determination errors; and, the numerical correction of the motion within a higher-fidelity
ephemeris model. Thus, the single-step stationkeeping approach basically achieves three goals: (1) generates
a ballistic motion in an ephemeris model, (2) acquires a long horizon target state, and (3) compensates for
orbit determination errors.

Significant challenges exist in applying the single-step algorithm to generate an NRHO-like motion in a
higher-fidelity model. Recall that, as members of halo families of orbits, NRHOs are characterized by sen-
sitive dynamics that are numerically challenging in simulations. These orbits also pass very near a primary
and possess high osculating eccentricity values with relatively large variations in speeds over each revolution.
In this regime, the perturbations in a higher-fidelity model may be near the same frequency as the funda-
mental dynamical modes.32, 33 As a consequence, high-cost trajectories, in terms of ∆V , may exist nearby
low-cost solutions, and numerical algorithms that are based on linear approximations of the dynamics nearby
the reference, such as gradient-based methods, may struggle to compute a suitably low-cost route. As noted,
simulating the motion within a higher-fidelity regime, such as the N-body ephemeris model, adds an addi-
tional level of complexity. The stationkeeping algorithm for NRHOs may require, therefore, more guidance
to be adequately effective. A single-step approach to stationkeeping is also computationally intensive (and
ill-suited for on-board applications) because it re-converges the ballistic solution at each maneuver. Repro-
ducing a large number of single-step simulations, for example in a Monte Carlo analysis, is less practical
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as it generally requires a longer computation time. Additionally, targeting a long horizon state or condition
to compensate for small orbit determination errors may not significantly reduce the overall ∆V costs, and
re-converging the long term component of the motion may be redundant.

To compensate for difficulties in applying a single-step algorithm, the goals for a stationkeeping strategy
can be separated into successive steps. Consider a two-step procedure. At the first level, a maneuver that im-
plements an NRHO virtual baseline and achieves long horizon objectives is generated. A CR3BP trajectory
is employed as an initial guess for the virtual reference. Within the given tolerance and current higher-fidelity
model, the resulting trajectory is ballistic, i.e., no additional maneuvers following the initial burn are required
and no perturbations are included. The first level is denoted as the Long Horizon (LH) maintenance step.
Essentially, LH maintenance yields updated baselines as necessary. On a second level, perturbations to the
nominal motion are added, and a corrections strategy to maintain the orbit sufficiently close to the virtual ref-
erence is implemented. Maneuvers are inserted to compensate for orbit determination errors. Each maneuver
is computed to target a vector or scalar state, or a condition, downstream. Because a downstream target is
only one or a few revolutions ahead of the current state, this level is termed Short Horizon (SH) maintenance.
Target states for the SH level are supplied by the long-term virtual ephemeris motion obtained in the LH level.

Decomposing the stationkeeping procedure into two steps offers some benefits. Using SH maneuvers to
compensate for orbit determination errors and other small perturbations is computationally efficient. For
small variations along the virtual reference, simple corrections algorithms (e.g., single shooting methods)
may be employed. The long-term virtual baseline is only updated when it is strictly necessary using LH
maneuvers. Any post-insertion maneuver may be implemented as an LH burn, and may benefit from the
cost reduction that is generally granted by targeting many revolutions downstream along the path. Figure 6
displays schematics for the orbit maintenance strategy as split into LH and SH levels. To summarize, the

time-line

Long Horizon (LH) virtual solution

Short Horizon (SH) maintenance LH Maneuver

SH Maneuver

Figure 6: Orbit maintenance strategy schematic.

scope of an LH maneuver
is to set the spacecraft on a
path that generally resembles
a specified CR3BP motion
within the ephemeris model
that meets the mission re-
quirements. An LH maneu-
ver may be useful for extend-
ing the orbit life, avoiding an
eclipse, shifting the reference
motion, or correcting a missed burn. Following an LH maneuver, SH maneuvers serve to compensate for
recurring orbit determination errors and other small perturbations, such as a noisy spacecraft. Both LH and
SH maneuvers are generally necessary to maintain an NRHO in an actual mission application.

Long Horizon Maneuvers

A variety of algorithms may be employed to compute LH maneuvers. Since LH maneuvers are computed
less frequently than SH maneuvers, increases in computational cost (as occurs, for example, in optimization)
are less critical. A possible framework for an LH maintenance algorithm is described by the following steps.

1. Introduce input: A solution in the CR3BP supplies an accurate initial guess for an NRHO-like motion
in the ephemeris model. Let φ3B(x, t) be the dynamical flow associated with the CR3BP equations of
motion. Let the vector x0 represent the position and velocity states. Then, any state, x0, that belongs
to an NRHO periodic orbit, denoted ΓNRHO, satisfies x0 = φ3B(x0, P ) for x0 ∈ ΓNRHO, where time
t = P is the period of the orbit. The above relationship is also satisfied for any integer multiple of the
period.

2. Generate patch points: A discrete set of states (position and velocity), denoted patch points, is se-
lected along a full revolution of the CR3BP periodic orbit. A common discretization for a trajectory is
the adoption of patch points equally spaced in time. These patch points serve to converge a solution in
the ephemeris model. Let xi = [x; y; z; ẋ; ẏ; ż]i be the state vector, within the CR3BP, corresponding
to the time instant ti ∈ [0, P ], such that xi ∈ ΓNRHO. Then, the complete set of variables for n patch
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points over one revolution is written as

Xr1
3B

6n×1
=
[
x1 x2 . . . xn

]T
(4)

with ti = (i− 1)P/n, for i = 1, ..., n. The state variable vector constructed within the CR3BP, Xr1
3B ,

supplies a good initial guess for the corrections process in the ephemeris model.
3. Duplicate patch points: The CR3BP periodic orbit is reproduced for a given number of revolutions,
Nrev . The patch points vector,Xr1

3B , is cloned (Nrev − 1) times, and stacked, to create an initial guess
for Nrev revolutions of the orbit,

X3B
6n(Nrev−1)×1

=
[
Xr1

3B Xr1
3B . . . Xr1

3B

]T
(5)

with a time vector

t =

[
0,

P

n
,
2P

n
, . . . , P, P +

P

n
, . . . , (Nrev − 1)P, . . . , (Nrev − 1)P +

P

n
, . . . , (Nrev − 1)P +

(n− 1)P

n

]
rendering the epoch for each patch point in the series. For convenience, X3B is also converted into
the J2000 frame, yielding XJ2000. Similarly, the time vector is converted into an array of epochs,
EJ2000 = E0 + t, where E0 denotes the selected initial epoch. The patch point vector, XJ2000, and
the epoch array, EJ2000, are used to propagate the trajectory within the ephemeris model.

4. Define constraints: Possible constraints along the path are then introduced into the process. Con-
straints are used to render specific orbit conditions at selected epochs or patch points. Typically, con-
straints are applied at the beginning or end on a trajectory arc, however, constraints on intermediate
patch points are also possible. If a desired constraint applies to a location that is not included in the
original set of patch points, it may be necessary to add a patch point at the location where the or-
bit constraint is required. Assigning the initial position and/or epoch is a common constraint. Fixed
initial spacial coordinates may, for example, describe an insertion location into an orbit, or some spe-
cific position for a post-insertion maneuver to extend the orbit life. Assigning an initial epoch may
represent a phasing constraint. Note that any constraint must be expressed consistent with the cor-
rections algorithm formulation. For example, if the corrections algorithm utilizes a J2000 reference
system, constraints that are formulated within the CR3BP rotating coordinates must be transformed to
equivalent constraint equations in the J2000 frame.

5. Converge motion in ephemeris: Using a corrections algorithm, e.g., multiple shooting,34 the patch
point vector, XJ2000, and epoch vector, EJ2000, are iteratively adjusted to obtain a solution within
the ephemeris model that is continuous and that satisfies the constraints. Both internal continuity and
user-defined constraints are achieved within a given tolerance. A convergence tolerance is selected to
enable the correct functioning of the SH level while avoiding excessive numerical precision at this level.
Tightening the tolerance more than necessary increases the computational load, and errors introduced
in the SH level reduce the need for extremely high accuracy. A tolerance of 10−6 nondimensional units,
which is equivalent to approximately 0.380 km for position and 0.1 cm/s for velocity, is generally a
good compromise between computational time and solution accuracy for the LH level for the NRHOs.

6. Deliver output: The corrected patch point vector, XJ2000, and epoch vector, EJ2000 are the output
for the LH level, and may be propagated numerically to render the desired motion in the ephemeris
model to within the selected tolerance.

For the application of sustaining NRHO-like motion in the ephemeris environment, an LH maneuver gen-
erates a path that retains the general characteristics of a trajectory that is identified within the CR3BP. In
higher-fidelity simulation, LH maneuvers are also useful to introduce large modifications from the reference,
for example, maneuvers that are required to extend orbit life, avoid an eclipse, correct for a missed burn, or
offset a potential escape from the system.

Short Horizon Maneuvers

Short Horizon (SH) maneuvers are introduced to correct orbit determination errors, and small perturbations
to the virtual reference that is supplied by an LH maneuver. Two algorithms are investigated for the efficient
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computation of SH maneuvers. The first uses dynamical systems theory in the form of the Cauchy-Green
Tensor (CGT). The CGT targeting algorithm leverages an understanding of the maneuver size and direction
that best maintains the perturbed orbit near the virtual reference and is developed with a focus on a target only
one revolution ahead. The second method applies crossing control to the NRHO stationkeeping problem.
By targeting a single component of the virtual reference, vx, at the xz−plane crossing several revolutions
downstream, the NRHO is maintained nearby the virtual reference. Neither approach forces a return to the
reference path; both allow the spacecraft to simply shadow the reference.

Short Horizon Maneuvers: CGT Targeting

Dynamical systems theory is introduced with the goal of producing low-cost stationkeeping maneuvers
while reducing the demand for computational resources. To explore the capability of a maneuver vector,
∆V , at the current time to influence the path at a later time, consider the evolution of initial variations.
Varying the maneuver vector, ∆V , both in direction and/or magnitude will naturally modify the resulting
state at the final time. The final time, tf , may be defined as a fixed epoch, or as a horizon that recedes
as the maneuver time advances. In a phase space (i.e., a space generally comprised of state variables), the
variations in the final conditions typically describe a region of attainable states. In other words, assuming
an initial variation in terms only of velocity (i.e., a ∆V vector) within some bounded magnitude, the state
variations downstream are also bounded. The boundaries downstream reflect the attainable region. Assume
that a region of attainable states is traceable to a known geometry. The boundaries for the attainable region
can be constructed from linear or nonlinear propagation of the variations. Any knowledge concerning the
attainable region geometry may then be employed to determine an initial maneuver that targets a desired final
condition.

A description of the attainable region geometry follows from continuous mechanics theory as applied to
trajectory design. Concepts that are native to continuous mechanics can facilitate the analysis of solutions in
the vicinity of a reference path, especially within the context of non-autonomous systems, such as anN -body
ephemeris model.35 From this perspective, the dynamical flow nearby a baseline path may be described as the
stretching of a fictitious material volume over a given time interval. The stretching for the material volume
is mathematically rendered by the Cauchy-Green Strain Tensor, or simply Cauchy-Green Tensor (CGT). The
CGT, that is, C, is the product of the transpose of the STM with itself,36

C(tf , t0) = ΦT (tf , t0)Φ(tf , t0) (6)

where t0, and tf denote the fixed initial and final epochs. The STM, Φ, is essentially a linear mapping of the
final perturbation vector, δx(tf ), given a variation of the initial conditions, δx(t0), such that

δx(tf ) = Φ(tf , t0)δx(t0) (7)

The CGT is a squaring operation that returns the relationship between the initial and final distance from the
nominal motion

||δx(tf )||2 = δx(t0)TC(tf , t0)δx(t0) (8)

The distance ||δx(tf )||2 reveals the growth or the decay of the initial vector perturbation. Furthermore,
the eigendecomposition of the CGT allows identification of the principal directions of expansion for the
dynamical flow, including those that are locally associated with the largest and smallest stretching. The
CGT is – by definition – a positive definite matrix; when computing eigenvalues and eigenevectors, it is,
therefore, better behaved than the corresponding STM. Note, λi and ξi are the eigenvalues and eigenvectors
of the tensor. Accordingly, within a linear approximation, the local phase space expands or contracts in the
direction ξi by a factor

√
λi, as

||Φ(tf , t0)ξi|| =
√
λi||ξi|| (9)

Consider a spherical region in the phase space nearby the initial state. As the initial variation evolves, regard
this region as a physical continuum that translates and rotates in time along the path, but also undergoes local
deformation. Within a linear approximation, Eq. (9) describes a continuum that contracts or expands while
maintaining an ellipsoidal shape, as in Figure 7. The principal directions, ξi, may be mapped to the final time
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as Φ(tf , t0)ξi/||ξi|| and, thus, describe the ellipsoid axes; the ellipsoid size along each axis is derived from
the rates of expansion and contraction,

√
λi, as

√
λi||ξi||. The CGT and its eigendecomposition enable a

linear approximation for the attainable region nearby a reference, such as that in the proposed stationkeeping
strategy.

ξi

ξn

Φ(tf , t0)ξn

Φ(tf , t0)ξi
Φ(tf , t0)

t0 tf

Figure 7: Stretching associated with eigenvectors of
the Cauchy-Green tensor.

Within this stationkeeping algorithm, a maneuver
typically targets an arbitrary point, xT . Focusing
on this objective only, and assuming an attainable
region, E , that is fixed by the size of a maneuver,
∆VM , the most desirable final condition is, natu-
rally, the point within the attainable region x ∈ E
that is closest to target, xT . Note, bolded quantites
refer to vectors, while unbolded quantities refer to
vector magnitudes. A linear approximation for the
final region that is accessible via the current value
∆VM , is constructed as an n-dimensional ellipsoid

using the eigenstructure for the CGT corresponding to the uncontrolled nominal trajectory is given as

E = {x|(x− c)TQ(x− c) = 1} (10)

where c is the center of the ellipsoid and Q = UΣUT is a symmetric, positive definite matrix. The center
of the ellipsoid lies at the uncorrected final state, c = xU . The principal axes of the ellipsoid are defined

along the directions ui =
Φ(ET , EM ,xM )ξi
|Φ(ET , EM ,xM )ξi|

, which form the matrix U = [u1, u2, . . . , uN ]. The matrix

Σ is diagonal, with elements equal to the inverse-square of the ellipsoid radii, 1/ρi = 1/(
√
λi∆VM )2.

Determining the location within the ellipsoidal attainable region, x∗, that is closest to the target state, xT ,
i.e.,

x∗ = arg min
x∈E

||x− xT ||2 (11)

is equivalent to solving a geometric problem. To meet the desired target tolerance, εT , it may be necessary
to adjust the size of the ellipsoid that approximates the final attainable region, and recompute the point x∗.
Modifying the size of the final region is equivalent to adjusting the size of the initial ∆VM . As illustrated in
Figure 8, the straightforward criteria to adjust a maneuver size is to modify ∆VM . If the locally optimal solu-

c

x∗

xT

∗DT

εT

(a) Increase maneuver
size, ∗DT > εT .

c

x∗
xT

cDT
cD∗

(b) Decrease
maneuver size,
cDT < cD∗.

Figure 8: Attainable region adjustment schematics.

tion x∗ is further from the target than the desired tolerance an increase in ∆VM is recommended; in contrast,
a maneuver size is reduced, if the target point is already inside the attainable region. After a maneuver size is
selected, the closest point to the target at the final time is also defined by

1

∆VM
(x∗ − c) =

[
Φrv

Φvv

]
∆V M

||∆V M ||
= A

∆V M

||∆V M ||
(12)

Inverting Eq. (12) enables, in principle, determination of the appropriate direction, ∆V M/∆VM , corre-
sponding to the initial corrective maneuver. However, Eq. (12) describes an overdetermined system. One
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option, is to compute the initial maneuver direction as the least squares solution of the system in Eq. (12),
i.e.,

∆V M

||∆V M ||
=

1

∆VM
(ATA)−1AT (x∗ − c) (13)

The solution of Eq. (13) completes the information required to compute the vector, ∆V M , that renders a
stationkeeping maneuver. From experimentation, if the final maneuver size, ∆VM , is larger than 1 m/s, the
maneuver prediction from Eq. (13) may be inaccurate for application to an L2 NRHO within the Earth-
Moon system. The linear approximation for the motion becomes less precise for a large ∆VM . For the
same reason, caution is required in adopting this algorithm, as currently formulated, in combination with a
long time of flight. For a cost-efficient long-term mission, the number of large maneuvers must be limited.
Additionally, a conservative design may require frequent maneuvers to increase confidence in spacecraft
navigation measures. A linear approximation for the attainable region, through the CGT, is reasonable for a
mission with small, frequent maneuvers. It is possible to extend the CGT targeting algorithm to a long time
of flight or large maneuver size by updating the formulation for the attainable region to include nonlinear
deformations.

An algorithm that simulates SH maneuvers by incorporating a geometrical approximation for the attainable
region to determine correction burns through CGT targeting is constructed as follows.

1. Formulate input: From the converged LH baseline, patch point state variables within the ephemeris
model,XJ2000, and the corresponding epochs,EJ2000, are the input for the SH level in the two-phase
stationkeeping approach.

2. Generate targets: A list of target state variables and epochs is generated. Possible target events are a
crossing of a plane, a trajectory apsis relative to an attracting body, or a fixed time of flight.

3. Apply OD errors: Apply Orbit Determination (OD) errors to the current orbital state. OD errors are
applied in both position and velocity. An OD error vector, e, is added to the current state vector

x̃ = x+ e (14)

assuming that, each entry for the OD error vector, e, is stochastic, and is modeled as a Gaussian
distribution with zero mean and a given standard deviation. Additionally, errors among different state
vector components are assumed to be uncorrelated.

4. Apply maneuver: If a maneuver is pre-planned for the current state, it is now applied. A maneuver is
represented as an impulsive ∆V vector, which incorporates information for both the thrusting direction
and magnitude. The maneuver implementation also includes an additional error, e∆V , on the ∆V
magnitude. Currently, the maneuver direction is not perturbed. If there is no maneuver planned for the
current state, or to mimic a missed burn, consider ∆V = 0, and move directly to the next step.

5. Propagate: Propagate the current state to the next maneuver event. Common maneuver events include
crossing a virtual plane, apse conditions relative to an attracting gravitational body, or surpassing a
threshold for an escape warning. Record the state variables vector, xM , and the epoch, EM , for the
maneuver event.

6. Select target: Select the next target from the target list. This selection includes the definition of a target
state variable vector, xT , and a target epoch, ET , such that ET > EM .

7. Compute next maneuver: At a maneuver event, the correction burn, described by the vector ∆V M ,
is computed by employing Eq. (13).

8. Repeat: Return to step 3 where the current state vector is now xM and the current epoch is now EM .
Repeat for each revolution.

9. Deliver output: The output is a series of maneuvers characterized by the corresponding state variables,
epoch, maneuver size, and direction. This information renders the controlled trajectory path within the
context of the ephemeris model.

Approximating the region that is attainable via an SH maneuver as an n-dimensional ellipsoid allows for
the formulation of the stationkeeping problem as a geometrical problem. Solutions of this geometrical prob-
lem generally demand few computational resources, which may be beneficial for on-board implementation.
Present limitations of the algorithm include the assumption of small maneuvers and shorter times of flight
(which is derived from the linear approximation of the motion in the vicinity of the current path). When
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applied within the ephemeris model, the selection of target states, xT , and target tolerance, εT , are also
important for successfully maintaining the desired motion when perturbations are added.

Short Horizon Maneuvers: X-axis Crossing Control

A second SH maneuver targeting algorithm implements an x-axis crossing control scheme to facilitate
the exploration of maneuver costs associated with a noisy, crewed spacecraft. Similar approaches have
been successfully applied to support halo orbiters at Earth-Moon and Sun-Earth libration points, includ-
ing ARTEMIS37, 38 and WIND.39 In the current analysis, an updated algorithm accommodates the different
characteristics of the NRHO, including decreased orbital period, increased stability characteristics, and closer
proximity to the Moon as compared to the orbits flown by ARTEMIS and WIND.

Assume that the spacecraft has been inserted into a virtual NRHO reference via an LH maneuver. As the
spacecraft moves along its orbit, it is affected by the initial insertion error and by continuing spacecraft and
orbit determination errors. As the orbit diverges from the desired path, it reaches a specified point in the orbit
where an SH maneuver is executed to direct the spacecraft back towards an NRHO. At this point, a differen-
tial corrector is employed to compute the ∆V required to achieve specified targets further ahead in the orbit.
The targeted parameters may be associated with a virtual reference orbit or they may be independent of a
reference. The targets may be components of the state vector or other orbital parameters such as perilune alti-
tude, time, or osculating orbital elements. An effective strategy for NRHO stationkeeping depends on several
variables, including the location and timing (or phasing) of the targeting maneuvers, the specific constraint
targets, and the geometrical locations along an orbital revolution as well as the distance downstream to target
the selected constraints.

Maneuver Placement. The orbit maintenance costs associated with an x-axis crossing algorithm depend
on the frequency and location of SH maneuvers along the NRHO. The ARTEMIS and WIND algorithms
each apply multiple orbit maintenance maneuvers per revolution. However, the NRHO is characterized by
a shorter period and slower divergence as compared to the ARTEMIS and WIND trajectories. Both once-
per-revolution and twice-per-revolution maneuvers are investigated, with varying locations along the orbit
considered. Adding the option of a second SH maneuver per revolution is not observed to reduce station-
keeping costs. In fact, depending on the magnitude of the errors, in many cases, a maneuver is not necessary
every revolution. Thus, in the current analysis, a single SH maneuver is planned for each revolution.

The selection of the SH maneuver location depends on the sensitivity of the orbit to perturbations at various
locations along the orbit. The NRHO is highly sensitive to perturbations near perilune. While a maneuver
placed at or near perilune has an increased potential to influence the trajectory downstream, navigation and
maneuver execution errors are associated with each maneuver. When these errors are incorporated during a
maneuver at perilune, they significantly perturb the NRHO and result in increased stationkeeping costs and
reduced algorithm robustness. Due to the sensitivity of the trajectory near perilune, events such as orbit inser-
tion, stationkeeping maneuvers, and other perturbations near perilune are avoided. The relationship between
annual stationkeeping costs and maneuver placement is visualized in Figure 9 for six sample NRHOs with
perilune radii ranging from 2100 to 6500 km. For each case represented, a fixed set of navigation and space-

Figure 9: Annual stationkeeping ∆V cost vs. maneuver placement within the orbit for a quiet-spacecraft
configuration for six reference NRHOs.

craft errors is applied to a spacecraft over 50 revolutions. Not surprisingly, the NRHOs with closer perilune
passages are more sensitive to the maneuver location than are those with higher values of rp. For x-axis
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crossing control, a maneuver location within 30 degrees of apolune appears to be most favorable given the
current formulation. For simplicity, the SH maneuvers are placed at apolune.

Constraint targets. Several combinations for constraint targets are investigated. Potential targets include
position and velocity components as well as perilune passage time and perilune radius. The x-axis crossing
control algorithm can target to a virtual LH reference orbit or to independent quantities. In a periodic NRHO
in the CR3BP, the x and z components of rotating velocity are both equal to zero at the xz−plane crossings.
It is, thus, reasonable to consider targeting vx and/or vz with a goal that the values are equal to zero at one
of the plane crossings. Such an algorithm combines LH and SH analysis into a single step. Targeting solely
vz = 0 is not sufficient. Targeting vx = 0 at the xz−plane crossing is effective, but it requires a longer
targeting horizon to achieve low stationkeeping costs. The longer horizon is associated with increased com-
putation time and reduced robustness to large errors. Alternatively, the LH and SH analyses are separated,
and an algorithm is selected that targets a virtual LH reference.

The lowest observed stationkeeping costs and highest rates of success (algorithm robustness) are achieved
by implementing a simple algorithm that applies a maneuver at apoapsis to target a rotating x-velocity equal
to a value along the reference trajectory. Including constraints on perilune radius or perilune passage time
tends to increase stationkeeping costs without increasing algorithm robustness. Targeting additional position
or velocity components corresponding to an LH reference point can result in closer adherence to the reference
itself, but can also significantly increase the stationkeeping cost. The focus on the rotating x-velocity alone
mirrors the operational stationkeeping algorithms employed by ARTEMIS and WIND.

Target Location. Finally, the downstream location of the target x-velocity, vx, is adjusted to improve per-
formance. Perilune, apolune, and the xz−plane crossings near the apse points are investigated. In the x-axis
crossing control algorithm, placing the target at perilune or the nearby xz−plane crossing is observed to result
in a lower cost than placing the target at or near apolune. Another significant influence on the stationkeeping
cost is the length of the receding horizon for targeting. With a maneuver placed at apolune, vx can be targeted
one half revolution ahead at the following perilune. If the targeting horizon is extended, however, the cost
for each maneuver can be significantly reduced. By targeting ahead 2.5 revolutions, the cost is reduced by
a factor of 4. Targeting further ahead continues to reduce the stationkeeping cost, but the computation time
is increased. In addition, when the errors applied to the spacecraft are large, a longer horizon can lead to
difficulties converging on a solution. This trade-off occurs when the horizon is longer than the number of
revolutions that an uncontrolled spacecraft reliably remains in the NRHO vicinity without escape or impact.
Therefore, a compromise to balance cost, computation time, and reliability is necessary. In the current study,
a receding horizon equal to approximately 6.5 revolutions is selected. If the targeter is unable to converge,
the horizon is reduced to 4.5 revolutions. If further convergence failures are encountered, the horizon is fur-
ther reduced to 2.5 revolutions; finally, half a revolution offers the targeter the best chance to converge on a
low-cost solution. A plot of the annual stationkeeping cost vs. targeting horizon appears in Figure 10 for four
reference NRHOs with low-level orbit determination errors and a quiet spacecraft configuration, as defined
in Table 1. Each data point represents the mean annual ∆V for 100 Monte Carlo trials with 50 revolutions

Figure 10: Annual stationkeeping ∆V cost vs. targeting horizon for 100 Monte Carlo trials with a quiet-
spacecraft configuration for four reference NRHOs.

per trial. For each reference NRHO, targeting half a revolution ahead to the next perilune is effective but ex-
pensive. At a horizon distance equal to 1.5 revolutions, the algorithm is currently observed to be ineffective.
However, the stationkeeping costs begin to come down with a horizon of 2.5 revolutions and longer. At a
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horizon length of 5.5 revolutions, the costs are consistently low for the cases investigated in this analysis.

Additional Tuning Parameters. In addition to target selection and maneuver placement, several other tun-
ing parameters influence the cost of orbit maintenance. One notable example is the tolerance on the targeted
parameter. If the tolerance on vx is too tight, the orbit will be overconstrained, and the stationkeeping ∆V
will be unnecessarily high. If the tolerance is too loose, the trajectory will stray too far from the reference,
resulting in higher cost to return to a nearby orbit in subsequent revolutions. A tolerance of 0.45 m/s is
selected for the current analysis. A second tuning parameter that affects the stationkeeping cost is the maxi-
mum allowed maneuver magnitude. If the maximum ∆V is too low, the targeter will not consistently be able
to converge on a solution, leading to an increased number of failure cases in Monte Carlo analyses. If the
maximum ∆V is too high, on the other hand, the targeter may converge on unnecessarily high stationkeeping
maneuvers, leading to a higher total cost. The effects of the maximum allowable maneuver size are particu-
larly noticeable in cases with large orbit determination errors. The maximum allowed maneuver magnitude
in the current analysis ranges from 5 to 20 m/s per axis, depending on the selected NRHO and the errors that
are incorporated.

No optimization is applied to the maneuver computation strategy in this current approach. Rather, a fea-
sible solution is achieved by varying the three components of the impulsive ∆V . In both the ARTEMIS
and WIND mission opperations, the optimal maneuver direction was observed to align with the stable mode
along the halo orbit.38, 39 This fact led to the reduction of stationkeeping ∆V without requiring optimiza-
tion for every maneuver. However, constraining the maneuver direction to align with the stable mode along
the NRHO in x-axis crossing control has not led to an observable reduction in stationkeeping cost. Due to
the nearly linearly stable nature of the NRHO, the stable mode is not well defined and, therefore, the stable
eigenvector of the monodromy matrix of the NRHO may not supply useful directional information. Instead,
the Cauchy-Green tensor provides such dynamical information for stable and nearly-stable NRHOs.

Algorithm. The stationkeeping process applied in the x-axis crossing control analysis is straightforward.
The steps are summarized as follows:

1. Formulate input: A state from the converged LH reference orbit in the ephemeris model, XJ2000,
and the corresponding epoch, EJ2000, supplies the initial conditions for the SH level of the two-phase
stationkeeping approach.

2. Generate target list: At each xz−plane crossing near perilune, the rotating vx value is recorded from
the LH reference to serve as a target for the perturbed spacecraft over the duration of the simulation.

3. Apply insertion error: Compute the insertion error and apply it to the position and velocity vectors at
the spacecraft apolune as described in Eq. (14).

4. Compute error on Cr: The percent error on Cr (solar radiation pressure coefficient) is modeled as a
Gaussian distribution with zero mean and the specified standard deviation.

5. Compute next maneuver: At a maneuver event, the correction burn, described by the vector ∆V M ,
is computed by employing a differential corrector. Using a single-shooting algorithm, the three com-
ponents of ∆V M are varied within a set of limits to achieve vx = vxref to a specified tolerance
at the xz−plane crossing near periapsis 6.5 revolutions downstream. No errors are included in the
propagation during targeting.

6. Reduce targeting horizon: If the targeter fails to converge, reduce the horizon to 4.5, 2.5, or 0.5 revs
ahead, as required. If the targeter still fails to converge, mark the case as failed and exclude the case
from the set.

7. Apply navigation and SRP errors: Compute the orbit determination error and apply it to the pre-
maneuver position and velocity states at the spacecraft apolune as described in Eq. (14). The percent
error on SRP area is modeled as a Gaussian distribution with zero mean and the specified standard
deviation. Apply the Cr error and SRP area error to the spacecraft characteristics.

8. Add maneuver to spacecraft state: If the computed ∆VM is greater than the minimum threshold,
maneuver the spacecraft using the computed ∆V M , perturbed by the computed maneuver execution
error. If the targeted ∆VM is smaller than the minimum threshold, skip the maneuver.

9. Propagate spacecraft: Propagate the spacecraft to the next apolune. If noisy-spacecraft errors are
included in the simulation, the integration is stopped at each specified interval. Each of the noisy-
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spacecraft error types is modeled with a fixed magnitude and random direction. A ∆V corresponding
to the computed error is applied to the spacecraft and the integration is restarted, repeating until apolune
is reached.

10. Repeat: Return to Step 5 and repeat for each revolution.
11. Deliver output: The output is a series of maneuvers characterized by the corresponding state variables,

epoch, maneuver size, and direction.

The x-axis crossing control algorithm computes a set of SH maneuvers designed to maintain a spacecraft
within an NRHO for an extended duration. The simple yet robust algorithm allows for analysis of the effects
on stationkeeping cost of various errors associated with both noisy and quiet spacecraft configurations.

APPLICATION: EARTH-MOON SOUTHERN HALO FAMILY IN A HIGHER-FIDELITY MODEL

Stationkeeping algorithms to sustain a southern NRHO-like motion are examined within a higher-fidelity
model based on the Earth-Moon system. Both LH and SH maneuvers are simulated, however, the analysis of
SH maneuvers is prioritized at the current state of the investigation. In this stationkeeping investigation, the
CGT targeting approach is examined to maintain an orbit with a focus on targets that are only one revolution
or less downstream. An x-axis crossing control strategy employs targets that are generally at least 6 revolu-
tions ahead. Both can be successful as demonstrated by the results.

Navigation and Spacecraft Error Models

In each of the stationkeeping simulations, orbit determination errors of 1 km in position and 1 cm/s in
velocity (3σ) are assumed. For some simulations, perturbations associated with the spacecraft itself are also

Table 1: Quiet spacecraft configuration

Quiet spacecraft errors

Maneuver Execution (fixed) 0.03 cm/s fixed, random direction
Maneuver Execution (percent) 1% 1σ, 0 mean, Gaussian

SRP Area 5% 1σ, 0 mean, Gaussian
Cr 10% 1σ, 0 mean, Gaussian

Table 2: Noisy Spacecraft Configuration

Noisy spacecraft errors. Fixed magnitude, random direction.

Error Type magnitude (m/s) frequency
PSA Puffs 8.3480E-4 every 10 min

Attitude deadbands 2.0043E-5 every 70 min
Attitude slews 6.9751E-4 every 3.2 hours
Urine dumps 1.8840E-3 every 3.0 hours

incorporated. Two spacecraft configura-
tions are investigated: a quiet spacecraft
configuration (no humans present, no at-
titude deadbanding required) and a noisy
spacecraft setup (humans on board, 3-
axis stabilized). These configurations are
detailed in Table 1 and Table 2, respec-
tively.

The quiet spacecraft configuration in-
cludes solar radiation pressure (SRP) er-
rors and maneuver execution errors in ad-
dition to orbit determination errors. Solar
radiation pressure is modeled assuming a
spacecraft mass of 25,848 kg, a nominal
spacecraft area of 50 m2, and a nominal
coefficient of reflectivity (Cr) of two.40

A 5% error on SRP area (1σ) and a 10%
error on Cr (1σ) result in errors in the
SRP force calculation. Two maneuver execution error models are investigated: a fixed error model and a
percent error model. In the fixed model, a maneuver execution error of 0.03 cm/s is assumed, applied in
a random direction. In the percent error model, a 1% error (1σ) is applied to the maneuver magnitude. In
all cases, a minimum maneuver threshold of 0.15 cm/s is implemented. If a computed ∆V is less than the
threshold, it is not executed. For a noisy spacecraft inhabited by humans and 3-axis stabilized, additional
errors are assumed. The noisy spacecraft errors are included in addition to orbit determination errors and
quiet spacecraft errors. These errors include mismodeling of attitude deadband and slew maneuvers, as well
as CO2 expulsion (PSA puffs) and urine dumps. At this time, no a priori modeling of the PSA puffs or urine
dumps is assumed.
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Monte Carlo Analysis: CGT Targeting

Propagation of the motion in an ephemeris model is initiated by an LH maneuver. This maneuver is con-
structed using a CR3BP periodic orbit as a virtual baseline; the current analysis focuses on NRHOs that are
members of the southern branch of the L2 halo family. Sample trajectories for different perilune altitudes that
result from a single, initial LH maneuver are plotted in Figure 11 as they appear when corrected in an Earth-
Moon-Sun-Jupiter (EMSJ) ephemeris model. For NRHO trajectories that are propagated in an ephemeris
model, the perilune altitude may vary visibly; the values for the perilune radius derived from the CR3BP are
used solely for convenience in labeling an NRHO motion.

(a) Perilune radius ≈ 3500 km. (b) Perilune radius ≈ 4600 km. (c) Perilune radius ≈ 7400 km

Figure 11: NRHO orbits within the Earth-Moon-Sun-Jupiter ephemeris model propagated for 50 revolutions.
Initial epoch: 23 November 2020. Patch points are indicated by red stars; the correction process uses 10 patch
points per revolution.

Short horizon maneuvers, computed using a CGT targeting scheme, are simulated in the EMSJ ephemeris
model, and are effective at sustaining NRHO motion within the higher-fidelity model of a mission environ-
ment. As currently formulated, the CGT targeting strategy targets a state defined on the following revolution.
Maneuvering on each revolution may enable larger safety margins for the crew and more reliable navigation.
A Monte Carlo analysis for a series of 45 SH burns supplies a basis to explore the efficacy of the SH level
within the stationkeeping scheme. An NRHO-like baseline trajectory is defined after an LH maneuver is
successfully computed (possible baseline paths for the SH level are, for example, those depicted in Figure
11). The SH maneuvers are executed at apolune and target a nominal J2000 position and velocity vector for
the subsequent apolune within a tolerance of 0.02 nondimensional units. Expressed in velocity units, such a
tolerance is approximately equal to 2 cm/s within the Earth-Moon system. Stochastic, Gaussian distributed
errors in each position and velocity component are added along the trajectory as described in Eq. (14). To
numerically sample the pool of possible outcomes, with the inclusion of orbital perturbations that are mod-
eled stochastically, the series of 45 SH maneuvers is repeated 500 times for each selected NRHO orbit. The
complete set of 500 trials yields a set of results from this Monte Carlo analysis. The total ∆V for a series of
45 SH maneuvers is averaged over the 500 trials, and supplies an estimate for the stationkeeping cost for the
particular NRHO studied. A series of 45 burns approximately corresponds to a time duration from 300 days
to 375 days, depending on the nominal orbit period. The time span is, then, sufficiently large to estimate the
annual stationkeeping cost, i.e.,

∆Vyr = ∆VMC
365[days]

∆tMC[days]
(15)

where ∆tMC is the elapsed time in days that is covered by the Monte Carlo trial.
The results of the Monte Carlo analysis are summarized in Table 3. The first column defines the reference

NRHO motion using the nominal CR3BP perilune radius as a label; the second column lists the stochastic
error levels for orbit determination; the third column delineates the percentage of the correction burns that
are successfully computed over the 45 maneuvers per 500 trials (the success rate indicates the capability
for the algorithm to consistently produce a workable solution); the fourth column is the time of flight that
approximately corresponds to a series of 45 maneuvers for each reference orbit; the fifth column contains the
total ∆V for a series of 45 maneuvers, a value that is the average over the Monte Carlo trials; and, the last
column displays the stationkeeping cost by linearly projecting the ∆V cost over a one year interval using
Eq. (15). For the selected NRHOs and orbit determination errors, the SH algorithm never fails within the
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randomly generated sample, and annual cost for SH maneuvers is below 10 m/s.

Table 3: Annual SH ∆V cost for five NRHOs targeted one revolution ahead with CGT Targeting

Perilune OD errors (3σ) Success Elapsed time Total ∆V Projected
radius [km] [km,cm/s] rate [%] [days] (average) [m/s] yr. cost [m/s]

3500 [1,1] 100 300 1.99 2.42
4600 [1,1] 100 318 3.34 3.83
6000 [1,1] 100 337 2.40 2.59
7400 [1,1] 100 356 1.88 1.93
9000 [1,1] 100 375 1.97 1.92

Monte Carlo Analysis : X-axis Crossing Control

To explore the effects of spacecraft errors on NRHO stationkeeping costs, a similar set of Monte Carlo
analyses is performed using x-axis crossing control. Recall that the x-axis crossing control stationkeeping
scheme focuses on a target state that is 6 or more revolutions downstream. The EMSJ ephemeris model is
employed including an 8x8 gravity field for the Moon. Each of six NRHOs is investigated over 500 Monte
Carlo trials, each of a duration equal to 50 revolutions. The analyses are run with both the quiet-spacecraft
configuration and the noisy-spacecraft configuration, as defined in Tables 1 and 2. The results appear in
Table 4 for both the quiet-spacecraft configuration and the noisy-spacecraft configuration. In each case, a
targeting horizon of 6.5 revolutions yields 100% success. The average ∆V is recorded for the duration of
the simulation and annualized according to Eq. (15). Not surprisingly, the costs of stationkeeping a noisy

Table 4: Annual SH ∆V cost for six NRHOs targeted 6.5 revolutions ahead with x-axis crossing control

Perilune OD errors Success Elapsed Quiet: Quiet: Noisy: Noisy:
radius (3σ) rate Time Total ∆V Projected Total ∆V Projected
[km] [km,cm/s] [%] [days] (average) [m/s] yr. cost [m/s] (average) [m/s] yr. cost [m/s]

2100 [1,1] 100 304 0.11 0.13 0.92 1.10
3200 [1,1] 100 329 0.17 0.19 1.14 1.26
4500 [1,1] 100 348 0.20 0.21 1.34 1.41
5000 [1,1] 100 356 0.21 0.22 1.41 1.45
5960 [1,1] 100 370 0.22 0.22 1.56 1.54
6500 [1,1] 100 378 0.23 0.22 1.62 1.56

spacecraft are higher than the costs associated with the quiet spacecraft by about an order of magnitude.
For the six NRHOs investigated with x-axis crossing control, the stationkeeping costs tend to decrease with
smaller orbits as reflected by the decreasing perilune radii. Additional cases and trends are explored in Davis
et al.40 As observed with CGT targeting, in each case, the annual stationkeeping costs remain below 10
m/s. Note that the targeting horizon selected in the x-axis crossing control implementation (6.5 revolutions)
suggests that the horizon is an important parameter in NRHO orbit maintenance.

FINAL REMARKS

To validate the NRHO as a viable candidate orbit for a habitat spacecraft, many factors must be consid-
ered. One important component is stationkeeping–maintaining the spacecraft in an orbit long-term at low
cost. The current analysis investigates two different strategies that meet different objectives. The CGT target-
ing approach leverages dynamical systems theory to determine maneuver direction and magnitude to maintain
the spacecraft in the NRHO region while using limited computational resources. An x-axis crossing control
implementation facilitates analysis of the effects of spacecraft errors on the stationkeeping costs. The strate-
gies in the current analysis are responsive to the notable characteristics of the NRHO regime–stability, orbital
period, and proximity to the Moon–and adapt libration point orbit stationkeeping concepts for application
to NRHOs. Both strategies result in robust, low-cost methods to maintain a spacecraft in an NRHO for a
long duration for different operational conditions. The analysis offers support, from the orbit maintenance
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perspective, for the feasibility of an NRHO as a candidate orbit for a long-term habitat spacecraft. Ongoing
studies are exploring several areas. Topics include the effectiveness of the x-axis crossing control strategy for
a shorter targeting horizon, analysis of the maneuver directions computed by the CGT and x-axis crossing
strategies, the incorporation of phasing maneuvers into the stationkeeping process, and the development of a
nonlinear description for the attainable region for CGT targeting.
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[20] G. Gómez, K. Howell, J. Masdemont, and C. Simo, “Station-keeping strategies for translunar libration
point orbits,” Advances in Astronautical Sciences, Vol. 99, No. 2, 1998, pp. 949–967.

[21] S. Soldini, C. Colombo, and S. Walker, “Comparison of Hamiltonian structure-preserving and Floquét
mode station-keeping for Libration-point orbits,” AIAA/AAS Astrodynamics Specialist Conference,
AIAA-2014-4118, San Diego, California, 2014, pp. 4–7.

[22] K. Williams, B. Barden, K. Howell, M. Lo, and R. Wilson, “Genesis halo orbit station keeping design,”
International Symposium: Spaceflight Dynamics, 2000.

[23] K. Howell and H. Pernicka, “Station-keeping method for libration point trajectories,” Journal of Guid-
ance, Control, and Dynamics, Vol. 16, No. 1, 1993, pp. 151–159.

[24] D. Grebow, M. Ozimek, K. Howell, and D. Folta, “Multibody orbit architectures for lunar south pole
coverage,” Journal of Spacecraft and Rockets, Vol. 45, No. 2, 2008, pp. 344–358.

[25] D. Scheeres, F.-Y. Hsiao, and N. Vinh, “Stabilizing motion relative to an unstable orbit: applications
to spacecraft formation flight,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 1, 2003,
pp. 62–73.

[26] D. Folta, T. Pavlak, A. Haapala, K. Howell, and M. Woodard, “Earth–Moon libration point orbit sta-
tionkeeping: theory, modeling, and operations,” Acta Astronautica, Vol. 94, No. 1, 2014, pp. 421–433.

[27] T. Pavlak and K. Howell, “Strategy for long-term libration point orbit stationkeeping in the Earth-Moon
system,” Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, AAS Paper, No. 11-516,
2011.

[28] T. S. Shirobokov, M. and M. Ovchinnikov, “Recovery of halo orbit missions in case of contingent
station-keeping maneuver delay,” Advances in Space Research, 2016.

[29] D. Folta, T. Pavlak, K. Howell, M. Woodard, and D. Woodfork, “Stationkeeping of Lissajous trajectories
in the Earth-Moon system with applications to ARTEMIS,” Advances in the Astronautical Sciences,
2010, pp. 193–208.

[30] D. Rohrbaugh and C. Schiff, “Stationkeeping Approach for the Microwave Anisotropy Probe (MAP),”
AIAA/AAS Astrodynamics Specialist Conference, Monterey, California, 2002.

[31] D. Dichmann, C. Alberding, and W. Yu, “Stationkeeping Monte Carlo Simulation for the James Webb
Space Telescope,” 2014.

[32] C. Short, K. C. Howell, A. Haapala, and D. Dichmann, “Mode Analysis for Long-Term Behavior in a
Resonant Earth-Moon Trajectory,” Journal of the Astronautical Sciences, November 2016, pp. 1–32.

[33] C. Short, D. Blazevski, K. Howell, and G. Haller, “Stretching in Phase Space and Application in General
Nonautonomous Multi-Body Problems,” Celestial Mechanics and Dynamical Astronomy, Vol. 122, July
2015, pp. 213–288.

[34] T. Pavlak, Trajectory Design and Orbit Maintenance Strategies in Multi-Body Dynamical Regimes.
Ph.D. Dissertation, School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana,
May 2013.

[35] C. Short, Flow-informed Strategies for Trajectory Design and Analysis. Ph.D. Dissertation, School of
Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana, May 2016.

[36] D. Smith, An Introduction to Continuum Mechanics – after Truesdell and Noll. Springer Netherlands,
1993.

[37] D. Folta, M. Woodard, and D. Cosgrove, “Stationkeeping of the First Earth-Moon Libration Orbiters:
The ARTEMIS Mission,” AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, August,
2011.

[38] D. Folta, T. Pavlak, K. Howell, M. Woodard, and D. Woodfork, “Stationkeeping of Lissajous Tra-
jectories in the Earth-Moon System with Applications to ARTEMIS,” 20th AAS/AIAA Space Flight
Mechanics Meeting, San Diego, California, February, 2010.

[39] J. Petersen and J. Brown, “Applying Dynamical Systems Theory to Optimize Libration Point Orbit
Stationkeeping Maneuvers for WIND,” AAS/AIAA Astrodynamics Specialists Conference, San Diego,
California, August, 2014.

[40] D. C. Davis, S. A. Bhatt, K. Howell, J. Jang, R. Whitley, F. Clark, D. Guzzetti, E. Zimovan, and
G. Barton, “Orbit Maintenance and Navigation of Human Spacecraft at Cislunar Near Rectilinear Halo
Orbits,” Paper No. AIAA-2017-269, AAS/AIAA Spaceflight Mechanics Meeting, San Antonio, Texas,
February, 2017.

20


	Introduction
	Dynamical Models
	Near Rectilinear Halo Orbits
	Stability
	Apse Angle
	Escape Warning

	Stationkeeping for Libration Points Orbits: Previous Contributions
	Stationkeeping for Near Rectilinear Halo Orbits
	Long Horizon Maneuvers
	Short Horizon Maneuvers
	Short Horizon Maneuvers: CGT Targeting
	Short Horizon Maneuvers: X-axis Crossing Control

	Application: Earth-Moon Southern Halo Family in a Higher-Fidelity Model
	Navigation and Spacecraft Error Models
	Monte Carlo Analysis: CGT Targeting
	Monte Carlo Analysis : X-axis Crossing Control

	Final Remarks
	Acknowledgments

