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STATIONKEEPING ANALYSIS FOR SPACECRAFT
IN LUNAR NEAR RECTILINEAR HALO ORBITS

Davide Guzzetti; Emily M. Zimovan| Kathleen C. Howell} Diane C. Davis®

Near Rectilinear Halo Orbits (NRHOs), a subset of the halo orbits characterized by favorable
stability properties, are strong candidates for a future inhabited facility in the lunar vicinity.
To maintain such orbits in this regime, however, requires a reliable maintenance strategy.
Two low-cost, reliable, stationkeeping strategies for maintaining long-term NRHO-like be-
havior in the ephemeris regime are investigated. Orbit determination errors, orbital perturba-
tions, and spacecraft noise are incorporated into the higher-fidelity simulation environment.
As a complement, a real-time warning in the event of a diverging path is presented.

INTRODUCTION

Since the return of the Apollo 17 spacecraft to Earth in December of 1972, no humans have traveled be-
yond low Earth orbit. The National Aeronautics and Space Administration (NASA) is focused on a new era
of human exploration of the solar system. As a staging ground for such exploration, a current focus of investi-
gation is the development of the capability to sustain a crew in an orbit nearby the Moon. This agenda is also
promoted by other international space agencies, as seen in the 2013 Global Exploration Roadmap."-? One of
the current orbits of interest as a destination for a habitat spacecraft in cislunar space is a Near Rectilinear
Halo Orbit (NRHO). A subset of the halo family of orbits, the NRHOs are attractive as staging orbits for
several reasons, including advantageous transfers from Earth and to destinations beyond the Earth’s vicinity,
availability of communications links, the potential to limit time in eclipse, and favorable access to the lunar
surface.’

The current investigation explores the feasibility of an Earth-Moon NRHO as a destination for a crewed
spacecraft in a long-term orbit in cislunar space from the perspective of orbit maintenance. As are many
libration point orbits, the NRHOs are sensitive to perturbations and, thus, a stationkeeping scheme is required
to ensure a spacecraft remains in an NRHO long-term. While multiple robotic missions—including ACE,
SOHO, WIND,* WMAP,> GENESIS,® and JWST,,” which exploited Sun-Earth libration point orbits, and
ARTEMIS,? the first Earth-Moon libration point orbiter—successfully implemented stationkeeping algorithms
in both analysis and operations, the NRHO regime is less explored from an orbit maintenance perspective.
In addition, maintaining a manned spacecraft offers additional challenges in the form of orbital perturbations
due to a human presence, for example, expulsion of waste products. To validate the NRHO as a viable desti-
nation for a habitat spacecraft, cost-effective stationkeeping algorithms must be identified that will maintain
the spacecraft reliably in orbit within the available AV budget.

Various approaches to orbit maintenance may be developed as a response to competing requirements. For
example, identifying the cheapest stationkeeping solution, in terms of propellant costs, may require signifi-
cant numerical effort. However, a maintenance strategy that requires a smaller computational load may be
beneficial for a successful on-board implementation, rapid correction of errors that may be hazardous to the
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human crew, or to offset an escaping path. Dynamical systems theory is applied to exploit an understanding
of the dynamics in the NRHO regime, allowing for smaller computational loads, through an exploration of
stationkeeping via the Cauchy-Green Tensor (CGT). Alternatively, stationkeeping methodologies previously
applied to robotic libration point orbiters are adapted to the NRHO to explore costs associated with correc-
tions of additional errors related to a noisy, human-crewed spacecraft. Considering the many uncertainties in
the current mission definition, demonstrating multiple strategies that can successfully maintain NRHO mo-
tion is very useful. Development of an optimal stationkeeping method from a cost perspective is not pursued
in this investigation, rather, the focus is on the generation of multiple maintenance strategies in response to
various mission objectives.

DYNAMICAL MODELS

To develop a stationkeeping process for lunar near rectilinear halo orbits, dynamical models that offer
different levels of fidelity are employed. The Circular Restricted Three-Body Problem (CR3BP) provides
an autonomous approximation to Earth-Moon dynamics, enabling an understanding of underlying dynamical
structures. The ephemeris model allows for higher-fidelity simulations.

The CR3BP dynamical model serves as a reasonable approximation to higher-fidelity dynamical models in
the Earth-Moon system. Within this application of the CR3BP, the motion of a massless spacecraft under the
gravitational influence of the Earth and Moon is considered. These two primary bodies, modeled as point-
masses, are assumed to move in circular orbits about their common barycenter. The motion of the spacecraft
is then described relative to a coordinate frame that rotates with the motion of the Earth and Moon. By
convention, quantities in the CR3BP are nondimensionalized such that the Earth-Moon distance, as well as
the mean motion of the primaries, are both equal to a constant value of unity. In addition, the Earth and Moon
have nondimensional masses equal to 1 — x and u, respectively, where the paramenter i equals the ratio of
the mass of the Moon to the total mass of the system. The CR3BP admits five relative equilibrium points:
the collinear points L;, Lo, and L3, located along the Earth-Moon line, and two equilateral points, L, and
L5, forming equilateral triangles with the two primaries. Since the CR3BP is autonomous, a constant energy
integral exists relative to the rotating frame and is defined as the Jacobi constant, such that JC' = 2U — v?,
where U is the psuedo-potential function and v is the velocity magnitude relative to the rotating frame.’

For applications to actual mission scenarios where high-fidelity modeling accuracy is required, N-body
differential equations and planetary ephemerides are employed. The N-body dynamics generally render
the motion of a particle of interest (e.g., a spacecraft) in an inertial frame relative to a central body under the
gravitational influence of the same central body and other additional perturbing particles. Within this analysis,
the relative position of each perturbing body with respect to the central body is instantaneously computed by
employing NAIF SPICE ephemeris data. The Moon is selected as the central body for numerical integration
in the J2000 inertial frame. The Earth, Moon, Sun, and Jupiter are incorporated in the N-body ephemeris
model. For additional resolution in some simulations, the Moon’s gravity is modeled using the GRAIL
(GRGM660PRIM) model truncated to degree and order 8.

NEAR RECTILINEAR HALO ORBITS

Near rectilinear halo orbits' in the vicinity of the Moon are identified as potential long-term orbits for a
crewed vehicle in the cislunar region. The NRHOs offer advantages such as relatively inexpensive transfer
options from the Earth, feasible transfer options to the lunar surface as well as other orbits in cislunar space
and beyond, and advantageous eclipsing properties.>!! Comprising a portion of the larger family of Lo
halo orbits, depicted in Figure 1(a), the NRHO subset can be approximately bounded by specific locations
reflecting changes in the linear stability across the Lo halo family; these bifurcation orbits are indicated in
red and by colored arrows in Figure 1(a).

Stability

Within the context of the CR3BP, it is relatively straightforward to determine the linear stability associated
with periodic orbits. Linear stability for a periodic solution in any autonomous dynamical system is assessed
by the eigenvalues of the State Transition Matrix (STM) evaluated after precisely one periodic interval, i.e.,



L2 Halo Family
4

L2 Halo Family Stability Indices

Stability Index, v

0\/_.
N

T4 10 05 3

1 15 2 25
Perilune Radius [km] x10*

y [km] -5 x [km] X

(a) The L2 halo family in configuration (b) Stability index across the Lo halo
space. family.

Figure 1: Definition of NRHO segment for the L, halo family within the Earth-Moon system (CR3BP).

the monodromy matrix. The STM is essentially a linear mapping and reflects the convergence or divergence
of variations relative to a reference solution. Two well-known properties of the monodromy matrix, as applied
within the context of the CR3BP, are necessary to analyze the stability of NRHOs: (1) The eigenvalues of
the monodromy matrix always appear in reciprocal pairs, and (2) one pair of eigenvalues is always equal to
unity due to the periodicity of the orbit and the existence of a family of such orbits with precisely periodic
behavior. Excluding the trivial pair, two reciprocal pairs of eigenvalues, (A;, 1/);), may be combined into a
single metric for the purpose of describing the stability of the corresponding mode. A stability index is then
defined as v; = % (XN + 1/X;) for i = 1, 2. If the stability indices, v;, are both less than one in modulus, then
the orbit is marginally stable in a linear sense; the orbit is otherwise unstable. For a diverging path, a larger
value of the stability index corresponds to a faster departure from the reference.

The linear stability characteristics associated with the halo family in the CR3BP serve to delineate the
NRHO boundaries. Within the Lo halo orbit family, the NRHOs are identified as a specific segment within
the family between two distinct markers. Across the family in the region of interest near the smaller primary,
three stability switches—a transition from marginally stable to unstable or vice versa—are indicated by colored
arrows in Figure 1(a). Thus, for the purpose of this investigation, an Lo NRHO is defined within the Earth-
Moon system as a halo orbit between the first and third stability changes, marked with green and pink arrows
in Figure 1(a) and green and pink boxes in Figure 1(b). This definition equivalently applies to both the
northern and southern members of the Lo halo family. Geometry also distinguishes an NRHO from the larger
set of halo orbits; the NRHOs are characterized by an elongated shape that resembles an ellipse when it is
plotted in the CR3BP rotating frame; the orbits are also dominated by their out of plane component. Earth-
Moon Ly NRHOs are characterized by perilune radii ranging from approximately 1850 km to 17350 km. The
orbital periods of the Ly NRHOs range from about 6 days to just over 10 days.

The NRHOs corresponding to stability indices |v;| > 1 are unstable. The divergence rate is, however,
significantly slower than other halo orbits that are closer to the Lo Lagrangian point, as evaluated in the
Earth-Moon system. The temporal scale for the instability is roughly predicted by the modulus of the stability
index. When both the stability indices are close to unity in modulus, such as for an NRHO, divergence is slow.
Within the NRHO range, both stability indexes remain bounded and nearly equal to one. A reference metric
for the temporal scale of the dominant diverging motion may be derived by considering the time constant, 7,
as measured in number of revolutions for the nominal orbit, defined as

1 1
Tlrevl = Re(In(Amax (P(P, 0)))) P M

where Anax () is an operator that returns the largest eigenvalue of the argument matrix, ®(P, 0) denotes the
STM over precisely one period of the orbit, and P is the period of the corresponding orbit. Note that the
time constant is infinite for a marginally stable orbit, i.e., Amax(®(P,0)) = 1. The value 7 is interpreted
as the time necessary to amplify a given initial perturbation by a factor of approximately 3, assuming that
t[rev]
T [rev]

the growth is proportional to the exponential function e7=i. The time constant associated with NRHOs is



displayed in Figure 2. Favorable stability properties and the time scale of divergence within the CR3BP
suggest the possibility of maintaining NRHO motion for a long duration while consuming few propellant
resources. Leveraging this opportunity requires the introduction of a stationkeeping algorithm to maintain

NRHO-like motion in a higher-fidelity environment.
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Figure 2: Linear time constant for the Lo NRHO region within the Earth-Moon system. Blue regions indicate
marginally stable orbits, red regions indicate unstable orbits. Colored arrows correspond to the marked red
orbits in Figure 1(a).

Apse Angle

Given periodic NRHOs in the CR3BP, transition to a higher-fidelity ephemeris force model yields quasi-
periodic motion. The transition can result in either “tight,” nearly-periodic orbits or “loose,” more variable
revolutions along a trajectory. A metric is defined for convenience to describe the spread of the orbit from a
perfectly periodic CR3BP analog. The metric is denoted the apse angle, o, and is depicted in Figure 3. The
apse angle reflects how closely each revolution along an ephemeris trajectory mirrors the previous revolution
or the evolution of an ephemeris trajectory relative to a periodic CR3BP NRHO in terms of orientation in the
yz-plane. By definition, a CR3BP periodic NRHO retains a constant apse angle, @ = 0°. The apse angle
is evaluated as the osculating argument of periapsis, as computed at the closest approach of the ephemeris
trajectory relative to the Moon, minus 90°; thus, it is evaluated once every revolution. Figure 3(a) reflects
the fact that the apse angle along a converged ephemeris trajectory can vary widely, as illustrated by the 3:1
synodic resonant NRHO converged using only a continuity constraint. Alternatively, as apparent in Figure
3(b), some ephemeris NRHOs closely resemble their CR3BP counterparts. Additionally, since the NRHOs in
Figures 3(a) and 3(b) are, in fact, a 3:1 synodic resonant orbit and a 4:1 synodic resonant orbit, respectively,
some cyclic behavior in apse angle can be observed in the plots of « in Figures 3(a) and 3(b). The plots
also serve to identify the resonances when visual inspection, e.g., in Figure 3(a), may not reveal obviously
repeating behavior.

Escape Warning

In a human spaceflight application, monitoring the effects of perturbations on the planned path is vital to
the timing of correction maneuvers and to ensure crew safety. A significant consideration also explored in
this investigation is the potential to anticipate, or predict, an escaping path. An escape warning is useful,
particularly if escape can be predicted prior to any visual evidence of any apparent diverging states. Thus,
defining a simple quantity to detect an escape with a sufficient time margin can be a key capability. Initially,
consider the following scalar quantity along a trajectory constructed in the CR3BP, i.e.,

t
MIr () = / 2(1)i(7) +y(1)y(7) + 2(7)2(T)dr 2)
to
where x, y, z are the position coordinates relative to the rotating frame and z, ¢, 2 are the corresponding
velocity components, which are functions of a single independent time variable, 7. The expression in Eq. (2)
is effectively a line integral for the position vector field computed between the initial epoch, ¢y, and current
epoch, t. For convenience, the quantity defined in Eq. (2) is termed the momentum integral. The momentum
integral along a closed orbit is equal to the circulation of the position vector as observed in the CR3BP rotat-
ing frame. For a trajectory that is periodic with respect to the CR3BP rotating frame, the momentum integral
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Figure 3: Computation of the apse angle to quantify the evolution of a converged ephemeris trajectory in
comparison to a corresponding CR3BP NRHO.

is null when it is computed over one period as follows from the fundamental theorem of calculus. As an
example, the momentum integral evolves along a CR3BP NRHO with perilune radius equal to 3500 km, and
returns to zero after one revolution of the orbit, as demonstrated in Figure 4(a). Within the present analysis,
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Figure 4: Momentum integral in the CR3BP (a) and ephemeris model (b)

the integral in Eq. (2) is solved numerically by applying the trapezoid rule with a small integration step along
a numerically constructed reference path. The momentum integral may also be evaluated for an ephemeris
trajectory; as an ephemeris trajectory is not likely to precisely return to the initial state, the momentum in-
tegral is not expected to be zero after each revolution. However, the momentum integral is bounded if the
orbital motion is bounded.

Comparing the momentum integral profile for a baseline trajectory to a slightly perturbed path that departs
from the reference orbital path illustrates the evolution of the momentum integral over many revolutions. For
this scenario, the time history for the momentum integral is plotted in Figure 4(b). The blue curve, repre-



senting the nominal path, is bounded and approximately repeats over each revolution. The red curve reflects
the perturbed trajectory. After approximately 30 revolutions, the perturbed path begins diverging. As the
departure evolves, the momentum integral profile is no longer bounded and does not approximately repeat
over each revolution of the nominal orbit.

Observing the two curves in Figure 4(b), a good metric to detect divergence is the instantaneous differ-
ence between the momentum integral computed for a perturbed trajectory verses a given long-term baseline
trajectory. The difference is defined as

AMI(1) = log [MIg (t) — MIp(1) 3)

where I refers to the perturbed trajectory and I refers to the reference orbit; a logarithm function is intro-
duced to reveal the order of magnitude for the momentum integral difference. For the difference in Eq. (3)
to be valid, the momentum integral for the reference trajectory, MIr (), and for the perturbed orbit, Ml (t),
must be evaluated originating from the same initial state and epoch. Since the metrics MIr(¢) and MIj(t) are
integral, or cumulative, quantities, they conserve any initial discrepancy. If the momentum integrals MIp(¢),
and MI(t) are computed from different initial conditions, the resulting profiles are offset by a constant bias
and, possibly, a phase difference.

A valid instantaneous vari-
ation, along a logarithmic
scale, for a perturbed momen-
tum integral (red curve in Fig-
ure 4(b)) relative to a base-
line profile (blue curve in Fig-
ure 4(b)) appears in Figure
5(a). When the orbital mo-
tion begins diverging, the or- -15
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ative to the Moon is equal to Figure 5: Escape prediction using the momentum integral difference.

unity. At the moment when

the lunar osculating eccentricity is unitary, the trajectory has already diverged from the reference NRHO,
and a AV to recover the desired motion near the Moon may be excessively large. As a rule of thumb, the
diverging path should be corrected, at minimum, 3-4 revolutions prior to the osculating eccentricity relative
to the Moon reaching a unitary value. Advance anticipation of the correction maneuver may be beneficial
in terms of crew safety and propellant cost. Monitoring of the momentum integral difference offers a valid
means to predict, with a sufficient time margin, the divergence of the current trajectory relative to the base-
line motion. A threshold on the difference in the momentum integral, AM I, can be employed to indicate
divergence. In this case, the horizontal dashed line marks a threshold that indicates the initiation of divergent
behavior from the baseline path. As a proof of concept, Figure 5(b) depicts the warning margin between
escape detection using the momentum integral difference and that using osculating eccentricity over multiple
trials. The advance warning based on the momentum integral difference is between four and six revolutions.

STATIONKEEPING FOR LIBRATION POINTS ORBITS: PREVIOUS CONTRIBUTIONS

There exists a relatively large collection of previous investigations concerning control of libration point
orbits. Such reports often elaborate on existing strategies for application to a specific stationkeeping prob-
lem in a multi-body regime, or combine pieces from different procedures to create an alternative approach.
Therefore, it is not straightforward to uniquely classify previous contributions into a rigid list of possible sta-
tionkeeping techniques. While the following summary is not all-inclusive, and some methods may partially
overlap or combine, it is representative of some recent trends that are useful for stationkeeping for libration
point orbits:



1. Classical Control Theory.'>”'® Methods from classical control theory are adapted and applied to the
stationkeeping problem in a multi-body regime.

2. Floquet Mode Control.%'7-?! Stationkeeping maneuvers are designed to cancel the unstable mode for
a reference solution or otherwise leverage knowledge of the invariant structures.

3. Target Point.">?%22-2% Specific future position and velocity states (i.e., target points) along a precom-
puted reference trajectory are targeted.

4. Hamiltonian Preserving Strategy.®*"-?> An artificial, instantaneous center manifold is created to main-
tain a spacecraft in oscillatory motion nearby a reference trajectory. The maneuver is constructed
by combining the projections of the position error along the unstable and stable local, instantaneous
modes.

5. Continuation Strategy.**-?® Each maneuver is determined to ensure the continuation of the orbit for
several revolutions downstream or to achieve some specific parameter values that are then targeted
downstream, for example, energy level, osculating orbital elements, epoch, or position and velocity
states. The underlying theme is leveraging the asymptotic behaviors of the natural dynamics.

6. Crossing Control.'*?°=3! Maneuvers are designed to control conditions at the next crossing of some or-
bit near-symmetry plane. It is a common practice to target an approximate perpendicular crossing of the
xz-plane within the instantaneous CR3BP rotating frame (i.e., limit the rotating z-velocity component
at the plane crossing).

For this current application involving a crewed vehichle, a stationkeeping strategy to maintain the behavior
in an NRHO is constructed through the understanding of previously successful approaches while solving
specific challenges that are associated with NRHO dynamics within the Earth-Moon system.

STATIONKEEPING FOR NEAR RECTILINEAR HALO ORBITS

Previous robotic mission applications, such as ARTEMIS?® and GENESIS,?? along with other simulated
scenarios, have demonstrated that employing a virtual baseline and selecting a target state that is located a
certain number of revolutions downstream may be beneficial. A “virtual baseline” broadly refers to the con-
cept of targeting a type of reference motion rather than a specific, fixed trajectory that is pre-planned from
the initial to final epoch. A virtual baseline also allows opportunities for updates of the reference to maintain
the validity of linear variational strategies. Targeting further downstream leverages the long-term natural flow
to achieve a desired final state. A virtual baseline may simplify stationkeeping operations particularly since
targeting long horizon goals may reduce the AV cost. A single-step stationkeeping approach can serve to
both generate this virtual baseline and target the baseline in one step. A typical implementation plan for a
single-step approach to stationkeeping includes: the selection of a CR3BP solution as an initial guess to a
corrections algorithm; the definition of target conditions many revolutions downstream along the orbit; the
application of orbit determination errors; and, the numerical correction of the motion within a higher-fidelity
ephemeris model. Thus, the single-step stationkeeping approach basically achieves three goals: (1) generates
a ballistic motion in an ephemeris model, (2) acquires a long horizon target state, and (3) compensates for
orbit determination errors.

Significant challenges exist in applying the single-step algorithm to generate an NRHO-like motion in a
higher-fidelity model. Recall that, as members of halo families of orbits, NRHOs are characterized by sen-
sitive dynamics that are numerically challenging in simulations. These orbits also pass very near a primary
and possess high osculating eccentricity values with relatively large variations in speeds over each revolution.
In this regime, the perturbations in a higher-fidelity model may be near the same frequency as the funda-
mental dynamical modes.’>33 As a consequence, high-cost trajectories, in terms of AV, may exist nearby
low-cost solutions, and numerical algorithms that are based on linear approximations of the dynamics nearby
the reference, such as gradient-based methods, may struggle to compute a suitably low-cost route. As noted,
simulating the motion within a higher-fidelity regime, such as the N-body ephemeris model, adds an addi-
tional level of complexity. The stationkeeping algorithm for NRHOs may require, therefore, more guidance
to be adequately effective. A single-step approach to stationkeeping is also computationally intensive (and
ill-suited for on-board applications) because it re-converges the ballistic solution at each maneuver. Repro-
ducing a large number of single-step simulations, for example in a Monte Carlo analysis, is less practical



as it generally requires a longer computation time. Additionally, targeting a long horizon state or condition
to compensate for small orbit determination errors may not significantly reduce the overall AV costs, and
re-converging the long term component of the motion may be redundant.

To compensate for difficulties in applying a single-step algorithm, the goals for a stationkeeping strategy
can be separated into successive steps. Consider a two-step procedure. At the first level, a maneuver that im-
plements an NRHO virtual baseline and achieves long horizon objectives is generated. A CR3BP trajectory
is employed as an initial guess for the virtual reference. Within the given tolerance and current higher-fidelity
model, the resulting trajectory is ballistic, i.e., no additional maneuvers following the initial burn are required
and no perturbations are included. The first level is denoted as the Long Horizon (LH) maintenance step.
Essentially, LH maintenance yields updated baselines as necessary. On a second level, perturbations to the
nominal motion are added, and a corrections strategy to maintain the orbit sufficiently close to the virtual ref-
erence is implemented. Maneuvers are inserted to compensate for orbit determination errors. Each maneuver
is computed to target a vector or scalar state, or a condition, downstream. Because a downstream target is
only one or a few revolutions ahead of the current state, this level is termed Short Horizon (SH) maintenance.
Target states for the SH level are supplied by the long-term virtual ephemeris motion obtained in the LH level.

Decomposing the stationkeeping procedure into two steps offers some benefits. Using SH maneuvers to
compensate for orbit determination errors and other small perturbations is computationally efficient. For
small variations along the virtual reference, simple corrections algorithms (e.g., single shooting methods)
may be employed. The long-term virtual baseline is only updated when it is strictly necessary using LH
maneuvers. Any post-insertion maneuver may be implemented as an LH burn, and may benefit from the
cost reduction that is generally granted by targeting many revolutions downstream along the path. Figure 6
displays schematics for the orbit maintenance strategy as split into LH and SH levels. To summarize, the
scope of an LH maneuver Bl short Horizon (SH) maintenance

LH Maneuver
is to set the Spacecraft on a Long Horizon (LH) virtual solution
SH Maneuver
path thE'lt generally resemb.les e l
a specified CR3BP motion — EENEEEEEENEEE

within the ephemeris model
that meets the mission re-
quirements. An LH maneu-
ver may be useful for extend-
ing the orbit life, avoiding an
eclipse, shifting the reference
motion, or correcting a missed burn. Following an LH maneuver, SH maneuvers serve to compensate for
recurring orbit determination errors and other small perturbations, such as a noisy spacecraft. Both LH and
SH maneuvers are generally necessary to maintain an NRHO in an actual mission application.

time-line
Figure 6: Orbit maintenance strategy schematic.

Long Horizon Maneuvers

A variety of algorithms may be employed to compute LH maneuvers. Since LH maneuvers are computed
less frequently than SH maneuvers, increases in computational cost (as occurs, for example, in optimization)
are less critical. A possible framework for an LH maintenance algorithm is described by the following steps.

1. Introduce input: A solution in the CR3BP supplies an accurate initial guess for an NRHO-like motion
in the ephemeris model. Let ¢35 (x, t) be the dynamical flow associated with the CR3BP equations of
motion. Let the vector x( represent the position and velocity states. Then, any state, (), that belongs
to an NRHO periodic orbit, denoted I'nruo, satisfies g = ¢3p(xo, P) for £y € I'nruo, where time
t = P is the period of the orbit. The above relationship is also satisfied for any integer multiple of the
period.

2. Generate patch points: A discrete set of states (position and velocity), denoted patch points, is se-
lected along a full revolution of the CR3BP periodic orbit. A common discretization for a trajectory is
the adoption of patch points equally spaced in time. These patch points serve to converge a solution in
the ephemeris model. Let x; = [x; y; z; &; ¥; Z]; be the state vector, within the CR3BP, corresponding
to the time instant ¢; € [0, P], such that &; € T'yrro. Then, the complete set of variables for n patch



points over one revolution is written as
rl T
X3B:[l’1 o ... :cn]
6nx1

“)
with t; = (i — 1)P/n, for i = 1,...,n. The state variable vector constructed within the CR3BP, X5,
supplies a good initial guess for the corrections process in the ephemeris model.

3. Duplicate patch points: The CR3BP periodic orbit is reproduced for a given number of revolutions,
N,.¢y. The patch points vector, X ng is cloned (N;.., — 1) times, and stacked, to create an initial guess
for N,.., revolutions of the orbit,

1 1 117
Xsp  =[X3p Xip ... Xip 5)
61 (Npey—1)x1
with a time vector
P 2P P P n—1)P
t=10, =, =, ..., P P+=—, ..., (Neew =P, ..., (Npew —1)P+=—,..., (Nrevfl)PJrg
n n n n n

rendering the epoch for each patch point in the series. For convenience, X 3p is also converted into
the J2000 frame, yielding X jo000. Similarly, the time vector is converted into an array of epochs,
FE 70000 = Eo + t, where Ejy denotes the selected initial epoch. The patch point vector, X 2000, and
the epoch array, E j2000, are used to propagate the trajectory within the ephemeris model.

4. Define constraints: Possible constraints along the path are then introduced into the process. Con-
straints are used to render specific orbit conditions at selected epochs or patch points. Typically, con-
straints are applied at the beginning or end on a trajectory arc, however, constraints on intermediate
patch points are also possible. If a desired constraint applies to a location that is not included in the
original set of patch points, it may be necessary to add a patch point at the location where the or-
bit constraint is required. Assigning the initial position and/or epoch is a common constraint. Fixed
initial spacial coordinates may, for example, describe an insertion location into an orbit, or some spe-
cific position for a post-insertion maneuver to extend the orbit life. Assigning an initial epoch may
represent a phasing constraint. Note that any constraint must be expressed consistent with the cor-
rections algorithm formulation. For example, if the corrections algorithm utilizes a J2000 reference
system, constraints that are formulated within the CR3BP rotating coordinates must be transformed to
equivalent constraint equations in the J2000 frame.

5. Converge motion in ephemeris: Using a corrections algorithm, e.g., multiple shooting,3* the patch
point vector, X j2000, and epoch vector, E j2000, are iteratively adjusted to obtain a solution within
the ephemeris model that is continuous and that satisfies the constraints. Both internal continuity and
user-defined constraints are achieved within a given tolerance. A convergence tolerance is selected to
enable the correct functioning of the SH level while avoiding excessive numerical precision at this level.
Tightening the tolerance more than necessary increases the computational load, and errors introduced
in the SH level reduce the need for extremely high accuracy. A tolerance of 10~% nondimensional units,
which is equivalent to approximately 0.380 km for position and 0.1 cm/s for velocity, is generally a
good compromise between computational time and solution accuracy for the LH level for the NRHOs.

6. Deliver output: The corrected patch point vector, X j2000, and epoch vector, E o090 are the output
for the LH level, and may be propagated numerically to render the desired motion in the ephemeris
model to within the selected tolerance.

For the application of sustaining NRHO-like motion in the ephemeris environment, an LH maneuver gen-
erates a path that retains the general characteristics of a trajectory that is identified within the CR3BP. In
higher-fidelity simulation, LH maneuvers are also useful to introduce large modifications from the reference,
for example, maneuvers that are required to extend orbit life, avoid an eclipse, correct for a missed burn, or
offset a potential escape from the system.

Short Horizon Maneuvers

Short Horizon (SH) maneuvers are introduced to correct orbit determination errors, and small perturbations
to the virtual reference that is supplied by an LH maneuver. Two algorithms are investigated for the efficient



computation of SH maneuvers. The first uses dynamical systems theory in the form of the Cauchy-Green
Tensor (CGT). The CGT targeting algorithm leverages an understanding of the maneuver size and direction
that best maintains the perturbed orbit near the virtual reference and is developed with a focus on a target only
one revolution ahead. The second method applies crossing control to the NRHO stationkeeping problem.
By targeting a single component of the virtual reference, v,, at the xz—plane crossing several revolutions
downstream, the NRHO is maintained nearby the virtual reference. Neither approach forces a return to the
reference path; both allow the spacecraft to simply shadow the reference.

Short Horizon Maneuvers: CGT Targeting

Dynamical systems theory is introduced with the goal of producing low-cost stationkeeping maneuvers
while reducing the demand for computational resources. To explore the capability of a maneuver vector,
AV, at the current time to influence the path at a later time, consider the evolution of initial variations.
Varying the maneuver vector, AV, both in direction and/or magnitude will naturally modify the resulting
state at the final time. The final time, ¢y, may be defined as a fixed epoch, or as a horizon that recedes
as the maneuver time advances. In a phase space (i.e., a space generally comprised of state variables), the
variations in the final conditions typically describe a region of attainable states. In other words, assuming
an initial variation in terms only of velocity (i.e., a AV vector) within some bounded magnitude, the state
variations downstream are also bounded. The boundaries downstream reflect the attainable region. Assume
that a region of attainable states is traceable to a known geometry. The boundaries for the attainable region
can be constructed from linear or nonlinear propagation of the variations. Any knowledge concerning the
attainable region geometry may then be employed to determine an initial maneuver that targets a desired final
condition.

A description of the attainable region geometry follows from continuous mechanics theory as applied to
trajectory design. Concepts that are native to continuous mechanics can facilitate the analysis of solutions in
the vicinity of a reference path, especially within the context of non-autonomous systems, such as an N-body
ephemeris model.>> From this perspective, the dynamical flow nearby a baseline path may be described as the
stretching of a fictitious material volume over a given time interval. The stretching for the material volume
is mathematically rendered by the Cauchy-Green Strain Tensor, or simply Cauchy-Green Tensor (CGT). The
CGT, that is, C, is the product of the transpose of the STM with itself,®

Cltg,to) = D7 (ts,t0)®(ts,to) (6)

where to, and ¢y denote the fixed initial and final epochs. The STM, ®, is essentially a linear mapping of the
final perturbation vector, dx(t ), given a variation of the initial conditions, dx (o), such that

dx(ty) = P(ty,to)0x(to) (7

The CGT is a squaring operation that returns the relationship between the initial and final distance from the
nominal motion
12t )||* = d(to) " C(t to)dx(to) ®)

The distance ||dx(tf)||? reveals the growth or the decay of the initial vector perturbation. Furthermore,
the eigendecomposition of the CGT allows identification of the principal directions of expansion for the
dynamical flow, including those that are locally associated with the largest and smallest stretching. The
CGT 