Lecture 25

Radiation by a Hertzian Dipole

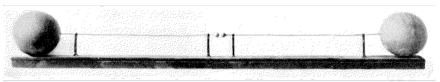
25.1 Radiation by a Hertzian Dipole

Radiation by arbitrary sources is an important problem for antennas and wireless communications. We will start with studying the Hertzian dipole which is the simplest of a radiation source we can think of.

25.1.1 History

The original historic Hertzian dipole experiment is shown in Figure 25.1. It was done in 1887 by Heinrich Hertz [18]. The schematics for the original experiment is also shown in Figure 25.2.

A metallic sphere has a capacitance in closed form with respect to infinity or a ground plane. Hertz could use those knowledge to estimate the capacitance of the sphere, and also, he could estimate the inductance of the leads that are attached to the dipole, and hence, the resonance frequency of his antenna. The large sphere is needed to have a large capacitance, so that current can be driven through the wires. As we shall see, the radiation strength of the dipole is proportional to p=ql the dipole moment. To get a large dipole moment, the current flowing in the lead should be large.



Hertz's first radio transmitter: a dipole resonator consisting of a pair of one meter copper wires with a 7.5 mm spark gap between them, ending in 30 cm zinc spheres.^[12] When an induction coil applied a high voltage between the two sides, sparks across the spark gap created standing waves of radio frequency current in the wires, which radiated radio waves. The frequency of the waves was roughly 50 MHz, about that used in modern television transmitters.

Figure 25.1: Hertz's original experiment on a small dipole (courtesy of Wikipedia [18]).

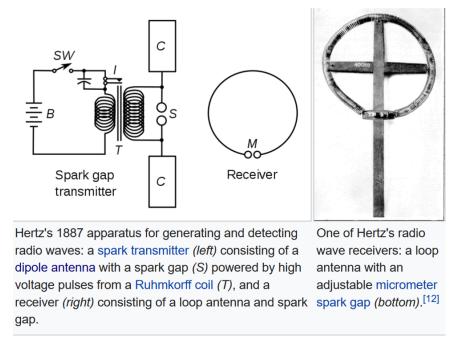


Figure 25.2: More on Hertz's original experiment on a small dipole (courtesy of Wikipedia [18]

25.1.2 Approximation by a Point Source

A Hertzian dipole is a dipole which is much smaller than the wavelength under consideration so that we can approximate it by a point current distribution, mathematically given by [31,38]

$$\mathbf{J}(\mathbf{r}) = \hat{z}Il\delta(\mathbf{r}) \tag{25.1.1}$$

The dipole may look like the following schematically. As long as we are not too close to the dipole so that it does not look like a point source anymore, the above is a good model for a

Hertzian dipole.

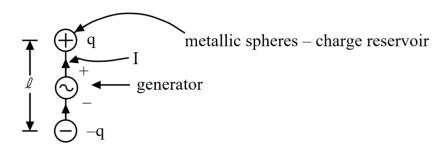


Figure 25.3: Schematics of a small Hertzian dipole.

In (25.1.1), l is the effective length of the dipole so that the dipole moment p = ql. The charge q is varying in time harmonically because it is driven by the generator. Since

$$\frac{dq}{dt} = I,$$

we have

$$Il = \frac{dq}{dt}l = j\omega ql = j\omega p \tag{25.1.2}$$

for a Hertzian dipole. We have learnt previously that the vector potential is related to the current as follows:

$$\mathbf{A}(\mathbf{r}) = \mu \iiint d\mathbf{r}' \mathbf{J}(\mathbf{r}') \frac{e^{-j\beta|\mathbf{r} - \mathbf{r}'|}}{4\pi|\mathbf{r} - \mathbf{r}'|}$$
(25.1.3)

Therefore, the corresponding vector potential is given by

$$\mathbf{A}(\mathbf{r}) = \hat{z} \frac{\mu I l}{4\pi r} e^{-j\beta r} \tag{25.1.4}$$

The magnetic field is obtained, using cylindrical coordinates, as

$$\mathbf{H} = \frac{1}{\mu} \nabla \times \mathbf{A} = \frac{1}{\mu} \left(\hat{\rho} \frac{1}{\rho} \frac{\partial}{\partial \phi} A_z - \hat{\phi} \frac{\partial}{\partial \rho} A_z \right)$$
 (25.1.5)

where $\frac{\partial}{\partial \phi} = 0$, $r = \sqrt{\rho^2 + z^2}$. In the above,

$$\frac{\partial}{\partial \rho} = \frac{\partial r}{\partial \rho} \frac{\partial}{\partial r} = \frac{\rho}{\sqrt{\rho^2 + z^2}} \frac{\partial}{\partial r} = \frac{\rho}{r} \frac{\partial}{\partial r}.$$

Hence,

$$\mathbf{H} = -\hat{\phi} \frac{\rho}{r} \frac{Il}{4\pi} \left(-\frac{1}{r^2} - j\beta \frac{1}{r} \right) e^{-j\beta r}$$
(25.1.6)

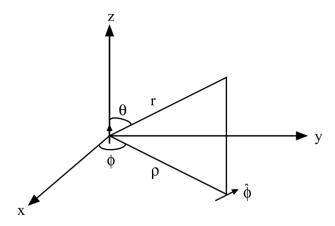


Figure 25.4: Spherical coordinates are used to calculate the fields of a Hertzian dipole.

In spherical coordinates, $\frac{\rho}{r}=\sin\theta,$ and (25.1.6) becomes [31]

$$\mathbf{H} = \hat{\phi} \frac{Il}{4\pi r^2} (1 + j\beta r) e^{-j\beta r} \sin \theta \tag{25.1.7}$$

The electric field can be derived using Maxwell's equations.

$$\mathbf{E} = \frac{1}{j\omega\epsilon} \nabla \times \mathbf{H} = \frac{1}{j\omega\epsilon} \left(\hat{r} \frac{1}{r\sin\theta} \frac{\partial}{\partial \theta} \sin\theta H_{\phi} - \hat{\theta} \frac{1}{r} \frac{\partial}{\partial r} r H_{\phi} \right)$$
(25.1.8)

$$= \frac{I l e^{-j\beta r}}{j\omega\epsilon 4\pi r^3} \left[\hat{r}^2 \cos\theta (1+j\beta r) + \hat{\theta} \sin\theta (1+j\beta r - \beta^2 r^2) \right]$$
 (25.1.9)

25.1.3 Case I. Near Field, $\beta r \ll 1$

$$\mathbf{E} \cong \frac{p}{4\pi\epsilon r^3}(\hat{r}^2\cos\theta + \hat{\theta}\sin\theta), \qquad \beta r \ll 1$$
 (25.1.10)

$$\mathbf{H} \ll \mathbf{E}, \quad \text{when } \beta r \ll 1$$
 (25.1.11)

where p=ql is the dipole moment, and βr could be made very small by making $\frac{r}{\lambda}$ small or by making $\omega \to 0$. The above is like the static field of a dipole. The reason being that in

the near field, the field varies rapidly, and space derivatives are much larger than the time derivative.¹

For instance,

$$\frac{\partial}{\partial x} \gg \frac{\partial}{c\partial t}$$

Alternatively, we can say that the above is equivalent to

$$\frac{\partial}{\partial x} \gg \frac{\omega}{c}$$

or that

$$abla^2 - rac{1}{c^2} rac{\partial^2}{\partial t^2} pprox
abla^2$$

In other words, static theory prevails over dynamic theory.

25.1.4 Case II. Far Field (Radiation Field), $\beta r \gg 1$

In this case,

$$\mathbf{E} \cong \hat{\theta} j \omega \mu \frac{Il}{4\pi r} e^{-j\beta r} \sin \theta \tag{25.1.12}$$

and

$$\mathbf{H} \cong \hat{\phi} j \beta \frac{Il}{4\pi r} e^{-j\beta r} \sin \theta \tag{25.1.13}$$

Note that $\frac{E_{\theta}}{H_{\phi}} = \frac{\omega \mu}{\beta} = \sqrt{\frac{\mu}{\epsilon}} = \eta_0$. Here, **E** and **H** are orthogonal to each other and are both orthogonal to the direction of propagation, as in the case of a plane wave. A spherical wave resembles a plane wave in the far field approximation.

25.1.5 Radiation, Power, and Directive Gain Patterns

The time average power flow is given by

$$\langle \mathbf{S} \rangle = \frac{1}{2} \Re e[\mathbf{E} \times \mathbf{H}^*] = \hat{r} \frac{1}{2} \eta_0 |H_{\phi}|^2 = \hat{r} \frac{\eta_0}{2} \left(\frac{\beta Il}{4\pi r} \right)^2 \sin^2 \theta$$
 (25.1.14)

The **radiation field pattern** of a Hertzian dipole is the plot of $|\mathbf{E}|$ as a function of θ at a constant \mathbf{r} . Hence, it is proportional to $\sin \theta$, and it can be proved that it is a circle.

¹This is in agreement with our observation that electromagnetic fields are great contortionists: They will deform themselves to match the boundary first before satisfying Maxwell's equations. Since the source point is very small, the fields will deform themselves so as to satisfy the boundary conditions near to the source region. If this region is small compared to wavelength, the fields will vary rapidly over a small lengthscale compared to wavelength.

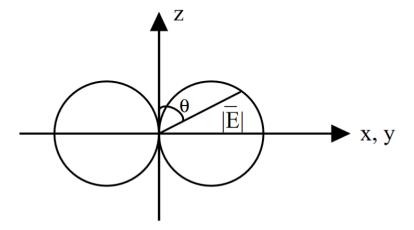


Figure 25.5: Radiation field pattern of a Hertzian dipole.

The radiation power pattern is the plot of $\langle S_r \rangle$ at a constant r.

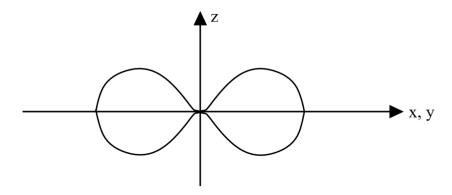


Figure 25.6: Radiation power pattern of a Hertzian dipole which is also the same as the directive gain pattern.

The total power radiated by a Hertzian dipole is given by

$$P = \int_0^{2\pi} d\phi \int_0^{\pi} d\theta r^2 \sin\theta \langle S_r \rangle = 2\pi \int_0^{\pi} d\theta \frac{\eta_0}{2} \left(\frac{\beta Il}{4\pi}\right)^2 \sin^3\theta$$
 (25.1.15)

Since

$$\int_0^{\pi} d\theta \sin^3 \theta = -\int_1^{-1} (d \cos \theta) [1 - \cos^2 \theta] = \int_{-1}^1 dx (1 - x^2) = \frac{4}{3}$$
 (25.1.16)

then

$$P = \frac{4}{3}\pi\eta_0 \left(\frac{\beta Il}{4\pi}\right)^2 \tag{25.1.17}$$

The **directive gain** of an antenna, $G(\theta, \phi)$, is defined as [31]

$$G(\theta, \phi) = \frac{\langle S_r \rangle}{\frac{P}{4\pi r^2}} \tag{25.1.18}$$

where

$$\frac{P}{4\pi r^2}$$

is the power density if the power P were uniformly distributed over a sphere of radius r. Substituting (25.1.14) and (25.1.17) into the above, we have

$$G(\theta, \phi) = \frac{\frac{\eta_0}{2} \left(\frac{\beta Il}{4\pi r}\right)^2 \sin^2 \theta}{\frac{1}{4\pi r^2} \frac{4}{3} \eta_0 \pi \left(\frac{\beta Il}{4\pi}\right)^2} = \frac{3}{2} \sin^2 \theta$$
 (25.1.19)

The peak of $G(\theta, \phi)$ is known as the **directivity** of an antenna. It is 1.5 in the case of a Hertzian dipole. If an antenna is radiating isotropically, its directivity is 1. Therefore, the lowest possible values for the directivity of an antenna is 1, whereas it can be over 100 for some antennas like reflector antennas (see Figure 25.7). A **directive gain pattern** is a plot of the above function $G(\theta, \phi)$ and it resembles the radiation power pattern.

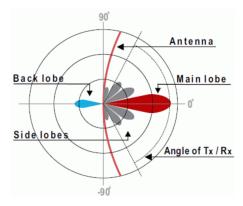


Figure 25.7: The gain of a reflector antenna can be increased by deflecting the power radiated in the desired direction by the use of a reflector (courtesy of racom.eu).

If the total power fed into the antenna instead of the total radiated power is used in the denominator of (25.1.18), the ratio is known as the **power gain** or just **gain**. The total power fed into the antenna is not equal to the total radiated power because there could be some loss in the antenna system like metallic loss.

25.1.6 Radiation Resistance

Defining a radiation resistance R_r by $P = \frac{1}{2}I^2R_r$, we have [31]

$$R_r = \frac{2P}{I^2} = \eta_0 \frac{(\beta l)^2}{6\pi} \approx 20(\beta l)^2, \quad \text{where } \eta_0 = 377 \approx 120\pi \ \Omega$$
 (25.1.20)

For example, for a Hertzian dipole with $l = 0.1\lambda$, $R_r \approx 8\Omega$.

The above assumes that the current is uniformly distributed over the length of the Hertzian dipole. This is true if there are two charge reservoirs at its two ends. For a small dipole with no charge reservoir at the two ends, the currents have to vanish at the tip of the dipole as shown in Figure 25.8.

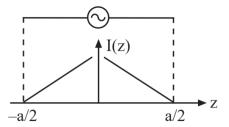


Figure 25.8: The current pattern on a short dipole can be approximated by a triangle since the current has to be zero at the end points of the short dipole.

The effective length of the dipole is **half** of its actual length due to the manner the currents are distributed. For example, for a half-wave dipole, $a = \frac{\lambda}{2}$, and if we use $l_{\text{eff}} = \frac{\lambda}{4}$ in (25.1.20), we have

$$R_r \approx 50\Omega \tag{25.1.21}$$

However, a half-wave dipole is not much smaller than a wavelength and does not qualify to be a Hertzian dipole. Furthermore, the current distribution on the half-wave dipole is not triangular in shape as above. A more precise calculation shows that $R_r = 73\Omega$ for a half-wave dipole [48].

The true current distribution on a half-wave dipole resembles that shown in Figure 25.9. The current is zero at the end points, but the current has a more sinusoidal-like distribution like that in a transmission line. In fact, one can think of a half-wave dipole as a flared, open transmission line. In the beginning, this flared open transmission line came in the form of biconical antennas which are shown in Figure 25.10 [124]. If we recall that the characteristic impedance of a transmission line is $\sqrt{L/C}$, then as the spacing of the two metal pieces becomes bigger, the equivalent characteristic impedance gets bigger. Therefore, the impedance can gradually transform from a small impedance like 50 Ω to that of free space, which is 377 Ω . This impedance matching helps mitigate reflection from the ends of the flared transmission line, and enhances radiation.

Because of the matching nature of bicone antennas, they tend to have a broader bandwidth, and are important in UWB (ultra-wide band) antennas [125].

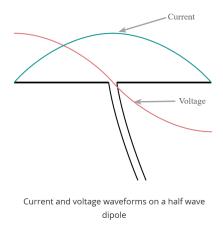


Figure 25.9: A current distribution on a half-wave dipole (courtesy of electronics-notes.co).

Figure 25.10: A bicone antenna can be thought of as a transmission line with gradually changing characteristic impedance. This enhances impedance matching and the radiation of the antenna (courtesy of antennasproduct.com).

Bibliography

- [1] J. A. Kong, Theory of electromagnetic waves. New York, Wiley-Interscience, 1975.
- [2] A. Einstein *et al.*, "On the electrodynamics of moving bodies," *Annalen der Physik*, vol. 17, no. 891, p. 50, 1905.
- [3] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 114, no. 767, pp. 243–265, 1927.
- [4] R. J. Glauber, "Coherent and incoherent states of the radiation field," *Physical Review*, vol. 131, no. 6, p. 2766, 1963.
- [5] C.-N. Yang and R. L. Mills, "Conservation of isotopic spin and isotopic gauge invariance," *Physical review*, vol. 96, no. 1, p. 191, 1954.
- [6] G. t'Hooft, 50 years of Yang-Mills theory. World Scientific, 2005.
- [7] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. Princeton University Press, 2017.
- [8] F. Teixeira and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," *Journal of Electromagnetic Waves and Applications*, vol. 13, no. 5, pp. 665–686, 1999.
- [9] W. C. Chew, E. Michielssen, J.-M. Jin, and J. Song, Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., 2001.
- [10] A. Volta, "On the electricity excited by the mere contact of conducting substances of different kinds. in a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S," *Philosophical transactions of the Royal Society of London*, no. 90, pp. 403–431, 1800.
- [11] A.-M. Ampère, Exposé méthodique des phénomènes électro-dynamiques, et des lois de ces phénomènes. Bachelier, 1823.
- [12] —, Mémoire sur la théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience: dans lequel se trouvent réunis les Mémoires que M. Ampère a communiqués à l'Académie royale des Sciences, dans les séances des 4 et

- 26 décembre 1820, 10 juin 1822, 22 décembre 1823, 12 septembre et 21 novembre 1825. Bachelier, 1825.
- [13] B. Jones and M. Faraday, *The life and letters of Faraday*. Cambridge University Press, 2010, vol. 2.
- [14] G. Kirchhoff, "Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird," *Annalen der Physik*, vol. 148, no. 12, pp. 497–508, 1847.
- [15] L. Weinberg, "Kirchhoff's' third and fourth laws'," *IRE Transactions on Circuit Theory*, vol. 5, no. 1, pp. 8–30, 1958.
- [16] T. Standage, The Victorian Internet: The remarkable story of the telegraph and the nineteenth century's online pioneers. Phoenix, 1998.
- [17] J. C. Maxwell, "A dynamical theory of the electromagnetic field," *Philosophical transactions of the Royal Society of London*, no. 155, pp. 459–512, 1865.
- [18] H. Hertz, "On the finite velocity of propagation of electromagnetic actions," *Electric Waves*, vol. 110, 1888.
- [19] M. Romer and I. B. Cohen, "Roemer and the first determination of the velocity of light (1676)," *Isis*, vol. 31, no. 2, pp. 327–379, 1940.
- [20] A. Arons and M. Peppard, "Einstein's proposal of the photon concept—a translation of the Annalen der Physik paper of 1905," American Journal of Physics, vol. 33, no. 5, pp. 367–374, 1965.
- [21] A. Pais, "Einstein and the quantum theory," Reviews of Modern Physics, vol. 51, no. 4, p. 863, 1979.
- [22] M. Planck, "On the law of distribution of energy in the normal spectrum," *Annalen der physik*, vol. 4, no. 553, p. 1, 1901.
- [23] Z. Peng, S. De Graaf, J. Tsai, and O. Astafiev, "Tuneable on-demand single-photon source in the microwave range," *Nature communications*, vol. 7, p. 12588, 2016.
- [24] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, "New approaches to nanofabrication: molding, printing, and other techniques," *Chemical reviews*, vol. 105, no. 4, pp. 1171–1196, 2005.
- [25] J. S. Bell, "The debate on the significance of his contributions to the foundations of quantum mechanics, Bells Theorem and the Foundations of Modern Physics (A. van der Merwe, F. Selleri, and G. Tarozzi, eds.)," 1992.
- [26] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics. Cambridge University Press, 2018.
- [27] C. Pickover, Archimedes to Hawking: Laws of science and the great minds behind them. Oxford University Press, 2008.

Radiation Fields 271

[28] R. Resnick, J. Walker, and D. Halliday, Fundamentals of physics. John Wiley, 1988.

- [29] S. Ramo, J. R. Whinnery, and T. Duzer van, Fields and waves in communication electronics, Third Edition. John Wiley & Sons, Inc., 1995.
- [30] J. L. De Lagrange, "Recherches d'arithmétique," Nouveaux Mémoires de l'Académie de Berlin, 1773.
- [31] J. A. Kong, Electromagnetic Wave Theory. EMW Publishing, 2008.
- [32] H. M. Schey, Div, grad, curl, and all that: an informal text on vector calculus. WW Norton New York, 2005.
- [33] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, Vols. I, II, & III: The new millennium edition. Basic books, 2011, vol. 1,2,3.
- [34] W. C. Chew, Waves and fields in inhomogeneous media. IEEE press, 1995.
- [35] V. J. Katz, "The history of Stokes' theorem," *Mathematics Magazine*, vol. 52, no. 3, pp. 146–156, 1979.
- [36] W. K. Panofsky and M. Phillips, Classical electricity and magnetism. Courier Corporation, 2005.
- [37] T. Lancaster and S. J. Blundell, Quantum field theory for the gifted amateur. OUP Oxford, 2014.
- [38] W. C. Chew, "Fields and waves: Lecture notes for ECE 350 at UIUC," https://engineering.purdue.edu/wcchew/ece350.html, 1990.
- [39] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer Science & Business Media, 2013.
- [40] J. M. Crowley, Fundamentals of applied electrostatics. Krieger Publishing Company, 1986.
- [41] C. Balanis, Advanced Engineering Electromagnetics. Hoboken, NJ, USA: Wiley, 2012.
- [42] J. D. Jackson, Classical electrodynamics. John Wiley & Sons, 1999.
- [43] R. Courant and D. Hilbert, Methods of Mathematical Physics: Partial Differential Equations. John Wiley & Sons, 2008.
- [44] L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," IBM Journal of Research and Development, vol. 14, no. 1, pp. 61–65, 1970.
- [45] E. Kudeki and D. C. Munson, Analog Signals and Systems. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2009.
- [46] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Pearson Education, 2014.

- [47] R. F. Harrington, Time-harmonic electromagnetic fields. McGraw-Hill, 1961.
- [48] E. C. Jordan and K. G. Balmain, *Electromagnetic waves and radiating systems*. Prentice-Hall, 1968.
- [49] G. Agarwal, D. Pattanayak, and E. Wolf, "Electromagnetic fields in spatially dispersive media," *Physical Review B*, vol. 10, no. 4, p. 1447, 1974.
- [50] S. L. Chuang, Physics of photonic devices. John Wiley & Sons, 2012, vol. 80.
- [51] B. E. Saleh and M. C. Teich, Fundamentals of photonics. John Wiley & Sons, 2019.
- [52] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier, 2013.
- [53] R. W. Boyd, Nonlinear optics. Elsevier, 2003.
- [54] Y.-R. Shen, The principles of nonlinear optics. New York, Wiley-Interscience, 1984.
- [55] N. Bloembergen, Nonlinear optics. World Scientific, 1996.
- [56] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of electric machinery. McGraw-Hill New York, 1986.
- [57] A. E. Fitzgerald, C. Kingsley, S. D. Umans, and B. James, *Electric machinery*. McGraw-Hill New York, 2003, vol. 5.
- [58] M. A. Brown and R. C. Semelka, MRI.: Basic Principles and Applications. John Wiley & Sons, 2011.
- [59] C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 1999.
- [60] Wikipedia, "Lorentz force," https://en.wikipedia.org/wiki/Lorentz_force/, accessed: 2019-09-06.
- [61] R. O. Dendy, Plasma physics: an introductory course. Cambridge University Press, 1995.
- [62] P. Sen and W. C. Chew, "The frequency dependent dielectric and conductivity response of sedimentary rocks," *Journal of microwave power*, vol. 18, no. 1, pp. 95–105, 1983.
- [63] D. A. Miller, Quantum Mechanics for Scientists and Engineers. Cambridge, UK: Cambridge University Press, 2008.
- [64] W. C. Chew, "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC," http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf, 2016.
- [65] B. G. Streetman and S. Banerjee, Solid state electronic devices. Prentice hall Englewood Cliffs, NJ, 1995.

Radiation Fields 273

[66] Smithsonian, "This 1600-year-old goblet shows that the romans were nanotechnology pioneers," https://www.smithsonianmag.com/history/this-1600-year-old-goblet-shows-that-the-romans-were-nanotechnology-pioneers-787224/, accessed: 2019-09-06.

- [67] K. G. Budden, Radio waves in the ionosphere. Cambridge University Press, 2009.
- [68] R. Fitzpatrick, Plasma physics: an introduction. CRC Press, 2014.
- [69] G. Strang, Introduction to linear algebra. Wellesley-Cambridge Press Wellesley, MA, 1993, vol. 3.
- [70] K. C. Yeh and C.-H. Liu, "Radio wave scintillations in the ionosphere," Proceedings of the IEEE, vol. 70, no. 4, pp. 324–360, 1982.
- [71] J. Kraus, Electromagnetics. McGraw-Hill, 1984.
- [72] Wikipedia, "Circular polarization," https://en.wikipedia.org/wiki/Circular_polarization.
- [73] Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics, vol. 1, no. 1, pp. 1–57, 2009.
- [74] H. Haus, *Electromagnetic Noise and Quantum Optical Measurements*, ser. Advanced Texts in Physics. Springer Berlin Heidelberg, 2000.
- [75] W. C. Chew, "Lectures on theory of microwave and optical waveguides, for ECE 531 at UIUC," https://engineering.purdue.edu/wcchew/course/tgwAll20160215.pdf, 2016.
- [76] L. Brillouin, Wave propagation and group velocity. Academic Press, 1960.
- [77] R. Plonsey and R. E. Collin, *Principles and applications of electromagnetic fields*. McGraw-Hill, 1961.
- [78] M. N. Sadiku, Elements of electromagnetics. Oxford University Press, 2014.
- [79] A. Wadhwa, A. L. Dal, and N. Malhotra, "Transmission media," https://www.slideshare.net/abhishekwadhwa786/transmission-media-9416228.
- [80] P. H. Smith, "Transmission line calculator," Electronics, vol. 12, no. 1, pp. 29–31, 1939.
- [81] F. B. Hildebrand, Advanced calculus for applications. Prentice-Hall, 1962.
- [82] J. Schutt-Aine, "Experiment02-coaxial transmission line measurement using slotted line," http://emlab.uiuc.edu/ece451/ECE451Lab02.pdf.
- [83] D. M. Pozar, E. J. K. Knapp, and J. B. Mead, "ECE 584 microwave engineering laboratory notebook," http://www.ecs.umass.edu/ece/ece584/ECE584_lab_manual.pdf, 2004.
- [84] R. E. Collin, Field theory of guided waves. McGraw-Hill, 1960.

- [85] Q. S. Liu, S. Sun, and W. C. Chew, "A potential-based integral equation method for low-frequency electromagnetic problems," *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 3, pp. 1413–1426, 2018.
- [86] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Pergamon, 1986, first edition 1959.
- [87] Wikipedia, "Snell's law," https://en.wikipedia.org/wiki/Snell's_law.
- [88] G. Tyras, Radiation and propagation of electromagnetic waves. Academic Press, 1969.
- [89] L. Brekhovskikh, Waves in layered media. Academic Press, 1980.
- [90] Scholarpedia, "Goos-hanchen effect," http://www.scholarpedia.org/article/ Goos-Hanchen_effect.
- [91] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in *Proceedings of the Institution of Electrical Engineers*, vol. 113, no. 7. IET, 1966, pp. 1151–1158.
- [92] E. Glytsis, "Slab waveguide fundamentals," http://users.ntua.gr/eglytsis/IO/Slab_Waveguides_p.pdf, 2018.
- [93] Wikipedia, "Optical fiber," https://en.wikipedia.org/wiki/Optical_fiber.
- [94] Atlantic Cable, "1869 indo-european cable," https://atlantic-cable.com/Cables/1869IndoEur/index.htm.
- [95] Wikipedia, "Submarine communications cable," https://en.wikipedia.org/wiki/Submarine_communications_cable.
- [96] D. Brewster, "On the laws which regulate the polarisation of light by reflexion from transparent bodies," *Philosophical Transactions of the Royal Society of London*, vol. 105, pp. 125–159, 1815.
- [97] Wikipedia, "Brewster's angle," https://en.wikipedia.org/wiki/Brewster's_angle.
- [98] H. Raether, "Surface plasmons on smooth surfaces," in Surface plasmons on smooth and rough surfaces and on gratings. Springer, 1988, pp. 4–39.
- [99] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," *Zeitschrift für Naturforschung A*, vol. 23, no. 12, pp. 2135–2136, 1968.
- [100] Wikipedia, "Surface plasmon," https://en.wikipedia.org/wiki/Surface_plasmon.
- [101] Wikimedia, "Gaussian wave packet," https://commons.wikimedia.org/wiki/File: Gaussian_wave_packet.svg.
- [102] Wikipedia, "Charles K. Kao," https://en.wikipedia.org/wiki/Charles_K._Kao.
- [103] H. B. Callen and T. A. Welton, "Irreversibility and generalized noise," *Physical Review*, vol. 83, no. 1, p. 34, 1951.

Radiation Fields 275

[104] R. Kubo, "The fluctuation-dissipation theorem," Reports on progress in physics, vol. 29, no. 1, p. 255, 1966.

- [105] C. Lee, S. Lee, and S. Chuang, "Plot of modal field distribution in rectangular and circular waveguides," *IEEE transactions on microwave theory and techniques*, vol. 33, no. 3, pp. 271–274, 1985.
- [106] W. C. Chew, Waves and Fields in Inhomogeneous Media. IEEE Press, 1996.
- [107] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, 1965, vol. 55.
- [108] —, "Handbook of mathematical functions: with formulas, graphs, and mathematical tables," http://people.math.sfu.ca/~cbm/aands/index.htm.
- [109] W. C. Chew, W. Sha, and Q. I. Dai, "Green's dyadic, spectral function, local density of states, and fluctuation dissipation theorem," arXiv preprint arXiv:1505.01586, 2015.
- [110] Wikipedia, "Very Large Array," https://en.wikipedia.org/wiki/Very_Large_Array.
- [111] C. A. Balanis and E. Holzman, "Circular waveguides," Encyclopedia of RF and Microwave Engineering, 2005.
- [112] M. Al-Hakkak and Y. Lo, "Circular waveguides with anisotropic walls," *Electronics Letters*, vol. 6, no. 24, pp. 786–789, 1970.
- [113] Wikipedia, "Horn Antenna," https://en.wikipedia.org/wiki/Horn_antenna.
- [114] P. Silvester and P. Benedek, "Microstrip discontinuity capacitances for right-angle bends, t junctions, and crossings," *IEEE Transactions on Microwave Theory and Tech*niques, vol. 21, no. 5, pp. 341–346, 1973.
- [115] R. Garg and I. Bahl, "Microstrip discontinuities," International Journal of Electronics Theoretical and Experimental, vol. 45, no. 1, pp. 81–87, 1978.
- [116] P. Smith and E. Turner, "A bistable fabry-perot resonator," Applied Physics Letters, vol. 30, no. 6, pp. 280–281, 1977.
- [117] A. Yariv, Optical electronics. Saunders College Publ., 1991.
- [118] Wikipedia, "Klystron," https://en.wikipedia.org/wiki/Klystron.
- [119] —, "Magnetron," https://en.wikipedia.org/wiki/Cavity_magnetron.
- [120] —, "Absorption Wavemeter," https://en.wikipedia.org/wiki/Absorption_wavemeter.
- [121] W. C. Chew, M. S. Tong, and B. Hu, "Integral equation methods for electromagnetic and elastic waves," *Synthesis Lectures on Computational Electromagnetics*, vol. 3, no. 1, pp. 1–241, 2008.
- [122] A. D. Yaghjian, "Reflections on maxwell's treatise," *Progress In Electromagnetics Research*, vol. 149, pp. 217–249, 2014.

- [123] L. Nagel and D. Pederson, "Simulation program with integrated circuit emphasis," in *Midwest Symposium on Circuit Theory*, 1973.
- [124] S. A. Schelkunoff and H. T. Friis, *Antennas: theory and practice*. Wiley New York, 1952, vol. 639.
- [125] H. G. Schantz, "A brief history of uwb antennas," *IEEE Aerospace and Electronic Systems Magazine*, vol. 19, no. 4, pp. 22–26, 2004.