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• Simple idea: Prove that a program behaves 
correctly, given some specification

• What kinds of specifications?

Invariants: precondition and postcondition

• Hoare Triple – {A} P {B}

What is Program Verification?
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Invariants and Program State

• Precondition and postcondition are special cases 
of program invariants, denoted φ

• A program state σ is a mapping of variables in 
the program to values

• Invariants restrict the set of valid program states 
at a specific point in execution

σ ⊨ φ means “σ is a valid state given φ” or “σ 
satisfies φ”
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Validity of Hoare Triple

• A program is correct w.r.t. invariants if the 
Hoare triple is valid

⊨ {A} P {B}

“For all σ, if σ ⊨ A then σ’ is the state after 
executing P, and σ’ ⊨ B.”

• Not feasible to look at every state. Can we prove 
this another way?
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Proof of Validity

• Find φs such that each individual 
statement + invariants forms a valid 
Hoare triple

• Require pre ⇒ φ0 and φ4 ⇒ post

• How can we find these invariants?

• One option: backwards analysis 
“pushes” invariants backwards past 
statements.

while (x < 5)

x++

pre: x = 0

post: x = 5

!
0

!
1

!
3

!
3

!
4
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Pushing Invariants
(the first one’s always free)

• Given postcondition(s) for a statement s, find an 
invariant s.t. all states satisfying the invariant prior 
s satisfy the postcondition(s) after s

• Many possible invariants (e.g. false trivially 
suffices). Choose the weakest one

What does it mean for an invariant to be 
“weak” or “strong”?
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Strengths and Weaknesses

• φ’ is weaker than φ if φ ⇒ φ’

• What does φ ⇒ φ’ mean?

• For all σ ⊨ φ, σ ⊨ φ’

• Matches our natural understanding of ⇒

• Intuition: the more valid program states an 
invariant allows, the weaker it is.
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x = x + 1

!
0

!
1
: x ! 2

!
1

Example
• φ0 must be chosen so φ1 

is valid after assignment

• Many options (e.g. {x ≥ 
3}). We choose the one 
which has the most valid 
states:

φ0: x ≥ 1

• Note, for all other φ that 
work, φ ⇒ φ0

• We call φ0 the “weakest 
precondition”
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Backwards analysis

• Initialize all invariants to true

• Push invariants back until convergence

• Produces φ0 at beginning of program. Must prove 
that precondition ⇒ φ0

• This is undecidable! (Thanks, Gödel...)

• Solution: restrict domain of invariants
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Underapproximation

• When domain of invariants is restricted, we must 
underapproximate invariant

• Precondition we want may not be expressible 
in domain

• We must choose stronger invariant (i.e. fewer 
valid states)

• This may preclude finding proof

• Precondition may not imply φ0

Tuesday, April 13, 2010



• Domain: conjunctions of inequalities (i.e. convex 
polyhedra)

if (x > 0)

!
2
: y ! 2 ! y " 4

!
1
: y ! 0 ! y " 2

!
1

!
2

!
0

Example

Tuesday, April 13, 2010



if (x > 0)

!
2
: y ! 2 ! y " 4

!
1
: y ! 0 ! y " 2

!
1

!
2

!
0

• Weakest φ0: ((x > 0) ⋀ φ1) ⋁ (x ≤ 0) ⋀ φ2))

Example
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• This can’t be expressed in abstract domain! Must 
choose different invariant

• Underapproximation             sound, but loses 
precision

• Some valid preconditions can’t be verified

• e.g. {x = 1 ⋀ y = 1}

Example
!

0
: (x > 0 ! y ! 0 ! y " 2) " (x " 0 ! y ! 2 ! y " 4)
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Wrapping up
• Similar procedure for forward analysis

• Initialize to false, push forward using strongest 
postcondition

• Show that final φ ⇒ program’s postcondition

• May overapproximate

• Analysis produces correctness proof: ⊢ {A} P {B}

• This is sound, but not complete: 

⊢ {A} P {B} ⇒ ⊨ {A} P {B}
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On to the Paper!
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Program Verification: 
Rethought

• Recall: a program is verified when a proof is 
found establishing the postconditions given the 
preconditions

• This is a global condition

• Alternate formulation: a proof is valid when all 
φs are locally consistent

Tuesday, April 13, 2010



Local Consistency

• Consider a program point πk

• Weakest precondition of successors: pre(πk)

• Strongest postcondition of predecessors: post(πk)

• Define pre(πexit) to be postcondition of program 
and post(πentry) to be its precondition.

• φk is locally consistent when:

post(πk) ⇒ φk ⋀ φk ⇒ pre(πk)
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Main Idea of Paper

• Randomly choose φs until all are locally 
consistent!

• Deciding if φ is locally consistent does not 
require global knowledge

• But may take unbounded time

• Apply probabilistic inference to converge on φs 
faster!
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Quick Detour:
Need to Climb a Hill
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Probabilistic Inference

• Given a probability density function (pdf) of K 
variables:

p(x1, x2, ... , xK)

Can we find values for all xis such that p is 
maximized?
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Gibbs Sampling

• Pick arbitrary xi and consider conditional 
distribution function (cdf):

p(xi | x1, ... , xi-1, xi+1, ... , xk)

• Choose a value for xi according to probabilities of 
cdf (“Draw a sample from cdf”)

• Choose another xi and continue

• Will converge to optimal values for variables
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Analogy with Hill Climbing

• Classic AI search technique:

• Pick a variable xi and change it to improve 
target function

• With some (small) probability, choose 
something other than best value for xi

• Avoids local maxima
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Now back to your 
regularly scheduled 
program verification
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Inconsistency Measure

• Define an inconsistency measure, M for 
invariants φ and φ’

• Intuition: The closer φ is to being stronger than 
φ’, the more consistent the two invariants are

• M(φ, φ’) = 0 iff φ ⇒ φ’ (no inconsistency)

• As φ gets stronger, consistency increases

• As φ’ gets stronger, consistency decreases
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Local Consistency as a 
Function

• Local inconsistency for a given φ at program 
point πk

L(φ, πk) = M(post(πk), φ) + M(φ, pre(πk))

• Note that when L(φ, πk) = 0

post(πk) ⇒ φ ⋀ φ ⇒ pre(πk)

so φ is locally consistent
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Verification as Optimization

• Now have a real-valued measure of local 
consistency at each program point

• Construct function f

f(φ0, φ1, ... φK)

using L(φi, πi) such that f is maximized when all 
φs are locally consistent

• Can apply Gibbs sampling to this function!
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Operation of algorithm

• Initialize all φs to ⊥

• Pick a random program point πk whose invariant 
φk is not locally consistent

• Choose φ to minimize inconsistency at πk

• But with some probability, choose other φ

• Update φk = φ

• Continue until no local inconsistency
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Key Algorithm Features

• Only local decisions made at any point

• Local inconsistency only related to small 
number of program points

• Uses both forward and backward information

• L involves both predecessors and successors

• Avoids precision issues of standard analyses
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if (x > 0)

!2: y ! 2 ! y " 4

!1: y ! 0 ! y " 2
!1 !2

!0

!p !p: y = 1 ! x = 1

Example, take two

• Consider choosing 
appropriate invariant for 
φ0
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if (x > 0)

!2: y ! 2 ! y " 4

!1: y ! 0 ! y " 2
!1 !2

!0

!p !p: y = 1 ! x = 1

Example, take two

• Consider choosing 
appropriate invariant for 
φ0

post(π0) = φp

pre(π0) = ((x > 0) ⋀ φ1) ⋁ 
(x ≤ 0) ⋀ φ2))
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if (x > 0)

!2: y ! 2 ! y " 4

!1: y ! 0 ! y " 2
!1 !2

!0

!p !p: y = 1 ! x = 1

Example, take two

• Consider choosing 
appropriate invariant for 
φ0

post(π0) = φp

pre(π0) = ((x > 0) ⋀ φ1) ⋁ 
(x ≤ 0) ⋀ φ2))

• Desire to minimize 
inconsistency with both 
post and pre leads to 
correct choice of φ0 !

0
: (x > 0 ! y ! 0 ! y " 2)
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Forward + Backward > 
Standing Still

• Essentially, analysis uses information from 
predecessors to “guide” its underapproximation 
(equivalently, uses information from successors to 
guide overapproximation)

• Produces better results than many existing 
analyses
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Random Choices are Good
• Random choices

• Which program point to update: Finding the 
proper invariants may require very specific 
sequence of updates. This is almost impossible 
to determine normally

• What invariant to use: Given a set of equally 
inconsistent choices, random selection will 
eventually choose the right invariant

• Upshot: Randomness leads to proper result when 
there is no clear strategy
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Some Results

• Abstract domain: Boolean combinations of 
difference constraints with (m × n) template

• m conjuncts, each with at most n disjuncts

• M(φ, φ’) where φ’ is the conjunction of several 
clauses:

We chose the abstract domain A whose elements are boolean
combinations of difference constraints among program variables.
In particular, for computational reasons, we restricted the abstract
domain A to include boolean formulas with a specific template,
namely boolean formulas that when expressed in a conjunctive
normal form have at most m conjuncts, and each conjunct having
at most n disjuncts, each of which is a difference constraint (also
referred to as m × n). In our experiments that are described in
Section 6.1, we chose m ∈ {3, 4, 5} and n ∈ {2, 3}. Such a
template choice is also justified by the fact that most programs are
correct for simple reasons, and their proof of validity is expressible
using some appropriate small representation.
We used the following inconsistency measure on the above

abstract domain A. The inconsistency ofM(φ, φ′) is the sum of
the inconsistencies ofM(φ, Ci) for each clause Ci in φ′, divided
by the total number of clauses in φ′.

M(φ,
m

i=1

Ci) =
m

i=1

1
m
×M(φ, Ci)

The inconsistencyM(φ, Ci) is proportional to the number of
disjuncts Dj in the disjunctive normal form of φ that do not imply
clause Ci.

M(
k

j=1

Dj , Ci) =
k

j=1

1
k
×M(Dj , Ci)

The inconsistency ofM(Dj , Ci) is defined to be 0 or 1 depend-
ing on whetherDj ⇒ Ci or not respectively.
We implemented Line 4 in the FindProof procedure as fol-

lows. We considered the set of abstract elements that minimize the
penalty at program point πk (given Post(πk) and Pre(πk)) and
chose an element randomly from it. However, in order to expe-
dite the convergence process, we implemented a simple version of
widening and narrowing, which can be regarded as choosing ab-
stract elements that do not minimize the penalty with a lesser prob-
ability.

6.1 Experiments

We have built a prototype tool in C called Magic8. We describe
our preliminary experience with this tool on the two programs
shown in Figure 3 and Figure 4. We do not know of any current
tool that can automatically generate the proof of validity of the
example in Figure 3. The program in Figure 4 was chosen as a
contrasting example - its structure resembles very closely to that
of the program in Figure 3, but it is easier to validate, and has
been used as a motivating example for some existing verification
techniques [19, 11]. Figure 5 contains histograms of the numbers
of updates over different runs of our tool on these programs. For
different algorithm parameters, we ran our tool 200 times and
recorded average number of updates per program point needed to
discover the invariant. The figures show histograms of the number
of updates over the 200 tests: the y-axis shows the number of runs
that ended up in the average number of runs within the boundaries
of the bin centered at the values on the x-axis.

Proof of validity of example in Figure 3 We first ran our tool on
the program shown in Figure 3(a) with the constants 50 and 100
replaced by the bigger constants 5000 and 10000 respectively. We
chose the size of boolean formulas over difference constraints as
4 × 3 (i.e., at most 4 clauses, with each clause having at most
3 disjuncts in the CNF representation). Our tool is successfully
able to generate the proof of validity of this example. One such

8 Magic is an acronym for Machine-learning based Automatic Generation
of Invariants in Code

proof is shown in Figure 3(b). The chart in Figure 5 shows the
average number of updates (per program point) required to discover
the proof of validity over 200 different runs of the algorithm. For
example, the first dark bin in Figure 5(a) has 105 of the 200 tests
and is centered at 150 updates per program point, which means
that around 50% of cases needed around 150 updates before the
program invariant is found, on the other hand 38 of the 200 tests
needed between 200 and 300 updates before convergence. The
graph shows that it is unlikely to have to run the tool for longer than
500 updates per program point before discovering the invariant.

Incremental proof of validity At the end of each of the 200 runs
of the tool in the above case, we changed the program slightly (we
replaced occurrences of the constant 5000 by 6000) and continued
the algorithm (with its current state of formulas φk at each program
point πk) to discover the proof of validity of the modified program.
Observe that the modified program requires a small change in the
proof of validity. The goal of this experiment was to illustrate that
the algorithm is smart enough to converge faster if starting from a
partially correct proof as opposed to starting from scratch. This is
indeed what we find experimentally: the gray histogram shows the
distribution of the number of additional updates the tool needed
to refine the invariant. On average, the 200 tests starting from
scratch required 235 updates per program point to discover the
invariant, but recovering from a small program change required on
average additional 195 updates. The trend is statistically significant
(p < 10−3).

Effect of program constants One way to discover the proof of
validity is to run the program fully, i.e. to run through the program
loops until all the termination conditions are fulfilled and the end
of program is reached. However, our algorithm always finds true
invariants in a manner different than this. To show this, we rerun
the tool 200 times using a smaller constants (this time using the
constants 50 and 100, as is the case in the program shown in
Figure 3(a)) as shown in loop termination conditions to see how
this would affect the program. The distributions over the number of
updates did not differ significantly between the two cases. In fact,
under a randomized pairing, we found that the verification of the
program with the larger constant terminated faster than that of the
one with a smaller constant in 101 out of 200 tests. This agrees
with our visual inspection of the results which show qualitatively
the same invariants found in both cases (only the constants are
different), but it also indicates that the tool is highly unlikely to go
through the entire loop before getting a clue about what an invariant
should be.

Changing template of boolean formulas Next, in Figure 5(b), we
compare the number of updates per program point for the tools that
use different size of the abstract representation φk at each program
point. The dark histogram is the same as in (b), while the gray his-
togram corresponds to the tests with larger representation (5 × 3),
and the white histogram corresponds to the smaller representation
(3 × 2). The important conclusion is that using tight representa-
tion (of exactly the right size), reduces the tool’s ability to reach
all possible expression combinations. When the representation is
larger, then the extra room effectively smoothes the probability dis-
tribution by making it possible to express the invariant in multiple
redundant ways.

Proof of validity of example in Figure 4 To illustrate that the
algorithm performance will depend on the difficulty of the program,
we also ran our algorithm on second verification problem, known
to be verifiable by other techniques [19, 11]. Figure 5(c) shows the
histogram of the number of updates for this problem. Even though
the number of program points is the same, and the tool’s settings
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Observe that the modified program requires a small change in the
proof of validity. The goal of this experiment was to illustrate that
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partially correct proof as opposed to starting from scratch. This is
indeed what we find experimentally: the gray histogram shows the
distribution of the number of additional updates the tool needed
to refine the invariant. On average, the 200 tests starting from
scratch required 235 updates per program point to discover the
invariant, but recovering from a small program change required on
average additional 195 updates. The trend is statistically significant
(p < 10−3).

Effect of program constants One way to discover the proof of
validity is to run the program fully, i.e. to run through the program
loops until all the termination conditions are fulfilled and the end
of program is reached. However, our algorithm always finds true
invariants in a manner different than this. To show this, we rerun
the tool 200 times using a smaller constants (this time using the
constants 50 and 100, as is the case in the program shown in
Figure 3(a)) as shown in loop termination conditions to see how
this would affect the program. The distributions over the number of
updates did not differ significantly between the two cases. In fact,
under a randomized pairing, we found that the verification of the
program with the larger constant terminated faster than that of the
one with a smaller constant in 101 out of 200 tests. This agrees
with our visual inspection of the results which show qualitatively
the same invariants found in both cases (only the constants are
different), but it also indicates that the tool is highly unlikely to go
through the entire loop before getting a clue about what an invariant
should be.

Changing template of boolean formulas Next, in Figure 5(b), we
compare the number of updates per program point for the tools that
use different size of the abstract representation φk at each program
point. The dark histogram is the same as in (b), while the gray his-
togram corresponds to the tests with larger representation (5 × 3),
and the white histogram corresponds to the smaller representation
(3 × 2). The important conclusion is that using tight representa-
tion (of exactly the right size), reduces the tool’s ability to reach
all possible expression combinations. When the representation is
larger, then the extra room effectively smoothes the probability dis-
tribution by making it possible to express the invariant in multiple
redundant ways.

Proof of validity of example in Figure 4 To illustrate that the
algorithm performance will depend on the difficulty of the program,
we also ran our algorithm on second verification problem, known
to be verifiable by other techniques [19, 11]. Figure 5(c) shows the
histogram of the number of updates for this problem. Even though
the number of program points is the same, and the tool’s settings
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Test Program and Proof
!pr!: " = 0

"entry

# := 50;

False

"1

!pos$: # = 100   

"% := "%+1;

#% := #%+1;
"% := "%+1;

"%%% < 50

"%%% < 100

True

True False

"2

"3

"4
"6

"5 "7

"exit

"8

(a) Program

Program Invariant
Point

π0 x = 0
π1 (y = 50) ∧ (x = 0)
π2 (y = 50 ∨ x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 100 ∨ x < 100)
π3 (y = 50 ∨ x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 99 ∨ x < 99)
π4 (y = 50) ∧ (x < 50)
π5 (y = 50) ∧ (x < 51)
π6 (x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 99 ∨ x < 99)
π7 (x > 50) ∧ (y = x ∨ x < 51) ∧ (y = 100 ∨ x < 100)
π8 (y = 50 ∨ x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 100 ∨ x < 100)
π9 y = 100

(b) Proof of validity.

Program Invariant
Point

π0 x ≥ 100
π1 (x ≥ 100) ∧ (y = 50) ∧ (y − x ≤ −1)
π2 (x ≥ 100) ∧ (y − x ≥ 1 ∨ y &= 100)
π3 false
π4 false
π5 false
π6 false
π7 false
π8 false
π9 y &= 100

(c) Proof of invalidity when precondition φpre is changed to true.

Figure 3. (a) shows an example program with pre and post conditions. (b) describes the proof of validity, which consists of invariants at
each program point such that the invariants can be locally verified. (c) describes the proof of invalidity when precondition φpre is changed to
true.

two rounds of backward analysis have been performed around the
loop. Note that Post(π8) and Pre(π8) can be represented by the
following formulas: 6

Post(π8) : (x ≥ 0 ∧ x ≤ 50 ∧ y = 50) ∨
(x ≥ 51 ∧ x ≤ 100 ∧ x = y)

Pre(π8) : (x < 100 ∨ y = 100)

Observe that Post(π8) is equivalent to the following formula
in conjunctive normal form, where each of the clauses is non-

redundant. 7

(x ≤ 100) ∧ (x ≤ 50 ∨ x = y) ∧
(x ≥ 0) ∧ (y = 50 ∨ x ≥ 51)

Note that we have fixed the abstract domainA to consist of Boolean
formulas involving at most 3 clauses, with each clause being a
disjunction of at most 2 difference constraints. Dropping any one
of the above 4 clauses yields an optimal over-approximation to
Post(π8) that is an element of A. However, note that the first

6 Technically, Post(π8) and Pre(π8) are sets of abstract elements. Hence,
more formally, this means that any maximally strong formula that belongs
to the abstract domain A and is implied by the formula corresponding to
Post(π8) belongs to Post(π8). Similarly, any minimally strong formula
that belongs to the abstract domain A and implies the formula correspond-
ing to Pre(π8) belongs to Pre(π8).
7 The clause y = 50 ∨ x = y is redundant since it it implied by the
conjunction of the given 4 clauses.

two clauses x ≤ 100 and (x ≤ 50 ∨ x = y) are required
to prove Pre(π8). Hence, taking this guidance from Pre(π8), the
forward analysis should include the first two clauses in its over-
approximation of Post(π8). This is what our algorithm also does.

No distinction between Forward and Backward Information
One way to combine forward and backward analyses is to maintain
the following two separate pieces of information at each program
point, and use them to guide each other.

• Forward information: Over-approximation of program states
that result when the program is executed under precondition.
This is computed by the forward analysis.

• Backward information: Under-approximation of program states
that ensure that the program will terminate in a state satisfying
the postcondition. This is computed by the backward analysis.

The over-approximation process may take guidance from the back-
ward information to ensure that the over-approximation at a pro-
gram point is not weaker than the under-approximation computed
at that point. (Similarly, the under-approximation process may take
guidance from the forward information to ensure that the under-
approximation computed at a program point is not stronger than
the over-approximation computed at that point.) If these constraints
cannot be met, they signal the presence of an excessive over-
approximation or excessive under-approximation at some program
point, which needs to be fixed. By excessive over-approximation,
we mean that the invariants computed are weaker than those that

!pr!: " = 0

"entry

# := 50;

False

"1

!pos$: # = 100   

"% := "%+1;

#% := #%+1;
"% := "%+1;

"%%% < 50

"%%% < 100

True

True False

"2

"3

"4
"6

"5 "7

"exit

"8

(a) Program

Program Invariant
Point

π0 x = 0
π1 (y = 50) ∧ (x = 0)
π2 (y = 50 ∨ x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 100 ∨ x < 100)
π3 (y = 50 ∨ x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 99 ∨ x < 99)
π4 (y = 50) ∧ (x < 50)
π5 (y = 50) ∧ (x < 51)
π6 (x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 99 ∨ x < 99)
π7 (x > 50) ∧ (y = x ∨ x < 51) ∧ (y = 100 ∨ x < 100)
π8 (y = 50 ∨ x ≥ 50) ∧ (y = x ∨ x < 50) ∧ (y = 100 ∨ x < 100)
π9 y = 100

(b) Proof of validity.

Program Invariant
Point

π0 x ≥ 100
π1 (x ≥ 100) ∧ (y = 50) ∧ (y − x ≤ −1)
π2 (x ≥ 100) ∧ (y − x ≥ 1 ∨ y &= 100)
π3 false
π4 false
π5 false
π6 false
π7 false
π8 false
π9 y &= 100

(c) Proof of invalidity when precondition φpre is changed to true.

Figure 3. (a) shows an example program with pre and post conditions. (b) describes the proof of validity, which consists of invariants at
each program point such that the invariants can be locally verified. (c) describes the proof of invalidity when precondition φpre is changed to
true.

two rounds of backward analysis have been performed around the
loop. Note that Post(π8) and Pre(π8) can be represented by the
following formulas: 6

Post(π8) : (x ≥ 0 ∧ x ≤ 50 ∧ y = 50) ∨
(x ≥ 51 ∧ x ≤ 100 ∧ x = y)

Pre(π8) : (x < 100 ∨ y = 100)

Observe that Post(π8) is equivalent to the following formula
in conjunctive normal form, where each of the clauses is non-

redundant. 7

(x ≤ 100) ∧ (x ≤ 50 ∨ x = y) ∧
(x ≥ 0) ∧ (y = 50 ∨ x ≥ 51)

Note that we have fixed the abstract domainA to consist of Boolean
formulas involving at most 3 clauses, with each clause being a
disjunction of at most 2 difference constraints. Dropping any one
of the above 4 clauses yields an optimal over-approximation to
Post(π8) that is an element of A. However, note that the first

6 Technically, Post(π8) and Pre(π8) are sets of abstract elements. Hence,
more formally, this means that any maximally strong formula that belongs
to the abstract domain A and is implied by the formula corresponding to
Post(π8) belongs to Post(π8). Similarly, any minimally strong formula
that belongs to the abstract domain A and implies the formula correspond-
ing to Pre(π8) belongs to Pre(π8).
7 The clause y = 50 ∨ x = y is redundant since it it implied by the
conjunction of the given 4 clauses.

two clauses x ≤ 100 and (x ≤ 50 ∨ x = y) are required
to prove Pre(π8). Hence, taking this guidance from Pre(π8), the
forward analysis should include the first two clauses in its over-
approximation of Post(π8). This is what our algorithm also does.

No distinction between Forward and Backward Information
One way to combine forward and backward analyses is to maintain
the following two separate pieces of information at each program
point, and use them to guide each other.

• Forward information: Over-approximation of program states
that result when the program is executed under precondition.
This is computed by the forward analysis.

• Backward information: Under-approximation of program states
that ensure that the program will terminate in a state satisfying
the postcondition. This is computed by the backward analysis.

The over-approximation process may take guidance from the back-
ward information to ensure that the over-approximation at a pro-
gram point is not weaker than the under-approximation computed
at that point. (Similarly, the under-approximation process may take
guidance from the forward information to ensure that the under-
approximation computed at a program point is not stronger than
the over-approximation computed at that point.) If these constraints
cannot be met, they signal the presence of an excessive over-
approximation or excessive under-approximation at some program
point, which needs to be fixed. By excessive over-approximation,
we mean that the invariants computed are weaker than those that

Existing techniques unable to verify this program!
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How long does it take?

• Performed multiple runs 
of prover

• Histogram of tests which 
took a certain number of 
updates per π

• Black bar: all πs 
initialized to ⊥

• Gray bar: use previously 
found proof on slightly 
modified program
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(a): Proof/Incremental Proof of Validity of program in Figure 3 (b): Different sizes of boolean formulas
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(c) Validity proof of program in Figure 3 (d) Invalidity proof of program in Figure 4

Figure 5. The distribution over the number of updates in the Gibbs sampling algorithm before the program invariant is discovered. Dark
bins in (a) show the histogram over the runs that all used a slightly enlarged representation than necessary (4 × 3 instead of 3×2, which is
sufficient to represent invariants. This version converges the fastest among the ones we tried. The gray bins in (a) show how many updates are
typically necessary to change the found invariant into a new one that satisfy a slightly changed program. Since the invariant does not change
significantly, the number of updates per program point is lower than it is when the sampling is started from scratch. In (b) we illustrate the
effect of the limit on the size of the abstract representation to program convergence. Gray denotes lot of extra room (5 × 3), black denotes
some extra room (4 × 3), and white denotes tight space (3 × 2). In (c) we show the update histogram for solving the second verification
problem, and in (d) the update histogram for solving the invalidity problem.

were the same, this problem is easier, and the algorithm discovers
the invariant much faster.

Proof of Invalidity of Example 1 Finally, in Figure 5(d), we
illustrate the performance on the invalidity proof of the program in
Figure 3 when its precondition is changed to true. This is to show
that our tool works equally for discovering proofs of invalidity
as well proofs of validity (under the assumption that the program
terminates on all inputs). Figure 3(c) shows one of the proofs of
invalidity generated by our tool. In a different invalidity proof, the
tool even generated the weakest condition x ≥ 51 at πentry.

7. Related Work

The idea of applying machine learning techniques in programming
languages has been used recently, though for the different problem
of discovering small programs given input-output pairs [17]. In
this paper, we use machine learning techniques for the problem of
program verification.

Combination of Forward and Backward Analyses Cousot and
Cousot proposed a technique to combine forward and backward
analyses by refining the over-approximation of the intersections
of precondition and negated postcondition by an iterative forward
and backward analysis [4, 5]. Dill and Wong Toi proposed a dif-
ferent kind of forward-backward combination that consists of com-
puting separate upper-approximation and lower-approximation of
precondition and postcondition respectively [8]. Leino and Lo-
gozzo also combine the forward inference procedure with the goal-

driven nature of going backward by invoking the forward analysis
along infeasible error traces reported during a backward analysis
in the hope of generating stronger loop invariants to rule out those
traces [19]. We have a different kind of forward and backward com-
bination in which we do not distinguish between the forward and
backward information, and information flows in both forward and
backward directions in each step of the algorithm.

Predicate abstraction with counter-example guided refinement
This technique involves using a model-checker to compute an over-
approximation of a set of reachable states of a program using
boolean formulas over a given set of predicates. If this set of reach-
able states intersects with the set of error states, the model-checker
provides a counter-example. A theorem prover is then used to
check the validity of that counter-example. If the counter-example
is found to be invalid, the proof of invalidity provides additional
predicates that should be considered to avoid this counterexample
next time. The process is then repeated with these new set of pred-
icates.
There are some interesting differences between this technique

of predicate abstraction with counter-example guided refinement
and our technique.

• Computation of reachable states can be regarded as a forward
analysis, while counter-example discovery and its feedback to
refine the set of predicates can be regarded as a backward
analysis. However, this forward analysis and backward analysis
happens in two different phases. Our forward and backward
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Discussion

• Could there be some benefit to a more directed 
search? (e.g. choosing which program point to 
update in a more systematic way)

• Is this randomized approach useful in other 
domains? Can it be applied to any dataflow/
abstract interpretation problem?
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