Program Verification

Plus: "Program Verification with Probabilistic Inference" by Sumit Gulwani and Nebojsa Jojic

- Simple idea: Prove that a program behaves correctly, given some specification
- What kinds of specifications?

Invariants: precondition and postcondition

• Hoare Triple – {A} P {B}

- Simple idea: Prove that a program behaves correctly, given some specification
- What kinds of specifications?

Invariants: precondition and postcondition

• Hoare Triple – {A} P {B}

- Simple idea: Prove that a program behaves correctly, given some specification
- What kinds of specifications?

Invariants: precondition and postcondition

• Hoare Triple – {A} P {B}

- Simple idea: Prove that a program behaves correctly, given some specification
- What kinds of specifications?

Invariants: precondition and postcondition

• Hoare Triple – {A} P <mark>{B}</mark>

Invariants and Program State

- Precondition and postcondition are special cases of program invariants, denoted ϕ
- A **program state** σ is a mapping of variables in the program to values
- Invariants restrict the set of valid program states at a specific point in execution

 $\sigma \vDash \phi \text{ means } "\sigma \text{ is a valid state given } \phi " \text{ or } "\sigma \text{ satisfies } \phi "$

Validity of Hoare Triple

• A program is correct w.r.t. invariants if the Hoare triple is valid

 $\models \{A\} P \{B\}$

- "For all σ , if $\sigma \vDash A$ then σ' is the state after executing P, and $\sigma' \vDash B$."
- Not feasible to look at every state. Can we prove this another way?

Proof of Validity

- Find φs such that each individual statement + invariants forms a valid Hoare triple
- Require $pre \Rightarrow \phi_0$ and $\phi_4 \Rightarrow post$
- How can we find these invariants?
- One option: backwards analysis "pushes" invariants backwards past statements.

Pushing Invariants (the first one's always free)

- Given postcondition(s) for a statement s, find an invariant s.t. all states satisfying the invariant prior s satisfy the postcondition(s) after s
 - Many possible invariants (e.g. **false** trivially suffices). Choose the *weakest* one

What does it mean for an invariant to be "weak" or "strong"?

Strengths and Weaknesses

- ϕ' is weaker than ϕ if $\phi \Rightarrow \phi'$
- What does $\phi \Rightarrow \phi'$ mean?
 - For all $\sigma \vDash \phi, \sigma \vDash \phi'$
 - Matches our natural understanding of \Rightarrow
- Intuition: the more valid program states an invariant allows, the weaker it is.

Example

- φ₀ must be chosen so φ₁
 is valid after assignment
- Many options (e.g. {x ≥ 3}). We choose the one which has the most valid states:

 $φ_0: x \ge 1$

- Note, for all other φ that work, $\varphi \Rightarrow \varphi_0$
- We call φ₀ the "weakest precondition"

Backwards analysis

- Initialize all invariants to **true**
- Push invariants back until convergence
- Produces ϕ_0 at beginning of program. Must prove that precondition $\Rightarrow \phi_0$
 - This is undecidable! (Thanks, Gödel...)
 - Solution: restrict domain of invariants

Underapproximation

- When domain of invariants is restricted, we must **underapproximate** invariant
 - Precondition we *want* may not be expressible in domain
 - We must choose stronger invariant (*i.e.* fewer valid states)
- This may preclude finding proof
 - Precondition may not imply ϕ_0

Example

• Domain: conjunctions of inequalities (*i.e.* convex polyhedra)

Example

• Weakest ϕ_0 : $((x > 0) \land \phi_1) \lor (x \le 0) \land \phi_2))$

- This can't be expressed in abstract domain! Must choose different invariant
- Underapproximation ______ sound, but loses precision
- Some valid preconditions can't be verified

• e.g.
$$\{x = 1 \land y = 1\}$$

Wrapping up

- Similar procedure for forward analysis
 - Initialize to false, push forward using strongest postcondition
 - Show that final $\phi \Rightarrow$ program's postcondition
 - May overapproximate
- Analysis produces **correctness proof**: ⊢ {A} P {B}
- This is sound, but not complete:

$$\vdash \{A\} \mathsf{P} \{B\} \Rightarrow \vDash \{A\} \mathsf{P} \{B\}$$

On to the Paper!

Tuesday, April 13, 2010

Program Verification: Rethought

- Recall: a program is verified when a proof is found establishing the postconditions given the preconditions
- This is a global condition
- Alternate formulation: a proof is valid when all φs are locally consistent

Local Consistency

- Consider a program point π_k
- Weakest precondition of successors: $pre(\pi_k)$
- Strongest postcondition of predecessors: $post(\pi_k)$
 - Define $pre(\pi_{exit})$ to be postcondition of program and $post(\pi_{entry})$ to be its precondition.
- ϕ_k is **locally consistent** when:

 $post(\pi_k) \Rightarrow \varphi_k \land \varphi_k \Rightarrow pre(\pi_k)$

Main Idea of Paper

- Randomly choose φs until all are locally consistent!
 - Deciding if ϕ is locally consistent does not require global knowledge
 - But may take unbounded time
- Apply **probabilistic inference** to converge on ϕ s faster!

Quick Detour: Need to Climb a Hill

Probabilistic Inference

• Given a **probability density function** (pdf) of K variables:

 $p(x_1, x_2, \dots, x_K)$

Can we find values for all *x*_is such that *p* is maximized?

Gibbs Sampling

Pick arbitrary x_i and consider conditional distribution function (cdf):

 $p(x_i \mid x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_k)$

- Choose a value for x_i according to probabilities of cdf ("Draw a sample from cdf")
- Choose another *x*_i and continue
- Will converge to optimal values for variables

Analogy with Hill Climbing

- Classic AI search technique:
 - Pick a variable *x*_i and change it to improve target function
 - With some (small) probability, choose something other than best value for *x*_i
 - Avoids local maxima

Now back to your regularly scheduled program verification

Inconsistency Measure

- Define an **inconsistency measure**, *M* for invariants ϕ and ϕ'
 - Intuition: The closer ϕ is to being stronger than ϕ' , the more consistent the two invariants are
 - $M(\mathbf{\phi}, \mathbf{\phi}') = 0$ iff $\mathbf{\phi} \Rightarrow \mathbf{\phi}'$ (no inconsistency)
 - As ϕ gets stronger, consistency increases
 - As ϕ' gets stronger, consistency decreases

Local Consistency as a Function

• Local inconsistency for a given ϕ at program point π_k

 $L(\boldsymbol{\phi}, \pi_k) = \mathcal{M}(\text{post}(\pi_k), \boldsymbol{\phi}) + \mathcal{M}(\boldsymbol{\phi}, \text{pre}(\pi_k))$

• Note that when $L(\boldsymbol{\varphi}, \pi_k) = 0$

 $post(\pi_k) \Rightarrow \phi \land \phi \Rightarrow pre(\pi_k)$

so ϕ is locally consistent

Verification as Optimization

- Now have a real-valued measure of local consistency at each program point
- Construct function f

 $f(\phi_0, \phi_1, ..., \phi_K)$

using $L(\mathbf{\phi}_i, \pi_i)$ such that *f* is maximized when all $\mathbf{\phi}_i$ s are locally consistent

• Can apply Gibbs sampling to this function!

Operation of algorithm

- Initialize all ϕ s to \perp
- Pick a random program point π_k whose invariant ϕ_k is not locally consistent
- Choose $\boldsymbol{\varphi}$ to minimize inconsistency at π_k
 - But with some probability, choose other ϕ
- Update $\phi_k = \phi$
- Continue until no local inconsistency

Key Algorithm Features

- Only local decisions made at any point
 - Local inconsistency only related to small number of program points
- Uses both forward and backward information
 - *L* involves both predecessors and successors
 - Avoids precision issues of standard analyses

Example, take two

 Consider choosing appropriate invariant for φ₀

Example, take two

 Consider choosing appropriate invariant for φ₀

 $post(\pi_0) = \boldsymbol{\phi}_p$

$$\label{eq:pre_states} \begin{split} pre(\pi_0) &= ((x > 0) \, \land \, \phi_1) \, \lor \\ (x \leq 0) \, \land \, \phi_2)) \end{split}$$

Example, take two

 Consider choosing appropriate invariant for φ₀

 $post(\pi_0) = \boldsymbol{\phi}_p$

 $pre(\pi_0) = ((x > 0) \land \phi_1) \lor (x \le 0) \land \phi_2))$

 Desire to minimize inconsistency with both post and pre leads to correct choice of φ₀

Forward + Backward > Standing Still

- Essentially, analysis uses information from predecessors to "guide" its underapproximation (equivalently, uses information from successors to guide overapproximation)
- Produces better results than many existing analyses

Random Choices are Good

- Random choices
 - Which program point to update: Finding the proper invariants may require very specific sequence of updates. This is almost impossible to determine normally
 - What invariant to use: Given a set of equally inconsistent choices, random selection will eventually choose the right invariant
- Upshot: Randomness leads to proper result when there is no clear strategy

Some Results

- Abstract domain: Boolean combinations of difference constraints with $(m \times n)$ template
 - *m* conjuncts, each with at most *n* disjuncts
- M(φ, φ') where φ' is the conjunction of several clauses:

$$\mathcal{M}(\phi, \bigwedge_{i=1}^{m} C_i) = \sum_{i=1}^{m} \frac{1}{m} \times \mathcal{M}(\phi, C_i) \qquad \mathcal{M}(\bigvee_{j=1}^{k} D_j, C_i) = \sum_{j=1}^{k} \frac{1}{k} \times \mathcal{M}(D_j, C_i)$$

Test Program and Proof

Program Point	Invariant
π_0	x = 0
π_1	$(y = 50) \land (x = 0)$
π_2	$(y = 50 \lor x \ge 50) \land (y = x \lor x < 50) \land (y = 100 \lor x < 100)$
π_3	$(y = 50 \lor x \ge 50) \land (y = x \lor x < 50) \land (y = 99 \lor x < 99)$
π_4	$(y = 50) \land (x < 50)$
π_5	$(y = 50) \land (x < 51)$
π_6	$(x \ge 50) \land (y = x \lor x < 50) \land (y = 99 \lor x < 99)$
π_7	$(x > 50) \land (y = x \lor x < 51) \land (y = 100 \lor x < 100)$
π_8	$(y = 50 \lor x \ge 50) \land (y = x \lor x < 50) \land (y = 100 \lor x < 100)$
π_9	y = 100

Existing techniques unable to verify this program!

How long does it take?

- Performed multiple runs of prover
- Histogram of tests which took a certain number of updates per π
- Black bar: all π s initialized to \perp
- Gray bar: use previously found proof on slightly modified program

Discussion

- Could there be some benefit to a more directed search? (*e.g.* choosing which program point to update in a more systematic way)
- Is this randomized approach useful in other domains? Can it be applied to any dataflow/ abstract interpretation problem?