Program Verification
 Plus: "Program Verification with Probabilistic Inference" by Sumit Gulwani and Nebojsa Jojic

What is Program Verification?

- Simple idea: Prove that a program behaves correctly, given some specification
- What kinds of specifications?

Invariants: precondition and postcondition

- Hoare Triple - $\{\mathrm{A}\}$ P $\{\mathrm{B}\}$

What is Program Verification?

- Simple idea: Prove that a program behaves correctly, given some specification
- What kinds of specifications?

Invariants: precondition and postcondition

- Hoare Triple - $\{A\} P\{B\}$

What is Program Verification?

- Simple idea: Prove that a program behaves correctly, given some specification
- What kinds of specifications?

Invariants: precondition and postcondition

- Hoare Triple - $\{\mathrm{A}\} \mid \mathrm{P}\{\mathrm{B}\}$

What is Program Verification?

- Simple idea: Prove that a program behaves correctly, given some specification
-What kinds of specifications?
Invariants: precondition and postcondition
- Hoare Triple - $\{\mathrm{A}\}$ P $\{\mathrm{B}\}$

Invariants and Program State

- Precondition and postcondition are special cases of program invariants, denoted φ
- A program state σ is a mapping of variables in the program to values
- Invariants restrict the set of valid program states at a specific point in execution
$\sigma \models \varphi$ means " σ is a valid state given φ " or " σ satisfies $\varphi^{\prime \prime}$

Validity of Hoare Triple

- A program is correct w.r.t. invariants if the Hoare triple is valid

$$
\vDash\{\mathrm{A}\} \mathrm{P}\{\mathrm{~B}\}
$$

"For all σ, if $\sigma \vDash \mathrm{A}$ then σ^{\prime} is the state after executing P, and $\sigma^{\prime} \vDash B . "$

- Not feasible to look at every state. Can we prove this another way?

Proof of Validity

- Find φs such that each individual statement + invariants forms a valid Hoare triple
- Require pre $\Rightarrow \varphi_{0}$ and $\varphi_{4} \Rightarrow$ post
- How can we find these invariants?
- One option: backwards analysis "pushes" invariants backwards past statements.

post: $x=5$

Pushing Invariants (the first one's always free)

- Given postcondition(s) for a statement \mathbf{s}, find an invariant s.t. all states satisfying the invariant prior s satisfy the postcondition(s) after s
- Many possible invariants (e.g. false trivially suffices). Choose the weakest one

What does it mean for an invariant to be "weak" or "strong"?

Strengths and Weaknesses

- φ^{\prime} is weaker than φ if $\varphi \Rightarrow \varphi^{\prime}$
- What does $\varphi \Rightarrow \varphi^{\prime}$ mean?
- For all $\sigma \models \varphi, \sigma \vDash \varphi^{\prime}$
- Matches our natural understanding of \Rightarrow
- Intuition: the more valid program states an invariant allows, the weaker it is.

Example

- φ_{0} must be chosen so φ_{1} is valid after assignment
- Many options (e.g. $\{x \geq$ $3\}$). We choose the one which has the most valid states:

$$
\varphi_{0}: x \geq 1
$$

- Note, for all other φ that
 work, $\varphi \Rightarrow \varphi_{0}$
- We call φ_{0} the "weakest precondition"

Backwards analysis

- Initialize all invariants to true
- Push invariants back until convergence
- Produces φ_{0} at beginning of program. Must prove that precondition $\Rightarrow \varphi_{0}$
- This is undecidable! (Thanks, Gödel...)
- Solution: restrict domain of invariants

Underapproximation

- When domain of invariants is restricted, we must underapproximate invariant
- Precondition we want may not be expressible in domain
- We must choose stronger invariant (i.e. fewer valid states)
- This may preclude finding proof
- Precondition may not imply φ_{0}

Example

- Domain: conjunctions of inequalities (i.e. convex polyhedra)

Example

- Weakest $\left.\left.\varphi_{0}:\left((x>0) \wedge \varphi_{1}\right) \vee(x \leq 0) \wedge \varphi_{2}\right)\right)$

Example

$$
\varphi_{0}:(x>0 \wedge y \geq 0 \wedge y \leq 2) \vee(x \leq 0 \wedge y \geq 2 \wedge y \leq 4)
$$

- This can't be expressed in abstract domain! Must choose different invariant
- Underapproximation
precision sound, but loses
- Some valid preconditions can't be verified
- e.g. $\{x=1 \wedge y=1\}$

Wrapping up

- Similar procedure for forward analysis
- Initialize to false, push forward using strongest postcondition
- Show that final $\varphi \Rightarrow$ program's postcondition
- May overapproximate
- Analysis produces correctness proof: $\vdash\{\mathrm{A}\} \mathrm{P}\{\mathrm{B}\}$
- This is sound, but not complete:

$$
\vdash\{\mathrm{A}\} \mathrm{P}\{\mathrm{~B}\} \Rightarrow \vDash\{\mathrm{A}\} \mathrm{P}\{\mathrm{~B}\}
$$

On to the Paper!

Program Verification: Rethought

- Recall: a program is verified when a proof is found establishing the postconditions given the preconditions
- This is a global condition
- Alternate formulation: a proof is valid when all φ s are locally consistent

Local Consistency

- Consider a program point π_{k}
- Weakest precondition of successors: pre $\left(\pi_{k}\right)$
- Strongest postcondition of predecessors: post $\left(\pi_{\mathrm{k}}\right)$
- Define pre $\left(\pi_{\text {exit }}\right)$ to be postcondition of program and $\operatorname{post}\left(\pi_{\text {entry }}\right)$ to be its precondition.
- φ_{k} is locally consistent when:

$$
\operatorname{post}\left(\pi_{\mathrm{k}}\right) \Rightarrow \varphi_{\mathrm{k}} \wedge \varphi_{\mathrm{k}} \Rightarrow \operatorname{pre}\left(\pi_{\mathrm{k}}\right)
$$

Main Idea of Paper

- Randomly choose φ s until all are locally consistent!
- Deciding if φ is locally consistent does not require global knowledge
- But may take unbounded time
- Apply probabilistic inference to converge on φ s faster!

Quick Detour: Need to Climb a Hill

Probabilistic Inference

- Given a probability density function (pdf) of K variables:

$$
p\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

Can we find values for all x_{i} such that p is maximized?

Gibbs Sampling

- Pick arbitrary x_{i} and consider conditional distribution function (cdf):

$$
p\left(x_{i} \mid x_{1}, \ldots, x_{\mathrm{i}-1}, x_{\mathrm{i}+1}, \ldots, x_{\mathrm{k}}\right)
$$

- Choose a value for x_{i} according to probabilities of cdf ("Draw a sample from cdf")
- Choose another x_{i} and continue
- Will converge to optimal values for variables

Analogy with Hill Climbing

- Classic AI search technique:
- Pick a variable x_{i} and change it to improve target function
- With some (small) probability, choose something other than best value for x_{i}
- Avoids local maxima

Now back to your regularly scheduled program verification

Inconsistency Measure

- Define an inconsistency measure, M for invariants φ and φ^{\prime}
- Intuition: The closer φ is to being stronger than φ^{\prime}, the more consistent the two invariants are
- $M\left(\varphi, \varphi^{\prime}\right)=0$ iff $\varphi \Rightarrow \varphi^{\prime}$ (no inconsistency)
- As φ gets stronger, consistency increases
- As φ^{\prime} gets stronger, consistency decreases

Local Consistency as a Function

- Local inconsistency for a given φ at program point π_{k}

$$
L\left(\varphi, \pi_{\mathrm{k}}\right)=M\left(\operatorname{post}\left(\pi_{\mathrm{k}}\right), \varphi\right)+M\left(\varphi, \operatorname{pre}\left(\pi_{\mathrm{k}}\right)\right)
$$

- Note that when $\mathrm{L}\left(\boldsymbol{\varphi}, \pi_{\mathrm{k}}\right)=0$

$$
\operatorname{post}\left(\pi_{\mathrm{k}}\right) \Rightarrow \varphi \wedge \varphi \Rightarrow \operatorname{pre}\left(\pi_{\mathrm{k}}\right)
$$

so φ is locally consistent

Verification as Optimization

- Now have a real-valued measure of local consistency at each program point
- Construct function f

$$
f\left(\varphi_{0}, \varphi_{1}, \ldots \varphi_{K}\right)
$$

using $L\left(\varphi_{\mathrm{i}}, \pi_{\mathrm{i}}\right)$ such that f is maximized when all φ s are locally consistent

- Can apply Gibbs sampling to this function!

Operation of algorithm

- Initialize all φ s to \perp
- Pick a random program point π_{k} whose invariant φ_{k} is not locally consistent
- Choose φ to minimize inconsistency at π_{k}
- But with some probability, choose other φ
- Update $\varphi_{\mathrm{k}}=\varphi$
- Continue until no local inconsistency

Key Algorithm Features

- Only local decisions made at any point
- Local inconsistency only related to small number of program points
- Uses both forward and backward information
- L involves both predecessors and successors
- Avoids precision issues of standard analyses

Example, take two

- Consider choosing appropriate invariant for

Example, take two

- Consider choosing appropriate invariant for φ_{0}

$$
\begin{aligned}
& \operatorname{post}\left(\pi_{0}\right)=\varphi_{\mathrm{p}} \\
& \operatorname{pre}\left(\pi_{0}\right)=\left((\mathrm{x}>0) \wedge \varphi_{1}\right) \vee \\
& \left.\left.(\mathrm{x} \leq 0) \wedge \varphi_{2}\right)\right)
\end{aligned}
$$

Example, take two

- Consider choosing appropriate invariant for φ_{0}
$\operatorname{post}\left(\pi_{0}\right)=\varphi_{p}$
$\operatorname{pre}\left(\pi_{0}\right)=\left((x>0) \wedge \varphi_{1}\right) \vee$ $\left.\left.(x \leq 0) \wedge \varphi_{2}\right)\right)$
- Desire to minimize inconsistency with both post and pre leads to correct choice of φ_{0}

Forward + Backward > Standing Still

- Essentially, analysis uses information from predecessors to "guide" its underapproximation (equivalently, uses information from successors to guide overapproximation)
- Produces better results than many existing analyses

Random Choices are Good

- Random choices
- Which program point to update: Finding the proper invariants may require very specific sequence of updates. This is almost impossible to determine normally
- What invariant to use: Given a set of equally inconsistent choices, random selection will eventually choose the right invariant
- Upshot: Randomness leads to proper result when there is no clear strategy

Some Results

- Abstract domain: Boolean combinations of difference constraints with $(m \times n)$ template
- m conjuncts, each with at most n disjuncts
- $M\left(\varphi, \varphi^{\prime}\right)$ where φ^{\prime} is the conjunction of several clauses:
$\mathcal{M}\left(\phi, \bigwedge_{i=1}^{m} C_{i}\right)=\sum_{i=1}^{m} \frac{1}{m} \times \mathcal{M}\left(\phi, C_{i}\right) \quad \mathcal{M}\left(\bigvee_{j=1}^{k} D_{j}, C_{i}\right)=\sum_{j=1}^{k} \frac{1}{k} \times \mathcal{M}\left(D_{j}, C_{i}\right)$

Test Program and Proof

Program Point	Invariant
π_{0}	$x=0$
π_{1}	$(y=50) \wedge(x=0)$
π_{2}	$(y=50 \vee x \geq 50) \wedge(y=x \vee x<50) \wedge(y=100 \vee x<100)$
π_{3}	$(y=50 \vee x \geq 50) \wedge(y=x \vee x<50) \wedge(y=99 \vee x<99)$
π_{4}	$(y=50) \wedge(x<50)$
π_{5}	$(y=50) \wedge(x<51)$
π_{6}	$(x \geq 50) \wedge(y=x \vee x<50) \wedge(y=99 \vee x<99)$
π_{7}	$(x>50) \wedge(y=x \vee x<51) \wedge(y=100 \vee x<100)$
π_{8}	$(y=50 \vee x \geq 50) \wedge(y=x \vee x<50) \wedge(y=100 \vee x<100)$
π_{9}	$y=100$

Existing techniques unable to verify this program!

How long does it take?

- Performed multiple runs of prover
- Histogram of tests which took a certain number of updates per π
- Black bar: all $\pi \mathrm{s}$ initialized to \perp
- Gray bar: use previously
 found proof on slightly modified program

Discussion

- Could there be some benefit to a more directed search? (e.g. choosing which program point to update in a more systematic way)
- Is this randomized approach useful in other domains? Can it be applied to any dataflow/ abstract interpretation problem?

