The Role of Salps for Carbon Export in the Southern Ocean

Deutsche Forschungsgemeinschaft

DFG

L. von Harbou^{*1}, Ilka Peeken^{1,2}, E. A. Pakhomov³, C. D. Dubischar¹, U. Bathmann¹

¹Alfred-Wegener-Institute for Polar- and Marine Research, Bremerhaven ²MARUM Center for Marine Environmental Sciences, Bremen 3 Department of Earth and Ocean Sciences, University of British Columbia, Canada

Questions

- Will digestion of salps change with food concentration and food ≻ composition?
- How will this be reflected in the export quality of salp faeces? ۶

Project Hypothesis

- > The pigment gut content of salps varies seasonally
- Ihlea racovitzai and Salpa thompsoni occupy different food niches
- Low available food concentrations result in poor quality of egested material

Salp Gut Contents

<u>Ihlea racovitzai</u>

- > small, greenish guts
- > no microscopic evidence of seasonal diet change

Salpa thompsoni Iarge redish guts

D. Summer

Winter

A-C) Southern Ocean salps D-G) SEM examples of salp gut content of different seasons Fig. 4

Results

- > Salpa thompsoni shows high variation in gut content concentrations and digestion efficiency is reduced in diatom blooms.
- > Pigments reflect different feeding and/or digestion:
 - I. racovitzai → low seasonal variability in Lazarev Sea
 - S. thomsponi → high seasonality and geographical differences
- > Fecal pellets of S. thompsoni contain high amounts of undigested chl-a in high food areas

Study Sites and Methods

- Performance Liquid Chromatography) Gut pigment analysis of salps (*S. thompsonl*) from low and
- high chlorophyll areas Incubation experiments of S. thompsoni for fecal pellet
- studies

• HPLC pigment data acquisition of salp guts (S. thompsoni) and ambient waters Feeding rates of *S. thompsoni* determined in incubation experiments

LAKRIS

- HPLC pigment data acquisition of salp guts (*S. thompsoni* and *I. racovitzai*)
 ambient waters from all year round LAKRIS cruises
 Gut content analysis by microscopy and POC/PON measurements

Pigment Degradation in Salp Guts LAKRIS LM Gould EIFEX Salpa 105 400 А 200 Salp gut c [ng chl-a/ В 40 nent Diges ophytins : 20 С 60 40 20 Pign [Fuc D 3 sf chl-a + [mg m⁻³] 1 7 č ø 0 0 Õ • 0 0

Changing Quality of Fecal Pellets

March-April 2004 Nov-Jan 2005/06

July-Aug 2006

Dec-Feb 2007/08

and

thompsoni in fall 2004 (EIFEX)

Carbon Export by Fecal Pellets

- Estimates of S. thompsoni pellets based on average salp biomass and defecation rates:
- ~ up to 0.95 mg C m⁻² in fall 2004, Lazarev Sea up to 4-20 mg C m⁻² in summer 2006, Western Peninsula region (Phillips et al. 2009)
- Fig. 5: Box plots (median and 5th/95th percentile) A) Salp gut chlorophyll contents. B) Ratio of degradation product Phaeophytin and Pyrophaeophytin to chl-a. C) Ratio of fucoxanthin as
 - pigment marker for diatoms to chl-a. D) Average surface chlorophyll (av. sf chl-a) conc. (10, 20 and 50 m) of ambient waters

Conclusions

- > Results suggests different diets of the two salps
- > No clear signal between digestion efficiency and food concentration is evident
- Food quality strongly affects degradation of ingested material

Further Studies

- Is the varying local phytoplankton distributions reflected in the gut pigment content of salps?
- > What do salps feed in winter time at extreme low phytoplankton concentrations ?
- Are there regio-ecologically relevant differences found in the two salp species ?

