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SUMMARY 
 
The crustacean order Cumacea belongs to the Peracarida and comprises an 
evolutionary old group with conservative morphology. Predominantly bound to 
soft bottom habitats in benthic marine environments they show a cosmopolitan 
distribution. As other Peracarida they display brood protection; juvenile stages 
are carried in the marsupium. It is supposed that the marsupium plays a major 
role in the success of this abundant and specious group of Crustacea. 
 

The Peracarida are a dominant group in Southern Ocean benthic 
communities. Quantitative investigations of the Ross Sea shelf fauna 
demonstrated that the Peracarida contribute 63% to abundance and 50% to 
biomass. Amphipods dominated clearly, while different sample sites yielded 
high dominances by Cumacea, Isopoda, and Tanaidacea. The recorded 
number of peracarid species from the Ross Sea is lower than in other high-
Antarctic regions. The present study demonstrated that cumacean diversity 
with respect to species richness resembles that of the Weddell Sea or the East 
Antarctic. Species number has now increased from 13 to 34 for the Ross Sea, 
which highlights the requirement for choosing appropriate sampling gear, and 
for continued ‘classical’ taxonomical as well as biogeographical work. With the 
present study equal distribution of cumacean species with an affinity to the 
Magellan region in all high-Antarctic regions could be demonstrated. 

 
A new species Leucon rossi (see front page) and the subspecies Diastylis 

enigmatica rossensis were described from the Ross Sea. Further species from 
the Ross Sea showed slight morphological differences to literature. In the 
context of the discussion about cryptic speciation these differences indicate 
that diversity of Antarctic cumaceans is likely much higher than currently 
known. In the present study genetic differences in the 16S rRNA gene of 
populations of Leucon antarcticus from the Ross Sea and the Weddell Sea 
make clear that these have genetically separated for an extended period of 
time. According to the analysis of 16S rRNA data, populations of the species 
Leucon intermedius from the Ross Sea and the Weddell Sea belong to the 
same species. Genetic diversity of the cytochrome oxidase I (COI) gene of two 
caridean decapods supports the concept of circumantarctic species 
distribution in marine broadcasters. A broadcasting mode in reproduction 
seems to favour high gene flow and homogeneous populations around 
Antarctica. Contrarily, brooders with limited capability to disperse over long 
distances are more likely exposed to geographic isolation on the Antarctic 
continental shelf, i.e. in glacial periods, which favours cryptic speciation 
patterns and high diversity in these taxa. 

 
The phylogenetic history of cumaceans is obscure as there is almost no 

fossil record and derived and primitive characters, which vary within and 
between families, distinguish families. Though assumptions about the 
succession of cumacean families exist, details are still ambiguous. The present 
molecular study of mitochondrial 16S rDNA confirmed the Cumacea as a 
monophylum with respect to Tanaidacea and Isopoda with the monophyletic 
Diastylidae as a basal family. The hypothesis of a derived group of Cumacea 
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bearing a fused pleotelson was confirmed as well. Furthermore this study 
demonstrated that within the family Leuconidae the genus Leucon is 
paraphyletic, whereas the subgenus Crymoleucon resolved monophyletic. 
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ZUSAMMENFASSUNG 
 
Die Cumacea gehören zu den Peracariden und sind eine Ordnung der 
Crustacea. Diese evolutiv alte Gruppe zeichnet sich durch eine konservative 
Morphologie aus. Überwiegend an Weichböden in marinem Milieu gebunden, 
zeit sie eine kosmopolitische Verbreitung. Wie andere Peracariden betreiben 
die Cumaceen Brutpflege; junge Stadien, welche die Morphologie der 
ausgewachsenen Tiere widerspiegeln, werden im Marsupium getragen. Es wird 
vermutet, dass das Marsupium eine wichtige Rolle für den Erfolg dieser 
häufigen und artenreichen Gruppe der Crustacea spielt. 
 

Die Peracariden sind eine dominante Gruppe in den benthischen 
Gemeinschaften des Südozeans. Quantitative Studien der Fauna des 
Rossmeerschelfs haben gezeigt, dass die Peracariden 63% zur Abundanz and 
50% zur Biomasse beitragen. Amphipoden dominierten deutlich, obwohl die 
Gemeinschaft an verschiedene Stellen durch hohe Abundanzen von 
Cumaceen, Isopoden und Tanaidaceen dominiert wurden. Die Zahl der 
bekannten Peracaridenarten aus dem Rossmeer ist geringer als in anderen 
hochantarktischen Gebieten. In der vorliegenden Studie wurde gezeigt, dass 
der Artenreichtum der Cumaceen dem des Weddellmeeres und der 
Ostantarktis entspricht. Bisher waren nur 13 Arten aus dem Rossmeer bekannt. 
Diese Artenzahl hat sich nun von 13 auf 34 erhöht. Dies verdeutlicht die 
Notwendigkeit der Wahl geeigneter Geräte zur Probennahme und fortgeführter 
„klassischer“ taxonomischer und biogeographischer Arbeit. Vollständige 
Artenlisten und grundlegendes Verständnis von Artengemeinschaften sind 
nötig, um die Beziehungen zwischen verschiedenen Habitaten zu verstehen. 
Mit der vorliegenden Studie wurde die konstante Verbreitung von 
Cumaceenarten, welche auch in der Magellanregion anzutreffen sind, für alle 
hochantarktischen Regionen gezeigt. 

 
Die neue Art Leucon antarcticus und die Unterart Diastylis enigmatica 

rossensis aus dem Rossmeer wurden beschrieben. Weitere Arten des 
Rossmeeres zeigten morphologische Unterschiede zu ursprünglichen 
Beschreibungen. Vor dem Hintergrund der Diskussion über kryptische 
Artbildung scheinen diese Unterschiede darauf hinzudeuten, dass die Diversität 
der antarktischen Cumaceen größer ist als bisher angenommen. Die in der 
gegenwärtigen Untersuchung aufgegezeigten genetischen Unterschiede des 
16S rRNA-Gens von Leucon antarcticus aus dem Ross- und dem Weddellmeer 
verdeutlichen, dass diese Populationen seit einer ausgedehnten Zeitspanne 
genetisch voneinander getrennt sind, während die untersuchten Fragmente 
des 16S rRNA-Gens der Populationen von Leucon intermedius aus den 
gleichen Gebieten keine Unterschiede aufwiesen, die auf eine genetische 
Trennung hindeuten. Die genetische Diversität des Cytochromoxidase I-Gens 
(COI) von zwei Decapodenarten unterstützte das Konzept der 
zirkumantarktischen Verbreitung von Arten mit Driftstadien. Die Reproduktion 
über planktische Larven scheint zu höherem Genfluß und zu homogenen 
Populationen rund um die Antarktis beizutragen. Für Populationen von Arten 
mit Brutpflege, die ein verringertes Ausbreitungspotential über lange Distanzen 
besitzen, bestand dagegen während glazialer Perioden eine erhöhte 
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Wahrscheinlichkeit von geographischer Isolation auf dem antarktischen Schelf. 
Diese spielt eine wichtige Rolle bei der Bildung von kryptischen Arten. 

 
Die Phylogenie der Cumaceen ist unklar, weil es nur wenige fossile Funde 

gibt und die Familien anhand von ursprünglichen und abgeleiteten Merkmalen 
unterschieden werden, die innerhalb und zwischen den Familien variieren. 
Obwohl Annahmen über die Abfolge der Cumaceenfamilien existieren, sind die 
Details noch mehrdeutig. In dieser Studie konnte anhand von mitochondrialer 
16S rDNA die Monophylie der Cumaceen gegenüber den Tanaidaceen und 
Isopoden bestätigt werden. Die Diastyliden traten als monophyletische und 
basale Familie auf. Die Hypothese einer abgeleiteten Gruppe der Cumaceen 
mit einem fusionierten Pleotelson wurde ebenfalls gestärkt. Überdies hat sich 
erwiesen, dass innerhalb der Familie Leuconidae die Gattung Leucon 
paraphyletisch ist, während die Untergattung Crymoleucon als Monophylum zu 
erkennen war. 
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1 INTRODUCTION 
 
1.1 Antarctic peracarid crustaceans 
 
Systematics and morphology 
 
The supraorder Peracarida (Malacostraca, Eumalacostraca) is subdivided into 
eight orders; five of these are represented in the Southern Ocean (Tab. 1). 
Systematics of this group have been subject to controversial discussion, and 
as a result it was suggested to discard or revise the taxon fundamentally 
(Dahl 1983). A recent classification (Martin & Davis 2001) includes the 
Thermosbaenacea as a peracarid order. In the classical organization of the 
Peracarida Thermosbaenacea were not included, as they are lacking the 
marsupium found in female specimens, which is an autapomorphic character 
shared by all other peracarids (Westheide & Rieger 1996). The marsupium is a 
brood pouch on the ventral side of the carapace of the mature female. Eggs 
are laid into the marsupium and undergo direct development without 
planktonic larvae in contrast to most other marine invertebrate species, which 
follow a complex life cycle including larval stages. The brood chamber consists 
of overlapping lamella (oostegites), which are interpreted as epipodites that 
have moved from the lateral to the medial side (Claus 1885). This movement 
was achieved by a special hinge of the thoracopods between coxa and basis, 
which is also an autapomorphy of the classic Peracarida (Westheide & Rieger 
1996). Thermosbaenacea still have a brood pouch consisting of the swollen 
dorsal carapace cavity. Most likely, peracarid crustaceans owe their 
evolutionary success to the marsupium and brood protection. This comes true 
especially for terrestrial isopods as the marsupium was a prerequisite for the 
radiation of this group (Westheide & Rieger 1996). 
 
 
 

 
 
 
 
 

 
Table 1  Orders of the supraorder 
Peracarida (estimated worldwide 
numbers after Brandt 1999; Sieg 
1986; Westheide & Rieger 1996; 
Antarctic and Magellan regions after 
De Broyer & Jażdżewski 1996; 
Brandt et al. 1998;  Brandt 1999¸ 
Schmidt & Brandt 2001; Haye et al. 
2004; De Broyer et al 2003; 
publication II, IV). 
 

Numbers in brackets including Magellan region 

 
peracarid order species number 
 worldwide Antarctic 
Amphipoda >7000 531 (821)
Cumacea 1400 67 (98)
Isopoda >10000 356 (427)
Mysidacea 780 37 (59)
Tanaidacea 2000 74 (127)
Mictacea 3 - (-)
Spelaeogriphacea 2 - (-)

Thermosbaenacea 20 - (-)
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Ecological importance and evolution 
 
Although some isopods conquered firm land and inhabit most arid areas, the 
majority of the Peracarida populate aquatic, mainly marine, environments. Also, 
some amphipods and an abundance of isopods are parasitic, the latter, as the 
exception from the rule, including few forms with a complex life cycle (e.g. 
Raupach & Thatje 2006). In the marine environment the dominant mode of life 
is benthic though several peracarids display to some extent an affinity to the 
water column (Westheide & Rieger 1996). Antarctic peracarid crustaceans 
constitute an important element of the benthos both in terms diversity and 
abundance (Jadzdzewski et al. 1992; De Broyer & Jażdżewski 1996; De Broyer 
et al. 2003; publication I). After more than a century of Antarctic research 
species numbers are still increasing every year (De Broyer & Jażdżewski 1996; 
De Broyer et al. 2003). High diversity of Antarctic Peracarida is elucidated with 
the long evolutionary history of the isolated Antarctic environment, habitat 
heterogeneity partly caused by iceberg scouring and drop stones (compare 
chapter 2.1), low dispersal potential due to the brooding reproduction mode, 
limited mobility of bottom dwelling peracarids, and finally the extinction of most 
benthic predators including decapods, particularly brachyuran crabs, owing to 
the tertiary cooling of the Southern Ocean, which left ecological niches vacant 
for peracarid crustaceans (De Broyer & Jażdżewski 1996; Aronson & Blake 
2001; De Broyer et al. 2003; Thatje et al. 2005a). Actual diversity of Southern 
Ocean Peracarida might be even higher than observed today, if it turns out that 
cryptic speciation recently revealed within the isopod species Ceratoserolis 
trilobitoides and Glyptonotus antarcticus (Held 2003; Held & Wägele 2005) is a 
general feature of Antarctic Peracarida, a pattern that might be the result of the 
evolutionary history of the Southern Ocean (for discussion see Thatje et al. 
2005b). 
 

Furthermore, peracarid crustaceans are an important food source for 
many Antarctic benthic invertebrates, demersal fish, sea birds, and marine 
mammals (e.g. Dearborn 1965, 1977; Ainley et al. 1992; Jażdżewski & 
Konopacka 1999; Olaso et al. 2000, De Broyer et al. 2004). In total about 60 
million tons of amphipods are estimated to be consumed every year within the 
Antarctic food web (Dauby et al. 2002). 
 
 
 
1.2 Antarctic Cumacea 
 
According to Băcescu and Petrescu (1999), Swammerdam was the first to 
mention a cumacean species in 1680 (published 1737). The first description of 
that species according to Linnean nomenclature dates back to 1780, when Le 
Lepechin described Oniscus scorpioides, which today is known as Diastylis 
scorpioides (Zimmer 1941; Băcescu & Petrescu 1999). Only 1804, the second 
cumacean Cancer scorpioides (Bodotria scorpioides) was described by 
Montagu. Synonym to this species is Cuma audouinii (Milne-Edwards 1828), 
after which this peracarid order was named. In 1841, four further species were 
described by Krøyer (Zimmer 1941). The first description of an Antarctic 
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cumacean was published by Sars in 1873. He described five additional species 
from the Antarctic in the following years (Sars 1887). During that time about 
130 species had been described worldwide. Today eight families are 
recognized (Bodotriidae, Ceratocumatidae, Diastylidae, Gynodiastylidae, 
Lampropidae, Leuconidae, Nannastacidae, and Pseudocumatidae) and are all 
known to occur in Southern Ocean waters, although Ceratocumatidae and 
Pseudocumatidae were recorded from the Subantarctic only. The total number 
of cumacean species estimated today is 1400 (see Tab. 1) 
 

General cumacean morphology is conservative throughout all families and 
comprises a widened and raised carapace and a slender pleon ending in two 
uropods (compare Fig. 1). The average size of the cumaceans is 0.5 to 1 cm, 
the largest species, Diastylis goodsiri, is recorded from the Arctic and reaches 
3.5 cm in total length. Polar species tend to be larger in general (Chapelle & 
Peck 1999). Whereas Palaeozoic forms were lacking a pseudorostrum and still 
possessed well-developed eyelobes (Schram 1986), the present form was 
reached in the early Jurassic (Băcescu & Petrescu 1999). Monophyly of the 
Cumacea is supported by numerous synapomorphies: the carapace covers the 
first three thoracic somites and is forming the pseudorostrum anteriorly; the 
first thoracic appendage is bearing a branchial epipod which extends to a 
siphon; the second thoracic appendage carries a modified oostegite in 
females; and the pleopods are lacking from the second to the fifth abdominal 
somite in females (Haye et al. 2004). Only little is known about cumacean 
 
 

 

Figure 1 Species/subspecies described during the present study (publication III, IV); left: 
Leucon (Crymoleucon) rossi (scale = 0.5mm); right: Diastylis enigmatica rossensis (scale = 
1 mm). 
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phylogeny. Until now, no satisfying phylogenetic hypotheses have been 
proposed. Latest molecular work indicated that the most derived group of 
cumacean families (Bodotriidae, Nannastacidae, and Leuconidae) without 
articulated telson is a monophylum. Still, within this group Bodotriidae are 
paraphyletic. The Pseudocumatidae is the most basic family and leads via 
Gynodiastylidae and Diastylidae to more derived forms (Haye et al. 2004). 
 

Cumaceans exhibit a cosmopolitan distribution and live most of their life 
buried in the sediment. Therefore, they are not found on rocky bottom. Several 
studies revealed that nocturnal vertical migrations are common for cumaceans 
with species specific and seasonal variations (e.g. Granger 1969; Steams & 
Dardeau 1990; Akiyama & Yoshida 1990; Macquart-Moulin 1991; Wang & 
Dauvin 1994). Occurrence in the plankton is connected to moulting, courtship, 
and reproduction and was interpreted as to be avoidance of predation during 
sensible phases of life as well as important for dispersion of an animal which is 
almost immotile most of its life cycle (Anger & Valentin 1976; Yoda & Aoki 
2002). 
 

Most species feed on sediment by grazing on grains of varying size or 
filtering microorganisms or organic substances from the sediment. They inhabit 
mainly marine habitats, but few species are adapted to brackish water. 
Cumaceans are an essential component of the benthic fauna (e.g. Hessler & 
Sanders 1967; Brandt et al. 1999) and are important as food source for 
demersal fish and other macrofauna (e.g. Kühl 1964; Arntz 1971, 1974; Arntz & 
Finger 1981; Cartes 1993; Schlacher & Wooldridge 1996). 
 
 
 
1.3 Hypotheses and aims of the study 
 
Cumacean phylogeny 
 
Cumacean phylogeny has been studied recently (Haye et al. 2004); before 
assumptions about family relationships were proposed by Zimmer (1941) and 
Lomakina (1968). Though information indicates two major groups within the 
Cumacea, still most of the relationships within and between families remain 
obscure. Whereas monophyly is strongly suggested by morphology (Zimmer 
1941), recent molecular studies failed to prove monophyly (Haye et al. 2004). 
 
Hypothesis 
The peracarid order Cumacea is a monophyletic taxon. Also, the family 
Leuconidae is monophyletic within the higher cumacean taxa. 

 
 
Diversity of the Ross Sea 
 
Although it is known that diversity of Antarctic peracarid crustaceans is high 
the reported species numbers for the Ross Sea are comparatively low (e. g. 
Brandt 1991; Mühlenhardt-Siegel 1999; Corbera 2000). Most of the research 
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characterizing habitats of the Ross Sea has been done around McMurdo 
Sound (Waterhouse 2001). Information about macrozoobenthic community 
structure and diversity along the Victoria-Land coast (Ross Sea) is limited to 
only few restricted shallow water areas such as Terra Nova Bay. 
 
Hypothesis 
Low peracarid species numbers reported from the Ross Sea area are 
reported due to under-sampling of the region with inappropriate gear. True 
diversity of the Ross Sea region is as high as in other high-Antarctic regions 
(e.g. Weddell Sea, East Antarctic). 

 
 
Diversity and speciation of Antarctic Cumacea 
 
Morphological data from the Antarctic often show small differences within 
species, which are attributed to geographical variation. Nevertheless, recent 
studies showed cryptic speciation is common in Antarctic isopods (Held 2003; 
Held & Wägele 2005; Raupach & Wägele 2006). 
 
Hypothesis 
Cryptic speciation in Peracarida is not restricted to the order Isopoda. Direct 
reproduction mode and brood protection result in limited dispersal potential, 
and thus genetic diversity might be higher than expected from circum-
Antarctic cumaceans species. 

 
 
Aims of the study 
 
The aims of this study are to: 
 

 investigate macrozoobenthic community structure and cumacean 
diversity in the Ross Sea in order to evaluate the status of this region 
in comparison with diversity and faunal composition of other high 
Antarctic oceans. 

 
 revamp the cumacean species inventory of the Ross Sea. 
 
 study biogeographic affinities between Antarctic cumaceans and 

areas, to reveal the origin of the Ross Sea cumacean fauna and its 
connection to other (sub-)Antarctic regions. 

 
 to examine genetic relationships of cumaceans in order to elucidate 

phylogeny within the Cumacea. 
 
 and to analyse genetic diversity within Antarctic cumacean species 

to reveal speciation processes in the context of the evolutionary 
history of the Southern Ocean. 
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2 MATERIALS AND METHODS 
 
2.1 Study areas 
 
The results of this work are mainly based on fieldwork carried out in the Ross 
Sea, the world's southernmost ocean (Fig. 2). The Ross Sea is a glacially 
deepened continental shelf basin that is fringed by Victoria Land and Marie-
Byrd-Land. As a consequence of glacial abrasion, caused by glacial-
interglacial ice extent and retreat, the depth of the shelf break lies at about 
800 m, wich is much deeper than in any other place on earth (Russo et al. 
1999). Typically, the sea floor is covered with glacial sediments of silt, sand, 
gravel, and scattered erratic boulders (Kennet 1968). During winter, the sea ice 
extends to cover up to 86 percent of the Ross Sea. This corresponds to over 4 
million km2 or one fifth of the total extent of Antarctic winter sea ice (Jacobs & 
Comiso 1989). The shelf ice of the Ross Sea is the largest in the world. Large 
polynyas (areas of combined open water and thin ice surrounded by sea 
and/or land and ice) are a feature of the Ross Sea and play an important role in 
many natural processes, including heat transfer from ocean to atmosphere and 
phytoplankton production, and are driving the Ross Sea food web. The Ross 
Sea polynya contains the most productive and spatially extensive 
phytoplankton bloom in the entire Southern Ocean and in mid-winter covers an 
area of 27.000 km2 (Zwally et al. 1985; Bromwich et al. 1998). It extends along 
the Victoria-Land coast from Ross Island to Coulman Island and probably 
persists throughout winter. Minor polynyas also occur off Cape Royds, Ross 
Island, and a larger one exists in Terra Nova Bay (Kurtz & Bromwich 1985; Van 
Woert 1999). The Ross Sea is one of the biologically most productive regions 
of the Southern Ocean (Sullivan et al. 1993; Arrigo & McClain 1994; Walker et 
al. 1995; Carrada et al. 2000; Innamorati et al. 2000; Saggiomo et al. 2000) with 
estimated annual production four-fold higher than the average global ocean 
production (Saggiomo et al. 2000). 
 

Additional sampling was carried out in the Weddell Sea (Fig. 2) for a 
genetic comparison of species from two geographically separated high 
Antarctic regions. The Weddell Sea is a part of the Southern Ocean situated 
between the Antarctic Peninsula and Cape Norvegia (Queen Maud Land). To 
the north bounded by the South Scotia Ridge, it comprises an area of as much 
as 2.3 million km2. Being a high Antarctic ocean bassin, its water temperature 
on the shelf (to 500 m) varies between -1.6 and -2.2°C. The shelf break – in 
contrast to the Ross Sea - lies at about 600 m (Carmack & Foster 1977; 
Hellmer et al. 1985). Vast areas of the shelf are covered by soft bottom with 
varying components of silt, sand, gravel, and stones up to the size of 
dropstones (Voß 1988; Gutt 1991a). The northern part of the Weddell Sea is in 
the seasonal sea ice zone, whereas the southern part lies in the permanent sea 
ice zone (Hempel 1985). During summer, polynyas develop regularly at the 
eastern and southern shelf-ice coast (Hellmer et al.1985). 

 
Ice is a major disturbance factor through anchor-ice formation and 

subsequent rafting, and through scour and disturbance by sea ice and 
icebergs. Ice scouring usually is an important factor in structuring benthic 
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assemblages in the Weddell Sea as well as in the Ross Sea (Oliver & Slattery 
1985; Picken 1985a; Dayton 1990; Gutt et al. 1996; Gutt & Starmans 1998; 
Arntz & Gallardo 1994; Arntz et al. 1997; Gutt & Piepenburg 2003; Knust et al. 
2003). Differences in the intensity of ice disturbance varying by an order of 
magnitude over Milankovitch timescales are discussed as major driving forces 
in the evolution of Antarctica shelf communities (Thatje et al. 2005a). 
 
 
 

80˚S

70˚S
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Cape Adare

Cape Russell

80˚S 70˚S

Weddell Sea

60˚S

70˚S

Ross Sea

Weddell Sea

Kapp Norwegia

 
 
Figure 2 Study sites and sample areas. Main sample areas red; additional sample areas yellow 
(compare publication III). 
 
 
 
2.2 Sampling methods 
 
The benthic macrofauna was sampled in the setting of the Victoria Land 
Transect project during the 19th Italian Antarctic expedition with RV ‘Italica’. 
Macrozoobenthic samples were obtained along a latitudinal transect off the 
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Victoria Land coast in February 2004. A depth gradient was sampled at each of 
the four sampling sites (Cape Adare, Cape Hallett, Coulman Island, and Cape 
Russell; Fig. 2) ranging from 84 to 515 m (publication I, II). A modified 
Rauschert dredge with a mesh size of 500 μm was used (for detailed 
descriptions of sampling compare publication I, II). Further material was 
obtained from the parallel cruise to the Ross Sea with RV ‘Tangaroa’ 
(publication II), from expeditions ANT XXI-2 (BENDEX) to the Weddell Sea in 
austral summer 2004 (Arntz & Brey 2005; publication III) and the ANDEEP (ANT 
XIX3/4) cruises I and II (Fütterer et al. 2003) to the Scotia-Arc region and the 
Weddell Sea in 2002 (all with RV ‘Polarstern’), and several sites sampled at the 
Antarctic Peninsula, South Shetland Islands, South Sandwich Islands, Balleny 
Islands etc. during various cruises (publication III) (Fig. 2). Sampling was 
carried out using a variety of gear, such as epibenthic sledges, bottom trawls, 
or Agassiz trawls (for more details see Brandt & Barthel 1995; Brenke 2005; 
publication III) in depths ranging from the shelf to the deep sea. 
 

Macrobenthic samples were directly preserved in 90% pre-cooled 
ethanol and were stored at -25°C during the following 4 months. Alcohol was 
changed after that period and samples were sorted into major taxonomic 
groups using a dissecting microscope. For the following 6 months samples 
were kept at 5°C. 
 
 
 
2.3 Morphological studies 
 
Material for morphological studies was examined with a dissecting 
microscope. Dissected appendages were mounted on slides in glycerine prior 
to microscopical work. Digital photographs were taken with an attached 
camera (Olympus DP70) and used for scientific drawings that were created 
with a digital drawing tablet (Wacom Intous3 9x12) as described by Coleman 
(2003, 2006). Body length of cumaceans was measured from the tip of the 
pseudorostrum to the posterior margin of the telson. Length of articles was 
measured as proposed by Mühlenhardt-Siegel (2005) and given as relative 
length of peduncle (RLP) articles 1 to 3 of antenna 1 compared to total 
peduncle length. The ratio basis to rest of appendage (B/R) is given for 
maxillipeds and paraeopods, which is the proportion of the basis to the 
combined length from ischium to dactylus, not including terminal setae. RLA 
refers to the relative length of each article from the ischium to dactylus, 
excluding terminal setae. All lengths were measured from the digital drawings 
(publications IV, V). 
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2.4 Molecular genetic methods 
 
Tissue dissection and DNA extraction 
 
DNA was extracted from the dissected pleon of the cumaceans. The remaining 
parts of the animals were kept in 80% ethanol for later identification or 
repeated analysis. The specimens were dissected using a dissecting 
microscope and sterile tweezers. In some cases whole animals were used for 
DNA extraction. To avoid DNA contaminati on the extraction was carried out in 
sterile conditions. The following alterations were applied to the protocol of the 
QIAamp DNA Mini Kit (Qiagen), which was used for DNA extraction: 

 
 Before elution of the DNA from the spin column, the column loaded 

with elution buffer was incubated for 5 min at 70°C. 
 
 The volume of the elution buffer was decreased from 200 to 50 μl in 

order to increase the concentration of DNA. 
 
After the extraction, quality and quantity of the DNA was determined by a ND-
1000 Spectrophotometer (NanoDrop Technologies). DNA was stored at 4°C for 
further processing. 
 
 
Polymerase chain reaction (PCR) 
 
The method of the polymerase chain reaction (Mullis 1986; Saiki et al. 1986; 
Mullis & Fallona 1987; Saiki et al. 1988) is used to amplify DNA from template 
DNA. A single molecule may be multiplied to millions of copies, which then can 
be further processed to analyse the sequence of the DNA. The processes of 
nucleic acid duplication during PCR are similar to the processes of natural 
replication. A new strand of DNA is synthesized by the polymerase along a 
single strand of nucleic acid beginning with a starter molecule (primer). Primers 
are synthetic DNA oligonucleotides, which hybridize with the single strand DNA 
matrix. In the next step a heat resistant DNA polymerase synthesizes a new 
DNA double strand from the 3’ end. With two primers oriented to the opposite 
directions an intermediate DNA sequence can be copied. During a PCR run the 
single steps of the reaction (denaturation, primer annealing, and primer 
extension) are cyclically repeated. As the matrix DNA is doubled with each 
cycle it is multiplied exponentially (detailed reaction profiles used are given in 
Table 2). 
 

The PCR was used to amplify a homologous region of the mitochondrial 
16S rRNA gene. Amplifications were performed on an Eppendorf Master Cycler 
in 25 μl reactions using the HotMaster Taq-polymerase and reaction buffer of 
Eppendorf. According to the protocol provided by the manufacturer the 
following concentrations were used: 
 

 2.5 μl 10x PCR buffer 
 0.5 μl dNTPs (2 mmol/μl) 
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 0.125 μl of each primer both 100 pmol/μl 
 3 μl of DNA template 
 0,25 μl BSA 
 0.15 μl Taq (5 U/μl) 
 filled up to 25 μl with sterile H2O. 

 
 
 
Table 2 PCR reaction profiles according to primer combinations. 
 
primer pair temperature (°C) Time (min.s) No. of cycles reaction profile 

 94 2.00 1 initial denaturation
 94 0.20 denaturation 

16a/16b 52 0.10 38 annealing 
 65 1.00 extension 
 65 8.00 1 final extension 

 94 2.00 1 initial denaturation
 94 0.20 denaturation 

16a/craR 42 0.20 38 annealing 
 65 1.00 extension 
 65 8.00 1 final extension 

 94 2.00 1 initial denaturation
 94 0.20 denaturation 

ALh/CLr 46 0.10 38 annealing 
 65 1.00 extension 
 65 8.00 1 final extension 

 
 
 
Primer design 
 
The universal primers for the 16S rDNA (16a, 16b) (Table 3) were previously 
used with success for the study of several arthropod classes (Simon et al. 
1994). Despite the general application of these primers on arthropod taxa 
amplification of cumacean DNA was weak. As primer 16b is less effective than 
primer 16a it was substituted with the reverse primer craR (Table 3) of Crandall 
& Fitzpatrick (1996), but no increase of DNA yield was achieved. Therefore, 
new primers were created from seven amplified sequences and three 
sequences obtained from the GenBank data base (National Center for 
Biotechnology Information). Conserved regions were identified using the 
program BioEdit (Hall 1999). Primers for these sites were constructed with the 
program Fast PCR (Kalender 2003) and the online java-applet netprimer 
(http://www.premierbiosoft.com/net-primer/index.html) taking into account 
formation of hairpins and dimmers (Palumbi 1996). Primers ALh and CLr (Table 
3) were constructed for the cumacean family Leuconidae at highly conserved 
regions of the 16S gene. The fragment length between ALh and CLr ranged 
from 255 to 256bp. 
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Gel electrophoresis 
 
During the present study, gel electrophoresis (Sambrook et al. 1989) was used 
for control of DNA amplification and purification. It is a common method used 
in every modern molecular laboratory to verify the quantity and purity of DNA. 
Electrophoresis separates charged biomolecules, which migrate in an electric 
field depending on molecule size and electric charge. From the migration rate 
and the number of different fragments, conclusions can be drawn about the 
purity of the PCR product. The amount of DNA can be estimated from the 
brightness of the signal. 
 
 
 
Table 3 Primers used for DNA amplification. 
 
primer sequence source 

16a1 5’-CGC CTG TTT ATC AAA AAC AT-3’ Palumbi et al. 1991 

16b2 5’-CCG GTC TGA ACT CAG ATC ACG-3’ Palumbi et al. 1991 

craR2 5’-AGA TAG AAA CCA ACC TGG-3’ Crandall & Fitzpatrick 1996 

ALh1 5’-GTA CTA AGG TAG CAT A-3’ publication VI 

CLr2 5’-ACG CTG TTA YCC CTA AAG TAA TT-3’ publication VI 

1 forward primer; 2 reverse primer 
 
 
 

 horizontal agarose gel (1.5%) was loaded with a mixture of 3 μl of 
amplified/purified DNA and 1 μl loading buffer (peqlab). After a running time of 
25 min (120 mV) the gel was removed from the electrophoresis chamber and 
stained for 1 min in an ethidiumbromide bath (0.1%) and subsequently 
distained in distilled water for 20 min. Ethidiumbromide binds with high affinity 
to the double-stranded DNA molecule and fluoresces under ultraviolet light. A 
‘ladder mix’ (Fermentas FastRuler DNA Ladder, Middle Range) of DNA 
fragments with defined length was also applied onto the gel to characterize the 
sample DNA from photographs taken under an UV light source (observed 
bands from the samples are compared to the bands of the ladder mix to 
distinguish the length of the DNA molecule). 
 
 
DNA purification 
 
PCR products were purified of remaining primers, polymerase, nucleotides and 
salts, which might negatively influence the sequencing reaction (Hillis et al. 
1996). The QIAquick PCR-purification kit of Qiagen was used according to the 
manufacturer’s instructions. To achieve higher concentrations of purified DNA 
only 30 μl elution buffer were used. An aliquot of 3 μl of the purified DNA was 
again controlled by gel electrophoresis. 
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DNA sequencing 
 
DNA sequencing is the final procedure to obtain nucleotide sequence of the 
examined genes. Therefore, the Thermal Cycle-Sequencing method was 
applied to the purified PCR products. Cycle sequencing (Sambrook et al. 1989) 
is a combination of two technologies: dideoxy-chain termination sequencing 
(Sanger et al. 1977) and the thermal cycling methodology as used in the PCR 
technique. The method is suitable for small amounts of template DNA. 
Didesoxyribonucleoside triphosphates (ddNTPs) are used as specific 
terminators of DNA chain elongation. In contrast to the common nucleotides 
(dNTPs) used in PCR, these ddNTPs lack the 3’-hydroxyl group necessary for 
incorporation of further dNTPs to the growing DNA chain. Thus, the growing 
chain is terminated whenever a ddNTP molecule is incorporated. Since the 
reaction mix contains dNTPs as well as ddNTPs; the latter are incorporated 
rarely and randomly under the particular conditions of the polymerase reaction. 
A number of didesoxy-terminated chains are synthesized from one template 
strand during the reaction cycles. Owing to the PCR-like character of the 
method a large amount of product copied from a single template strand is 
produced. Accordingly, this technique is far more sensitive than the standard 
sequencing method of Sanger et al. (1977). 
 

In the present study cycle sequencing was performed according to the 
manufacturer’s instructions of the BigDye Terminator v3.1 kit of Applied 
Biosystems (ABI) using the ABI 3130 sequencer. In general 1-3 μl of purified 
DNA was used for cycle sequencing with an Eppendorf Master Cycler (4 μl 
were used for samples with low DNA concentration). Excessive BigDye was 
removed with the DyeEx 2.0 spin kit (Qiagen) and the samples were 
denaturized 1:1 with formamide prior to sequencing. The BigDye mix, included 
in the kit, contains differently marked ddNTPs for each base type. During the 
sequencing process the fragments of each sample are separated according to 
their length by introducing a capillary into each sample. A laser is moved along 
the capillary and the emitted light is detected by the sequencer. The output file 
of the sequencer is an electropherogram that shows the sequence and the 
quality of the reading (Fig. 3). 
 
 
 

 

 
Figure 3 Electropherogram. Each peak represents a base of the DNA sequence. Here, part of 
the mitochondrial 16S rDNA of the cumacean species Leucon antarcticus Zimmer, 1907. 
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2.5 Statistical analysis 
 
Faunal communities 
 
Data of macrozoobenthic communities (publication I) and cumacean species 
assemblages (publication II) off Victoria Land coast were analysed using the 
PRIMER v. 5.1.2 (Plymouth Routines in Multivariate Ecological Research; 
Clarke & Gorley 2001) software package developed at Plymouth Marine 
Laboratory, United Kingdom. A cluster analysis and Multidimensional Scaling 
(MDS) on the basis of Bray-Curtis Index was used. Since data of the Rauschert 
dredge are of semi-quantitative nature, relative abundances with arc-sin 
transformation were used. As a measurement for diversity univariate methods, 
such as Shannon-Wiener index (H’) (Shannon & Weaver 1949) and evenness 
(J’) (Pielou 1966) were applied. 
 
 
Morphological data 
 
Several morphological characters (carapace height, carapace length, length of 
carapace and free thoracic segments, total length, and ratio carapace height 
vs. carapace length) were measured for premature males, premature females, 
and adult females of the cumacean Leucon (Crymoleucon) rossi n. sp. 
(publication V). A pairwise comparison of these data between both sexual 
stages of the premature animals was carried out as well as a comparison of the 
ratio of carapace height vs. carapace length between premature males and 
adult females using the Mann-Whitney Rank Sum Test (Mann & Whitney 1947). 
 
 
 
2.6 Phylogenetic analysis 
 
Correction of DNA sequence 
 
Sequence files from the sequencer were assembled using the programs 
Pregap4 and Gap4 of the Staden package (Staden et al. 1989). Following this 
procedure, the consensus sequence was built by aligning the sequences of the 
forward and the reverse primers. Conflicting sequence data were corrected 
manually depending on the quality of the signal displayed in the 
electropherograms. 
 
 
The Basic Local Alignment Search Tool (BLAST) 
 
Prior to inclusion of genetic data into the phylogenetic analysis, sequences 
were compared to sequences from the Gen-Bank database of the National 
Center for Biotechnology Information (www.ncbi.org). With the Basic Local 
Alignment Search Tool (Altschul et al. 1990) the database was searched for 
similar published sequences. Hitherto, only three cumacean sequences of the 
16S gene have been published; thus BLAST searches based on cumacean 
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sequences often lead to other crustacean or even insect sequences as the 
closest related taxa. These results were obtained due to close relationship 
between conserved parts of the mitochondrial 16S rDNA of arthropods and the 
high diversity of variable sites within the cumacean sequences. Nevertheless, 
sequences that yielded arthropod relationships were included into 
phylogenetic analysis as they displayed high agreement with the already 
known cumacean sequences. 
 
Aligning sequences 
 
In a phylogenetic analysis homologous characters are compared, whether 
these are morphological or genetic. Homologous areas were determined using 
the secondary structure of the 16S gene (Fig. 4). Base-pairing regions (‘stem 
regions’) are conserved, and thus can be comparatively easily homologized 
between two sequences. On the other hand a ‘stem’ consists of two sites on 
the sequence, which can be identified due to the capability to bind by base 
pairing. It is important to note that the secondary structure is formed by the 
rRNA, which allows non-canonical base pairing (e.g. U – G); therefore clear 
reconstructions might be obscure (Ouvrard et al. 2000). Fortunately, most 
regions of the sequences could be aligned using the secondary structure 
model of Drosophila melanogaster (GenBank Accession number X53596 (Gutell 
et al. 1993) (Fig. 4). Non-pairing-regions (‘loop regions’) were aligned using a 
hidden Markov model (Churchill 1989; Rabiner 1989) implemented by the 
program ProAlign version 0.5 (Löytynoja & Milinkovitch 2003). Sites, where 
alignment was still ambiguous, were excluded from analysis. 
 
 
Tree construction 
 
The aim of a phylogenetic analysis is to create a tree topology that represents 
the historical relationship between particular taxa and to estimate the genetic 
distance (the branch length of a given tree topology). For estimation of the 
genetic distance, a model of sequence evolution has to be determined. In the 
present study tree methods were used to reconstruct phylogenetic 
relationships of cumaceans based on the 16S gene: maximum likelihood, 
maximum parsimony, and Bayesian analysis (Camin & Sokal 1965; Felsenstein 
1973, 1981; Swofford et al. 1996; Nei 1996; Huelsenbeck & Crandall 1997; Mau 
et al. 1999; Wägele 2001; Huelsenbeck et al. 2001). 
 

First, maximum likelihood methods intend to find a tree for a given data 
set indicating the most likely phylogeny under a particular model of sequence 
evolution. Characters (nucleotides) and branch length between taxa are 
evaluated to calculate a likelihood value for a specific tree and the tree with the 
highest value is chosen as most favourable. The model of evolution most 
appropriate for the data set of this study, General Time Reversible Model with 
invariable sites and gamma distribution (GTR+I+G) (Lanave et al. 1984; 
Rodriguez et al. 1990) was calculated by the program ModelTest version 3.7 
(Posada & Crandall 1998) applying the Akaike information criterion (Akaike 
1974; Hasegawa 1990). 



2  MATERIALS  AND  METHODS 15 

 

The second method used (maximum parsimony) searches for the shortest tree 
in terms of evolutionary changes. The tree with the least changes (mutations) in 
the nucleotide sequenced is considered to be most optimal (Yang 1996). 
Changes are considered to occur in both directions (are not directed). As 
transitions (substitution from purines to purines A • G, or from pyrimidin to 
pyrimidin C • T) are more likely to happen than transversions (substitutions 
between purines and pyrimidines) the ratio of transitions vs. transversions was 
estimated as 3:1 during the present study. 
 
 
 

5’ half

3’

U
A
U
AUG

A
A

A A G
U
U
U
A
A
A
U

A
A
A
GAAUU

C
G
G
C
A

A A A A U
A
A
U
A
U
U
C
GC

C
UGU

UUA
A
C
A

A A A
A C A

U
G U

C
U
U
U
U
U
G

A
A

U U A
U
A

U
A
U
A
A
A
G
U C

U
A A C C

U

G
C
CC

A C
U
G
A
A
A A U

U
U
U A

AA
U
G
G
C

C
G
C
A
G
U
A

U U U
U
G

A
C

U
G

U
G C A A

A
GG

U
U
A
G
C
A
U
A
A

U
CAUUAG

U
C
U
U
U

U
AAU

U
G
A
A
G
G
CUGGAAU

G
A
A
U
GGUU

GGAC
GAA
A
U
A
U
U
A

A
C
U

G
U
U
U
C

A
U
U
U
A
A
A
A

U
UU

U
U
A U A G A A U U U

U
A

U
U

U
U U U A G

U C A A
A
A

AGCUAAA
A
U
U U A U U U A A

A
A G AC G A

G
A

A
G A C

C
C
U
AU
A
A

A
U
C
U
U

U
A
U
A
U
U
U
U
U
U
U
U
A
U
UUU

A
A

U
U
A
U
A

U A G A U U A A
U
U
A
A
A

U
U

UUA
A
U
A
A
A

UA
A
A
A
A
U
A
U

U U U
A
U
U

G
G G G

U
G
A
U
A U

U
A
A
A
A

U
U
U

A A A A
A
A
C

U
U
U
U
A
A U U U U U

U A
A A A A C A

U
A

AAUUUAUGAA
U

A
U

U
U

G
A

U
CC

A
U
U
AAU

A
A
U
GA

U
U
AAA

A
A

A
U

UA
A
G
U
U A

CU
U
U
A
G
G
G A U A

A
C

A
G
C G UA

A U U U U U U U
G G A

G A G U
U
C

A
UA

UC
GAU

AAAAAAG
AU

UGCG
A
C

C
U

C
G

A
U

GUU
G
G
A
U
U
A
A
G
A
U
A U A A U

U
U U G G G U G U

A
G

CCGUUCAAAUUUUA
A
G
U
C
U

GUU
C
G
A
C
U
UU

U
A
A

A U
U
C
U
UA

C AU
G A

U
C
U

GAGUUCA
AACC

GGU
GU

A
A GCC

A GGUU
G

G
U
U
UC

UA
UCUUUAAA

A

A

A

U

U

A

U

GAUAUUU
U
A G UAC

G A
A
AGGA

C
CAAAUAUC

A
A

A
A

U
A

A
U

UA
U

A
U

U
U

UUUAUA
A

G
AAUA

U
U
A
U

U A A UA UA A
A

A

CLr

16b

16a
ALh

loop region

stem
region

 
 
Figure 4 Drosophila melanogaster: mitochondrium. Secondary structure of large subunit (3’-
part) (http://www.rna.icmb.utexas.edu/). Amplified fragments of 16S rRNA gene (green) is 
situated between forward (16a/ALh) and reverse (16b/CLr) primers. 
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The third method uses the Bayesian theorem, which was introduced by the 
mathematician Thomas Bayes in the 18th century. The method calculates the 
probability of a tree based on the dataset. Likelihood values are converted to 
‘posterior probabilities’ from random samples of trees. The statistical method 
used is based on a ‘Markov Chain Monte Carlo’ simulation. The result of the 
analysis is shown in a consensus tree. 

 
Both methods, maximum parsimony and maximum likelihood, were 

carried out using the computer program PAUP*, version 4.0b10 (Swofford 
2003) using the heuristic search option with the TBR branch-swapping 
algorithm. Analyses were performed using random-addition of sequences with 
10 replicates. Bootstrapping (Felsenstein 1985) applying 500 or 10.000 
replicates (corresponding to the computation time of the method) was 
executed to calculate the trees. The Bayesian analysis was performed with the 
program MrBayes (Huelsenbeck & Ronquist 2001). 
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3 SYNOPSIS 
 
3.1 Cumacean phylogeny 
 
Within the supraorder Peracarida cumaceans are proposed to be closely 
related to Isopoda, Tanaidacea or Spelaeogriphacea (Zimmer 1941; Siewing 
1963; Schram 1986; Watling 1999). Assumptions about cumacean phylogeny 
have been made by Zimmer (1941) and Lomakina (1968). Zimmer (1941) 
excluded Ceratocumatidae from his study as little was known about the family. 
The remaining cumacean families are distributed over three family types. The 
Lampropidae belong to the first and basal type. The second and more 
advanced group comprises the families Diastylidae and Pseudocumatidae, 
while the most advanced families are the pleotelson bearing families. For the 
latter type Zimmer (1941) provides no detailed analysis. Zimmer’s observations 
are mainly based on external morphology, whereas Lomakina (1968) discussed 
the number and shape of hepatic diverticula resulting in the following 
succession of families: Lampropidae, Diastylidae, Pseudocumatidae, 
Ceratocumatidae, Leuconidae, Nannastacidae, and Bodotriidae. Both authors 
did not recognize the family Gynodiastylidae. 
 

The first extensive computer aided phylogenetic analysis on cumaceans 
was carried out by Haye et al. (2004). Their study combined morphological with 
molecular data from the mitochondrial cytochrome oxidase I (COI) gene. 
Molecular data showed contradicting results concerning monophyly of the 
Cumacea with Tanaidacea and Isopoda as outgroup taxa. Both datasets agree 
on more basal cumacean families, which have a telson not fused to the pleon, 
and a derived ‘pleotelson clade’. The Pseudocumatidae are the most basal 
family followed by Gynodiastylidae and Diastylidae, which resolve paraphyletic. 
The most derived of the telson bearing families, the Lampropidae, have 
intermediate support for monophyly only; thus monophyly of the ‘pleotelson 
clade’ is not proven. However, morphological data support monophyly among 
the ‘pleotelson clade’ including families Bodotriidae, Leuconidae, and 
Nannastacidae, as derived group of cumaceans. While molecular data lack 
sufficient signals for detailed results within the clade, morphology suggests 
that Leuconidae are basal, Nannastacidae intermediate, and Bodotriidae the 
most derived taxon. With their phylogenetic analysis of COI gene Haye at al. 
(2004) showed that Lampropidae, contradicting to assumptions of Zimmer 
(1941) and Lomakina (1968), are more derived of the telson bearing families. 
They discuss the homoplasticity of many of the established morphological 
characters. Zimmer (1941) mentioned already that all cumacean families show 
combinations of advanced and primitive traits. 

 
The study of mitochondrial LSU gene (16S rDNA) comparing the families 

Diastylidae, Bodotriidae, and Leuconidae supports monophyly of Cumacea 
(publication IV). Diastylidae were monophyletic at the basis of the tree 
topology, while neither of the other families was supported to be monophyletic. 
Most phylogenetic relationships within cumacean families are obscure. A 
detailed analysis of the family Bodotriidae was presented by Haye (2007). The 
family Leuconidae was revised by Watling (1991). Three new subgenera were 
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introduced to the genus Leucon, one of which, Crymoleucon, was confirmed 
monophyletic by the analysis of the 16S gene (publication IV). The genus 
Leucon itself resolved paraphyletic. 

 
Although results and assumptions are contradicting or vague a synthesis 

is given in one tree (Fig. 5). The tree does not show results obtained with a 
parsimony analysis of COI gene data, which lead to the assumption that 
Pseudocumatidae and Gynodiastylidae are sister taxa within the Diastylidae. 
 
Conclusion 
 Cumaceans have a distinct morphology; thus monophyly was not 

doubted. Recent phylogenetic studies confirm this assumption with 
respect to Tanaidacea and Isopoda, which are considered to be the 
closest relatives of the Cumacea. 
 

 The existence of a derived group of Cumacea bearing a fused pleotelson 
is confirmed, by studies of morphology, the COI gene, and the 16S gene. 
 

 During the last years some progress has been made on cumacean 
taxonomy. Still, a satisfying phylogenetic analysis of family level or within 
most families lies ahead. 

 
 
 

Pseudocumatidae

Gynodiastylidae

Diastylidae

Lampropidae

Ceratocumatidae

Bodotriidae

Nannastacidae

Leuconidae

?

?

 

 
Figure 5 Phylogenetic tree representing a synopsis of morphological and genetic data (COI 
and 16S genes). Family names shaded grey = paraphyly indicated in some studies; dotted line 
= alternative tree topology. 
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3.2 Peracarid crustaceans of the Ross Sea 
 
The Antarctic shelf has been subject to intensive studies since the end of the 
19th century. Numerous expeditions have provided information on the main 
characteristics of Antarctic marine benthos. Some of these are low diversity of 
higher taxa, high degree of endemism, gigantism, or particular developmental 
types (e.g. Dell 1972; Picken 1980; White 1984; Dayton 1990; Gutt 1991b; 
Arntz et al. 1994). Benthic communities of the Antarctic shelf are characterized 
by assemblages of suspension feeders (Gili et al. 2006a) like sponges, 
cnidarians, bryozoans, and ascidians or detritus feeders such as holothurians 
and polychaetes (Voß 1988; Gerdes et al. 1992; Gutt & Starmans 1998), the 
first mainly contribute to the high biomass of benthic Antarctic shelf 
communities below depths of 10 m (Brey & Gerdes 1997). 
 

A general feature of the benthos of the Antarctic shelf is its high diversity 
(e.g. Hedgpeth 1969; Dell 1972; White 1984; Picken 1985b; Dayton et al. 1994; 
Gutt & Piepenburg 2003). The currently documented total number of described 
species of the Southern Ocean benthos surpasses 4100 (Clarke & Johnston 
2003) and is estimated to cover more than 15.000 (Gutt et al. 2004) on the 
Southern Ocean continental shelf. Peracarid crustaceans are the most 
intensely studied marine taxa and the most specious taxon in the Southern 
Ocean. Still, more than 10 new amphipod species are described every year 
and no asymptote in species description is reached (De Broyer & Jażdżewski 
1996). 

 
Reported diversity in terms of species richness is directly depending on 

the number of samples taken in a specific area and the Ross Sea is one of the 
best-sampled regions in the Antarctic (Clarke & Johnston 2003). The number of 
isopod species described from the Weddell Sea is 674; only 39 species are 
recorded from the Ross Sea (Brandt 1991, Brandt et al. 2007). Cumacean 
species inhabiting the Weddell Sea amount to 29, while the number of species 
observed from the Ross Sea was 13 until recently (Mühlenhardt-Siegel 1999; 
publication II). Why is benthic diversity of peracarid crustaceans low in the 
Ross Sea, whereas in the Weddell Sea, which is also a well-sampled high-
Antarctic area, diversity is much higher? Bradford-Grieve & Fenwick (2001) 
point out that many data are unnoticed or unpublished for the Ross Sea region 
and other samples have only been sorted at higher level and have not as yet 
been worked on. They give a review on species richness including unpublished 
data of zoological collections, but still species numbers are comparatively low 
(Amphipoda 120, Cumacea 16, Isopoda 48, Mysidacea 13, Tanaidacea 11). 
Information about macrozoobenthic communities in the Ross Sea is limited to 
only few restricted shallow water areas such as Terra Nova Bay and McMurdo 
Sound and only little previous work has been accomplished on the deeper 
benthic environment between 50 m and the shelf break at 800 m (Clark & 
Rowden 2004; Waterhouse 2001). Moreover, previous sampling was centred 
on certain benthic groups such as Amphipoda, Mollusca, Polychaeta, and 
Porifera (e.g. Dayton 1972; Stockton 1984; Gambi et al. 1997; Knox & Cameron 
1998; Cattaneo-Vietti et al. 1999; Cantone et al. 2000). However, an important 
factor is the selective nature of different types of sampling gear. Formerly, only 
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gear with mesh sizes of 1 cm or more were used in the Ross Sea (Bradford-
Grieve & Fenwick 2001), and even during the large-scale survey of the Trans-
Antarctic Expedition from 1955 to 1958 mesh sizes of at least 1 cm were used 
(Bullivant 1967a, b; Dearborn 1967). Many peracarid species are smaller than 1 
cm; thus only gear with small mesh size is effective in sampling this group 
(compare Brenke 2005). 

 
The first attempt to implement sampling with small mesh size along the 

Victoria-Land coast in the Ross Sea (Choudhury & Brandt 2007; publication I, 
II) was undertaken during the 19th Italian expedition with RV ‘Italica’ in 2004. A 
striking result of the study was the number of newly recorded species for the 
Ross Sea. For example, the total number of cumacean species known from the 
Ross Sea increased to 34, which is more than recognized for any other 
Antarctic region and corresponds to other high Antarctic regions (East 
Antarctic 32; Weddell Sea 29; publication II). Furthermore, one species and a 
subspecies were new to science and are described in the present work 
(publication IV, V). The species Leucon rossi (publication V) is common and one 
of the most abundant species in the Ross Sea. According to its immense 
occurrence, it is supposed to be an endemic element of the Ross Sea fauna. 
Still, the Ross Sea has the lowest rate of endemism with respect to the 
Cumacea when compared to other high-Antarctic regions (publication II). 

 
In the Southern Ocean gears with small mesh size have been used more 

frequently in recent years (e.g. Brandt et al. 1997; San Vicente et al. 1997; De 
Broyer & Rauschert 1999; De Broyer et al. 2001, Corbera 2000; Brandt 2004; 
Arntz et al. 2006). Still the analysis of whole communities sampled with those 
gears is scarce. From the Ross Sea we know that peracarid crustaceans 
dominate the community of the smaller macrobenthic fauna from the deeper 
shelf (100-500 m) and comprise between 28 – 61% of the total abundance. 
Amphipods contributed up to 56% of peracarid crustaceans, whereas isopods 
and cumaceans reached dominances of 14 and 11%, respectively 
(publication I). Proportions of peracarid communities off the South Shetland 
Islands closely resembled the composition of the Ross Sea during autumn 
(Amphipoda 66%, Isopoda 18%, Tanaidacea 8%, Cumacea 7%, Mysidacea 
<1%), whereas major differences in the proportions of the peracarid fauna from 
the Weddell Sea and off King George Island were observed during summer 
(Lörz & Brandt 2003, publication II). The Weddell Sea was dominated by 
isopods (60%) and off King George Island cumaceans (39%) were the 
dominant group (Linse et al. 2002). It is difficult to evaluate, whether these 
observations are due to seasonal effects, a different composition of the fauna, 
or the patchiness of the fauna. Further sampling will provide more reliable 
information about seasonal differences and similarities between the peracarid 
community compositions of the different Antarctic areas. 
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Conclusion 
 Peracarid crustaceans are an important element of the fauna of the Ross 

Sea and species richness appears to be at least as high as in other high-
Antarctic regions. 

 After more than a century of Antarctic research, knowledge about 
Antarctic benthic communities has increased substantially, but still 
‘traditional’ work in biogeography and taxonomy is needed as it provides 
important knowledge to achieve a more complete picture of Antarctic 
fauna and its relationship to other marine habitats. 

 
 
 
3.3 Origin of Antarctic Peracarida 
 
Geological history and cooling of Antarctica 
 
The initial break-up of Gondwana was driven by a north-eastern drift of India 
130 Ma ago and was followed by the separation of Africa about 40 Ma later. 
The first break-up between Australia and Antarctica occurred about 100 Ma in 
the past (Lawver et al., 1992; Shackleton & Boersma, 1981). It was supposed 
that after the separation of Antarctica and Australia by a deep-water current ca. 
45 Ma ago, opening of the Drake Passage and the separation of South America 
and Antarctica began at about 35 Ma in the past (Lawver et al.1992). The full 
development of the Antarctic Circumpolar Current (ACC) may have taken place 
about 20 Ma ago (Clarke & Crame 1989, 1992). Its development should have 
been crucial for Antarctic Cooling and the initiation of the last final cooling step 
in the middle Miocene about 15 Ma ago (Zachos et al. 2000), which since then 
set the environmental and particularly physiological frame to life in the cold 
(Clarke 1981; Thatje et al. 2005b). 
 

Recent findings showed that the first sign of Pacific water flowing through 
the Drake Passage happened about 41 Ma ago during a time of ephemeral 
glacial advance (Scher & Martin 2004). It is proposed that during that time only 
small oceanic basins formed with a shallow gateway less than 1000 m and a 
deep-water connection developed between 34 and 30 Ma (Livermore et al. 
2005). However, depending on the method, estimates for the opening of the 
Drake Passage and the onset of the ACC varies from 6 Ma to 41 Ma ago 
(Scher and Martin 2004; Lyle et al. 2007; Barker et al. 2007). Thus today, the 
exact timing of the opening of the Drake passage and the onset of the ACC by 
tectonical, sedimentary, or oceanographical processes remains obscure. 
Probably molecular biology is likely to provide a more exact answer to the 
problem; while Chen et al. (1997) put the radiation of the teleost Notothenioidei 
at about 15 Ma, recent estimates date the radiation of amphipods of the 
Antarctic Epimeridae to 15.7 Ma (Lörz & Held 2004). 
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History and present state of the Antarctic benthic communities 
 
A striking feature of the Antarctic benthic fauna is the lack of most decapod 
crustaceans in particular the lack of anomuran and brachyuran crabs in 
continental shelf waters (Arntz & Gorny 1991; Gorny 1999; Thatje & Arntz 
2004). On the contrary, when climate was temperate in the Austral province at 
the transition from the Late Cretaceous to the early Cenozoic a rich decapod 
fauna inhabited the continental shelf (Feldmann & Zinsmeister 1984; Feldmann 
et al. 1997). The last Antarctic fossil records of benthic decapods date back to 
the Pliocene (Feldmann & Quilty 1997). The extinction of Antarctic brachyurans 
and astacids is attributed to the inability to down-regulate [Mg2+] levels in the 
haemolymph, which causes paralysing conditions at temperatures below 1° C, 
and the resulting difficulties to maintain an appropriate oxygen supply 
(Frederich et al. 2001; Thatje et al. 2005a). 
 

Molecular studies suggest that, after the Eocene fish fauna vanished, the 
notothenioid radiation began in the middle Miocene (Cheng & Chen 1999). This 
radiation is strongly connected with cold adaptation of notothenioid fish and 
associated with dropping temperatures (Clarke & Johnston 1996; Clarke et al. 
2004). Other taxonomic groups, such as gastropods, isopods, amphipods, and 
pycnogonids, radiated during the Cenozoic (Brandt 1991, 2000; Brandt et al. 
1999; Watling & Thurston 1989; Clarke & Johnston 2003). Besides low 
temperatures, benthic communities had to face pronounced and short 
seasonality in primary production beginning in the Eocene about 55 Ma ago 
when East-Antarctica and Australia started to drift apart (Crame 1999). 
Altogether, the benthic Antarctic community has undergone fundamental 
changes driven by Antarctic cooling as a result of the onset of the Antarctic 
Circumpolar Current (see also section ‘Geological history and cooling of 
Antarctica’; Aronson & Blake 2001). Many taxa lacking cold adaptation got 
strongly reduced in diversity and/or even went fully extinct from the Southern 
Ocean due to their incapability to adapt to polar conditions. 

 
However, the shift of composition and diversity of the Antarctic fauna was 

only partially caused by physiological constraints. Besides the cooling of the 
Southern Ocean, it was suggested that the Cenozoic fauna of the continental 
shelf was eliminated due to the periodic extensions of the Antarctic ice cap on 
Milankovitch timescales (Clarke & Crame, 1989, 1992, Clarke & Johnson, 
1996). 
 

A recent modelling approach (Huybrechts 2002) indicated that although 
the extent of grounded ice across the continental shelf might have been a 
diachronous process (=time transgressive); the maximum extent of grounded 
ice at the Last Glacial Maximum was likely to cover most if not the complete 
continental shelf surrounding Antarctica. A new hypothesis assumes that the 
advance of grounded ice sheets during glacial periods of the late Cenozoic 
might have devastated benthic communities inhabiting the Antarctic shelf and 
the continental slope (Thatje et al. 2005b). According to that theory, grounded 
ice masses discharged enormous amounts of rubble leading to mass wasting 
and turbidity flows on the continental slope, which is well represented in 
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sediment cores. In addition to the large-scale destruction of benthic habitats, 
reduced food availability due to multi-annual sea ice coverage in glacial 
periods might have affected the benthic fauna in vast areas of the Southern 
Ocean (Thatje et al. 2005b). Still today, the effects of food limitation can be 
seen under the ice shelf of the Ross seas, where abundances of filter and 
suspension feeders are strongly reduced and largely depend on particle flux 
through advection processes (Dayton & Oliver 1977; Thatje et al. 2005b, Gili et 
al. 2001). 
 

Of particular importance was the reduction in skeleton crushing 
predators (Aronson & Blake 2001; Thatje et al. 2005a), which are a special 
feature of shallow-water modern benthic communities elsewhere in the sea 
(Aronson et al. 2007). Today, benthic communities of the Antarctic shelf show 
similarities to Palaeozoic marine communities and modern deep-sea 
communities, which largely lack bivalves and are dominated by suspension 
feeders, like ophiuroids and crinoids, as they face less pressure by 
durophagous predators as in modern shallow water communities (Aronson & 
Blake 2001; Gili et al. 2006a; Aronson et al. 2007). There are no brachyuran 
crabs, lobsters, sharks, or rays in Antarctica. Additionally, the teleostean fauna 
consists mainly of non-durophagous species (Clarke 1993; Dayton et al. 1994; 
Eastman & Clarke 1998; Clarke & Johnston 2003; Thatje et al. 2005b). Today, 
main predators of Antarctic benthic shallow water communities are starfish 
(e.g. Odontaster validus) and nemertean worms (Parborlasia corrugatus) 
(Aronson & Blake 1991) unable to crush calcified structures. Under the lack of 
predatory pressure these conditions may have favoured the radiation and 
diversification of Antarctic benthic invertebrates; the results of this process are 
particularly stunning in the high diversity seen today in the Antarctic Peracarida 
(Kussakin 1967; Brandt 1999; De Broyer & Jazdzewski 1996; De Broyer et al. 
2003). 
 
 
 
Shallow-water – deep-sea relationships in Antarctic Peracarida 
 
Owing to the reduced shelf area during glacial ice extent the geographic and 
bathymetric ranges of many Antarctic taxa were affected (Zinsmeister & 
Feldmann 1984; Clarke & Crame 1992). During glacial periods, ice extent 
across the Continental shelf to the shelf break eradicated or displaced most of 
the benthic fauna. Benthic species were either displaced to greater depth of 
the continental slope and/or continental rise, given species were able to 
tolerate hyperbaric conditions (e.g. Tyler et al. 2000; compare chapter 3.3.1) or 
presumably went extinct if unable to respond to these conditions (Thatje et al. 
2005b). 
 

For many taxa of the Antarctic continental shelf a wide bathymetric 
distribution was mentioned and evolutionary connections between the 
Antarctic shelf and the deep sea were demonstrated (e.g. Menzies et al. 1973; 
Brandt et al. 2007; Zinsmeister & Feldmann 1984; Jacob et al. 2003; Berkman 
et al. 2004). This relationship is highlighted by life history features that unify 
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both deep-sea and shallow-water Antarctic invertebrates such a gigantism, 
slow growth, and longevity of many invertebrate species (Aronson et al. 2007; 
Berkman et al. 2004; Brandt et al. 2007). Brey et al. (1996) stated that many 
taxa of the Antarctic shelf have greater bathymetric ranges than their 
counterparts on other continental shelf areas. They suggested submergence 
and emergence caused by glacial cycles to be of importance in the evolution of 
the Antarctic benthos. 

 
In contrast to peracarid Isopoda and Amphipoda (Brandt 1991, 1992; 

Watling & Thurston 1989; Held 2000), the bathymetric distribution of cumacean 
species from Antarctica has only partially revealed a relationship to the deep 
sea (Mühlenhardt-Siegel 1999). Only 6–7% of Antarctic cumacean species 
were found below 1000 m. Virtually nothing is known about Antarctic deep-sea 
cumaceans and the recorded bathymetric range of many cumacean taxa is 
extended with every new study (Mühlenhardt-Siegel 1999, Corbera 2000, 
publication II). Thus, as yet no exact information about the extent of the 
shallow-water – deep-sea linkage of Antarctic cumaceans exists. 
 
Conclusion 
Although many taxa of Antarctic shelf communities such as peracarid Isopoda 
and Amphipoda display a strong relationship to the deep sea, there is as yet 
little evidence for a general connection of Antarctic cumaceans with adjacent 
deep-sea environments. 
 
 
 
Faunal linkage with the Subantarctic Magellan region 
 
The Southern Ocean fauna is characterized by a high degree of endemism 
(Arntz et al. 1997). The driving force behind this feature is the long time of 
isolation of Antarctica (Clarke & Crame 1997), which is maintained by the ACC 
(Clarke 1990), which physically isolated the Southern Ocean from its 
surrounding seas. Driven by the west winds the ACC is the largest current 
system in the world’s oceans (Fahrbach 1995). It consists of several eastward 
flowing jets, the most intense of which is the Polar Front (Aronson et al. 2007). 
The benthic marine faunas of the Antarctic Peninsula and the Magellan region 
of South America show close biogeographic relationships despite this 
separating quality of the ACC (Arntz & Rios 1999; Arntz et al. 2005). It was 
proposed that the faunal overlap of the two regions resulted from the time 
before the two areas were separated by the deep waters of the Drake Passage 
and development of the Polar Front (Dell 1972). However, observations of 
Thatje & Fuentes (2003) showed that recent planktonic larvae of decapods 
have been able to cross the Polar Front by drifting with warm water intrusions 
or eddies, which may permit further development of the larvae for limited 
periods of time (see also Glorioso et al. 2005). Aronson et al. (2007) suggested, 
based on satellite imagery of the dynamics of the ACC, that transport via 
eddies enables biota to cross the ACC in both directions, in and out of 
Antarctica. 
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A comparison of the different Antarctic regions showed that the Magellan 
region has the greatest affinity to the Antarctic Peninsula. Polychaetes, 
isopods, and cumaceans follow this pattern (Montiel et al. 2005; Brandt et al. 
1997, 1999; Mühlenhardt-Siegel 1999). Recent findings have shown the same 
ratio in cumacean species of the Ross Sea overlapping with the Magellan 
region (publication II) as reported from other high Antarctic areas (Mühlenhardt-
Siegel 1999; Corbera 2000). Apparently, the vicinity of the Weddell Sea to the 
Magellan region does not influence the species numbers, which are shared by 
both areas. 

 
 Studies of Ross Sea cumaceans revealed that all species, which overlap 
with the Magellan region, show bathymetric distributions that range below the 
continental shelf in contrast to most species endemic to the Antarctic 
(publication II). From the Weddell Sea only 50% of the Antarcto-Magellan 
species are reported from deeper waters (Mühlenhardt-Siegel 1999). Still, there 
is no evidence that this is related to the proximity of the Weddell Sea to the 
Magellan region. It is rather likely that this pattern is an artefact created by little 
sampling effort on cumaceans from the deep sea. 
 
Conclusion 
Several peracarid and polychaete taxa show an increased overlap in species 
distribution from the Magellan region with the Antarctic Peninsula. Cumacean 
biogeography suggests that the influence of Magellan species on high-
Antarctic regions does not change with the distance to the Magellan region. 
The ratio of Magellan species within the cumacean assemblages is similar in 
all high-Antarctic regions. 
 
 
 
3.4 Peracarid diversity 
 
Crustaceans are a dominant and important taxon south of the Polar Front in 
addition to polychaetes and molluscs (Arntz et al. 1997). Though some 
crustacean taxa such as brachyuran crabs, balaniform cirripeds and 
stomatopods are scarce or absent in Antarctic zoobenthos (Newman & Ross 
1971; Reaka & Manning 1986; Feldmann & Tshudy 1989; Clarke & Crame 
1989, 1992). Peracarids from shallow waters (>80 m) off the Victoria-Land 
coast in the Ross Sea number to more than more than 200 specimens m-2 
(publication II) and contribute 63% to abundance and 50% to biomass of 
smaller animals of the macrozoobenthic community (publication I). From King 
George Island up to about 8000 specimens m-2 were reported in depth of less 
than 30 m (Jażdżewski et 1986). Not only do Antarctic peracarids appear in 
high numbers in the benthic communities, they also are the most specious 
taxon in the Southern Ocean (Arntz et al. 1997). 
 

What are the mechanisms, which made this group so extraordinarily 
successful in the Southern Ocean? And how could species richness like that of 
Antarctic peracarids evolve? Crame (1999) gave a simple explanation to these 
questions. He argued that important benthic groups like peracarids already 
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existed when Gondwana fell apart and an isolated high latitude continent 
developed. Yet, a range of different explanations for high peracarid diversity 
has been discussed. The diversity of epifauna is fostered by high habitat 
heterogeneity because of the high number of sessile suspension and filter 
feeders (Dayton 1990), which provide a three-dimensional habitat structure (Gili 
et al. 2006b) and also might serve as prey or hosts for peracarid crustaceans 
(De Broyer et al. 2003). Decapod crustaceans are not specialised for feeding 
on filter feeders, which might have affected decapod diversity in the Antarctic 
as filter feeders are dominant on the Antarctic shelf (compare chapter 3.2; 
Brandt 1999). Brandt (1999) suggested that peracarid crustaceans might 
occupy the ecological niche of decapod taxa, which vanished during the 
Cenozoic (Clarke & Crame 1989; De Broyer & Jażdżewski 1996; Brandt 1999, 
2000). The absence of decapod crustaceans might also have reduced 
predation pressure peracarid crustaceans (De Broyer et al. 2003). Furthermore, 
co-evolution with Antarctic notothenioid teleosts might have influenced 
peracarid diversification (Wägele 1992; Brandt 2000). Notothenioidei prefer 
prey without strong body ornamentation (Gröhsler 1992; Olaso et al. 2000), 
which is a common feature in many amphipods and isopods. Moreover, 
peracarid crustaceans share peculiar characters, which provide an advantage 
in benthic Antarctic communities: 

 
 the good swimming ability of isopods, amphipods, and mysids gives 

an advantage in competition for food in contrast to echinoderms, 
molluscs and polychaetes (Brandt 1999). 

 
 the possession of very good chemoreceptors (aesthetascs) is 

important for all feeding types in environments that show strong 
seasonal fluctuations such as short phytoplankton blooms in the 
Antarctic. Probably other invertebrate taxa than crustaceans 
possess less effective sensory organs (Brandt 1999). 

 
 and finally Peracarida are well adapted to an environment, which 

allows for low growth rates only, due to short seasonal plankton 
blooms and low, growth delaying temperatures. Brood protection is 
typical of Antarctic species, even in taxonomic groups which 
typically have different reproduction modes such as bivalves (Brandt 
1999). 

 
 
 
3.5 Speciation in the context of Antarctic evolution 
 
Early during Antarctic exploration many benthic invertebrates were reported 
showing widespread distribution on the continental shelf surrounding 
Antarctica, and therefore circumantarctic distribution was postulated for many 
invertebrate taxa (e.g. Hedgepeth 1970; White 1984; Clarke & Crame 1989; 
Arntz et al. 1994; Dayton et al. 1994). In recent years, however, cryptic species 
were discovered in several benthic invertebrate taxa in the Antarctic. These 
species can not be distinguished clearly from closely related species by 
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morphological criteria. However, molecular studies confirmed cryptic species 
in several benthic invertebrate taxa (Bernardi & Goswami 1997; Allcock et al. 
1997; Held 2003, Held & Wägele 2005; Raupach & Wägele 2006; Linse et al. 
2007; Wilson et al. 2007, publication VI). Species, which were supposed of 
having circumantarctic distribution, broke up into two or more species with 
differing patterns of distribution. Therefore, discoveries of cryptic species 
indicated that circumantarctic distribution is not valid for a variety of taxa and 
that Antarctic biodiversity in terms of species richness might even be much 
higher than previously believed (e.g. Held & Wägele 2005; Raupach & Wägele 
2006; Wilson et al. 2007). 
 

In shallow-water species inhabiting the Antarctic continental shelf, 
patterns of cryptic speciation are discussed as the result of geographic 
isolation and mainly glaciation processes mainly on Milankovitch timescales 
(compare 3.3). As the grounded ice sheet expanded across the continental 
shelf during glacial periods, shelf habitats would have been fragmented with 
allopatric populations confined to refugia or even driven down the continental 
slope (Clarke & Crame 1989, 1992; Thatje et al. 2005b). Geographic isolation is 
assumed to be the main driving force behind cryptic speciation processes and 
it might be a coincidence that Antarctic taxa so far found to exhibit cryptic 
speciation lack pelagic drifting stages (Held 2003; Held & Wägele 2005; Linse 
et al. 2007; Wilson et al. 2007; publication III). An exception is the crinoid 
Promachocrinus kerguelensis, which presumably has a short planktonic larval 
stage. Multiple lineages where detected within this species. Reduced gene 
flow due to a short larval dispersal period, which was found in other comatulid 
crinoids, might explain the genetic diversity recorded within Promachocrinus 
kerguelensis (Wilson et al. 2007). 

 
Only species with pelagic larvae or any kind of drifting stage might have 

been able to overcome the barriers separating ‘islands’ on the Antarctic shelf, 
thus ensuring substantial and continuous gene flow between isolated 
populations. From those species a circumantarctic distribution could be 
expected today. Populations of species without drifting stages, which exhibit 
brood protection like most of the marsupium-carrying peracarids, were 
genetically separated. A possible consequence would be the splitting in two 
species. As these species still inhabit the same biotope no further adaptation 
would be necessary. Thus, the two species could be morphologically very 
similar, i.e. these species were cryptic species. 

 
Hitherto, the concept of circumantarctic species was based on 

morphology. First molecular evidence for a circumantarctic distribution with 
homogeneous populations was demonstrated for two species of Antarctic 
caridean decapods with a broadcasting mode in reproduction through 
planktotrophic larvae (publication III). The observed low genetic diversity within 
the shallow water species Chorismus antarcticus indicates post glacial 
radiation of few populations around Antarctica that either survived in glacial 
shelters on the Antarctic shelf or in shallow waters of Southern Ocean islands 
(publication III). The species might have re-colonized the Antarctic continental 
shelf from these refuges at the onset of deglaciation. Nematocarcinus 
lanceopes displays higher genetic diversity in contrast to Chorismus 
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antarcticus (publication III). As a deep-sea species with a bathymetric range to 
depths of about 4000 m, Nematocarcinus lanceopes would have been 
relatively unaffected by the advance of grounded ice sheets across the 
Antarctic continental shelf during glacial periods, which may explain its higher 
genetic diversity. 
 
 
 
3.6 Speciation patterns in Antarctic Cumacea 
 
As Cumacea belong to the peracarid crustaceans, which show brood 
protection and a lifestyle strongly connected to the benthic environment (see 
chapters 1.2 and 3.3.2) it seems likely that, as shown for other peracarid 
species (Held 2003, Held & Wägele 2005; Raupach & Wägele 2006), cryptic 
speciation is also common in the Cumacea. Actually, morphological 
examinations of cumaceans collected in the Ross Sea during this study 
showed that several species from the Ross Sea exhibit small differences to 
previous descriptions of these species from other Antarctic regions (publication 
IV). The species Cumella emergens Corbera, 2000, represents a distinct 
populations of cumacean species. Differences in some characters point to a 
closer relationship of populations from the Ross Sea and the Weddell Sea than 
between populations of the South Shetland Island and the Ross Sea or the 
Weddell Sea (Tab. 4, Fig. 6). 
 
 
 
Table 4 Morphological differences in populations of Cumella emergens Corbera, 2000. 
 

Attribute South Shetland 
Islands 

Weddell Sea Ross Sea 

number of dorsal spines 2-3 5 male/6-7 female 6-7 

Distal spine of carpus of 2nd 
pareopod absent present present 

Carapace flattened normal normal 

Pseudorostrum pointing forward upward upward 

Ratio between uropodal 
peduncle and 5th segment 1 1.2 1.2 

 
 
 
On the other hand, there exist differences in general morphology of the 
carapace, morphology of the pseudorostrum, and further minor variations 
between populations of the Ross Sea and the Weddell Sea (Fig. 6). Some 
differences of other Cumacean species appear less distinct than in populations 
of Cumella emergens. Especially proportions of body parts vary within and 
overlap between populations. Therefore, it is impossible to judge whether 
different populations belong to one ore more species on the basis of 
morphology. Molecular studies of five cumacean species of the genus Leucon  
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Figure 6 Cumella emergens Corbera, 2000; Carapace morphology and geographical 
distribution of morphotypes on the Antarctic continental shelf. 
 
 
 
gave a first indication for restricted gene flow between populations of Leucon 
antarcticus from the Ross Sea and the Weddell Sea. The intraspecific 
geneticdistance of these populations is less than the minimal interspecific 
distance found for the two closest relatives of the genus Leucon, which can be 
definitely assigned to two different species (publication VI). Accordingly, 
observed differences in the sequences of the 16S rDNA did not prove cryptic 
speciation, but can only be explained by genetic separation of populations 
from the Ross Sea and the Weddell Sea for an extended period of time 
(publication VI). However, no indication of restricted gene flow within 
populations of Leucon intermedius of the same regions was observed 
(publication VI); thus the two distant populations of this brooding species from 
the Ross Sea and the Weddell Sea belong to only one species. 
 

Both species show a bathymetric distribution, which reaches to depth of 
more than 2000 m (e.g. Mühlenhardt-Siegel 1999; Mühlenhardt-Siegel pers. 
comm.; publication II), indicating that limited gene flow in L. antarcticus is not 
caused by isolation of different populations in shallow water refuges. A 
possible explanation could be submergence after the beginning of genetic 
separation of two (or more) populations. Moreover, the populations of the 
present study were collected on the continental shelf. Records from the 
continental slope (Ledoyer 1993) might represent a third genetically separated 
population. Morphological differences to the original description (Zimmer 
1907), which represent the morphology of the two populations of the present 
study, point towards the assumption of a third lineage. 
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Some cumacean species display periodic nocturnal vertical migrations 

(e.g. Granger 1969; Anger & Valentin 1976; Steams & Dardeau 1990; 
Macquart-Moulin 1991; Wang & Dauvin 1994). For Antarctic species such 
behaviour was so far not observed, but possibly vertical migrations during 
nighttime might occur in some Antarctic species as well. These migrations are 
restricted to the night after which cumaceans return to the sediment. They do 
not occur regularly during every night as they are connected to moulting, 
courtship, and reproduction (Anger & Valentin 1976). For this reason it seems 
not likely that cumaceans are able to drift over vast distances i.e. from one 
glacial shelter to the other. As demonstrated for crinoids, cryptic speciation 
might occur within species with drifting stages of limited duration (Wilson et al. 
2007). Continuous and substantial gene flow between populations that allows 
for homogenous populations over long evolutionary timescale, may require 
drifting stages that last long periods of time, i.e. up to several months in 
duration as found in the broadcasting caridean shrimp Nematocarconus 
lanceopes (publication III, Thatje et al. 2005). 
Yet, female cumaceans are less mobile than male cumaceans, as they lack 
pleopods for swimming and were observed less often in less extended periods 
in the water column than males (Anger & Valentin 1976). Therefore, genetic 
differences detected within the species Leucon antarcticus (publication VI) 
might only result from the 16S rRNA gene, which is a mitochondrial gene with 
maternal inheritance. Nuclear genes possibly do not exhibit the same degree of 
genetic differentiation. Thus, future investigations of cryptic speciation in 
cumaceans should include the analysis of nuclear genes. 
 
Conclusion 
 Molecular studies confirm the theory about the coincidence of speciation 

patterns in Antarctic benthic species and the reproduction mode. 
 Though evidence for cryptic speciation in Cumacea is still lacking, genetic 

diversity emphasises reduced gene flow within the cumacean species 
Leucon antarcticus for an extended period of time. Concluding from the 
bathymetric distribution, other effects than shallow-water refuges during 
glacial cycles might be involved. 

 On the other hand, the species Leucon intermedius indicates that 
populations of Antarctic brooding organisms can belong to the same 
species even if these populations occur over vast distances as between the 
Ross Sea and the Weddell Sea. 

 
 
 
 
3.7 Future perspectives 
 
Antarctic shallow water communities are unique in terms of species diversity 
and archaic community structure, as the benthic fauna adapted to the peculiar 
conditions of cold and food limitation over long evolutionary timescales. 
Antarctic benthos is assumed to be especially vulnerable to climate change; 
understanding the evolutionary history of the Antarctic benthos is thus key to 
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predicting the response capability of these communities to current climate 
change scenario (Aronson et al. 2007). In the following I summarize areas of 
future research, which should be key to significantly enhance our 
understanding of response capability of the Antarctic fauna to past and present 
climate change: 
 

 Although many studies have been conducted on benthic Antarctic 
fauna, there is still a considerable need for further work on this field. 
The effort put into benthic research of the Antarctic Peninsula, the 
eastern Weddell Sea, the Ross Sea, and the Scotia Arc is 
reasonable (Clarke & Johnston 2003), but even in those areas 
knowledge remains restricted to few intensively studied areas. For 
example in the Ross Sea most of the research has been carried out 
close to land-based facilities in McMurdo Sound or Terra Nova Bay 
(Waterhouse 2001). For vast areas of the Antarctic we know hardly 
anything about the composition, diversity, and structure of benthic 
communities. A complete species inventory is lacking for all areas. 
However, knowledge about taxonomy and biogeography of species 
is important to track shifts in the benthic communities, especially in 
the light of current climate change. 

 
 We know even less about the benthic fauna of the deep sea 

surrounding the Antarctic continent. Recent studies revealed that 
diversity of the deep southern Ocean is extraordinarily high and 
emphasized evolutionary relationships between the deep sea and 
the Antarctic shelf faunas (Brandt et al. 2007). Thus, and in order to 
understand the origin of Antarctic shelf biodiversity and ecology to 
its full extent, it is necessary to put more effort into the 
understanding of the surrounding deep-sea fauna. 

 
 Finally, I would like to highlight that modern molecular methods 

should be used in combination with ‘traditional’ methods of 
taxonomy and biogeography, as they offer a powerful tool for the 
understanding of hidden diversity represented by cryptic species 
and speciation processes. It is likely that in the near future these 
methods may lead to a completely different view of the diversity and 
structure of Antarctic benthic communities as indicated by recent 
research (Bernardi & Goswami 1997; Allcock et al. 1997; Held 2003, 
Held & Wägele 2005; Raupach & Wägele 2006; Linse et al. 2007; 
Wilson et al. 2007, publication VI).  
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Distribution and composition of macrozoobenthic communities along a 
Victoria-Land Transect (Ross Sea, Antarctica) 1 2 3
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Abstract 
 
The Victoria-Land Transect project onboard the Italian research vessel ‘‘Italica’’ 
in February 2004, was a large-scale attempt to obtain benthic samples of 
smaller macrozoobenthic specimens systematically along a latitudinal and a 
depth transect along the Victoria-Land coast. Data presented from this survey 
are based on Rauschert dredge samples, which were taken at four areas at 
depth ranging from 84 to 515 m. A cluster analysis based on relative numbers 
of abundance was performed and demonstrated a change in community 
structure depending on the location along the latitudinal transect. A change in 
community structure with depth was not recorded. Dominant taxa of the Ross 
Sea fauna along the Victoria-Land coast were the Arthropoda (65.7%), 
followed by Annelida (20.7%), Mollusca (9.6%) and Echinodermata (2.5%). 
Total number of abundance decreased with depth with an exception at Cape 
Russell, whereas a trend in biomass was not documented. Abundance and 
biomass proportions of major taxa changed gradually along the latitudinal 
transect. 
 
 
 
 
 
 
 
 
 
 
                                                 
1 Printed with permission from Springer-Verlag. The original publication is available at 
http://www.springer.com. 
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Introduction 
 
Numerous studies were performed to describe the benthos of high Antarctic 
shelf seas (e.g. Dearborn 1967; Dayton et al. 1970; Dayton and Oliver 1977; 
Dell 1990; Galerón et al. 1992; Gerdes et al. 1992; Arntz et al. 1994; Starmans 
et al. 1999), and one of the most striking characteristics, recorded of the 
benthos of the Antarctic shelf, is its richness in biomass and diversity (e.g. 
Hedgpeth 1969; Dell 1972; White 1984; Picken 1985; Dayton et al. 1994; Brey 
and Gerdes 1997). Particularly, the macrozoobenthic community structure of 
the southeastern Weddell Sea shelf is rather well known. Thus, three major 
benthic communities can be found in this area, which are characterized by 
suspension feeders, such as Porifera and Bryozoa, or mainly Bryozoa, or 
detritus feeders such as Holothurida and Polychaeta (Voß 1988; Gerdes et al. 
1992; Gutt and Starmans 1998). Most of the research characterizing habitats of 
the Ross Sea has been done around McMurdo Sound (Waterhouse 2001). 
Information about macrozoobenthic communities along the Victoria-Land coast 
(Ross Sea) is limited to only few restricted shallow water areas as Terra Nova 
Bay. Often previous sampling was centred on certain benthic groups such as 
Amphipoda, Mollusca, Polychaeta, and Porifera (e.g. Dayton 1972; Stockton 
1984; Gambi et al. 1997; Knox and Cameron 1998; Cattaneo-Vietti et al. 1999; 
Cantone et al. 2000). A first systematic classification of benthic communities of 
the southern Ross Sea was described from material obtained during the Trans-
Antarctic Expedition from 1955–1958 and material collected by the New 
Zealand Oceanographic Institute. Bullivant (1967b) described 3 major benthic 
assemblages, which were linked to the substratum. The Deep Shelf Mixed 
Assemblage is characterized by Polychaeta, Bryozoa, Gorgonaria, and 
Echinodermata. Important elements of the Deep Shelf Mud Bottom 
Assemblage are Polychaeta and Echinodermata, whereas in the Pennell Bank 
Assemblage Bryozoa, Gorgonaria, Porifera, Tunicata, Cnidaria, and 
Echinodermata are common (Bullivant 1967b). 
 

During the ROSSMIZE (Ross Sea Marginal Ice Zone Ecology) project 
carried out from RV ‘‘Italica’’ in 1994 and 1995, several macrobenthic samples 
were taken using a box-corer. While the sample areas were distributed in 
shallower waters along the Victoria-Land coast, only three stations in depths of 
450, 580, and 810 m were sampled (Gambi and Bussotti 1999). 
 

The cruise with RV ‘‘Italica’’, which was carried out in cooperation with 
the New Zealand RV ‘‘Tangaroa’’, was a large scale attempt to take samples 
systematically along a latitudinal and depth gradient. As there is little known 
about the ecosystem of the northern Victoria-Land coast, both the Italian 
research programme as well as the New Zealand Biodiversity Strategy 
programme ‘‘BioRoss’’ will essentially enhance our knowledge about 
biodiversity, structure, and composition of macrozoobenthic communities in 
the Ross Sea. The results shown in this paper represent some of the first 
analysed datasets from the study area. 
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Materials and methods 
 
During the 19th Antarctic expedition of RV ‘‘Italica’’ to the Ross Sea in austral 
summer 2004, 18 dredge samples were taken along a latitudinal transect 
between Cape Adare and Terra Nova Bay. Sampling was performed in four 
areas: Cape Adare, Cape Hallett, Coulman Island, and Cape Russell (Fig. 1; 
Table 1). As the sample station at Santa Maria Novella (Terra Nova Bay) is 
located nearby the Cape Russell area it is treated as part of this area and 
pooled for further analysis. Samples of area Cape Hallett were obtained from 
two depth transects inside and outside Cape Hallett Bay. At each area a 
slightly modified Rauschert dredge (Fig. 2, cf. Lörz et al. 1999) with a mesh size 
of 500 μm and an opening of 0.5 m, was used to take samples from water 
depth between 84 and 515 m. The dredge was trawled over the ground at a 
mean velocity of 1 knot. Haul lengths varied from 59 to 575 m (Table 1). As this  
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Fig. 1 Victoria-Land coast (Ross Sea, Antarctica); sample areas: Cape Adare, Cape Hallett, 
Coulman Island, and Cape Russell, position of sampling marked with dots. 
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Tabl 1 Rauschert dredge stations of the Victoria Land Transect Cruise, Ross Sea. 
 

Station Date Position Depth Haul 
length 

Sediment 

north to south  latitude [S] longitude 
[E] 

[m] [m]  

       
Cape Adare       
A1 15/02/2004 71°15.5’ 170°41.9’ 515 358 sand with few 

pebbles and stones 
A2 14/02/2004 71°17.3’ 170°39.2’ 421 298 sand and gravel 
A3 14/02/2004 71°18.7’ 170°29.2’ 305 257 sand 
A4 14/02/2004 71°18.4’ 170°28.9’ 230 376 sand and pebbles 
A5 

15/02/2004 71°18.7’ 170°25.5’ 
119 

59 
sand with pebbles 
and stones 

       
Cape Hallett       
H out 1 09/02/2004 72°15.7’' 170°24.8’ 458 375 mud and pebbles 
H out 2 

11/02/2004 72°17.5’' 170°29.4’ 
353 

375 
sandy mud and 
stones 

H out 4 12/02/2004 72°18.5’' 170°26.8’ 235 194 sand 
H in 2 

10/02/2004 72°16.9’ 170°12.2’ 
391 

186 
coarse sand and 
small gravel 

H in 3 
16/02/2004 72°17.0’ 170°13.1’ 316 194 

muddy sand with 
stones 

H in 4 16/02/2004 72°17.1’ 170°14.0’ 196 169 mud and sand 
H in 5 16/02/2004 72°17.2’ 170°17.9’ 84 113 small gravel 
       
Coulman 
Island 

      

C1 18/02/2004 73°24.5’ 170°23.2’ 474 375 mud and small gravel 
C2 18/02/2004 73°22.7’ 170°06.9’ 410 153 mud and pebbles 
       
Cape Russell       
SMN 

20/02/2004 74°43.2’ 164°13.1’ 366 192 
sand with gravel and 
stones 

R2 21/02/2004 74°49.0’ 164°18.1’ 364 575 fine sand 
R3 

20/02/2004 74°49.3’ 164°11.5’ 330 565 
rock, sand, mud and 
pebbles 

R4 
20/02/2004 74°49.3’ 164°11.5’ 208 97 

rock, mud and large 
stones 

       

 
 
 
type of dredge was specially designed to obtain small macrobenthic animals 
like peracarid crustaceans, an inner net with a mesh size of 1 cm was used to 
hold back larger objects to prevent the small dredge from being blocked too 
quickly. The material was sieved on a 500 μm mesh, preserved in 90% 
precooled ethanol, and kept in -25°C for later DNA extraction. 
 

In the laboratory, samples were sorted into major taxonomic groups using 
a stereomicroscope. Biomass is given as ash free dry mass (AFDM) calculated 
from wet mass (WM) using conversion factors presented by Brey (2001). 
 

A cluster analysis was carried out with the programme Primer (v. 5.1.2) of 
the Plymouth Marine Laboratory (Clarke and Goreley 2000) using Bray-Curtis-
Index (Bray and Curtis 1957) and group average method. Because of the semi-
quantitative nature of data from a dredge, relative numbers of abundance were 
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used to calculate the analysis. As proper transformation for relative data, the 
function of arc sin was applied. 
 
 
Results 
 
A total of 27 taxonomic groups were identified from the area under 
investigation. The number of taxa varied between 14 and 27 with stations. In 
terms of abundance and biomass, the macrozoobenthic community of the 
Ross Sea shelf along the Victoria-Land coast collected with the Rauschert 
dredge was dominated by Arthropoda, followed by Annelida, Mollusca, and 
Echinodermata (Fig. 3). The Annelida were dominated by Polychaeta (99.7% of 
total annelid abundance and 100% of total annelid biomass); only few 
specimens of Hirudinea were found. Most Arthropoda belonged to the 
Crustacea (95.3% of total abundance and 95.9% of total biomass). Further 
arthropod taxa, other than Crustacea, belonged to Pycnogonida and Acari. 
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Fig. 3 Relative composition of major taxa from the Antarctic Ross Sea shelf off the Victoria-
Land coast; a abundance, b biomass (AFDM). 
 
 
 
Sampling areas of Coulman Island and Cape Adare differed in the distribution 
pattern of major benthic taxa when compared with the other areas. Most 
abundant taxon of the Coulman Island area was Annelida (62.8%), whereas the 
community of Cape Adare is characterized by an increased proportion of 
Mollusca (32.1%), which is attributed to an increase in Gastropoda (Fig. 4; 
Table 2) at stations A3 and A4 (Fig. 5). Again, in terms of biomass Annelida 
(58.9%) showed an exceptionally high portion at Coulman Island, but the 
biomass of Mollusca (4.6%) was not increased at Cape Adare (Fig. 6; Table 3). 
 

Taking into account an increased proportion of Annelida at Coulman 
Island, a trend of decreasing portions of abundance with latitude was found for 
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Echinodermata, whereas portions of abundance of the Annelida showed the 
lowest numbers at the northern area Cape Adare. The portion of Arthropoda 
abundance increased, but biomass decreased with latitude (Tables 2, 3). 
Cape Russell showed the lowest mean abundances (21 ind. m-2), whereas at 
Cape Hallett mean abundance was highest (75  ind. m-2, Table 4). Mean 
biomass value was lowest at Cape Russell and varied between 
0.018 gm-2 (AFDM) (Cape Russell) and 0.033 gm-2 (AFDM) (Cape Hallett), (see 
Table 4). 
 
 
 
Table 2 Relative abundance (%) of macrozoobenthic taxa from investigated sub-areas of the 
Antarctic Ross Sea shelf. 
 

  
Cape 
Adare 

Cape 
Hallett 

Coulman 
Island 

Cape 
Russell 

Ross Sea 
total 

Arthropoda  53.80 76.23 26.56 80.04 65.75
 Acari 3.33 0.65 0.00 0.93 0.98
 Pycnogonida 1.397 2.75 0.91 1.33 2.13
 Amphipoda 31.13 50.19 7.35 27.13 38.64
 Cumacea 0.18 2.12 1.51 29.07 4.34
 Decapoda 0.00 0.01 0.01 0.05 0.01
 Isopoda 12.47 16.77 8.34 14.31 14.61
 Mysidacea 0.21 0.02 0.03 0.66 0.11
 Tanaidacea 5.02 3.61 8.49 6.49 4.83
 Unidentified 0.06 0.11 0.00 0.08 0.08
Echinodermata  6.11 1.99 2.03 0.78 2.50
 Asteroidea 0.19 0.09 0.07 0.05 0.10
 Crinoidea 0.05 0.03 0.03 0.00 0.03
 Echinoidea 0.05 0.03 0.04 0.04 0.04

 Holothuroide
a 

1.32 0.04 0.21 0.13 0.27

 Ophiuroidea 4.49 1.80 1.67 0.56 2.06
Mollusca  32.13 6.13 5.12 2.69 9.56
 Bivalvia 1.19 0.89 3.31 0.58 1.32
 Cephalopoda 0.00 0.00 0.00 <0.01 <0.01
 Gastropoda 30.43 2.90 0.95 1.29 6.59
 Polyplacophora 0.00 0.02 0.00 <0.01 0.01
 Scaphopoda 0.00 0.01 0.55 <0.01 0.09
 Aplacophora 0.52 2.23 0.31 0.80 1.54
Annelida  6.87 14.58 62.80 14.64 20.69
 Hirudinea 0.01 0.09 0.03 0.00 0.06
 Polychaeta 6.86 14.49 62.77 13.64 20.63
Others  1.09 1.07 3.99 1.85 1.50
 Brachiopoda 0.06 0.05 0.20 0.03 0.07
 Cnidaria 0.04 0.01 0.00 0.00 0.01
 Nemertini 0.72 0.74 1.92 1.08 0.95

 Plathelminthe
s 

0.04 0.14 0.00 0.06 0.10

 Sipunculida 0.23 0.12 1.27 0.68 0.36
 Tunicata <0.01 0.01 0.00 0.00 <0.01
Mean 
abundance 
[ind m-2] 

 26 74 65 20 26
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Fig. 4 Relative abundance of major macrozoobenthic taxa. 
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Fig. 5 Abundance of major taxa per Station (areas listed from north to south); A (Cape Adare), 
H out (Cape Hallett outer transect) H in (Cape Hallett inner transect), C (Coulman Island), SMN 
(Santa Maria Novella), R (Cape Russell). 
 
 
 
The samples reflected a tendency of decreasing abundance with increasing 
depth (Table 5), with the only exception at Cape Russell where abundance 
increased with depth (Fig. 5). Biomass distribution displayed the same 
tendency, but both abundance and biomass numbers increased in the deepest 
samples from 400 to 515 m (Table 5). 
 

The cluster analysis showed a separation of stations into six clusters 
(Fig. 7). Cluster C (similarity of about 40%) contained the stations off Coulman 
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Island, cluster A2 (similarity of about 50%) combined stations A3 and A4. Again, 
stations off Coulman Island and stations A3 and A4 off Cape Adare differed 
from the other stations. Cluster R (similarity of about 60%) contained the 
stations of Cape Russell with one exception: station R4 was located in the 
cluster H of Cape Hallett. The remaining clusters A1 and H are separated at 
about 65% similarity and comprise the stations of Cape Adare and Cape 
Hallett respectively. Merely station H in 5 is located within Cluster A1. As a 
general attribute, with respect to the exceptions mentioned above, stations 
grouped according to their sample area. 
 
 
 
Table 3 Relative biomass (AFDM %) of macrozoobenthic taxa from investigated sub-areas of 
the Antarctic Ross Sea shelf. 
 

  Cape Adare Cape Hallet Coulman 
Island 

Cape 
Russell 

Ross 
Sea total

Arthropoda  63.34 57.08 29.13 51.85 53.76
 Acari 0.25 0.03 0.00 <0.01 0.08
 Pycnogonida 1.89 6.23 1.24 1.01 3.75
 Amphipoda 56.22 43.88 21.91 24.61 41.16
 Cumacea 1.22 1.47 2.30 10.82 2.72
 Decapoda 0.00 0.41 0.03 0.66 0.28
 Isopoda 3.40 4.72 3.20 14.22 5.38
 Mysidacea 0.03 0.00 0.01 0.00 0.01
 Tanaidacea 0.32 0.29 0.46 0.50 0.35
 Unidentified <0.01 0.05 0.00 0.03 0.03
Echinodermata  5.69 3.39 4.79 1.47 3.92
 Asteroidea 0.68 0.59 0.29 0.10 0.51
 Crinoidea 0.03 0.01 0.22 0.00 0.05
 Echinoidea 0.32 0.17 0.07 0.10 0.18
 Holothuroidea 0.46 0.70 2.60 1.01 0.97
 Ophiuroidea 4.19 1.91 1.60 0.27 2.22
Mollusca  4.59 4.57 3.23 3.51 4.24
 Bivalvia 0.37 0.53 1.99 0.54 0.71
 Cephalopoda 0.00 0.00 0.00 2.26 0.29
 Gastropoda 3.99 3.43 1.02 0.51 2.83
 Polyplacophora 0.00 0.02 0.00 0.07 0.02
 Scaphopoda 0.00 0.02 0.13 <0.01 0.03
 Aplacophora 0.22 0.57 0.10 0.12 0.36
Annelida  24.88 33.24 58.90 42.15 36.17
 Hirudinea 0.00 0.01 0.02 0.00 0.01
 Polychaeta 24.88 33.23 58.88 42.15 36.17
Others  1.50 1.73 3.95 1.02 1.92
 Brachiopoda 0.33 0.08 0.43 0.13 0.20
 Cnidaria 0.06 0.01 0.00 0.00 0.02
 Nemertini 0.98 1.18 3.30 0.35 1.34
 Plathelminthes 0.05 0.16 0.00 <0.01 0.09
 Sipunculida 0.08 0.15 0.22 0.53 0.19
 Tunicata <0.00 0.14 0.00 0.00 0.07
Mean biomass 
[AFDM gm-2] 

 0.021 0.034 0.032 0.018 0.044
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Most characteristic for cluster C (Coulman Island) is the very high portion of 
Polychaeta (Table 3) and the lowest portion of Amphipoda and Isopoda. 
Cluster A2 as part of the area Cape Adare is characterized by reduced portions 
of Amphipoda, Tanaidacea, and Polychaeta, whereas Holothuroidea, 
Ophiuroidea, and especially Gastropoda show increased portions. Differences 
in between the remaining clusters are less distinct. Cluster R showed the 
highest portions of Cumacea and low portions of Polychaeta. Within Cluster A1 
Amphipoda were increased, whereas Isopoda and Cumacea were reduced. On 
the other hand, Tanaidacea showed a higher portion than in the other clusters. 
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Fig. 6 Relative biomass (AFDM) of major macrozoobenthic taxa. 
 
 
 
Table 4 Benthos data of the investigated sub-areas of the Antarctic Ross Sea shelf. 
 

 Cape Adare Cape Hallett 
Coulman 

Island Cape Russell

No. of Stations 5 7 2 4 
Depth range [m] 119 - 515 84 – 460 410 - 474 208 – 366 
     
Mean abundance [ind m-2] 26 ± 17 75 ± 91 65 ± 60 21 ± 18 
Min-max abundance[ind m-2] 3 - 55 10 - 287 5 - 125 5 - 51 
     
Mean biomass [AFDM gm-2] 0.021 ± 

0.008 
0.033 ± 
0.040 

0.032 ± 0.038 0.018 ± 
0.012 

Min-max biomass [AFDM gm-

2] 
0.010 - 
0.031 

0.004 - 
0.108 

0.005 - 0.058 0.011 - 
0.031 

Mean biomass [WM gm-2] 0.199 ± 
0.232 

0.128 ± 
0.047 

0.178 ± 0.217 0.090 ± 
0.057 

Min-max biomass [WM gm-2] 0.068 - 
0.177 

0.023 - 
0.631 

0.024 - 0.332 0.052 - 
0.156 
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Discussion 
 
Selectivity of Rauschert dredge 
 
A Rauschert dredge was used for sampling during the cruise with RV ‘‘Italica’’, 
which is known for its effectiveness of catching smaller macrozoobenthic 
animals (especially peracarid crustaceans) compared to other sampling gear 
such as a Agassiz trawl (Lörz et al. 1999). Previous surveys to the Ross Sea 
were restricted to certain areas of the Victoria-Land coast or used wide-
meshed nets for dragged gear only (e.g. Bullivant 1967a; Dayton et al. 1974; 
Gambi et al. 1997; Cattaneo-Vietti et al. 2000). For that reason only a minor 
part of the species from the Ross Sea fauna is recorded so far. The use of the 
Rauschert dredge substantially increased the numbers of recorded cumacean 
species from the Ross Sea known until now (to 290%) and we expect to find 
similar situations for other peracarid crustaceans, which are known as a 
particularly speciose group of the Southern Ocean 
(DeBroyer and Jazdzewski 1996; Brandt 1999). One disadvantage of the 
dredge is its semi-quantitative sampling, making comparison with quantitative 
sampling gear, such as grabs, more difficult (Eleftheriou and Holme 1984; 
Rumohr 1990). Nevertheless, dragged gear qualifies for collecting samples 
from a vast surface compared to qualitative sampling gear, which lead to the 
deployment of dredges and trawls in preliminary studies to give primary insight 
into distribution and community structures (Arntz et al. 1996; 
Arnaud et al. 1998). Dragged gears are, in addition, particularly valuable to 
assess the species diversity of an area. The Rauschert dredge is equipped 
with a net to hold back all objects larger than 1 cm, which otherwise would 
quickly block the net. This selective nature of the dredge explains differences 
to other studies carried out with other dredges, like Agassiz trawls. For that 
reason, our samples did contain only very few of Porifera, often these were 
only fractions; but we know from using other methods such as the SplashCam 
that Porifera are an important element of the communities in question. Porifera 
are typical of high Antarctic shelf communities and contribute an important 
amount, up to 47%, to biomass in the Weddell Sea (Gerdes et al. 1992; 
Brey and Gerdes 1999). Further taxa, which were not recorded sufficiently, 
were Ascidiacea, Bryozoa, and Cnidaria these taxa are important in terms of 
biomass as well (Bullivant 1967b; Dayton et al. 1974, 1994; Voß 1988; 
Brey and Gerdes 1999), thus a comparison between the two areas has to be 
treated very carefully, considering different sampling gear. Ascidiacea, 
Bryozoa, and Porifera were excluded from this quantitative analysis, because 
of the irregular catches. As a consequence of the method, absolute numbers 
in biomass were lower than what we can expect for this area by comparison 
with other studies from the Weddell Sea (0.124–1,640 g wet weight) 
(Gerdes et al. 1992) and the sub-Antarctic Magellan region (0.01–22.88 gC m-2) 
(Thatje and Mutschke 1999). 
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Table 5 Depth distribution of macrozoobenthic abundance and biomass of the Antarctic Ross 
Sea shelf. 
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Figure 7 Station dendrogram from the Cluster analysis; Brey-Curtis-Index, group average 
method. 
 
 
 
Community structure 
 
The investigation of the macrozoobenthic community along a latitudinal 
transect was one of the main aims of the Victoria-Land Transect Cruise 
(Ramorino2004). We were not able to identify all taxa to species level and thus 
in this paper we do only present preliminary data for the major 27 groups, 
which enable us to present an overall assessment of community structure. 
Species-level identification will be done by specialists for each taxonomic 
group; a future work that might take years to be completed. Data from this 
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survey showed a gradual change in community composition of major 
macrozoobenthic taxa along a latitudinal cline. According to the cluster 
analyses, the structure of the community depended on the sample area. 
 

Special situations were found for the community of Coulman Island and 
two of the stations (A3, A4) off Cape Adare. In the latter, the community was 
dominated by Polychaeta (62 %), and Gastropoda (47 %), respectively, instead 
of Arthropoda. The sediment of Cape Adare showed only slight variation and in 
contrast to abundance, biomass distribution of the deviating stations 
corresponded more with the remaining stations of the area. Thrush et al. (2004) 
recorded iceberg disturbance with a SplashCam for Cape Hallett and Cape 
Russell, and concluded that the iceberg disturbance regime was an important 
factor in determining community structure. Therefore the difference of the 
deviating stations appeared to be caused by iceberg disturbance. 
Unfortunately only two samples were taken at Coulman Island, thus deviation 
of community structure of this area might result from a disturbed area as well. 
However conditions at Coulman Island differed to that of the other areas, since 
the sediment mainly consisted of mud instead of sandy sediments, what could 
be an indication for a distinct community at Coulman Island. Furthermore, 
Bullivant (1967b) described the ‘‘Deep Shelf Mud Bottom Assemblage’’ 
dominated by polychaetes, which was found close to Coulman Island. In their 
quantitative analysis of the Ross Sea benthos in 1994 and 1995, Gambi and 
Bussotti (1999) excluded the very few colonial organisms (sponges, cnidarians, 
and bryozoans), which were found in the samples. From there a comparison of 
the two studies should be simplified, still the different gear used has to be 
taken into account. As the box-corer is predominantly samples infauna, one 
should expect more infaunal organisms in the samples from 1994 and 1995. 
During 1994 and 1995 the stations with muddy sediment were dominated by 
Polychaeta (58–78%), whereas the station with sandy sediment was dominated 
by Crustacea (mainly Amphipoda) (50%). This reflects similar differences found 
between the stations with different sediment types of this study. The 
contrasting trends found in the change of proportion of arthropod abundance 
and biomass can be explained with changing proportions of arthropod taxa. 
The portion of Isopoda and Cumacea increases with latitude, whereas the 
portion of Amphipoda is low at the southernmost sample area Cape Russell. 
Amphipoda tend to be larger than Isopoda and Cumacea, and thus the 
biomass of Amphipoda is higher than that of Isopoda and Cumacea, hence a 
decreasing proportion of biomass despite an increasing portion of abundance 
of Arthropoda with latitude. 
 

A tendency towards increasing density with decreasing latitude as it was 
found further to the south at the west coast of McMurdo Sound (Dayton and 
Oliver 1977) was not confirmed for the sample areas and therefore might be 
limited to McMurdo Sound. This result corresponds with the assumption that 
no distinct latitudinal gradient exists in organism density and biomass from the 
Magellan region to the high Antarctic (Gerdes and Montiel 1999; Piepenburg et 
al. 2002). The pattern of decreasing abundance coincided with decreasing 
depth, as known from several regions, such as the high Antarctic Weddell Sea 
and the sub-Antarctic Magellan Region (Brey and Gerdes 1998; Thatje and 
Mutschke 1999; Piepenburg et al. 2002). 
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Abstract 
 
The following study was the first to describe composition and structure of the 
peracarid fauna systematically along a latitudinal transect of Victoria Land 
(Ross Sea, Antarctica). During the 19th Antarctic expedition of the Italian 
research vessel ‘Italica’ in February 2004, macrobenthic samples were 
collected by means of a Rauschert dredge with a mesh size of 500 μm at 
depths between 85 and 515 m. The composition of peracarid crustaceans, 
especially Cumacea was investigated. Peracarida contributed 63% to the total 
abundance of the fauna. The peracarid samples were dominated by 
amphipods (66%), whereas cumaceans were represented with 7%. Previously, 
only 13 cumacean species were known, now the number of species recorded 
from the Ross Sea increased to 34. Thus, the cumacean fauna of the Ross 
Sea, which was regarded as the poorest in terms of species richness, has to 
be considered as equivalent to that of other high Antarctic areas. Most 
important cumacean families concerning abundance and species richness 
were Leuconidae, Nannastacidae, and Diastylidae. Cumacean diversity was 
lowest at the northernmost area (Cape Adare). At the area of Coulman Island, 
which is characterized by muddy sediment, diversity was highest. Diversity and 
species number were higher at the deeper stations and abundance increased 
with latitude. A review of the bathymetric distribution of the Cumacea from the 
Ross Sea reveals that most species distribute across the Antarctic continental 
shelf and slope. So far, only few deep-sea records justify the assumption of a 
shallow-water–deep-sea relationship in some species of Ross Sea Cumacea, 
which is discussed from an evolutionary point of view. 
 
Keywords Diversity • Cumacea • Benthos • Antarctica • Ross Sea 

                                                 
1 Printed with permission from Springer-Verlag. The original publication is available at  
http://www.springer.com. 
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Introduction 
 
Five of the seven peracarid orders are known to occur in Antarctic waters. 
Amphipoda are most diverse with 821 species in the Southern Ocean 
(De Broyer and Jazdzewski 1996), while 365 species of Isopoda are known for 
this area (Brandt 1999). Cumacea are represented with 66 species (87 
including the Magellan area, Mühlenhardt-Siegel 1999), whereas Mysidacea 
and Tanaidacea are represented with 59 and 36 species, respectively 
(Brandt et al. 1998; Schmidt and Brandt 2001). 
 

First research on Antarctic cumaceans started with the descriptions of 
Zimmer (1902, 1907a, b, 1908, 1909, 1913) and Calman (1907, 1917, 1918). 
Further work followed (e.g., Hale 1937; Gamô 1959, 1987; Lomakina 1968; 
Ledoyer 1973, 1977; Petrescu 1991; Petrescu and Wittman 2003), and a total 
of 58 species were mentioned by Ledoyer (1993). Mühlenhardt-Siegel (1999) 
summarized 66 cumacean species known from Antarctica. During the last 
years ten further species, such as Gynodiastylis jazdzewskii 
(Błażewicz and Heard 1999) from the Ross Sea, were described. 
 

In ‘The fauna of the Ross Sea’ (Jones 1971) merely ten cumacean species 
were mentioned; only two additional species were recorded during the last 
decades (Roccatagliata and Heard 1992; Błażewicz and Heard 1999). The 
species Makrokylindrus baceskei (Lomakina 1968) was reported from 2,937 m 
at the Balleny Islands only, but is counted as a Ross Sea species in this study. 
Thus prior to the present study, the number of cumacean species known from 
the Ross Sea was 13. Approximately 30 cumacean species are known from 
other high Antarctic regions (Mühlenhardt-Siegel 1999; Corbera 2000). The 
great difference in species numbers known from different high Antarctic 
localities can be attributed to the little work, which has so far been 
accomplished on the deeper benthic environment of the northern Victoria-Land 
coast and the eastern Ross Sea (Waterhouse 2001) as well as the gear used 
for sampling. Conventional gear, such as dredges, trawls, and corers, most 
likely does not sample the cumacean fauna adequately (Jones and Sanders 
1972). During previous expeditions to the Ross Sea, predominantly nets with 
wide mesh sizes were used for sampling. Cumaceans are small peracarids 
ranging between 0.1 and 3.5 cm in size (mostly less than 1 cm). Therefore, 
most of the animals will be washed out of nets with mesh sizes of 1 cm and 
more. 
 

The present study deals with the distribution of the peracarid orders along 
a latitudinal and depth transect and the faunistic composition of the 
cumaceans from the waters of the northern Victoria-Land coast. A Rauschert 
dredge with a mesh size of 500 μm was used to gain data on abundance, 
diversity, and bathymetric distribution of the cumacean fauna. 
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Materials and methods 
 
During the 19th Antarctic expedition with RV ‘Italica’ in February 2004, 18 
samples were taken along a latitudinal transect in the four areas of Victoria-
Land coast Cape Adare, Cape Hallett, Coulman Island, and Cape Russell 
(Fig. 1; Table 1). Station Santa Maria Novella (Terra Nova Bay) and the stations 
of Cape Russell were pooled for further analysis since these stations were 
sampled in the same region. A depth gradient was sampled at each area: 
samples of area Cape Hallett were obtained from two depths transects inside 
and outside Cape Hallett Bay. Owing to severe ice conditions of Coulman 
Island, only two samples were taken in this area. 
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Fig. 1 Victoria-Land coast (Ross Sea, Antarctica); sample areas: Cape Adare, Cape Hallett, 
Coulman Island, and Cape Russell, position of sampling marked with dots. 
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A modified Rauschert dredge (Lörz et al. 1999) with a mesh size of 500 μm and 
an opening of 0.5 m was used to take samples from water depth between 84 
and 515 m. A second inner net with a mesh size of 1 cm was used to keep 
larger objects out of the 500 μm net. The dredge was hauled over the ground 
at a mean velocity of one knot. Haul lengths varied from 59 to 575 m. For 
comparison between stations, samples were standardized for 1,000 m2 hauls. 
Before the material was preserved in 90% precooled ethanol and kept at -25°C 
for later DNA extraction, it was sieved on a 500 μm mesh. Afterwards in the 
laboratory a stereomicroscope was used to sort the samples into major 
taxonomic groups. Cumacea were identified to species level. 
 
 
 
Table 1 Rauschert Dredge stations of the Victoria Land Transect Cruise (Ross Sea, Antarctica) 
taken from onboard RV ‘Italica’. 
 

Station Date Position Depth Haul 
length 

Sediment 

north to south  latitude [S] longitude 
[E] 

[m] [m]  

Cape Adare       
A1 15/02/2004 71°15.5’ 170°41.9’ 515 358 sand with few 

pebbles and stones 
A2 14/02/2004 71°17.3’ 170°39.2’ 421 298 sand and gravel 
A3 14/02/2004 71°18.7’ 170°29.2’ 305 257 sand 
A4 14/02/2004 71°18.4’ 170°28.9’ 230 376 sand and pebbles 
A5 

15/02/2004 71°18.7’ 170°25.5’ 
119 

59 
sand with pebbles 
and stones 

       
Cape Hallett       
H out 1 09/02/2004 72°15.7’' 170°24.8’ 458 375 mud and pebbles 
H out 2 

11/02/2004 72°17.5’' 170°29.4’ 
353 

375 
sandy mud and 
stones 

H out 4 12/02/2004 72°18.5’' 170°26.8’ 235 194 sand 
H in 2 

10/02/2004 72°16.9’ 170°12.2’ 
391 

186 
coarse sand and 
small gravel 

H in 3 
16/02/2004 72°17.0’ 170°13.1’ 316 194 

muddy sand with 
stones 

H in 4 16/02/2004 72°17.1’ 170°14.0’ 196 169 mud and sand 
H in 5 16/02/2004 72°17.2’ 170°17.9’ 84 113 small gravel 
       
Coulman 
Island 

      

C1 18/02/2004 73°24.5’ 170°23.2’ 474 375 mud and small gravel 
C2 18/02/2004 73°22.7’ 170°06.9’ 410 153 mud and pebbles 
       
Cape Russell       
SMN 

20/02/2004 74°43.2’ 164°13.1’ 366 192 
sand with gravel and 
stones 

R2 21/02/2004 74°49.0’ 164°18.1’ 364 575 fine sand 
R3 

20/02/2004 74°49.3’ 164°11.5’ 330 565 
rock, sand, mud and 
pebbles 

R4 
20/02/2004 74°49.3’ 164°11.5’ 208 97 

rock, mud and large 
stones 
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We applied univariate measures of diversity, the Shannon-Wiener index (H’) 
(log base) (Shannon and Weaver 1949), and evenness (J’) (Pielou 1966). A 
Multidimensional Scaling (MDS) analysis was carried out with the software 
package Primer (v. 5.1.2) of the Plymouth Marine Laboratory using Bray-Curtis 
Index to analyse the distribution of cumacean species assemblages in the 
study area. Because of the semi-quantitative nature of data derived from the 
dredge samples, arc-sin transformed relative abundances were used for 
analysis. 
 

Due to technical problems during processing, a sample taken at station 
R4 was only analysed qualitatively. Additional material collected onboard of the 
New Zealand RV ‘Tangaroa’ was analysed in order to enhance the species 
inventory list of the Ross Sea cumacean fauna. 
 
 
Results 
 
Distribution of the peracarid fauna of Victoria Land 
 
During the Victoria-Land cruise 63% of the collected macrobenthic fauna were 
peracarid crustaceans. In total 45,087 specimens of Peracarida were collected, 
5,286 of which belonged to the order of Cumacea. 
 

Amphipoda were the dominant peracarid taxon (66%) followed by 
Isopoda (18%), Tanaidacea (8%), Cumacea (7%), and Mysidacea (<1%). 
Abundance values varied remarkably among stations and peracarid groups 
(Table 2). The highest total abundance of peracarids was found at the 
shallowest station (H in 5; 84 m) of Cape Adare. 
 

The Cumacea showed a tendency of increasing relative abundance from 
north to south (Fig. 2): it ranged from 0.5% in the north at Cape Adare to 36% 
in the south at Cape Russell. In contrast the proportion of Amphipoda was 
higher in the northern (Cape Adare 63%, Cape Hallett 69%) than in the 
southern areas (Coulman Island 27%, Cape Russell 36%). The relative 
abundance of Tanaidacea was three times higher at Coulman Island (31%) 
than in the other areas (6–10%). Isopod abundance was highest at Cape 
Russell, but varied less than in the other peracarid groups (14–26%). Mean 
abundance of Amphipoda, Isopoda, and Tanaidacea was highest at the 
shallowest stations, whereas Cumacea and Mysidacea showed maximum 
abundances at stations from 300 to 400 m (Table 3). 
 
 
Composition, distribution and diversity of Cumacea of Victoria Land 
 
Five of the six cumacean families known from the Antarctic and 12 genera 
were represented in the samples. 19 of the 28 cumacean species found in the 
samples are new records for the Ross Sea. In addition two new records of 
cumacean species were collected with RV ‘Tangaroa’ (Table 4), thus the 
number of recorded species totals 34. Leuconidae containing nine species 
from two genera were the most dominant cumacean family (69%). The genus  
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Table 2 Abundance of Peracarida along the Victoria Land coast; N = number of specimens 
collected per station, Ns = number of specimens per station standardized to 1000 m2. 
 
 Amphipoda Cumacea Isopoda Mysidacea Tanaidacea 
north to 
south 

N Ns N Ns N Ns N Ns N Ns 

Cape 
Adare       

   

A1 244 1,363 2 11 23 128 17 95 40 223
A2 1,567 10,517 0 0 173 1,161 14 94 285 1,913
A3 682 5,307 2 16 605 4,708 4 31 57 444
A4 1,209 6,431 37 197 1,034 5,500 3 16 271 1,441
A5 505 17,119 3 101 68 2,305 1 34 75 2,542
Cape 
Hallett       
H out 1 636 3,392 114 608 301 1,605 0 0 88 469
H out 2 846 4,512 66 352 277 1,477 0 0 45 240
H out 4 2,357 24,299 65 670 1,050 10,825 6 62 154 1,588
H in 2 159 1,710 107 1,151 78 839 4 43 22 237
H in 3 991 10,216 297 3,062 450 4,639 0 0 181 1,866
H in 4  3,185 37,692 219 2,586 1,449 17,148 0 0 486 5,751
H in 5 10,170 180,000 56 991 882 15,611 0 0 490 8,673
Coulma
n Island       
C1 57 304 10 53 36 192 3 16 27 144
C2 711 9,294 315 4,116 676 8,837 2 26 838 10,954
Cape 
Russell       
SMN 1,413 14,719 1,252 13,050 1,080 11,250 42 438 448 4,667
R2 1,016 3,534 1,354 4,706 729 2,536 0 0 75 261
R3 694 2,457 1,374 4,864 516 1,827 26 92 78 276
R4 97 2,000 14 288 41 845 1 21 11 227

 
 
 
Table 3 Peracarid abundance per 1000 m-2, averaged across four depth zones off Victoria 
Land, Ross Sea. 
 
Depth range Amphipoda Cumacea Isopoda Mysidacea Tanaidacea 

(m)      
84-200 78,270 1,226 11,688 11 5,655 
201-300 4,216 243 3,173 19 834 
301-400 6,565 3,886 3,897 86 1,142 
401-515 8,195 910 3,791 49 2,549 
 
 
 
Leucon (6 species) was most abundant (57%). Nannastacidae, comprising nine 
4 genera) made up 6% of total cumacean abundance. Only two species of two 
genera of Bodotriidae and Lampropidae were collected which represented 3% 
species of three genera, occurred with 21%. The family Diastylidae (7 species, 
and less than 1%, respectively, of cumacean specimens. 
 

Most species were found between 200 and 450 m depth. From 100 to 
about 200 m only six species were found, whereas nine species were confined 
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Table 4 Cumacean species of the Ross Sea; species collected during the expeditions of RV 
‘Italica’ (Ita) and ‘Tangaroa’ (Tan) in 2004, n = new record from the Ross Sea. 
 

Family/Species Author Record 

    
Lampropidae    
Hemilamprops cf. ultimaspei  Zimmer, 1921 Ita n 
Hemilamprops cf. pellucidus Zimmer, 1908 Tan n 
Paralamprops rossi  Jones, 1971   
    
Bodotriidae    
Cyclaspis gigas  Zimmer, 1907b Ita/Tan  
Vaunthompsonia inermis Zimmer, 1909 Ita n 
    
Leuconidae    
Eudorella fallax Zimmer, 1909 Tan n 
Eudorella gracilior Zimmer, 1909 Ita  
Eudorella cf. sordida Zimmer, 1907a Ita n 
Eudorella splendida/similis Zimmer, 1902   
Eudorella sp. A  Ita  
Leucon antarcticus Zimmer, 1907a Ita  
Leucon assimilis Sars, 1887 Ita n 
Leucon intermedius Mühlenhardt-Siegel, 1996 Ita n 
Leucon parasiphonatus Mühlenhardt-Siegel, 1994 Ita n 
Leucon cf. sagitta Zimmer, 1907a Ita n 
Leucon sp. A spec. nov. Ita n 
    
Nannastacidae    
Campylaspis antarctica Calman, 1907 Ita  
Campylaspis frigida Hansen, 1908 Ita n 
Campylaspis ledoyeri Petrescu & Wittman, 2003 Ita n 
Campylaspis maculata Zimmer, 1907b Ita n 
Campylaspis quadridentata Ledoyer, 1993 Ita n 
Campylaspis quadriplicata Lomakina, 1968 Ita n 
Cumella australis  Calman, 1907 Ita  
Cumella cf. emergens Corbera, 2000 Ita n 
Procampylaspis meridiana Jones 1971   
Procampylaspis compressa Zimmer, 1907b Ita n 
    
Diastylidae    
Diastylis corniculata Hale, 1937 Ita n 
Diastylis enigmatica Ledoyer, 1993 Ita/Tan n 
Diastylis helleri Zimmer, 1907a Ita/Tan  
Diastylis juv. cf. mawsoni Calman, 1918 Ita n 
Diastylopsis goeki Roccatagliata & Heard, 1992 Ita  
Leptostylis antipus Zimmer, 1907a Ita n 
Makrokylindrus baceskei Lomakina, 1968   
Makrokylindrus inscriptus Jones, 1971 Ita  
    
Gynodiastylidae    
Gynodiastylis jazdzewskii Błażewicz & Heard, 1999   
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Figure 2 Relative numbers of peracarid taxa in the sample areas on the Ross Sea shelf. 

Antarctica. 

 
 
 
to depths below 300 m (Fig. 3). Diversity varied considerably (H’:0–2.5;J’:0.45–
0.83) and was highest at station C2 off Coulman Island, which also was the 
station with the highest number of species (20). Diversity was lowest at stations 
 

A1, A3, and A5 off Cape Adare, for only one species was represented at 
these stations (Table 5). Accordingly, Cape Adare was the area with the lowest 
mean values of diversity, number of species, and abundance, whereas off 
Coleman Island mean diversity and mean species number were highest. 
Cumacean mean abundance increased with latitude (Table 6). Mean diversity 
and evenness showed a tendency to higher values at deeper stations; mean 
species number, abundance, and diversity were highest at stations between 
301 and 400 m (Table 7). 
 

After the MDS analysis stations were roughly arranged corresponding to 
their geographical order (Fig. 4). The only exception was station A1 (Cape 
Adare), which was clearly different to the remaining stations. Species, which 
only occurred in one area, were found. Thus, the species Eudorella sp. A and 
Makrokylindrus inscriptus were only recorded from Cape Hallett. Leucon 
parasiphonatus and Diastylopsis goeki solely occurred off Coulman Island. 
Species confined to Cape Russell were Campylaspis frigida and Diastylis 
enigmatica. No species occurred exclusively at Cape Adare. 
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Table 6 Average measurements of cumacean diversity by latitude (Victoria-Land Transect. 
Ross Sea); S = species number. N = abundance per 1000 m2. H’ = diversity. J’ = evenness. 
 

 
 
 
Table 7 Average measurements of cumacean diversity by depth (Victoria-Land Transect. Ross 
Sea); S = species number. N = abundance per 1000 m2. H’ = diversity. J’ = evenness. 
 
Depth range S N H' J’ 
[m] mean/total    
     
84-200 6/12 1227 0.92 0.65 
201-300 4/15 243 0.87 0.61 
301-400 12/26 3885 1.59 0.71 
401-515 8/23 1091 1.32 0.80 
     
 
 
 

A 1

A 3

A 4
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R 3

R 4

Stress: 0.1

 
 
Figure 4 MDS-plot of Ross Sea Cumacea; A = Cape Adare. H = Cape Hallett. C = Coulman 
Island. R = Cape Russell. SMN = Santa Maria Novella. 
 

Sample area S N H’ J’ 
north to south mean/total    
     
Cape Adare 2/4 81 0.45 0.12 
Cape Hallett 11/24 1346 0.72 1.64 
Coulman Island 12/20 2084 0.83 1.82 
Cape Russell 11/17 5727 0.71 1.65 
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Discussion 
 
Almost nothing has been known about sub-tidal ecosystems of the northern 
Victoria-Land coast, and most recent studies of shallow benthic communities 
in the Ross Sea focused rather on ecological interactions than on 
classifications (Waterhouse 2001). A first attempt to describe the community 
structure of smaller macrozoobenthic species along the northern Victoria-Land 
coast was made onboard of the 19th expedition of RV ‘Italica’ (Rehm et al. 
2006). 
 

Gears with small mesh sizes, such as the Rauschert dredge or epibenthic 
sledges, are very effective for sampling smaller peracarid crustaceans. As the 
Rauschert dredge (see Rehm et al. 2006) was used for the first time in the Ross 
Sea, it gave us a first insight into the peracarid community of the northern 
Victoria- Land coast and helped to considerably improve our knowledge of 
cumaceans from the Ross Sea. 
 
 
Comparison of the peracarid fauna 
 
The peracarid community sampled during the 19th Italian expedition with 
research vessel ‘Italica’ was dominated by amphipods. Isopods represented 
the second dominant group, followed by Tanaidacea, Cumacea, and 
Mysidacea. Only few quantitative studies of peracarids sampled with gears 
with small mesh size were so far carried out in Antarctic waters. Samples taken 
off the South Shetland Islands at depth between 200 and 400 m and taken with 
an epibenthic sledge in autumn 2000 showed comparable results in the mean 
proportions of peracarid orders: 62% Amphipoda, 16% Isopoda, 13% 
Tanaidacea, 11% Cumacea, and less than 1% Mysidacea (Lörz and Brandt 
2003). Nevertheless, samples taken during summer in the southern Weddell 
Sea and off King George Island in depths ranging from 200 to 400 m showed 
different values (Linse et al. 2002); Isopoda 60%, Amphipoda 26%, Mysidacea 
10%, Cumacea 4%, and Tanaidacea 1% in the Weddell Sea; Cumacea 39%, 
Amphipoda 31%, Mysidacea 17%, Isopoda 13%, and Tanaidacea 1% off King 
George Island. Differences in the gear are one explanation for the variations in 
the results of the different studies. The epibenthos sledge samples from over 
20 cm to more than 120 cm above the seafloor (Brandt and Barthel 1995; 
Brenke 2005), but the Rauschert dredge is bound to the first about 18 cm 
above the ground. Thus, the increased number of Mysidacea in the epibenthic 
sledge samples might be attributed to their suprabenthic life style. However, 
only few mysids were sampled with the epibenthic sledge in autumn 2000. 
Variations of the contribution of peracarid orders to the peracarid fauna were 
high during all studies and the number of samples from shallower water than 
500 m depth taken in the Weddell Sea and the South Shetland Islands was 
limited. Therefore, it is difficult to judge whether differences might result from 
the patchiness of the fauna obtained, a different compositions of the fauna, or 
seasonal effects. Further, sampling with and comparison of multiple gears will 
provide more reliable information about seasonal differences and similarities 
between the different Antarctic areas. 
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Composition and distribution of the cumacean fauna 
 
In the Weddell Sea as around the South Shetland Islands (Corbera 2000; Lörz 
and Brandt 2003) most speciose family was the Nannastacidae. In the Ross 
Sea, the most abundant family was the Leuconidae, whereas the Diastylidae 
(Lörz and Brandt 2003) or Bodotriidae (Corbera 2000) dominated the 
cumaceans off the South Shetland Islands. Mean species number off the South 
Shetland Islands was half of the Ross Sea, whereas total species number 
varied between 50 (Lörz and Brandt 2003) and 100% (Corbera 2000). 
 

Cumacean diversity index was higher at deeper stations and maximal in a 
depth of 410 m at station C2, which was one of the stations with muddy 
sediment. At the South Shetland Islands, cumacean diversity was extremely 
variable. Nevertheless, a tendency towards higher values at deeper stations 
was recorded as well; this trend extended to depths below 500 m on the 
continental slope (Corbera 2000). Density and species number of the 
Cumaceans of the Beagle Channel was found to increase with depth and 
reduced grain size of the sediment (Brandt et al. 1999). 
 

During this study one group of species was found ranging from 100 to 
500 m, a second group of species was found in between 200 and 500 m, and a 
third group ranges from 300 to 500 m. From the Weddell Sea, three 
bathymetric groups of cumaceans were reported between 200 and 500–600 m, 
below 500 m, and finally between 200 and 2,000 m (Ledoyer 1993). Corbera 
(2000) described a situation with three groups between 45 and 300 m, 300 and 
650 m, 45 and 650 m. Concluding from the three studies, there appear to be 
two important changes in cumacean depth distribution around 300 and 500–
600 m depth. 
 

The most striking result of this work is the large number of newly 
recorded cumacean species from the Ross Sea. One reason to explain this 
remarkable increase in known species can be ascribed to the little previous 
work from the area under investigation, which has now been accomplished on 
the deeper benthic environment, between 50 m and the shelf break at 800 m 
(Clark and Rowden 2004; Waterhouse 2001). The new species Leucon sp. A 
shows that the area is truly undersampled, as the species was one of the most 
common species with up to 2,000 specimen per square meter in the present 
study. Only Leucon antarcticus occurred more frequently. Leucon sp. A was 
found along the whole Victoria-Land coast and it was missing only at the 
deepest samples below 460 m. In addition, this species is very easy to 
distinguish from other species of the genus Leucon. Nevertheless, there has 
been no data published about this species before. What might be even more 
important for the many species newly recorded from the Ross Sea was the use 
of a Rauschert dredge, as this gear is specially designed to catch animals of 
small size. In the case of the Cumacea, the number of species, which were 
reported for the Ross Sea before, increased from 13 to 32 species. Moreover, 
two further species, Hemilamprops cf. pellucidus and Eudorella fallax were 
found on the parallel cruise with RV ‘Tangaroa’. Thus, 34 species are recorded 
in total for the Ross Sea. We expect that investigations of the other peracarid 
orders will lead to similar results. 
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A summary of the Antarctic cumacean species and their distribution in the 
Antarctic and Subantarctic regions was given by Mühlenhardt-Siegel (1999). 
The highest numbers of cumacean species were recorded from the East 
Antarctic (32), the Magellan region (31), and the Weddell Sea (29). In the Scotia 
region numbers varied between 15 and 20 species, whereas, in the Ross Sea 
only 11 species were recorded. Here we documented that the Ross Sea 
harbours more cumacean species than the other high Antarctic regions, 
although it was formerly regarded as the poorest Antarctic area concerning 
cumacean species richness. This finding highlights the need for more 
explorative sampling in the Ross Sea area and in deeper waters off the 
continental slope off Antarctica. 
 

Most species from the Ross Sea show a wide range of geographic 
distribution (Table 8). Fifteen species occur in Antarctic regions, seven species 
are restricted to high Antarctic regions. Antarcto-Magellan species divide into a 
Subantarctic/Antarctic (6) and a Subantarctic/high Antarctic (2) group. The 
species of the latter group are probably also Subantarctic/Antarctic. After all, 
seven species making up 21% of the species from the Ross Sea occur in the 
Magellan area as well as in the Ross Sea. The species of both areas total to 66. 
An overlap of 11% is the same rate as reported for the Magellan area and 
Antarctica (Mühlenhardt-Siegel 1999). Four species (11%) are endemic to the 
Ross Sea, the rate of endemism is less than in the Weddell Sea (28%) and in 
the East Antarctic (13%) (Corbera 2000). In conclusion, not only species 
number but also biogeographical connection to the Magellan area of the 
cumaceans of the Ross Sea resembles that of other high Antarctic regions. 
Still, the rate of endemism is the lowest of high Antarctic areas and similar to 
the East Antarctic only. 
 

In several cases the determination of the species was difficult, as some of 
the original descriptions show only parts of the animal or the drawings are 
vague. We believe that good re-descriptions are necessary to simplify future 
work on Antarctic cumaceans. Another problem was that some of the species 
showed slight but consistent differences to specimens from original 
descriptions. It is rather likely these species show geographic variations, but 
there is also a chance that we found sibling species. Genetic analysis of the 
Antarctic isopod species Ceratoserolis trilobitoides demonstrated that sibling 
species, which were described as variations before (Wägele 1986), were even 
found in the same location (Held 2003). Possibly this is true for other Antarctic 
peracarid crustaceans as well. The Ross Sea is the southernmost ocean on 
earth and in contrast to most other Antarctic regions it is characterized by a 
very wide continental shelf. Furthermore, the Ross Sea polynya encloses the 
most productive phytoplankton primary production found in Antarctica (Smith 
et al. 1996), which might particularly foster benthic diversity. 
 

Morphological variability in the Antarctic Cumacea and cryptic speciation, 
as already proven in Antarctic peracarid isopods (Held 2003; Held and Wägele 
2005), are an indication of recurrent isolation processes of populations on an 
evolutionary timescale. Considering that most species of the Ross Sea 
Cumacea have a limited depth distribution that only covers the Antarctic 
continental shelf and slope, the deep-sea might not have served as refuge for  
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Table 8 Biogeography of cumacean species from the Ross Sea; data based on Hansen (1908), 
Mühlenhardt-Siegel (1999), Petrescu and Wittman (2003), Corbera and Ramos (2005), the 
present study, and unpublished data from the BENTART-061 cruise (J. Corbera pers. comm.) 
and the ANT XXI-22 cruise with RV „Polarstern”; Ant P = Antarctic Peninsula, 
BS = Bellingshausen Sea E Ant = East Antarctic, Kerg = Kerguelen, Magel = Magellan Area, 
S Geo = South Georgia, S Ork = South Orkneys, S Shetl = South Shetlands, 
Wedd = Weddel Sea. 
 

Subantarctic Antarctic

Species Magel Kerg S Geo S Ork
S

Shetl Ant P Wedd BS E Ant

Subantarctic and Antarctic
Campylaspis maculata + + + + + + +
Campylaspis antarctica + + + +1 +
Eudorella splendida/similis + + +
Hemilamprops ultimaspei + + +
Leucon assimilis + + + + + +
Leucon sagitta + + + + + + +

Antarctic
Cumella australis + + + + + + +
Cumella cf. emergens + +2 +1

Cyclaspis gigas + + + + + +
Diastylis corniculata + + + +
Diastylopsis goeki + + + + +
Diastylis helleri + + + + + +
Eudorella fallax + + + + +
Eudorella gracilior + + + + + +
Eudorella cf. sordida +
Hemilamprops cf. pellucidus + + + +
Leptostylis antipus + + + + +
Leucon antarcticus + + + +
Leucon intermedius + + +2 +
Leucon parasiphonatus + +
Vaunthompsonia inermis + + + + + + +

high Antarctic
Campylaspis ledoyeri +
Campylaspis quadridentata + +
Diastylis enigmatica +
Diastylis juv.cf. mawsoni + + +
Makrokylindrus inscriptus +
Paralamprops rossi + +
Procampylaspis compressa + +

Subantarctic and high Antarctic
Campylaspis frigida + + +
Campylaspis quadriplicata + + +

Ross Sea
Leucon sp. A
Procampylalspis meridiana
Makrokylindrus baceskei
Gynodiastylis jazdzewskii
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many species during glacial ice advance in Antarctica (Thatje et al. 2005). This 
again poses the question of isolated shallow water refuges for benthic fauna in 
glacial periods and under severest environmental conditions (for discussion 
see Thatje et al. 2005). Such geographically isolated shelters, in addition, might 
have driven speciation process in the Peracarida, which have flourished in 
Antarctica. Molecular studies are needed to unravel this important and 
controversial question in the evolution of the Antarctic fauna. 
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Abstract 
 
We analysed the mitochondrial cytochrome oxidase I (COI) gene sequences 
from specimens of the shallow-water shrimp Chorismus antarcticus and the 
deep-sea shrimp Nematocarcinus lanceopes from populations around 
Antarctica. In both species, molecular variance analyses of the mitochondrial 
CO1 gene revealed low population structures giving evidence of homogeneous 
populations inhabiting the Southern Ocean. This first record of homogeneous 
populations in two species of marine broadcasters reinforces the concept of 
circum-Antarctic species, which was challenged by the increased recovery of 
cryptic species in Antarctic seafloor invertebrates with limited mode of 
dispersal. Lower complexity in haplotype diversity in the shallow-water species 
Chorimus antarcticus when compared with the deep-water species 
Nematocarcinus lanceopes points at post-glacial radiation of few populations 
of Chorismus antarcticus around Antarctica that either survived in glacial 
shelters on the Antarctic continental shelf or in shallow waters off Southern 
Ocean islands. The data support the importance of larval drifting stages for the 
success of a widespread shallow-water species thriving in Antarctica over long 
evolutionary periods of time. 
 
Keywords: Southern Ocean • ecosystem • evolution • population structure • broadcaster 
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Introduction 
 
Effects of climate change on the evolution of marine communities and diversity 
over long evolutionary timescale of millions of years are relatively well 
understood within the climatologically and physically isolated waters of the 
Southern Ocean (Clarke & Johnston 2003; Thatje et al. 2005a, b). Today, high 
levels of endemism and circum-Antarctic species distribution commonly 
characterize Antarctic marine diversity (Clarke & Johnston 2003). This diversity 
pattern is principally a result of Antarctic cooling, with the last major cooling 
step occurring about 15 Ma ago, and the effects of climate oscillation in 
glacial–interglacial cycles on Milankovitch timescales (see Thatje et al. 2005b). 
 

The concept of circum-Antarctic species distribution as suggested for 
many seafloor-inhabiting invertebrates found in Antarctica, is traditionally 
based on the identification of morphospecies. With the discovery of cryptic 
species using molecular methods, describing a hidden genetic diversity 
indistinguishable by traditional morphology, the concept of circum-Antarctic 
distributed species has been challenged and Antarctic diversity is likely to 
increase significantly. So far, cryptic speciation was unravelled in many 
different Antarctic taxa (e.g. Darling et al. 2000; Raupach & Wägele 2006; Linse 
et al. 2007). Geographic isolation in ice-free shelters on the continental shelf of 
Antarctic during glacial periods is discussed as one possible factor explaining 
cryptic speciation in shallow-water species (Held 2005; Thatje et al. 2005b). 
 

Here, we present for the first time a comparison of the genetic structure 
of an Antarctic shallow-water and a deep-sea crustacean species, which both 
possess a broadcasting mode inreproduction by producing pelagic larvae. 
Results are discussed in relation to the glaciological history of Antarctica and 
the evolutionary history of its marine fauna. 
 
 
Material and Methods 
 
All analysed shrimp specimens of Chorismus antarcticus and Nematocarcinus 
lanceopes were collected during expeditions in the Southern Ocean in the 
years 2002 to 2006. Shrimps were caught using various gears (see Arntz & 
Brey 2003, 2005; Fütterer et al. 2003; Fahrbach 2006; Rehm et al. 2006). 
Studied specimens and sample localities are listed in a sample data sheet as 
electronic supplement. 
 

Genomic DNA was extracted from pleon muscle of 169 specimens of 
Chorismus antarcticus and 144 specimens of Nematocarcinus lanceopes, 
using the QIAmp Tissue Kit (Qiagen GmbH) and following the extraction 
protocol. The polymerase chain reaction was used to amplify a part of the 
mitochondrial cytochrome oxidase subunit I (CO1) gene. Amplifications were 
performed in 25 μl reactions containing 2.5 μl 10x PCR buffer, 2.5 μl dNTPs (2 
mmol/μl), 0.3 μl of each primer (LCO1490, HCO2198, both 50 pmol/μl; Folmer 
et al. 1994), 1-2 μl of DNA template, 5 μl Q-Solution, 0.2 μl Qiagen Taq (5 
U/μl), filled up to 25 μl with sterile H2O, on a Progene Thermocycler (Techne 
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Ltd.). The temperature profile of the PCR consisted of an initial denaturation of 
94°C (5 min), followed by 38 cycles of 94°C (45 s), 44°C (45 s) and 72°C (75 s). 
Purified PCR products were cycle sequenced and sequenced at a contract 
sequencing facility (Macrogen, Seoul, South Corea), using the same primer set 
used for PCR. All sequences were deposited in GenBank: EF407603 – 
EF407647 for CO1 haplotypes of Nematocarcinus lanceopes, EF407580 - 
EF407602 for Chorsimus antarcticus haplotypes. 

 
Sequences were aligned and edited by eye, generating two alignments of 

683 bp (Chorismus antarcticus) and 680 bp (Nematocarcinus lanceopes). 
Phylogenetic relationships among haplotypes were inferred using statistical 
parsimony implemented in TCS 1.13 (Clement et al. 2000). ARLEQUIN 3.01 
(Schneider et al. 2000) was used to calculate haplotype (h) and nucleotide 
diversity (π), and to estimate levels of population structure within species by 
analyses of molecular variance (AMOVA) (Excoffier et al. 1992).  
 
 
Results 
 
Figure 1 shows statistical parsimony networks of the CO1 haplotypes of both 
analysed decapod species. Uncorrected pairwise genetic distances (p-
distances) among observed haplotypes (n = 23) of Chorimus antarcticus 
ranged from 0 to 0.009, while 45 haplotypes with p-distances ranging from 0 to 
0.015 were recovered within the deep-sea species Nematocarcinus lanceopes, 
revealing a more complex haplotype network in comparison to Chorismus 
antarcticus. These results coincide with other examples of high genetic 
variability which have been observed within other deep-sea decapods (e.g. 
Shank et al. 1999; Weinberg et al. 2003). 
 

The analyses of molecular variance revealed only low population 
structures within both species whether stations were grouped by geographic 
region or depth (not shown), giving evidence of homogeneous populations and 
a circum-Antarctic distribution of both species (Tab. 1). Total haplotype 
diversity h and nucleotide diversity π were greater for the analysed 
Nematocarcinus lanceopes specimens (h = 0.902, π = 0.0031) than for 
Chorismus antarcticus (h = 0.641, π = 0.0020) (see Tab. 1). Haplotype diversity 
in both species did not dramatically change with increased sample size during 
our analyses, giving evidence for a stable pattern of haplotypes within both 
species.  

 
 

Discussion 
 
Both analysed species, the shallow-water decapod Chorismus antarcticus and 
the deep-sea shrimp Nematocarcinus lanceopes, reinforce the concept of 
circum-Antarctic species distribution based on molecular analyses. The 
concept was so far based only on morphological work, and challenged in 
recent years by the discovery of cryptic speciation in species with limited 
potential for dispersal (e.g. Held & Wägele 2005; Linse et al. 2007). 
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Figure 1 Statistical parsimony network of CO1 haplotypes of the Antarctic decapods 
Chorismus antarcticus (shallow-water species, yellow) and Nematocarcinus lanceopes (deep-
sea species, red) with sample locations and bathymetric distribution of the analysed 
populations. Size of the nodes is proportional to haplotype frequency in both species. Black 
nodes indicate missing haplotypes, lines between nodes correspond to one mutational step. 
 
 
 
The haplotype diversity pattern in both species is of striking consequence for 
our understanding of Antarctic evolution: given that molecular substitution 
rates between a shallow-water Antarctic and a primarily deep-sea organism are 
comparable (Held 2001), the observed low haplotype diversity in Chorimus 
antarcticus points at post-glacial radiation of few populations around 
Antarctica that either survived in glacial shelters on the Antarctic continental 
shelf or around shallow waters of Southern Ocean islands. Nematocarcinus 
lanceopes basically presents a deep-sea distribution in the Southern Ocean to 
about 4,000m water depth (Thatje et al. 2005c), and only emerges on the 
Antarctic Continental Slope to about 600m water depth. Based on this 
distribution pattern, the species should have been rather unaffected by the 
advance of grounded ice sheets across the Antarctic Continental Shelf during 
glacial periods, and thus developed/maintained a more complex population 
structure (figure 1). 

 
The record of Chorismus antarcticus depicts the importance of the 

reproductive mode, and in particular drifting stages of any kind, in shallow-
water Antarctic invertebrates to cope with climate oscillation. However, in this 
context it should be considered that Antarctic benthic invertebrates rarely have 
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pelagic modes in development when compared with overall diversity found 
there (Thatje et al. 2005b). The example of genetic homogeneity at species 
level presented here does undoubtedly mark the importance of drifting stages 
for the success of a widespread shallow-water species thriving in Antarctica 
over long evolutionary timescale. 
 

Modelling data (Huybrechts 2002) suggest the advance of grounded ice 
masses to the continental shelf edge around Antarctica at the Last Glacial 
Maximum (LGM), which would have left no glacial refuges to benthos restricted 
to shallow waters. However, it is not impossible that geographically isolated 
shelters for benthic organisms existed on the continental shelf during the LGM, 
due to a diachronous ice advance and retreat pattern; a concept that is 
discussed controversially (Huybrechts 2002; Thatje et al. 2005b). Our data 
show that the survival of refuge populations in glacial shelters and radiation 
following ice retreat is a likely scenario for Antarctic broadcasters. It does 
however, not exclude the possibility that populations of Chorismus antarcticus 
survived the LGM in shallow waters of sub-Antarctic islands, and re-colonized 
the Antarctic continental shelf at the onset of deglaciation. Because of the 
diachronous ice extent pattern in glacial periods, ice-free shelters on the 
continental slope did not serve permanent refuge sites for benthic organisms 
and it is likely that species had to migrate from one shelter to another in order 
to escape obliteration. In any case, a pelagic drifting stage must have been a 
key condition for widespread shallow-water species to respond to these 
conditions. Where such capability was lacking, geographic isolation in glacial  
refuges might have caused cryptic speciation, which was recently suggested 
to be a common pattern in many Antarctic shallow-water species (Held & 
Wägele 2005). Molecular data should increasingly be taken into account for the 
calibration and validation of ice advance and retreat patterns in glacial 
Antarctica and the evolution of the Antarctic biota (Thatje et al. 2005b).  
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Abstract 
 
Diastylis enigmatica rossensis n. ssp. is described and illustrated on the basis 
of new specimens from the Antarctic shelf in the Ross Sea. The material was 
collected off the Victoria Land coast during the 19th Antarctic expedition of the 
Italian research vessel ‘Italica’ in 2004. Diastylis enigmatica Ledoyer, 1993 was 
first obtained during the EPOS 3 campaign at Halley Bay in the Weddell Sea. A 
redescription based on further material from the Weddell Sea was published by 
Petrescu and Wittmann in 2003, which shows several differences to the newly 
collected material from the Ross Sea. The most obvious differences from 
Diastylis enigmatica rossensis n. ssp. to Diastylis enigmatica enigmatica 
Petrescu and Wittmann, 2003 is the presence of 4 spines on the merus of the 
second paraeopod, an increased number of setae on the uropodal endopod, 
and an additional transverse denticulate ridge on the pseudorostral lobe in the 
latter subspecies. 
 
Keywords Antarctica •Crustacea • Cumacea • Diastylidae • Ross Sea • Victoria Land 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 Printed with permission from Springer-Verlag. The original publication is available at 
http://www.springer.com. 
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Introduction 
 
Diastylis enigmatica Ledoyer, 1993 was first described from material collected 
during the EPOS 3 campaign (Arntz et al. 1990) at Halley Bay in the Weddell 
Sea. The original description is based on a juvenile male with incomplete 
uropods, which was found between 270 and 280 m water depth. In 1989/90, 
five further specimens were found at a depth between 240 to 260m during the 
Expedition Antarktis-VIII/5 with RV ‘Polarstern’. Based on this material 
Petrescu and Wittmann (2003) redescribed a subadult female of Diastylis 
enigmatica. Additional specimens from the Antarctic shelf in the Ross Sea 
(216-366 m) were obtained off the Victoria Land coast during the 19th Antarctic 
expedition of the Italian research vessel Italica in 2004 (Rehm et al. 2007). A 
first examination of the material from the ‘Italica’ cruise already showed slight 
differences in some of the cumacean species to the original descriptions. With 
the present study the description of a marsupial female of the new subspecies 
Diastylis enigmatica rossensis and a detailed analysis of sexual and 
developmental differences in the subspecies of Diastylis enigmatica is 
provided. 
 
 
Materials and methods 
 
Material for this study was collected during the 19th Antarctic expedition of RV 
‘Italica’ to the Ross Sea. In total 173 specimens were sampled at 4 stations 
and examined with a Leica MZ125 and an Olympus SZX12 dissecting 
microscope with camera (Olympus Colour View I). Dissected appendages were 
mounted on slides in glycerine and studied with a Zeiss AxioSkop 1 with 
attached camera (Olympus DP70). Drawings were created from digital 
photographs using a digital drawing tablet (Wacom Intous3 9x12) as described 
by Coleman (2003, 2006). Material has been deposited in the collection of the 
Zoological Museum Hamburg (ZMH). For further data on the sampling stations 
and on species diversity and distribution found at these stations refer to Rehm 
et al. (2007). 
 

Body length is measured from the tip of the pseudorostrum to the tip of 
the telson. Length of articles are measured according to Mühlenhardt-Siegel 
(2005) and given as relative length of peduncle (RLP) articles 1 to 3 of antenna 
1 compared to total peduncle length. The ratio basis to rest (B/R) is given for 
maxillipeds and paraeopods, which is the proportion of the basis to the 
combined length from ischium to dactylus, not including terminal setae. RLA 
refers to the relative length of each article from ischium to dactylus, excluding 
terminal setae. 
 

The following types of setae were distinguished: simple setae are slender 
and completely lack outgrowths on the setal shaft; setulate setae have 
irregularly distributed setules along the shaft; plumose setae have many 
setules arranged in two strict opposite rows, giving the setae a feather-like 
appearance; serrate setae have one or two rows of denticles in their distal half; 
setulate-serrate setae have long setules on proximal half and one or two rows 
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of denticles on distal half; spiniform setae are spine like; broom setae are tiny 
and have a pedestal and extremely thin setules distally; and annulate setae are 
simple and have a distinct internal spiral structure in their distal half. 
 
 
Results 
 
Order  Cumacea Kröyer, 1846 
Family  Diastylidea Bate, 1856 
Genus  Diastylis Say, 1818 
Diastylis enigmatica rossensis n. ssp. (Fig. 1–5) 
 
 
 

 
 
Figure 1 Diastylis enigmatica rossensis n. ssp. Adult female. Scale = 1mm. 
 
 
 
Material was deposited in the Zoological Museum Hamburg. 
 

Holotype: Incubating female (partially dissected); station R2 
74°49.0’S/164°18.1’E, fine sand, 364 m, 21 February 2004. 

 
Paratypes: Subadult female (ZMH 41273), same station data as holotype; 

both specimen were dissected. Two juvenile females, a juvenile male, and a 
subadult male (ZMH 41274), station R3 74°49.3’S/164°11.5’E, rocky sand 
substratum with mud and pebbles, 330 m, 20 February 2004. Juvenile male 
(ZMH 41275), station SMN 74°43.2’S/164°13.1’E, 366 m, sand with gravel and 
stones, 20 February 2004. 
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Description 
 

Adult female. Body length 8.9 mm. 
 

Carapace (Fig. 1), 1.6 times longer as high, with four denticulate 
transversal ridges; some small simple setae, slightly more concentrated on 
frontal lobe and on anterior and ventral margin; minor denticulate ridges, with 
slight variations on both sides of carapace. Eyelobe with two spines; 6 spines 
on frontal lobe as described in Petrescu and Wittmann (2003), further dorsal 
spines of varying size along three fourths of carapace length. Pseudorostrum 
moderately produced, about 1/6 of total carapace length (including 
pseudorostrum); slightly turning downward. Antennal notch shallow. Lateral 
lower margin serrated. Integument of segments with honeycomb-like structure; 
margins with fine serrations. Sternites of last three thoracic segments with 
median spine decreasing in length. Last pleon segment ventrally with two rows 
of 5 denticles forming a ‘v’ opening to the posterior end. Carapace and free 
thorax segments approximately 1.2 times longer as abdomen. 

 
Antenna 1 (RLP 54/23/23) (Fig. 2e). First article of peduncle bearing three 

spines on distal margin; one slightly separated from others; a setulate seta at 
distal margin and a broom seta next to it; some minute and hair-like setae; row 
of hair-like setae along little more than distal third of article, turning back along 
integumental fold, and ending with a curved simple seta. Second article with 
few hair-like setae, proximal end with many hair-like setae; four small simple 
setae; three minute simple setae and a broom seta close to distal margin. Third 
article with seta close to distal margin only, two small simple and three broom 
setae. Accessory flagellum with four articles, articles 1 and 4 approximately 
half as long as articles 2 and 3; first article with a seta (was broken in the 
specimen), third article with a broom seta, fourth article with a broom seta and 
three simple setae (1 long, 2 short). Main flagellum with 6 articles; articles 1 an 
2 shorter than article 3, article 3 slightly shorter than article 4 and 5, article 6 
shortest article; article 4 with a minute simple seta, article 5 distally two minute 
simple setae and two aesthetascs, article 6 with two minute simple setae, a 
simple seta (was broken in the specimen), and a broom seta. 

 
Antenna 2 (Fig. 2f). Four articles decreasing in length to tip of antenna, 

article 3 longer than article 2; first article with a setulate seta; second with two 
setulate setae, fourth article bearing terminal a setulate seta. 

 
Mandibles (Fig. 2b, 2c). Typical of genus; left mandible lacinia mobilis and 

12 or 13 (one or two setae broken off) setae of various shapes (simple and 
serrate); right mandible with 13 setae of various shape (serrate and bifurcate), 
most distal seta trifurcate. 

 
Maxilla 1 (Fig. 2a). Outer endite having 14 spiniform simple or serrate 

setae; single subdistal seta on outer margin; several hair-like setae subdistal 
and on distal half of margins, only few at inner margin. Inner endite with three 
serrate setae, a bifurcate setae, and a simple seta of varying size. Palp 
terminating in two long setae. 
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Figure 2 Diastylis enigmatica rossensis n. ssp. Adult female. a, maxilla 1; b, left mandible; c, 
right mandible; d, maxilla 2; e, antenna 1; f, antenna 2. Scales = 0.2 mm; 1 = a; 2 = d; 3 = e, f; 4 
= b, c. 
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Figure 3 Diastylis enigmatica rossensis n. ssp. Adult female. a, maxilliped 1; b, maxilliped 3; c, 
maxilliped 2. Scales = 0.5 mm; 1 = a, c; 2 = b. 
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Figure 4 Diastylis enigmatica rossensis n. ssp. Adult female. a, paraeopod 1; b, paraeopod 2. 
Scale = 0.5 mm. 
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Figure 5 Diastylis enigmatica rossensis n. ssp. Adult female. a, paraeopod 3; b, uropod; c, 
paraeopod 4; d, paraeopod 5. Scale = 0.5 mm; 1 = a, c, d; 2 = b. 
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Maxilla 2 (Fig. 2d). A row of plumose setae parallel to inner edge of 
protopod slightly turning outward subdistally; inner edge with some hair-like 
setae and a serrate seta in distal third; inner distal edge with a setulate-serrate 
seta; distal margin with setae of various types and shapes (simple, serrate) and 
a longer setulate seta at outer edge. Outer lobe of endite with three inner 
serrate setae, three outer simple setae; inner lobe with three inner serrate setae 
and an outer simple seta. 
 

Maxilliped 1 (B/R 0.6; RLA –/27/32/30/11) (Fig. 3a). Basis with many small 
hair-like setae (not drawn in the figure), a setulate seta at distal margin; endite 
with four setulate setae and four setulate-serrate setae at inner margin, two 
retinacula present. Ischium absent. Merus with three simple setae along distal 
half of outer margin; a minute seta and a protuberance on outer distal margin; 
Carpus inner margin with simple setae and a dense group of simple, trifurcate-
setulate, and setulate setae close to distal two thirds of inner margin; inner 
margin with a lamelliform structure; three curved setulate seta on distal margin; 
three simple setae at outer margin and a large setulate seta at outer distal 
edge. Propodus, simple and setulate setae mainly close to outer margin; distal 
edge with three setulate setae, inner distal edge with 2 serrate setae. Dactylus 
with two terminal spiniform and serrated setae. 
 

Maxilliped 2 (B/R 1.0; RLA 9/24/34/23/10) (Fig. 3c). Basis, several minute 
simple setae mainly at proximal part; eight small or minute simple and two 
small setulate setae along distal outer edge; hair-like setae at outer margin of 
distal third and along three quarters of inner margin; distal edge with five 
setulate setae and (one of small size) close to distal margin. Ischium, inner 
margin with hair-like setae. Merus, outer edge of distal margin with a setulate 
seta; inner margin with a setulate setae. Carpus, along inner margin 11 setae 
(setulate and setulate-serrate), two setulate setae close to outer distal edge. 
Propodus having a large setulate seta proximally; 8 setulate-serrate setae in 
distal half of inner margin; distal margin with 3 setulate setae. Dactylus, 
terminal and subterminal four simple setae and a spiniform simple seta. 

 
Maxilliped 3 (B/R 1.4; RLA 14/12/24/28/22) (Fig. 3b). Basis curved, minute 

simple setae scattered over article more frequent in distal half; outer margin 
with hair-like setation, proximal third without setation; along inner margin 20 
setulate setae; inner distal edge with a curved setulate seta; distal edge with 
six large setulate setae and a setulate seta of normal size; close to outer 
margin after distal third two minute spines; a strong spine at inner distal edge, 
(four spines in a row along inner margin in premature females). Ischium, a 
setulate seta subdistally at inner margin, outer margin bearing a process 
subdistally. Merus, two setulate setae at inner margin; a large and curved 
plumose setae at outer margin pointing inward; close to inner margin a spine. 
Carpus, two setulate setae, one subdistally and one at outer distal edge; a 
bifurcated seta at inner distal edge. Propodus, four setulate setae at outer 
margin, one setulate seta at inner distal edge. Dactylus, six simple setae, two 
subterminal and four terminal setae. 

 
Paraeopod 1 (B/R 0.5; RLA 7/10/22/32/31) (Fig. 4a). Basis, hair-like setae 

along margins; four small simple setae at distal margin; a row of 16 setulate 
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setae along upper margin starting subdistally, last six setae turning to midline 
of article, and ending before proximal third; 45 setulate setae along lower and 
distal margin; a loose row of small and minute simple setae along both rows of 
setulate setae, but slightly shifted to midline of article; a row of four spines 
along midline; a second row of small spines starting after distal first fourth 
close to lower margin; more small spines less developed (some scale-like) may 
follow proximal; a spine between 7th and 8th setulate seta of upper margin 
(probably not in every specimen, as spine was not observed in premature 
females); a group of three spines at lower distal edge, separated from se a 
larger spine in middle of distal margin. Ischium, few minute simple setae. 
Merus, few minute simple spines; two small simple spines and two small 
setulate spines distally. Carpus, some small simple setae at proximal part; four 
small simple setae distally. Propodus, few small simple setae along article; 
subdistally two simple and a small simple seta. Dactylus eight simple setae of 
varying size along the article; terminal and subterminal six simple setae. 

 
Paraeopod 2 (B/R 0.7; RLA 4/18/48/10/19) (Fig. 4b). Basis, few minute 

setae; 25 setulate setae along lower margin; small simple setae along lower 
margin; four setulate setae at distal fourth of upper margin; a small simple 
setae on an elevation close to upper distal margin, a spiniform simple seta with 
a thin and curved tip and a setulate seta at distal end of elevation (drawn with 
dotted lines, as it was broken off, but was observed in subadult specimens of 
both sexes), a second seta of that morphology at lower distal margin; a 
setulate seta at upper distal margin; close to upper distal margin a broom seta. 
Ischium, small without setation. Merus, some small and minute simple setae, 
upper margin with a simple and a setulate seta; lower margin with a setulate 
seta; distal edge with four setulate seta. Carpus, some simple seta of varying 
size along article, distally five simple setae of varying size. Propodus, distal 
lower margin with a simple seta and a small simple seta; a broken subdistal 
seta; distally a broom seta and second broken seta. Dactylus, four seta along 
article (broken), five simple subdistal setae, and four terminal large simple 
setae. 

 
Paraeopod 3 (B/R 1.0; RLA 15/36/21/12/15) (Fig. 5a). Basis, 11 setulate 

setae along lower margin; close to upper margin in distal half three simple 
setae and a broken seta; integument of distal and proximal margin with a 
honeycomb-like structure (not drawn, compare Fig. 5a). Ischium, with a 
honeycomb-like structure (partially drawn only; Fig. 5a); five small simple setae 
close to lower margin; three large annulated setae at lower margin. Merus, 
three simple setae and three annulated setae at lower margin; an annulated 
seta at upper margin. Carpus; an annulated seta at lower margin and two 
annulated setae at upper margin; upper distal margin with four long and strong 
annulated setae. Propodus upper distal margin with a strong annulated seta. 
Dactylus, a simple seta and two spiniform terminal setae. Exopod, poorly 
developed with three articles; second articulation with three simple setae; 
terminating with a plumose sate. 

 
Paraeopod 4 (B/R ?; RLA 14/39/17/14/16) (Fig. 5c). Basis (not completely 

preserved); few minute simple setae; seven setulate setae at upper margin, 
increasing in size to distal margin; a setulate seta at upper distal margin; three 
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simple, and a broom seta at lower margin; distal margin with a honeycomb-like 
structure (compare Fig. 5a). Ischium with a honeycomb-like structure (compare 
Fig. 5a), two annulate setae; at upper distal edge an annulate seta and a small 
simple seta. Merus, minute simple seta at lower margin; an annulated seta 
distally at lower margin; three annulated setae and two simple setae at distal 
half of upper margin. Carpus, three simple setae at distal half of upper margin; 
five long and strong annulated setae along distal half of lower margin and distal 
margin; lower margin with a proximal annulate seta. Propodus, strong 
annulated seta at lower margin and broom seta distally. Dactylus, two terminal 
setae, one simple and one spiniform. Exopod, poorly developed with two 
articulations; terminating with three simple setae. 

 
Paraeopod 5 (B/R 0.5; RLA 16/31/26/12/15) (Fig. 5d). Basis, few minute 

setae; upper and lower margin with a setulate seta each; two simple seta at 
upper distal margin; upper distal edge and distal margin with a broom seta; 
further broom seta in the upper middle of article; honeycomb-like structure at 
distal and proximal margin (compare Fig. 5a). Ischium, with a honeycomb-like 
structure (compare Fig. 5a); lower distal margin with a small simple and a 
simple seta. Merus, few minute setae; distally a simple seta at upper margin; 
two simple setae and three annulated seta in distal half of lower margin; distal 
margin with a simple seta. Carpus, two annulated setae; three simple setae at 
lower distal margin; a row of four long and strong annulated setae close to 
upper distal margin. Propodus, lower distal margin with a broom seta; upper 
distal margin with a strong annulated seta. Dactylus, with a simple seta and a 
strong terminal seta. Exopod, absent. 

 
Uropod (Fig. 5b). All spiniform setae with a filament. Peduncle, three 

times longer than endopod. Inner margin of peduncle with 22 short spiniform 
setae; a simple seta at distal margin. Exopod, 1.2 times longer than endopod; 
outer margin with two small simple setae and two minute simple setae; 
subterminal a small simple seta and three terminal simple setae. Endopod 
triarticulate; inner margin of first article with three short spiniform setae; inner 
margin of second article with four short spiniform setae; outer margin of 
second article with two broom setae and a simple seta distally; inner margin of 
third article with four short spiniform setae; outer margin of third article with a 
broom seta; terminal with a small simple seta and a strong seta with a terminal 
filament. Telson 0.6 times length of peduncle; some small and minute simple 
setae on broader proximal part of telson; eight short spiniform setae on both 
sides of distal part, enlarging to distal end; two distal spiniform setae. 

 
Subadult males. Second antenna incompletely developed and lacking 

articulation and setae, reaching posteriorly to abdomen. Median row of spines 
of paraeopod 1 comprising about 15 spines; lower margin with six spines more 
developed than in female. Basis of maxilliped three with five spines along inner 
distal margin, instead of four as in the female. Exopods developing on 
maxilliped 3 and on paraeopods 1–4. Pleopod buds present on abdominal 
segments 1 and 2, with 3 or 4 minute setae distally. Lower margin with six 
spines more developed than in female. Basis of maxilliped three with five 
spines along inner distal margin, instead of four as in the female. Exopods 
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developing on maxilliped 3 and on paraeopods 1–4. Pleopod buds present on 
abdominal segments 1 and 2, with 3 or 4 minute setae distally. 
 
 
Discussion 
 
In all specimens of the present study the ratio of telson length vs. uropodal 
peduncle was 0.6, as described by Petrescu and Wittmann (2003). In the 
description of Ledoyer (1993) the exopod of the third paraeopod has two 
segments, whereas in Petrescu and Wittmann the exopod is three-segmented. 
During the present study it was possible to explain this variation by sexual 
dimorphism, as juvenile males were collected, which have two-segmented 
exopods, whereas the exopods of juvenile females are three-segmented. 
Concluding from the number of segments and the large size of the exopod, the 
specimen of Ledoyer must have been a juvenile male. In Petrescu and 
Wittmann the length of the postanal part of the telson from Ledoyer`s 
description is mentioned as being smaller than the preanal part. This ratio is 
probably obtained from the drawing, but in the text Ledoyer described the 
telson as being three times longer than the preanal part. 
 

Presently, two subspecies of Diastylis enigmatica are distinguished 
according to differences found from the description of Petrescu and Wittmann 
(2003) to the material of the Ross Sea (Table1). Due to obscure or contradicting 
morphological characters of the first description of Diastylis enigmatica 
(Ledoyer 1993) it is impossible to assign it to one of the subspecies. This 
problem can be addressed in the future, when further material from the type 
locality (Weddell Sea), including adult males and females, is available. 
Nevertheless, the geographical distribution supports the assumption that both 
descriptions from the Weddell Sea refer to the same subspecies Diastylis 
enigmatica enigmatica. The second subspecies, Diastylis enigmatica rossensis, 
was found only in the Ross Sea. 

 
The study of the Ross Sea cumacean fauna revealed minor morphological 

differences in some of the cumacean species to the original descriptions 
(Rehm et al. 2007). For the species Diastylis enigmatica these differences are 
interpreted as differences between subspecies, but future genetic analysis 
might show that genetic diversity is higher than would be expected to be 
intraspecific. Genetic variability of the mitochondrial 16S ribosomal RNA gene 
gave first evidence for cryptic speciation in the Antarctic isopods Glyptonotus 
antarcticus Eights, (1852) and Ceratoserolis trilobitoides, Eights, (1833) (Held 
and Wägele 2005, Held 2003). Ceratoserolis trilobitoides was regarded as a 
single species with high morphological plasticity (Wägele 1986), but genetic 
and morphological data support a scenario of cryptic speciation with more 
than one species (Held and Wägele 2005). 

 
Peracarid crustaceans display brood protection, which results in a 

reduced dispersal potential and might lead to reduced gene flow. As isopods 
and cumaceans belong to the peracarid crustaceans they possibly exhibit  
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similar speciation patterns. In that case it would be very likely that the two 
subspecies of Diastylis enigmatica are separate species. 
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Publication V 
 
Leucon (Crymoleucon) rossi, a new species (Crustacea: Cumacea: 
Leuconidae), from the shelf waters of the Ross Sea (Antarctica), with a 
key to the genus Leucon south of 60°S1 
 
Peter Rehm1* and Richard Heard2 
 
1Alfred Wegener Institute for Polar and Marine Research (AWI), Marine Animal Ecology, Am 
Alten Hafen 26, 27568 Bremerhaven, Germany. E-mail: peter.rehm@awi.de 
 
2Department of Coastal Sciences, University of Southern Mississippi, P.O. Box 7000, Ocean 
Springs, MS 39566-7000, USA. 
 
*E–mail: peter.rehm@awi.de 
 
 
 
Summary 
A new leuconid cumacean, Leucon (Crymoleucon) rossi n. sp., is described 
from depths of 84 to 458 m in the Ross Sea off the Victoria Land coast. Leucon 
rossi n. sp. is distinguished from other members of the genus by a combination 
of characters including 1) a blunt, horizontally directed pseudorostrum without 
a distinctly protruding siphon; 2) strongly  developed antennal notch; 3) entire 
dorsomedian margin of carapace appearing serrate, armed with 14 to 19 
anteriorly curved spines in female (up to 21 in subadult males); 4) a small, but 
distinct, spine behind the frontal lobe; and 5) the uropodal peduncle slightly 
shorter than the exopod. After Leucon antarcticus Zimmer, 1907, L. rossi was 
the second most frequently occurring cumacean in the samples collected off 
Victoria Land. Statistical analyses showed significant differences in the 
proportion of carapace length and height of adult (all incubating in the present 
study) and immature females compared to immature males; no adult males 
were available for study. 
 
Keywords Antarctica • Crustacea • Cumacea • Leuconidae• Leucon rossi • new species• 
Antarctica •Ross Sea 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
1 The manuscript was published by Scientia Marina and is available at 
http://www.icm.csic.es/scimar. 
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Resumen 
 
LEUCON (CRYMOLEUCON) ROSSI (CRUSTACEA: CUMACEA: LEUCONIDAE), UNA NUEVA 

ESPECIE DE AGUAS POCO PROFUNDAS DEL MAR DE ROSS (ANTÁRTIDA), Y UNA CLAVE 

PARA LAS ESPECIES DEL GÉNERO LEUCON DE LATITUDES MAYORES A LOS 60ºS. – Se 
describe un nuevo cumáceo, Leucon (Crymoleucon) rossi n. sp., hallado entre 
los 84 y 458 m de profundidad en el mar de Ross, frente a la costa de la Tierra 
de Victoria. Leucon rossi n. sp. se distingue de los otros miembros del género 
por poseer la siguiente combinación de caracteres: 1) un pseudorostro 
truncado, horizontal, sin un sifón proyectándose más allá de este; 2) una 
escotadura antenal bien desarrollada; 3) el margen dorsal del caparazón 
aserrado en toda su extensión, con 14-19 dientes dirigidos hacia adelante en 
la hembra (hasta 21 en el macho subadulto); 4) una pequeña espina por detrás 
del lóbulo frontal; y 5) el pedúnculo del urópodo es ligeramente más corto que 
el exopodito. Tras Leucon antarcticus Zimmer, 1907, L. rossi fue el cumáceo 
más abundante en las muestras recolectadas frente a la costa de Tierra de 
Victoria. La proporción alto/largo del caparazón de las hembras inmaduras y 
adultas difiere estadísticamente de aquella de los machos preadultos. No se 
contó con machos adultos para su estudio. 
 
Palabras clave Crustacea • Cumacea • Leuconidae • Leucon rossi • nueva especie • 
Antártida • Mar de Ross 
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Introduction 
 
Leucon antarcticus, Zimmer 1907 is the only species of the genus Leucon 
Krøyer, 1846 currently reported from the Ross Sea (Jones, 1971). During the 
Victoria Land Transect Project onboard the Italian research vessel Italica in 
2004, five additional species of the genus were obtained: Leucon assimilis 
Sars, 1887; Leucon intermedius Mühlenhardt-Siegel, 1996; Leucon 
parasiphonatus Mühlenhardt-Siegel, 1994; Leucon cf. sagitta Zimmer, 1907; 
and a new species, Leucon sp. A (Rehm et al., 2007), the description of which 
is the subject of this report. 
 
 

Leucon antarcticus, Zimmer 1907 is the only species of the genus Leucon 
Krøyer, 1846 currently reported from the Ross Sea (Jones, 1971). During the Victoria 
Land Transect Project onboard the Italian research vessel Italica in 2004, five 
additional species of the genus were obtained: Leucon assimilis Sars, 1887; Leucon 
intermedius Mhlenhardt-Siegel, 1996; Leucon parasiphonatus Mühlenhardt-Siegel, 
1994; Leucon cf. sagitta Zimmer, 1907; and a new species, Leucon sp. A (Rehm et al., 
2007), the description of which is the subject of this report. 
 
 
Material and Methods 
 
The material of Leucon rossi was collected during the 19th expedition of RV 
Italica to the Ross Sea. From February 9 to 22, 2004, 13 of 19 samples 
containing specimens of the species were collected in depths of 84 to 458 off 
the coast of Victoria Land with a modified Rauschert dredge (compare Rehm et 
al., 2006). Type material was collected at Terra Nova Bay and Cape Russell. 
For detailed data on the stations and further information on the species 
diversity and distribution see Rehm et al. (2007) in which Leucon sp. A refers to 
L. rossi. Drawings were created from digital photographs using a digital 
drawing tablet as described by Coleman (2003, 2006). Measurements of body 
dimensions were statistically compared using the Mann-Whitney Rank Sum 
Test. Body length is measured from the tip of the pseudorostrum to the tip of 
the pleotelson. Carapace length is measured from the tip of the pseudorostrum 
to the posterior margin of the carapace, whereas carapace height is measured 
from the ventralmost to the dorsalmost margins. Length 
 

of articles is measured according to Mühlenhardt-Siegel (2005) and given 
as relative length of peduncle articles 1 to 3 of antenna 1 compared to total 
peduncle length (RLP). As the basis of appendages is part of the protopodite it 
is treated separately and compared with the endopodite (ischium to dactylus 
not including terminal seta) in the ratio B/R and given for maxillipeds and 
pereiopods. RLA refers to the relative length of each article of the endopodite 
(from ischium to dactylus) excluding terminal seta. 
 

Type material has been deposited in the Zoological Museum Hamburg 
(ZMH) and in the Senckenberg Museum, Frankfurt (SMF). Additional Paratypes 
have been deposited in the Museum of the University of Southern Mississippi 
Gulf Coast Research Laboratory (GCRL). 
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Systematics 
 
Family Leuconidae Sars, 1878 
Genus Leucon Krøyer, 1846 
Subgenus Crymoleucon Watling, 1991 
Leucon (Crymoleucon) rossi n. sp. (Figs. 1-4) 
 

Synonym. Leucon sp. A (Rehm et al., 2007) 
 

Type material. Holotype. Incubating female (ZMH K-41271). 
 

Type locality. Terra Nova Bay, Station SMN: 74°43.2’S/164°13.1’E, sand 
substratum with gravel and stones, 366 m, 20 February 2004. 
 

Paratypes. 4 incubating females, 1 premature female, 5 premature males 
(ZHM K-41272) same collection data as holotype; 2 incubating females (SMF 
31783) same collection data as holotype; 3 premature females, 2 premature 
males (SMF 31784) and 3 adult females (GCRL 2931) Cape Russell Station 
R3:74°49.3’S/164°11.5’E, rocky sand substratum with mud and pebbles, 330 
m, 20 February 2004. 
 

Etymology. The new species is named after the Antarctic explorer Sir 
James Clarke Ross (1800-1862), who discovered Victoria Land, the Ross Sea, 
and Ross Island 
 

Diagnosis. Pseudorostrum blunt, protruding horizontally. Carapace with 
14-19 (adult females) or up to 21 (premature males) anteriorly curved spines 
along entire dorsomedian margin; single small, distinct, spine behind the 
frontal lobe. Antennal notch large and well developed. Peduncle of uropod 
slightly shorter than exopod. 
 

Description. Adult (incubating) female. 
 

Carapace (Fig. 1B), without setae, ridges or tubercles, but with single spine 
directly behind frontal lobe; surface granulated. Dorsomedian line entirely 
serrated, bearing 14 to 19 denticles, first and last two often very small or 
weakly indicated. Pseudorostrum moderately produced, about 1/6 of total 
carapace length (including pseudorostrum), directing forward; anterior margin 
with 5 to 7 serrations, ventral margin with up to nine minute serrations, with 8-
13 setae on anterior and ventral margin. Siphonal tube not discernable. Eye 
lobe rudimentary, eyes missing. Antennal notch distinct. Ventral margin of 
carapace strongly serrated starting with forward pointed spine at antero-ventral 
edge. First and second free thoracic segments overlapped by the antero-lateral 
margin of the following segments. Pleon approximately as long as 
cephalothorax; pleonite 6 shorter than uropod peduncle. For dimensions of 
body see Table 1. 
 

Antenna 1 (RLP 25/32/43) (Fig. 1A). Peduncle geniculate between basal 
and second article. First article with group of 3 sensory setae close to distal 
margin next to these sensory setae, and plumose seta on distal third of article, 
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proximal half of article with several hair-like setae; second article with simple 
seta and sensory seta close to distal margin, group of 3 sensory setae on 
tubercle close to distal margin; third article with seta near distal end and two 
sensory setae at distal margin. Accessory flagellum uniarticulate slightly longer 
than article 1 of main flagellum, with 3 strong terminal setae each bearing a 
flagellum and sensory seta. Main flagellum with 3 articles; article 2 bearing seta 
and single aesthetasc; terminal article (article 3) about one fourth length of 
articles 2 and 1, with an aesthetasc, 2 simple setae, and 2 long terminal setae. 
 

Antenna 2 (Fig. 1D). Diminutive; first peduncle article slightly shorter than 
wide, with 2 plumose setae; second article slightly shorter than wide, about 
one third of size of article 3, with simple seta; article 3 cylindrical, nearly equal 
in size of peduncle; terminal 3 sensory setae. 
 

Mandibles (Fig. 1F-H). Left mandible, lacinia mobilis and simple seta 
between molar and incisor process. Right mandible with single stout seta 
bearing denticles on inner margin distally and 2 simple setae between incisor 
und molar processes. 
 

Maxilla 1 (Fig. 1E). Outer endite with 10 stout spiniform setae, single 
subdistal curved seta inserted on outer margin. Inner endite with 2 minute 
simple setae, 2 plumose setae of intermediate length, and 2 long plumose 
setae, innermost ending trifurcate, inner edge with hair-like setae. Palp ending 
in single seta. 
 

Maxilla 2 (Fig. 1C). Distal margin of protopod with row of plumose setae 
and long simple setae at outer distal edge, inner margin with hair-like setae. 
Outer lobe of endite with 4 stout setae, outer most plumose; inner lobe of 
endite with 4 stout setae. 
 

Maxilliped 1 (B/R 0.5; RLA -/25/33/26/17) (Fig. 2A). Endite of basis with 
plumose setae at inner margin and distal end; 2 retinacula present; ischium not 
present; strongly developed plumose seta between basis and merus (probably 
inserting at basis) directed proximally turning 180° at about half length of 
endite of basis, slightly exceeding endite; merus with 2 plumose seta on inner 
edge of distal margin; numerous simple setae at and close to inner margin of 
carpus and propodus; carpus with large plumose seta on distal outer margin; 
propodus with 2 large plumose setae, one at distal end and one on outer 
margin; dactylus with single plumose seta distally. 
 

Maxilliped 2 (B/R 0.7; RLA 9/28/30/21/12) (Fig. 2C). Basis, 2 small simple 
setae at inner margin and several small hair-like setae at inner margin of distal 
third, close to distal margin simple seta and small simple seta, inner edge of 
distal margin with strong pappose seta; merus, inner edge of distal margin with 
strong pappose seta; carpus, along inner margin 5 setae, all but distal most 
seta pappose, 2 pappose setae close to inner margin; propodus having well 
developed pappose seta proximally, distal margin with several simple and 
pappose setae; dactylus, terminal 2 pappose setae, a few simple setae and 
hairlike setae. 
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Fig. 1 Leucon (Crymoleucon) rossi n. sp. Ovigerous female. A, antenna 1; B, habitus; C, maxilla 
2; D, antenna 2; E, maxilla 1; F, left mandible, inner aspect; G, left mandible; H, right mandible. 
Scale 1 = 0.2 mm (A, C-H); Scale 2 = 0.5 mm (B). 
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A

B

C
 

 
Figure 2 Leucon (Crymoleucon) rossi n. sp. Ovigerous female. A, maxilliped 1 (palp not shown); 
B maxilliped 3 (exopod not shown); C, maxilliped 2. Scale = 0.2 mm. 

 
 
 
Maxilliped 3 (B/R 1.5; RLA 7/24/30/25/13) (Fig. 2B). Basis curved, distal 

half of inner margin and distal third of outer margin with hair-like setae, 4 
plumose setae at distal margin, 2 long plumose setae extending beyond 
dactylus, 2 plumose setae at distal fourth of inner margin; ischium present; 
merus with 2 plumose setae close to inner margin, one annulated and one 
strong, long, and plumose seta distally at outer margin; carpus with 3 plumose 
setae at inner margin and plumose seta distally at outer margin; propodus 
distally 3 plumose setae and simple seta; dactylus small setae on outer 
proximal margin, 2 seta subterminal, 3 terminal setae; exopod with spine on 
distal margin of basal article. 
 

Pereiopod 1 (B/R 0.9; RLA 11/19/30/24/17) (Fig. 3A). Basis with 4 small 
sensory setae at proximal half of lower margin, distal half with 2 pappose 
setae, close to distal margin one pappose seta, long pappose seta, and 
sensory seta; ischium with tooth at distal lower margin; merus, pappose, long 
and pappose seta at upper margin, simple seta at lower margin; carpus, 2 
pappose and 2 long and pappose setae at upper margin, 3 simple setae at 
lower margin, 2 long pappose setae at distal margin; propodus, 9 simple setae 
of very small to moderate size; dactylus, small seta and strong seta at distal 
third, terminal 4 strong and small seta; exopod with spine at distal margin of 
basal article. 
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Figure 3 Leucon (Crymoleucon) rossi n. sp. Ovigerous female. A, pereiopod 1; B, pereiopod 4; 
C, pereiopod 2. Scale = 0.2 mm. 
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Pereiopod 2 (B/R 0.4; RLA 5/20/29/14/32) (Fig. 3C). Basis, 2 small simple 
setae at margin of proximal third, simple seta close to distal margin, 4 pappose  
setae at distal half of lower margin; ischium, pappose seta at edge of lower 
distal margin; merus, 2 pappose setae, 2 sensory setae, and simple seta close 
to distal margin; carpus, 2 simple setae, and sensory seta at margins; 
pappose, 2 simple setae, and sensory seta at distal margin; propodus, no 
setae; dactylus with 3 simple setae, terminal 2 simple setae, 2 annulated setae, 
and elongated annulated seta; exopod with spine at distal margin of basal 
article. 
 

Pereiopod 3 (B/R 1.7; RLA 17/19/37/20/7) (Fig. 4A). Basis, 2 simple and 
plumose annulated setae at distal third, simple seta at edge of distal margin; 
ischium, small simple seta close to distal margin, 2 strong annulated setae at 
edge of distal margin, one reaching tip of dactylus; merus, simple seta close to 
distal margin and strong annulated seta at edge of distal margin; carpus, small 
simple seta in proximal and distal parts, small simple seta, strong and 
annulated seta and blunt tooth-like structure at distal margin; propodus 
cylindrical with strong annulated seta at distal margin; dactylus, terminal small 
seta and strong annulated seta; exopod with spine at distal margin of basal 
article. 
 

Pereiopod 4 (B/R 1.3; RLA 18/19/37/19/7) (Fig. 3B). Basis, with 5-7 
plumose setae, 2 sensory setae, and simple seta in proximal half of article, 
simple seta at lower edge of distal margin; ischium, small simple seta close to 
distal margin, 2 longer setae at edge of upper distal margin (one annulated); 
merus, strong seta close to edge of upper distal margin; carpus, small simple 
seta at middle of article, at edge of lower distal margin small simple seta and 
strong, elongated, and annulated seta; propodus, annulated seta distal at 
upper margin, strong annulated seta at distal margin; dactylus, small simple 
seta and strong annulated terminal seta; exopod in premature males only. 
 

Pereiopod 5 (B/R 0.9; RLA 17/23/34/16/10) (Fig. 4B). Basis, small sensory 
seta, 2 simple setae (one minute), 4 plumose setae and plumose setae at distal 
margin; ischium with 2 annulated setae at edge of distal margin; merus, 
annulated seta close to distal margin; carpus, 2 simple setae (one minute), 2 
annulated setae at edge of distal margin (one strong and elongated); propodus, 
strong (annulated) seta at distal margin; dactylus small seta and annulated seta 
distally. 
 

Uropod (Fig. 4C). Length of peduncle and endopod equal; inner margin of 
peduncle with 8-9 stout cuspidate setae, outer margin with 3-4 hair-like setae, 
simple seta at distal margin. Exopod 0.9 times length of endopod. Endopod 
two segmented, inner margin of basal article of endopod with 9 stout 
cuspidate setae, between distal 6-7 minute stout spines each, outer distal 
edge with simple seta. Inner margin of distal article with 4 stout cuspidate 
setae and 4 stout minute spines alternating; 2 terminal setae; outer margin of 
distal article with 2 small simple setae. Inner margin of exopod with 2 simple 
setae and longer seta, outer margin with 5 setae, terminal 2 long annulated 
setae and shorter seta. 
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Figure 4 Leucon (Crymoleucon) rossi n. sp. Ovigerous female. A, pereiopod 3; B, pereiopod 5; C, 
pleotelson and right uropods. Leucon (Crymoleucon) rossi n. sp. subadult male. D, carapace. 
Scale 1 = 0.2 mm (A,B); Scale 2 = 0.2 mm (C); Scale 3 = 0.2 mm (D). 
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Premature males. Second antenna incompletely developed and lacking 
articulation and setae, reaching posteriorly to free thoracic segments. 
Carapace (Fig. 4D) with dorsomedian margin bearing more denticles than in 
females (up to 21); denticles of ventral margin of pseudorostrum in premature 
males more distinct. Exopods developing on pereiopods 1 to 4 and on 
maxilliped 3; the spine at the distal margin of the basal article in females is 
followed by 1 or 2 additional spines in the premature males. Pleopod buds 
present on abdominal segments 1 and 2, with 3 or 4 minute setae distally. 

 
Remarks. Leucon (Crymoleucon) rossi n. sp. resembles L. (Crymoleucon) 

antarcticus Zimmer, 1907 in the general shape of the carapace, which is 
slightly stouter in L. rossi. Both species have an uninterrupted row of 
dorsomedian denticles from the eyelobe to the posterior margin. They can be 
distinguished by the lateral spines on the carapace. A single spine only is 
situated dorsally directly behind the frontal lobe in L. rossi, whereas L. 
antarcticus is armed with a spine on the border of the frontal lobe, close to this 
spine is another spine on the rostral lobe. A third spine is located below the 
serrated ridge in a similar position as in L. rossi. In addition, 2 or more spines 
are located in the gastric region. In the redescription of L. antarcticus by 
Ledoyer (1993) only 1 spine on the frontal lobe is shown in the drawing 
(compare key); in the text the dentition is not mentioned. The pseudorostrum of 
L. rossi is blunt and directed straight forward, while in L. antarcticus it is 
pointed and turned slightly upward. The uropod peduncle is slightly shorter 
than the exopod and equal to the endopod in L. rossi. It differs to the peduncle 
of L. antarcticus, which is shorter than both rami. 

 
The first antenna of Leucon rossi is geniculate between articles 1 and 2. 

Following the key presented by Watling (1991) the species should either belong 
to the genus Bytholeucon Watling, 1991 or Pseudoleucon Zimmer, 1903. 
However, in Leucon rossi two pleopods occur in premature males 
(Bytholeucon only 0 or 1), the uropod endopod is somewhat longer than the 
exopod (Pseudoleucon much smaller), and the pseudorostrum is extending 
straight forward (Pseudoleucon upturned). The remaining characters indicate 
that the species belongs to the genus Leucon, subgenus Crymoleucon since 
the accessory flagellum of antenna 1 is longer than the first article of the main 
flagellum. The character states “antenna 1 not or weekly geniculate” and 
“antenna 1 geniculate between peduncle article 1 and 2”, are unfavourable 
features for dividing the genera Nippoleucon Watling, 1991 and Leucon from 
Bytholeucon and Pseudoleucon. The key itself contains contradicting 
information, since in the pictures provided, which were taken from the original 
descriptions, the angles between peduncles one and two of the first antenna of 
the species Bytholeucon hiscens Bishop, 1981 and Leucon (Alytoleucon) 
medius Bishop, 1982 are about 90°. The first antenna of Pseudoleucon 
japonicus Gamô, 1964 is geniculate as indicated in the text of the original 
description. However, in the drawing it is straight, and an articulation is only 
indicated between peduncles 1 and 2 (Gamô, 1964). This demonstrates that 
this character state of the first antenna can be variable within a species and 
therefore it should be treated carefully 
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Bionomy. The species was found along a latitudinal transect off the 
Victoria Land coast in depths ranging from 84 to 458 m. Depth distribution was 
limited by the depth sampled. Specimens were found in high numbers (in total 
1090 specimens, from 2 to as many as 378 were found in 12 samples from 13 
stations) and in all areas sampled. Adult specimens were restricted to 
incubating females and occurred in low numbers only (3%). Premature (12%) 
and juvenile (24%) females were found more frequently than males of the same 
stages (8% and 14% respectively), while mancas (39%) dominated the 
samples. The species is a typical component of the cumacean fauna of the 
Victoria Land coast of the Ross Sea and it appears to be endemic to the Ross 
Sea. The statistical comparison between premature males and premature 
females showed significant differences (p<0.001) in all variables measured 
(Table 1), except carapace height (p = 0.681). The index of carapace height vs. 
carapace length was also compared with the incubating females; premature 
males and incubating females show significant differences (p<0.001), whereas 
differences in premature and incubating females were not significant (p<0.072). 
 
 
 
Table 1 Body dimensions of Leucon (Crymoleucon) rossi, n. sp.; C = carapace, inc = 
incubating, pm = premature, SD = standard deviation. 
 

 stage/sex n range mean SD 
   (mm) (mm)  

      
Carapace height inc female 29 0,66-0,91 0,81 0,06 

 pm female 95 0,58-0,98 0,80 0,07 
 pm males 75 0,68-0,90 0,79 0,09 
      

Carapace length inc female 29 0,97-1,22 1,11 0,06 
 pm female 95 0,87-1,30 1,11 0,08 
 pm male 75 1,05-1,30 1,18 0,06 
      

Carapace and free thorax inc female 28 1,85-2,32 2,06 0,11 
segments length pm female 94 1,53-2,25 1,92 0,14 

 pm males 74 1,76-2,25 2,04 0,09 
      

Total length inc females 28 3,69-4,54 4,01 0,24 
 pm females 91 3,01-4,49 3,76 0,28 
 pm males 71 2,01-4,28 3,94 0,27 
      

C height / C length inc females 29 0,62-0,84 0,73 0,06 
 pm females 95 0,62-0,82 0,72 0,04 
 pm males 75 0,56-0,79 0,67 0,04 
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Artificial key to the females of the genus Leucon from Antarctic waters 
south 60ºS 
 
1 Siphon greatly attenuated, as long as carapace.................................................... 2 
– Siphon not greatly attenuated, much shorter than length of carapace ................. 3 
 
2 Carapace with 2 dorsomedian spines near mid anterior margin of frontal lobe 
and with 7 spines on lateral surface......................... Leucon weddelli Ledoyer, 1993 
– Carapace lacking dorsomedian and lateral spines ..................................................   
.....................................................Leucon parasiphonatus Mühlenhardt-Siegel, 1994 
 
3 Dorsomedian teeth (“serrations”) confined to the anterior 2/3 of carapace .......... 4 
- Dorsomedian teeth extending from anterior margin of frontal lobe to or 
immediately adjacent to posterior margin of carapace ............................................ 7 
 
4 Carapace with 4-8 dorsomedial teeth the last 1-3 after a gap ................................  
.......................................................... Leucon intermedius Mühlenhardt-Siegel, 1996 
– Carapace with 9-12 acute dorsomedial teeth in uninterrupted row ...................... 5 
 
5 Carapace with distinct slanting dorsolateral ridge................................................. 6 
– Carapace without dorsolateral, slanting ridge .........................................................   
...................................................................................Leucon breidensis Gamô, 1987 
 
6 Uropod peduncle longer than last abdominal segment; ischium of paraeopod 2 
present...................................................................... Leucon costatus Corbera, 2000 
– Uropod peduncle a little shorter than last abdominal segment; ischium of 
paraeopod 2 fused to basis .........................................Leucon sagitta Zimmer, 1907 
 
7 Carapace lacking small spine or spines on lateral face of frontal lobe; second 
article of uropodal endopod with distal article acutely tipped (without apical or 
terminal seta) with long subdistal seta on outer margin .............................................   
.................................................................................Leucon plarsterni Ledoyer, 1993 
- Carapace with at least one spine on lateral face of frontal lobe; uropodal 
endopod with distal article with apical seta, not acutely tipped, long subdistal seta 
absent........................................................................................................................ 8 
 
8 Carapace with row of dorsomedial teeth interrupted posteriorly; lateral margin of 
frontal lobe with 3 spines ............................................... Leucon assimilis Sars, 1887 
- Carapace with row of dorsomedial teeth not interrupted posteriorly, lateral 
margin of frontal lobe with no more than 1 spine present ........................................ 9 
 
9 Carapace with dorsomedial teeth becoming smaller posteriorly; 1 small spine 
present near mid-ventral margin of frontal lobe (sensu Ledoyer 1993) or having an 
additional 4 or 5 spines on antero- and mid-lateral region (sensu Zimmer 1907). 
Pereopod 1 with exopod lacking ventrodistal spine on first article ............................  
...............................................................................Leucon antarcticus Zimmer, 1907 
- Carapace with dorsomedial teeth well-developed posteriorly; 1 dorsolateral spine 
present just posterior to end of ventrolateral suture of frontal lobe. Pereopod 1 
with exopod having distinct ventrodistal spine or tooth on first article ......................   
..................................................................................................... Leucon rossi, n. sp. 
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Abstract 
 
Phylogenetic hypotheses presented for the peracarid order Cumacea are 
scarce and have not provided solution to the full extent. Formerly, hypotheses 
on cumacean phylogeny have been proposed on morphological characters 
and on amino acid sequences of the cytochrome oxidase I gene. In the present 
study the mitochondrial LSU (16S) was used to erect a phylogenetic 
hypothesis for three cumacean families, Diastylidae, Bodotriidae, and 
Leuconidae along with intra-family relationships of the latter. The Cumacea 
resolved monophyletic with tanaids and isopods as outgroup taxa. The 
Diastylidae were placed monophyletically at the basis of the tree topology. 
Bodotriidae were paraphyletic and monophyly of the Leuconidae was only 
weakly supported. The genus Leucon showed paraphyly whereas the 
subgenus Crymoleucon was monophyletic. Two leuconid species Leucon 
antarcticus Zimmer, 1907 and L. intermedius Mühlenhardt-Siegel, 1996 were 
tested for cryptic speciation. 16 specimens of L. antarcticus and eight 
specimens of L. intermedius from the Weddell Sea and the Ross Sea showed 
different patterns in genetic variability. Intraspecific p-distances variation of L. 
intermedius sequences ranged from 0 to 0.033, while sequences of the species 
L. antarcticus showed bimodal distribution (0 to 0.014; 0.038 to 0.052). The 
bimodal distribution of sequence similarity correlated with geographical and 
depth distributions between Ross and Weddell Sea, where specimens were 
sampled at depth from 316 to 358 m and 900 m, respectively. Although a clear 
evaluation of cryptic speciation in these species is yet not possible and 
requires work on more specimens from more geographic regions, still 
differences shown in the sequences of 16S rDNA can only be explained by 
genetic separation of populations from the Weddell Sea and the Ross Sea for 
extended period of time. 
 
Keywords Cumacea • Peracarida • Leucon rossi • Mitochondrial DNA • 16S rDNA • Cryptic 
speciation • Molecular phylogeny 
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Introduction 
 
Cumaceans are a group of peracarid crustaceans predominantly inhabiting 
marine soft bottom habitats. They can occur in high numbers (e.g. Rachor et al. 
1982; San Vicente at al. 1997, Linse et al. 2002, Rehm et al. 2007) and are an 
essential component of the benthic fauna, thus being an important food source 
for demersal fish and other macrofauna (e.g. Kühl 1964, Arntz 1971, Arntz & 
Finger 1981, Cartes 1993). The first report of an Antarctic cumacean was 
published by Sars in 1873. Additional descriptions of five Antarctic cumaceans 
followed during the next decade (Sars 1887). Today, about 100 cumacean 
species from all known families (Bodotriidae, Ceratocumatidae, Diastylidae, 
Gynodiastylidae, Lampropidae, Leuconidae, Nannastacidae, and 
Pseudocumatidae) are described for the Antarctic and Subantarctic (Błażewicz 
& Heard 1999, Mühlenhardt-Siegel 1999; Corbera 2000). However, knowledge 
about Antarctic cumaceans is still incomplete and restricted to species 
inventory, diversity, and biogeography. Suggestions for possible evolution of 
cumacean families have been proposed by Zimmer (1941) and Lomakina 
(1968). Both regard the Lampropidae and Diastylidae as basal taxa, but their 
assumptions differ in the more derived families. Nevertheless, both authors are 
of the opinion that the pleotelson bearing families are most derived. Testing 
phylogenetic hypothesis has been difficult for cumaceans as characters used 
for the taxonomy of this peracarid order are inconsistent within and often 
extend beyond families. Haye et al. (2004) discuss the monophyly of the 
pleotelson bearing Bodotriidae, Leuconidae, and Nannastacidae as indicated 
by the phylogenetical analysis of the cytochrome oxidase I gene and 
morphological characters. With respect to the ‘pleotelson clade’ their findings 
are in accordance with Zimmer and Lomakina, but monophyly was confirmed 
only for the families Gynodiastylidae and Lampropidae by molecular data. The 
present study is aimed to investigate the phylogeneteic relationship of three 
cumacean families and within the family Leuconidae using a fragment of the 
mitochondrial LSU gene (16S rDNA). 
 

Furthermore, genetic variation in Antarctic species of the genus Leucon is 
studied to reveal possible patterns of cryptic speciation, which have been 
demonstrated for Antarctic isopod (Held 2003, Held & Wägele 2005, Raupach 
& Wägele 2006), mollusc (Allcock et al. 1997, Linse et al. 2007), and crinoid 
species (Wilson et al. 2007). Recent discoveries of cryptic speciation indicated 
that Antarctic diversity is much higher than expected and that circumantarctic 
distribution, which was postulated for many taxa, is not valid for a variety of 
these. In shallow-water species inhabiting the Antarctic continental shelf, 
patterns of cryptic speciation were assumed to be caused by geographic 
isolation and mainly glaciation processes over Milankovitch timescale, which 
might have led to isolated shelters on the Antarctic shelf (Thatje et al. 2005). 
Only species with pelagic larvae or drifting stages might have been able to 
overcome the barriers separating ‘islands’ on the Antarctic shelf, and thus 
ensuring gene flow between isolated populations. First support for 
circumantarctic distribution was discovered for two caridean decapods, which 
highlights the importance of the reproduction mode and drifting stages for the 
success of a widespread shallow-water species on the Antarctic continental 
shelf (Raupach et al. submitted). As cumaceans belong to the brooding 
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crustacean supraorder Peracarida the hypotheses presented above is tested 
for evidence in this crustacean taxon. 
 
 
Material and Methods 
 
Source of material and choice of outgroup sequences 
 
Antarctic Cumacea were collected during 19th Italian Antarctic expedition with 
RV ’Italica‘ along the Victoria Land coast in the Ross Sea (Rehm et al. 2007). 
Further material was obtained from the BENDEX (ANT XXI-2) expedition and 
ANDEEP cruises I and II to the Scotia-Arc region, Antarctic Peninsula and the 
Weddell Sea carried out with RV ’Polarstern‘ in the years 2002 and 2004 
(Fütterer et al. 2003, Arntz & Brey 2005). The species Diastylis rathkei was 
sampled in the Kiel Fjord in the Baltic Sea (Table 1). The material was sorted by 
hand from trawled gear (Rauschert dredge and epibenthos sledge) using a 
dissecting microscope. Samples were preserved in pre-chilled 80 % (0°, -80°, 
resp.) ethanol. Samples were obtained from depths between 15 and 3685 m. 
The samples were stored at -30° C for at least 4 month and were kept at 5° C 
until further processing. During the cruise with RV ‘Italica’ samples were stored 
at -80° C during the first four days. Further sequences of the mitochondrial 16S 
ribosomal RNA gene were downloaded from GenBank (Table 2). According to 
morphological data, Cumacea are placed in close relationship to Tanaidacea 
and Isopoda (Schram 1986, Watling 1999). Therefore, tanaid and isopod 
sequences were chosen as outgroup sequences. 
 
 
 
Table 1 Sequence data for phylogenetic analysis. Lat = latitude; Long = longitude. 
 
Taxon Location Lat Long 
    
Atlantocuma sp. western Weddell Sea 60°39.2 S 53°56.9 W 
Cyclaspis sp. western Weddell Sea 65°20.4 S 54°14.1 W 
Diastylis rathkei Kiel Fjord, Germany -  - 
Diastylopsis sp. western Weddell Sea 60°39.2 S 53°56.9 W 
Leucon antarcticus Zimmer, 1907 Cape Russell, Ross Sea 74°49.0 S 164°18.1 E 
L. assimilis Sars, 1887 Cape Russell, Ross Sea 74°49.0 S 164°18.1 E 
L. intermedius Mühlenhardt-Siegel, 
1996 

Cape Russell, Ross Sea 74°49.0 S 164°18.1 E 

L. rossi Rehm and Heard, 2008 Cape Russell, Ross Sea 74°49.0 S 164°18.1 E 
Leucon sp. Antarctic Peninsula 59°39.9 S 57°53.9 E 

 
 
 
Molecular Work 
 
DNA was extracted from individual legs, the pleon without telson and uropods, 
or from total smaller specimens. The following alterations were applied to the 
protocol of the QIAamp DNA Mini Kit, which was used for DNA extraction: the 
spin column loaded with elution buffer was incubated for 5 min at 70°C before 
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elution of the DNA from it and the volume of the elution buffer was decreased 
from 200 to 50 μl in order to increase the concentration of DNA. 
PCRs were carried out in 50-μl volumes with 0.15 μl HotMaster Taq 
polymerase 5 U/μl, 2.5 μl 10x PCR buffer, 0.5 μl dNTPs 2 mmol/μl, 0,25 μl BSA, 
0.125 μl of each primer both 100 pmol/μl, and 3 μl of DNA template filled up to 
25 μl with sterile H2O. All amplification reactions were performed on an 
Eppendorf Master Cycler. 
 
 
 
Table 2 Cumacean sequences obtained from GenBank. 
 
Taxon GenBank Accession No. 
  
Cumacea taxa  
Cumopsis fagei Bacescu, 1956 AJ388111 
Diastylis sculpta Sars, 1871 U811512 
Eudorella pusilla Sars, 1871 U81513 
  
Outgroup taxa  
Apseudes latreilleiT AJ38810 
Asellus aquaticusI Linneaus 1758 DQ305106 
Colubotelson thompsoniI Nicholls, 1944 AF260869 
Creniocus buntiaeI Wilson & Ho, 1996 AF260870 
Haploniscus sp.I AY693421 
Paramphisopus palustrisI (Glauert, 1924) AF259533 
Proasellus remyi remyiI (Monod, 19321)  DQ305111 
T Tanaidacea; I Isopoda; 1 subspecies remy described by (Karaman, 1953) 
 
 
 
Primer choice and creation 
 
For DNA amplification the broadly applicable primers 16Sar 5’-CGC CTG TTT 
ATC AAA AAC AT- 3’ and 16Sbr 5’-CCG GTC TGA ACT CAG ATC ACG T- 3’ 
(Palumbi et al. 1991) were used. Despite the general application of these 
primers on arthropod taxa amplification of cumacean DNA was weak. 
Therefore, cumacean specific primers were designed based on the sequences 
obtained in our pilot study and from GenBank. The programme 'Fast PCR' 
(Kalender 2003) was used to construct primers. Primers ALh (5’-GTA CTA AGG 
TAG CAT A-3’) and CLr (5’-ACG CTG TTA YCC CTA AAG TAA TT-3’) were 
assembled for the cumacean family Leuconidae in highly conserved regions of 
the 16S gene and used during this study. The amplification protocol was 2 min 
at 94°C for initial denaturing, 38 cycles of 20 s at 94° C, 10 s at 46°C, and 
1 min at 65° C, followed by 8 min for final extension. 
 
 
DNA Sequencing 
 
PCR products were purified with the QIAquick PCR-purification kit of Qiagen, 
Hilden, Germany. To achieve higher concentrations of purified DNA only 30 μl 
elution buffer were used. DNA purity and amount of DNA were controlled on an 
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ethidium bromide-stained 1.5% agarose gel. In the present study cycle 
sequencing was performed according to the manufacturer’s instructions of the 
BigDye Terminator v3.1 kit of Applied Biosystems (ABI) using the ABI 3130 
sequencer (96° C 1 min initial denaturing, 30 cycles of 10 s 96° C, 50 s 50° C, 
4 min 60° C). In general 1-3 μl of purified DNA was used for cycle sequencing 
with an Eppendorf Master Cycler (4 μl were used for samples with low DNA 
concentration). Excessive dye was removed with the DyeEx 2.0 spin kit 
(Qiagen) and 10μl samples were denatured for 3 min at 95°C with 10μl ABI 
HighDiye formamide (Applied Biosystems). Samples were kept on ice prior to 
sequencing. 
 
 
Sequence Alignment and Phylogenetic Analysis 
 
Raw pherograms from the sequencer were assembled using the programmes 
Pregap4 and Gap4 of the Staden package (Staden et al. 1989). For a first 
alignment of the contig sequences the ‘ClustalW Multiple alignment’ option 
(Thompson et al. 1994) of the program BioEdit (Hall 1999) was used. The 
alignments were further improved manually by identifying secondary structure 
elements of the homologous molecules in Drosophila melanogaster 
(mitochondrial ribosomal LSU, Accession No. X53506; Gutell et al. 1993). Loop 
regions were locally re-aligned using a hidden Markov model (Churchill 1989, 
Rabiner 1989) implemented in the program ‘ProAlign’ version 0.5 (Löytynoja & 
Milinkovitch 2003). Default parameters were used for alignment sampling with 
1.000 replicates, if not stated otherwise: character frequencies were estimated 
(A=0.366; C=0.149; G=0.171; T=0.3131). The analysis included sites, which 
could only be aligned in the ingroup or within the family Leuconidae. 
Corresponding sites of the outgroup or cumaceans other than Leuconidae, 
respectively, were substituted with gaps. Sites that were still ambiguously 
aligned at this stage were excluded from analysis. The nexus files are available 
from the authors. 
 
Phylogenetic analyses were performed using parsimony (Camin & Sokal 1965), 
maximum likelihood (Felsenstein 1973, 1981; Huelsenbeck & Crandall, 1997) 
and Bayesian (Mau et al. 1999, Huelsenbeck et al. 2001) approaches. Bayesian 
analyses were performed with MrBayes 3.1.2 (Huelsenbeck & Ronquist 2001) 
on preset parameters, whereas maximum likelihood and maximum parsimony 
analyses were performed with the programme PAUP* 4.0b10 (Swofford 2000). 
We used the General Time Reversible Model with invariable sites and gamma 
distribution (GTR+I+G) (Lanave 1984, Rodriguez et al. 1990), the parameters of 
which were estimated using the program ModelTest version 3.7 (Posada & 
Crandall 1998) implementing the Akaike information criterion (Akaike 1974). 
The ratio of invariable sites was 0.1935; Gamma distribution shape parameter 
was 0.7813; and base frequencies were A=0.3629, C=0.1332, G=0.1742, and 
T=0.3297. Rates for the six substitution types estimated from the dataset were 
AC=3.2491, AG=13.2695, AT=5.3873, CG=2.2114, CT=21.8755, and 
GT=1.0000). 
 

The settings for maximum likelihood and maximum parsimony were a 
heuristic search with random sequence addition (10 replicates); tree bisection 
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reconnection (TBR). The robustness of the tree topologies was assessed with 
bootstrapping with 500 and 10.000 replicates for likelihood and parsimony, 
respectively. 
 
 
Results 
 
The fragment amplified with primers ALh/CLr varied between 255 and 256bp, 
while primers 16Sa/16Sb amplified fragments from 470 to 472bp. The 
alignment is based on sequences obtained with primers 16Sa/16Sb, 
sequences of Leucon antarcticus and Leucon rossi were solely obtained using 
primers Alh/CLr. Total length of the alignment was 437bp. After the exclusion 
of ambiguously aligned positions 376 remained, of which 130 were constant 
and 63 were parsimony-uninformative. 
 

Maximum parsimony resulted in a tree with most taxa included in only 
one polytomy. Transition/transversion ratios from 0–10 were tested all yielding 
similar trees with differences only in the bootstrapping support. The cumacean 
family Diastylidae was the only well supported monophylum (bootstrap support 
83%). 

 
The Bayesian analysis (Fig. 1) indicated that the Cumacea are 

monophyletic supported by a Bayesian score (BS) of 1. Furthermore, the 
Diastylidae are well supported (0.97 BS) as the basal taxon within the 
Cumacea, followed by the weakly supported paraphyletic Bodotriidae. The 
Leuconidae is the most derived and monophyletic family, but with a BS of 0.67 
only. At this node the tree is trichotomous with Leucon assimilis, Eudorella 
pusilla, and the remaining Leuconidae. The latter have good support (0.97 BS). 
The subgenus Crymoleucon is monophyletic and also well supported (0.88 
BS). Species pairs, which exhibit high BS are Leucon antarcticus and L. rossi, 
Cyclaspis sp. and Atlantocuma sp., and with intermediate support, Distylis 
sculpta and D. rathkei. 

 
The sequence belonging to species of the genus Leucon are split into 

three groups (Fig. 2) when compared with pairwise p-distances. The first group 
comprises within species comparison with p-distances from 0 to 0.05, whereas 
the second group gives the minimum distance (0.20–0,21) of interspecific 
variation of the two closely related species Leucon antarcticus and L. rossi. 
Interspecific distances of the remaining species are confined to the third group 
(p-distance 0.30–036). Intraspecific variation in the 16S rDNA of the two 
species L. antarcticus and L. intermedius follow different patterns. Interspecific 
p-distances of L. intermeidus (Fig. 3A) range from 0 to 0,033, while sequence 
similarity of L. antarcticus (Fig. 3B) show higher variation (0–0.052) and a 
bimodal distribution with no intermediate sequence and correlating to 
geographical distance and depth distribution. Pairs of sequences with p-values 
from 0 to 0.014 were obtained from specimens collected either in the Ross Sea 
(depth ranging from 316 to 358 m) or in the Weddell Sea (900 m), whereas p 
distances from 0.038 to 0.052 were observed between these groups. 
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Figure 1. Bayesian analysis consensus tree based on 16S rDNA. The GTR+I+Γ model was 

used according to the Akaike information criterion test. Numbers represent the portions of 
sampled trees, in which the corresponding node was found (Outgroup taxa see Table 1). 
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Figure 2. Frequency spectrum of pairwise genetic distances (p-distance) of 16S rRNA gene 

among specimens of the cumacean genus Leucon Krøyer, 1846. Distances on the right side 
of the graph display interspecific variation, distances on the left display intraspecific 
variation. Distances in the middle display variation between L. antarcticus Zimmer, 1907 
and L. rossi Rehm & Heard, (2008). 
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Figure 3. Frequency spectrum of pairwise genetic distances (p-distance) of 16S rRNA gene 

among specimens of the cumacean subgenus Crymoleucon Watling, 1991. A: L. 
intermedius Mühlenhardt-Siegel, 1996. B: L. antarcticus Zimmer. 1907. On the right side of 
graph: distances between specimens of the Weddell Sea and the Ross Sea. On the left side 
of graph: distances between specimens from within the Weddell Sea or the Ross Sea, 
respectively. 
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Discussion 
 
Sampling Methods 
 
Extraction and sequencing of cumacean material collected during the BENDEX 
expedition was less successful than treating the material from the campaign 
with RV ‘Italica’. In contrast to sample processing during the BENDEX 
expedition, where samples were fixed with 0° C cold ethanol, samples were 
fixed at -80° C onboard of RV ’Italica’. Deep temperatures at the beginning of 
the fixation might be the reason for better results during molecular work; 
therefore we suggest cooling newly collected material at -80°C or lower during 
the first weeks of fixation. 
 
 
Phylogenetic analysis of 16S rDNA 
 
Because the Akaike information criterion recommended a complex model 
(GTR+I+G) and that maximum likelihood and Bayesian methods lead to more 
resolved tree topologies, it is obvious that maximum parsimony is not suitable 
for the dataset. As maximum parsimony describes observed changes of 
characters the method dos not consider the complex evolutionary 
assumptions, which are contained in the GTR model. According to the rescaled 
consistency index (0.0980) calculated with the program PAUP*, certain 
homoplasy is indicated for the data set. Consequently, the result of maximum 
parsimony is regarded as less informative and will not be discussed further. 
 

Tree topologies observed from Bayesian and likelihood analyses both 
show that cumaceans including the families Diastylidae, Bodotriidae, and 
Leuconidae are monophyletic with regard to the outgroup and the Diastylidae 
as a monophyletic and basic taxon. In the phylogenetic analysis of molecular 
data from the cytochrome oxidase I (COI) by Haye et al. (2004) Bayesian and 
maximum likelihood methods, in contrast to maximum parsimony, could not 
confirm monophyly for the Cumacea. They assume that this is due to the low 
taxon number of Pseudocumatidae represented in their study, which do not 
group with the remaining cumaceans. COI data suggest that the Diastylidae 
may be paraphyletic. As the number of diastylid taxa was less than half in the 
present study we can not rule out that 16S data might prove paraphyly for a 
greater number of Diastylidae as well. Nevertheless, Haye et al. (2004) point 
out that constraining the Diastylidae to be monophyletic results in a tree not 
significantly longer to the Bayesian tree. 
 

Bodotriidae resolved paraphyletic containing the Leuconidae during the 
present study and therefore resembles the result of the COI data where 
Bodotriidae were paraphyletic with the other pleotelson bearing families, 
Leuconidae and Nannastacidae, nested within. Still, the support for a 
‘pleotelson clade’ has very low support in both studies. On the other hand this 
clade is confirmed by morphological data with the three families monophyletic 
each and the Nannastacidae as a possible intermediate taxon between the 
more basal Leuconidae and derived Bodotriidae. (Haye et al. 2004). 
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The genus Atlantocuma was originally placed in the family Bodotriidae 
(Băcescu & Muradian 1974). Jones (1984) mentioned the nannastacid-like 
character of the species, but preferred to leave it as aberrant form within the 
Bodotriidae, while Haye (2002) used the taxon as outgroup in the phylogenetic 
analysis of the Bodotriidae as it grouped as sister taxon to the nannastacid 
genera Cumellopsis and Scherocumella. The recent morphological analysis of 
Bodotriidae (Haye 2007) does not include Atlantocuma in the Bodotriidae. In 
the present study Atlantocuma is sister taxon to Cyclaspis; thus close 
relationship of Atlantocuma to the Bodotriidae is highlighted. Nevertheless, the 
placement of Atlantocuma can not be solved finally since no sequences of 16S 
rDNA for the family Nannastacidae were available. 
 

Monophyly of the Leuconidae is only weakly supported by the data 
presented here, but within the family a monophyletic group comprises the 
monophyletic subgenus Crymoleucon and an undescribed species of the 
subgenus Leucon (pers. comm. Mühlenhardt-Siegel). The tree topology 
suggests good evidence that the subgenus Leucon is paraphyletic as 
L. assimilis also belongs to the subgenus Leucon. The species L. antarcticus 
and L. rossi which represent a monophyletic group are also morphological 
closely related. Besides decreasing size of the dorsomedial teeth to the 
posterior end of the carapace the species can be distinguished by the shape of 
the pseudorostrum, which is blunt in L. rossi and tipped and slightly upturned 
in L. antarcticus, as well as by a spine present on the first article of the exopod 
of the first pereopod (Rehm & Heard 2008). 

 
Phylogenetic information provided during this study is reliable partially within 
the Leuconidae, in delimiting Cumacea from the outgroup, and in the 
monophyly of the Diastylidae with respect to the other ingroup taxa. It is 
discussed that the Diastylidae are the most derived family (in Băcescu & 
Petrescu 1999), while Lomakina (1968) and Zimmer (1941) placed this family 
following the Lampropidae to the basis of the Cumacea. The results of this 
study and of the phylogenetic analysis of morphological characters and the 
cytochrome oxidase I gene presented by Haye et al. (2003) both indicate a 
more basal position of the Diastylidae. Therefore, the assumption of Zimmer 
and Lomakina considering the position of the Diastylidae has to be regarded as 
confirmed. For a well-founded analysis of cumacean families more taxa of all 
families have to be analysed. Since cumaceans represent a relative old group a 
more conserved gene than the mitochondrial 16S gene might provide more 
detailed information about phylogeny of higher cumacean taxa. The slower 
evolving 18S gene is a possible candidate for further investigations; in addition 
more genes should be included to enhance the resolution of cumacean 
phylogeny (Hillis et al. 1996). 
 
 
Variation in 16S rDNA of Antarctic Leuconidae 
 
Cryptic speciation can be detected by a set of criteria stated by Held (2003). 
One criterion is the bimodal distribution of pairwise distances with no 
intermediate values (Fig. 3B). The sequences of Leucon antarcticus show a 
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bimodal distribution pattern and thus might indicate cryptic speciation. The 
sequences divide into two groups, one was obtained from the Weddell Sea at 
a depth of 900 m the other, from the Ross Sea, was sampled at about 350 m 
water depth. From the Weddell Sea only two sequences were available for 
genetic analysis; therefore it is possible that intermediate sequences exist. 
Even if the results represent true haplotype distribution intermediate sequences 
could exist in geographically intermediate populations of L. antarctica. 
Nevertheless, 14 sequences of the ‘Ross Sea haplotype’, sampled at two 
stations with a distance of 340 km, vary only in one position in the alignment, 
whereas nine positions are different to the “Weddell Sea haplotype’. 
 

The second criterion to distinguish cryptic species is the differentiation 
level of the gene, which should be in the range of clearly separated but closely 
related species. The differentiation between L. antarcticus and L. rossi, which 
are closely related species (see phylogenetic analysis) is less than between L. 
antarcticus and other leuconid species, but still five times higher than within the 
two observed haplotypes of L. antarcticus. The study of 16S rDNA of 
brachyuran crabs from Jamaica has shown that cryptic speciation may take 
place at lower levels than revealed for L. antarcticus (Schubart & Koller 2005). 
On the other hand p-values observed for the differentiation of cryptic Antarctic 
isopod species (Held 2003, Held & Wägele 2005) is at the upper range or even 
higher than in L. antarcticus. A further indication for cryptic speciation might be 
the different distance pattern observed in L. intermedius with the upper limit of 
p-values at 0.033 and intermediate values. The third criterion mentioned by 
Held is not applicable, as it demands constantly high level of differentiation in 
sympatry. 

 
Morphological record of L. antarctica is ambiguous. The species was first 

described by Zimmer (1907) from the East Antarctic (compare also Zimmer 
1913) and by Calman (L. australis) from the Ross Sea in the same year. 
Ledoyer described the species for a third time from the Weddell Sea. Zimmer 
presented a more detailed description, whereas the descriptions of Calman 
and Ledoyer are vague in several aspects. Zimmer mentioned five lateral 
spines on the carapace, while no spine is mentioned in Calman’s description. 
For L. antarctica (sensu Ledoyer 1993) also no spine is mentioned but in the 
drawing one spine is depicted. All descriptions cover only a part of the 
appendages. Moreover, due to low quality of the drawings and insufficient 
descriptions given in the text it is not possible to judge about the possible 
geographical differences reflected in morphology. Specimens from the Weddell 
Sea used for the present study bear a similar spine pattern on the carapace as 
specimen from the Ross Sea. Both populations show a same variation, which 
does not allow a differentiation according to the lateral spines of the carapace. 
 

Concluding, morphological descriptions of L. antarctica are indistinct, the 
number of samples of the 16S rDNA gene and the geographical distribution of 
sample sites are not sufficient to allow a final evaluation of genetic variability 
and cryptic speciation. Still, differences exist in the sequences of 16S rDNA 
which can only be explained by genetic separation of populations from the 
Weddell Sea and the Ross Sea for an extended period of time. Further studies 
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with more sequences and extended geographical range of samples will provide 
a more detailed image of the genetic diversity of this species and finally bring 
the stage of speciation to light. 
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