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Abstract 

Since pre-industrial times, atmospheric CO2 concentrations have risen from 280 ppm to > 400 

ppm causing a drop in surface ocean pH by 0.1 pH units, which corresponds to a ~ 30% 

increase in acidity. Ocean acidification (OA) is expected to negatively affect calcifying 

organisms like scleractinian corals.  

Most hermatypic, or reef building, corals live in photosymbiosis with small, single-celled 

algae (zooxanthellae) of the phylum Symbiodinium. The coral provides metabolic nutrients to 

the algae and benefits from its translocated photosynthetic energy. The algae are assumed to 

ease the negative effects of OA as they are able to fix excess CO2 during photosynthesis. 

The aim of this bachelor thesis was to analyze the role of the symbiotic algae on the 

physiological status of the scleractinian corals Porites lutea and Seriatopora hystrix under the 

events of OA and additional light deprivation. Coral fragments were collected from a volcanic 

carbon dioxide vent site within the coral triangle in Papua New Guinea, with seawater pCO2 

values similar to those predicted for 2100 (pH 7.8). Corals from the adjoining reef with 

normal values of pCO2 (pH 8.1) served as controls.  

Pigment composition and content in the zooxanthellae of the sampled corals were analyzed 

(via HPLC), as well as biomass and protein content of both coral host and symbiont. The 

results confirmed former studies in which Porites lutea did hardly suffer from OA or even 

benefit. Pigment concentrations were clearly elevated at the vent compared to the control site 

and symbiont protein concentrations started to increase at the vent site at the end of the study. 

Seriatopora hystrix instead was significantly affected by OA. Pigment concentrations stayed 

unchanged but protein concentrations clearly decreased under the influence of OA, whereas 

biomass concentrations increased. But as biomass build up is a rather tedious process, these 

findings might not be related to the experiment. 

Under the additive stress of light exclusion, both corals were expected to suffer most due to 

the lack of supporting effects from the symbiosis. Surprisingly, Porites lutea was unaffected. 

Pigment concentrations decreased during darkness but there was no difference between vent 

and control site. In contrast, Seriatopora hystrix was clearly afflicted with both OA and light 

deprivation. Pigment concentrations declined at both sites but to lower values at the vent site. 

Interestingly, protein concentrations declined as well at the vent site whereas biomass 

concentrations were higher compared to those of light control until the mid of the experiment. 
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Zusammenfassung 

Seit der Industrialisierung ist die CO2-Konzentration in der Atmosphäre von 280 ppm auf > 400 

ppm angestiegen. Dieser Anstieg hat im Meer zu einem Abfall des pH-Werts um 0.1 pH-

Einheiten geführt und damit zu einer Zunahme der Versauerung um ~ 30%. Daraus resultiert 

eine geringere Sättigung von Kalzit und Aragonit, was sich negativ auf den Kalkbildungsprozess 

von Organismen wie Steinkorallen auswirkt.  

Die meisten hermatypischen (riffbildenden) Korallen leben in einer Symbiose mit kleinen 

einzelligen Algen (Zooxanthellen), die zum Stamm Symbiodinium gehören. In dieser Symbiose 

fungiert die Koralle als Wirt und bietet den Algen Stoffwechselprodukte, welche in der 

Photosynthese der Algen wiederverwertet werden. Im Gegenzug dazu profitiert die Koralle von 

energiereichen Stoffen, welche von den Zooxanthellen durch Photosynthese gewonnen wurden. 

Es wird angenommen, dass die Algen den negativen Effekt der Ozeanversauerung lindern 

können, indem sie das überschüssige CO2 durch Photosynthese fixieren. 

Das Ziel dieser Bachelorarbeit war es, die Rolle der symbiotischen Algen auf den 

physiologischen Zustand der beiden Steinkorallen Porites lutea und Seriatopora hystrix unter 

dem Einfluss von Ozeanversauerung und zusätzlichem Lichtausschluss zu untersuchen. Die 

Korallenproben stammen aus dem „Korallendreieck“ bei Papua Neu Guinea, wo aufgrund von 

vulkanischer Aktivität in einigen Bereichen CO2 aus dem Meeresboden strömt. Der CO2-

Partialdruck (pCO2) entspricht an diesen Stellen in etwa den Werten, die im Jahr 2100 für die 

Ozeane vorhergesagt werden (pH 7.8). Die Kontrollkolonien wurden einem benachbarten Riff 

mit normalen pCO2-Werten (pH 8.1) entnommen. 

Die Pigmentzusammensetzung und -konzentration in den Zooxanthellen wurden mittels HPLC 

bestimmt. Zudem wurde der Biomasse- und Proteingehalt von Koralle und Symbiont ermittelt. 

Die Ergebnisse früherer Studien, dass Porites lutea kaum durch den Einfluss von 

Ozeanversauerung beeinträchtigt wird bzw. sogar davon profitierte, konnten hiermit bestätigt 

werden. Algen in Korallen, die der Ozeanversauerung ausgesetzt waren, wiesen deutlich höhere 

Pigmentkonzentrationen auf. Gegen Ende des Experiments war auch der Proteingehalt dieser 

Algen im Vergleich zu den Kontrollkolonien deutlich angestiegen. Im Gegensatz dazu zeigte 

Seriatopora hystrix unter diesen Bedingungen eine deutliche Beeinträchtigung. Im Vergleich zur 

Kontrollstelle blieben die Pigmentkonzentrationen in den Algen, welche der Ozeanversauerung 

ausgesetzt waren, zwar unverändert, der Proteingehalt jedoch war von Anfang an deutlich 
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geringer. Im Gegensatz dazu stieg die Biomassekonzentration an. Da es sich bei dem Aufbau 

von Biomasse jedoch um einen langwierigen Prozess handelt, ist es möglich, dass diese 

Entwicklung nicht auf den Versuch zurückzuführen ist. 

Weiterhin wurde erwartet, dass zusätzlicher Lichtausschluss die Korallen am meisten schwächen 

würde, da sie unter diesen Bedingungen keine weitere Unterstützung von ihrem Symbionten 

erhalten können. Überraschenderweise blieb Porites lutea jedoch unbeeinträchtigt und die 

Pigmentkonzentrationen sanken unter Ozeanversauerung in gleichem Maß sanken wie an der 

Kontrollstelle. Protein- und Biomassegehalt blieben an beiden Standorten unverändert. Im 

Gegensatz dazu wurde Seriatopora hystrix durch die Kombination von Ozeanversauerung und 

Lichtentzug deutlich geschwächt. Zwar sanken die Pigmentkonzentrationen ebenfalls an beiden 

Standorten im Verlauf des Experiments ab, waren jedoch unter Ozeanversauerung gegen Ende 

der Untersuchung deutlich geringer als in den Kontrollkolonien. Auch der Proteingehalt sank im 

Vergleich zur Kontrolle deutlich ab, während die Biomassekonzentrationen bis zur Mitte des 

Experiments höher waren.  
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List of abbreviations 

Ø     diameter 

%     per cent 

Ω     saturation state 

1O2     single state oxygen 

A     absorption 

ATP     adenosine triphosphate 

°C     degree Celsius 

Ca2+     calcium ion 

CaCO3     calcium carbonate 

cf.     confer = compare 

CO2     carbon dioxide 

CO3
2-     carbonate ion 

DEP     diatoxanthin epoxidase 

DIN     dissolved inorganic nitrogen 

DME     daily metabolic energy 

E     east 

e. g.     exempli gratia = for example 

G1      gap phase 1 

G2     gap phase 2 

g     gravity acceleration 

H+     hydrogen ion 

H2O     water 
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HCO3
-     bicarbonate ion 

HPLC      High Pressure Liquid Chromatography 

i. e.      id est = that is   

LHC     light harvesting complex 

M     mitotic phase 

NADPH    nicotinamide adenine dinucleotide phosphate 

NH3     ammonia 

OA     ocean acidification 

p     partial pressure 

PCP     peridinin-chlorophyll protein     

pH     -log [H+] 

PO4
3-     phosphate 

ppm     parts per million 

RC     reaction centre  

rpm     rounds per minute 

S     south 

S     synthesis phase 

spp.     species pluralis = species 
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1. Introduction 

About 600.000 km2 of the surface of the earth are inhabited by coral reefs (Smith, 1978). Coral 

reefs are the most diverse marine ecosystems per unit area (Osborne, 2000) and are mainly found 

in shallow tropical and subtropical waters (reviewed in Johnston, 1980; Osborne, 2000). They 

require a minimum temperature of 18 °C (Johnston, 1980; Birkeland, 1997; Osborne, 2000) and 

are restricted to a maximum of 36 °C (Birkeland, 1997). Coral reefs also rely on clear and clean 

water with sufficient light intensities and moderate salinities (Birkeland, 1997; Osborne, 2000). 

Each year, the reefs absorb about 700 billion kilograms of carbon. This is one of the reasons why 

they are of high importance for the welfare of our planet (Birkeland, 1997).  

1.1 Basics about corals 

Corals belong to the class Anthozoa within the phylum Cnidaria (Grobben, 1908). They can 

appear in huge colonies, but the single units are polyps (Dana, 1853), which can be very small 

(1-2 mm diameter) (Goreau et al., 1979; Birkeland 1997) or quite large (20 cm diameter) 

(Goreau et al., 1979). The polyps are radially symmetrical (Osborne, 2000), sessile and hollow 

invertebrates, divided into compartments by lamellae and with a mouth-like opening on top 

surrounded by one or more rings of tentacles (Dana, 1853). They consist of two layers of cells 

(ectoderm and endoderm) separated by a cell-free, jellylike layer, the mesoglea (Birkeland 1997; 

Osborne, 2000). Single polyps are connected by a so-called “coenosarc”, a tubular tissue, 

building large colonies (Dana, 1853). Corals deposit calcium carbonate in form of aragonite 

(Dana, 1853; Sheppard et al., 2009) and can be massive and “dome-shaped” or appear as 

branchy and bushy morphotypes (Dana, 1853). 

Hermatypic, or reef building corals contain small, single-celled dinoflagellates 

(zooxanthellae) (Boschma, 1925; Goreau, 1959). Living in symbiosis with the algae, the corals 

benefit from additional nutrients resulting from photosynthesis (Sargent & Austin, 1949; 

Muscatine & Carnichiari, 1969; Johnston, 1980; Osborne, 2000). In shallow water, the corals 

fully rely on the algae and the energy and carbon they receive from the symbionts. At greater 

depths or in less clear water, there is not enough light for the zooxanthellae to produce as much 

energy as needed (Barnes & Taylor, 1973), wherefore the corals are forced to capture 

zooplankton from surrounding water (Dana, 1853; Birkeland, 1997; Osborne, 2000) by using 
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their tentacles equipped with stinging or hook-like cells (nematocysts) (Goreau et al., 1979; 

Sheppard et al., 2009). 

1.2 Coral symbiosis and the related physiology  

The symbiotic relationship of corals and zooxanthellae is expected to exist since the early 

Triassic, 240 million years ago (Muscatine et al., 2005) and is essential for the existence of coral 

reefs (Barnes & Taylor, 1973; Birkeland, 1997; Osborne, 2000). Zooxanthellae belong to the 

phylum Dinophyta. While earlier studies assumed a single species Symbiodinium 

microadriaticum (Freudenthal, 1962; Lelektin, 2000; Osborne, 2000), the last two decades have 

unveiled a large diversity of zooxanthellae clades and types (Rowan et al., 1997; Baker et al., 

2003; LaJeunesse et al., 2005). The tiny coccoid cells (only 5 – 15 µm in diameter; Freudenthal, 

1962) live inside the endodermic cells of the coral, covered by one or more membranes of the 

host, which builds a vacuolar compartment (symbiosome). They reach average densities of 1.45 

× 106 cells per cm2 of coral tissue (Drew, 1972) which can vary with light intensity, nutrient 

availability and temperature (Drew, 1972; Dubinsky & Jokiel, 1994; Fagoonee et al., 1999).  

Photosynthesis is the basis of all life on earth. Photosynthetic pigments in plants and algae 

absorb light energy and convert it into chemical energy (ATP) and reducing power (NADPH) 

(Wright et al., 1997; Kirk, 2011). Several pigments, which capture light, and electron carrier, 

which use absorbed energy to create reducing power, are located in special types of membrane 

(thylakoid) within the chloroplast of the zooxanthellae (Kirk, 2011). Zooxanthellae exhibit six 

major photosynthetic pigments: chlorophyll a and c2, peridinin, diadinoxanthin, diatoxanthin and 

β-carotene (Strain et al., 1944; Jeffrey & Haxo, 1968). The main function of chlorophylls is light 

absorption in so-called light-harvesting complexes (LHC) but they can also operate as electron 

donor and acceptor in reaction centres (RC) (Wright et al., 1997). Carotenoids are associated in 

photosynthetic pigments (Bresinsky et al., 2008) with main purpose on light harvesting (Wright 

et al., 1997). Peridinin is only found in dinoflagellates (Jeffrey & Haxo, 1968; Sitte et al., 2002) 

and is responsible for the golden-brown colour, which is typical for zooxanthellae (Hochberg et 

al., 2005). It is assumed, that there is an efficient energy transfer from the carotenoid peridinin to 

chlorophyll a (Haxo et al., 1976), which marks it as an important accessory pigment. Carotenes, 

such as peridinin, ß-carotene, diadinoxanthin and diatoxanthin also work photoprotective 

(Sieferman-Harms, 1987; Demers et al., 1991; Arsalane, et al. 1994Wright et al., 1997). 
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The symbiosis between corals and zooxanthellae also enables both partners to effectively 

take up nutrients and to re-use them as well as the photosynthates (Muscatine & Porter, 1977). 

Photosynthates are the products of zooxanthellar photosynthesis, such as oxygen, nitrogen, 

phosphate (Sargent & Austin, 1949; Osborne, 2000), amino acids or lipids (Muscatine, 1990) 

and carbon (Sargent & Austin, 1949; Muscatine & Carnichiari, 1969). Zooxanthellae fix carbon 

via the C3 carbon-fixation pathway (Calvin-Benson carbon reduction cycle) (Streamer et al., 

1993). Main products are hexose phosphate, malate, aspartate and glucose (Streamer et al., 1993) 

and glycerol (Hofmann & Kremer, 1981). Fixed carbon is used for respiration and synthesis of 

new cell walls in the symbiont but can also be transferred to the host (Muscatine et al., 1984). 

Nitrogen taken up by zooxanthellae can be transformed into amino acids (Miller & Yellowlees, 

1989) and thus, be transferred to the coral host where it is used for the buildup of proteins and 

biomass (Trench, 1993). The zooxanthellae translocate up to 99% of their photosynthetic 

products to the coral (Muscatine and Cernichiari, 1969). The polyps provide access to light, 

inorganic nutrients (CO2, NH3, PO4
3-) and protection (Yellowlees et al., 2008). 

1.3 Ocean acidification - a stressor to the symbiosis 

This very delicate symbiosis between coral host and dinoflagellate algae is dependent on a 

very narrow range of stable environmental conditions and especially endangered by irreversible 

changes or degradations of the environment (Glynn, 1990). In this context the gradual changes in 

ocean chemistry and temperature due to the anthropogenically induced climate change is of 

major interest and importance.  

Since pre-industrial times, temperature increased already by 0.85 °C (IPCC, 2014) and 

atmospheric CO2 concentrations rose from 280 ppm to > 400 ppm (NOAA, 2013). Due to 

increased CO2 uptake of the oceans, surface ocean pH already decreased by 0.1 pH units, which 

equals an increase of acidity of 26 % (IPCC, 2014). Today, surface ocean pH is leveled at 8.1 

(NOAA, 2014) and is predicted to decrease by 0.3 – 0.5 pH units by 2100 (Caldeira and Wickett, 

2005). The concentration of bicarbonate ions [HCO3
-] is increasing while the one of carbonate 

ions [CO3
2-] is declining as the following reaction shows (Orr et al., 2005):  

                       CO2+ CO3
2- + H2O → 2HCO3

-                              (1) 

In consequence the saturation states of calcite (Ωc) and aragonite (Ωa) are declining (Orr et al., 

2005). This process is called ocean acidification (OA), a condition which is expected to make it 
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hard for some marine calcifying organisms, like corals, to build up biogenic calcium carbonate 

(CaCO3) (Orr et al., 2005).  

The fixation of carbon by the zooxanthellae supports the corals in building up their 

massive skeletons (sometimes 5-10 m across (Osborne, 2000)) by calcification (Birkeland, 1997; 

Osborne, 2000), i.e. the deposition of calcium carbonate (CaCO3). This CaCO3 is built within the 

calcifying fluid underneath the endodermic cells of scleractinian corals, the so-called 

subcalicoblastic space (Beaugrand, 2014) in the presence of calcium and bicarbonate 

(McConnaughey & Whelan, 1997): 

               Ca2+ HCO3
-  CaCO3 + H+                  (2) 

The fact, that calcification in light is much higher (~ threefold) than in darkness, suggests that 

calcification is linked to photosynthesis (cf. 'light-enhanced calcification'; Gattuso et al., 1999). 

How the mechanism works in detail is still not completely clear. Gattuso et al. (1999) assumed 

that a photosynthetic uptake of CO2 would cause an increase of CaCO3 saturation. A high ATP 

level which is needed for calcification could be maintained by high O2 concentrations resulting 

from algal photosynthesis (Colombo-Pallotta et al., 2010). Due to photosynthetic CO2 fixation by 

the algae, pH inside the coral rises and more carbonate ions for calcium carbonate precipitation 

are provided (Birkeland, 1997; Holcomb et al., 2014). On the other hand, Schneider & Erez 

(2006) assumed the opposite, i.e. calcification enhances photosynthesis through indirect carbon 

supply: When excess H+ ions are transported out of the calcification site and arrive in the cavity 

of the polyp, they combine with HCO3
- to form CO2 which is used up by the zooxanthellae via 

photosynthesis. High concentration of CO3
2- is expected to enhance the export of H+ ions out of 

the subcalicoblastic space. 

As OA causes an increase of H+ ion concentration, the removal of H+ ions out of the 

subcalicoblastic space of the coral, is prevented or hindered (Jury et al., 2010). This leads to a 

low pH inside the coral and as H+ export and Ca2+ import are coupled (McConnaughey & 

Whelan, 1997), this will also result in a low concentration of Ca2+ (Zoccola et al., 2004). This in 

turn will impede calcification, as Ca2+ is needed (2). Whether and how much different species of 

corals will suffer from increased surface ocean pH depends on their capability to remove H+ out 

of the calcifying fluid (Zoccola et al., 2004). Also, H+ export and Ca2+ import are based on the 

usage of ATP mainly provided by respiration (found in Colombo-Pallotta et al. 2010; Wall & 

Edmunds, 2013). Thus, if a high concentration of H+ is present in the ambient seawater, the 

affected export of H+ will require more energy (Zoccola et al., 2004). If a coral suffers more or 
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less from low pH conditions, hence also depends on how much energy it can put up via 

respiration and also for how long (Wall & Edmunds, 2013).  

1.4 Experiment 

The symbiosis between corals and algae is not only complex and unique but also a very sensitive 

system. The coral not only receives huge support in form of nutrients and stability from the 

zooxanthellae but also relies on the dinoflagellates to cope better with changing climate 

conditions like OA (de Beer et al., 2000; Al-Horani et al., 2003; Vogel et al., 2015). Natural 

volcanic carbon dioxide seeps such as found in Papua New Guinea (PNG, Fabricius et al., 2011) 

simulate future climate change scenarios. Those vent sites perfectly enable in situ investigations 

on how OA effects the physiology of hermatypic corals and their symbiotic algae. In the present 

study the dependence of the coral host on the presence of the zooxanthellae was examined under 

the effect of OA. At both, a volcanic carbon dioxide seep and control reef site in PNG, two 

different coral taxa were investigated:: the massive Porites lutea (Milne Edwards and Haime, 

1851) and the structurally complex Seriatopora hystrix (Dana, 1846), both hermatypic corals 

containing symbiotic dinoflagellates (zooxanthellae) (Veron, 2000). Indo-pacific Porites is a 

slow-growing, helm-shaped and long-living hermatypic coral with simple formation (Veron, 

2000; Fabricius et al., 2011). Porites lutea colonies are known to grow at about 1 cm in height 

per year (Sheppard et al., 2009) and can be over 4 meters across (Veron, 2000). They are 

supposed to be the oldest living corals (Sheppard et al., 2009). Structurally complex and thin 

branching coral Seriatopora hystrix is widely spread in the indo-pacific ocean (Veron, 2000).  

Recent studies at the PNG seep sites showed that massive Porites spp. seems to benefit from 

elevated pCO2 as the cover of the coral had doubled (Fabricius et al., 2011) and the abundance 

increased significantly to 157.7 % (Strahl et al., 2015) at high pCO2. The rate of net 

photosynthesis was almost double (43%) and at both control and vent site light calcification rates 

increased three fold (Strahl et al., 2015). But Porites spp. was not exclusively positively affected 

by high pCO2: the taxonomic richness of hard corals such as Porites spp. was reduced by 39% at 

the seep sites compared to control sites and they were paler (Fabricius et al., 2011). Juveniles of 

Porites spp. also seemed to suffer as their density declined fourfold at high pCO2 (Fabricius et 

al., 2011). The impact of high pCO2 on the structurally complex Seriatopora hystrix however 

was found far stronger than in the massive Porites: the abundance was reduced three fold at high 

pCO2 sites (Fabricius et al, 2011) and both, light and dark calcification rates were declined 
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(Strahl et al., 2015). A study on Acropora millepora, a coral similarly structured as S. hystrix 

(Veron, 2000), revealed a reduction of biomass (48%) due to simulated OA conditions and an 

additional decline in weight (96%), net photosynthesis (62%) when treated with reduced light 

conditions (Vogel et al., 2015).  

1.5 Hypothesis 

Regarding these prior results both P. lutea and S. hystrix are likely different in their reaction 

to high pCO2. To investigate the immediate dependence of both coral species on their symbiotic 

algae under high pCO2 a light exclusion experiment was performed to study the physiological 

reaction of the coral host after turning off the symbiotic energy supply. Porites lutea is expected 

to hardly suffer from high pCO2 under normal light conditions (Fabricius et al., 2011; Comeau et 

al., 2013; Strahl et al., 2015) and is likely able to cope better with a lack of photosynthetic 

support in darkness due to its massive, slow growing and thick tissue (Veron, 2000). In contrast, 

branching and fast growing Seriatopora hystrix (Veron, 2000) is awaited to suffer more from 

elevated CO2-levels as former studies have shown (e.g. Fabricius et al., 2011; Strahl et al., 2015) 

and might show a faster and more serious reaction to an inhibited photosynthetic input.
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2. Material and Methods 

2.1 Description of study sites 

The present study was performed at a volcanic seep site of ~ 99 % CO2 (latitude 9.82410 S, 

longitude 150.81759 E; in the following termed as vent site) and a nearby control reef site 

(9.82821 S, 150.82052 E) (cf. Stahl et al., 2015) with similar salinity, seawater temperature and 

geomorphology. The sites are located within the coral triangle at D´ Entrecasteaux Islands, Milne 

Bay Province, Papua New Guinea (Fig. 1). At the seep site the mean pHTotal was 7.8 and partial 

pressure (pCO2) 862 ppm (Strahl et al., 2015) with a medium aragonite saturation state (Ωa) of 

2.9 (Fabricius et al., 2011). At the control reef, located 500 m south of the seep site, median 

pHTotal was 8.1, pCO2 323 ppm (Strahl et al., 2015) and medium Ωa 3.5 (Fabricius et al., 2011). 

 

Figure 1 Study sites were at natural volcanic seep sites (red dot) within the coral triangle at D´ Entrecasteaux Islands, Milne Bay 
Province, Papua New Guinea. Modified after google maps: https://www.google.de/maps (last accessed: 07.07.15) 

 

2.2 Coral sampling 

For the experimental approach, 8 mother colonies of both, the branching Seriatopora hystrix and 

the massive Porites lutea were chosen and marked in a depth of 4 to 5.5 m at each study site 

(vent and control). A total of 96 fragments (8 mother colonies x 2 sample sites (vent and control) 

study site 
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x 2 treatments (light control and light exlusion) x 3 samplings) was sampled from each coral by 

chiselling (P. lutea) and clipping (S. hystrix) the fragments from the upper central part of the 

mother colonies.  

2.3 Experimental setup 

The experimental setup is documented in the pictures of Fig. 2: The fragments of both coral 

species were carefully attached to experimental plastic rails: A total of 16 rails per study site 

(vent and control) was prepared, each equipped with three fragments of every mother colony of 

the respective site and both coral species (Fig. 2c). The rails were then left at the site of their 

collection for 4 days for recovery. At each study site (vent and control) a total of 8 platforms was 

set up each equipped with a transparent and a dark flow pipe (open at both ends), fixed on a 

rotatable rack on top of an iron rod braced into the ground. The platform (1m above the ground) 

of each rack was provided with a current vane to move freely in the water and ensure free water 

flow through the perspex pipes (Fig. 2a,b). After the recovery period the experiment was started 

on May 21st 2013 by placing half of the rails (8) at each site in the transparent, the other half in 

the black flow pipes, making sure that no light reached any of the fragments in the dark pipes 

(Fig. 2b). One fragment of each flow pipe and mother colony (resulting in 8 replicate samples 

per treatment at each site and sampling) was then successively recollected on days 2, 10 and 17 

in case of S. hystrix and on days 3, 11 and 16 in case of P. lutea. Immediately after collection 8 

mm cores of P. lutea and small branches of S. hystrix of every sampled fragment were shock 

frozen in liquid nitrogen and kept at -80°C until further processing. Due to sampling 

complications, day -11-samples of Porites lutea could not be used for examination. 
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Figure 2 Picture documentation of experimental setup at control (a) and vent site (b) with transparent (control) and black 
(light exclusion) flow pipes. Additional pipes per platform were used for another experimental approach and were not part of the 
present study. Fragments of P. lutea and S. hystrix attached to plastic rails and fixed within flow pipe (c). Close up of P. lutea 
(left) and S. hystrix (right) on plastic rail. Photos by © K. Fabricius 

 

2.4 Processing of coral tissue 

Coral tissue was blown off the skeleton of each fragment with an airbrush and filtered seawater 

and collected as a thoroughly mixed, homogeneous stock solution (A) of known volume. The 

remaining chalk skeleton was dried overnight at 60 °C and later used for surface area analysis. 2 

ml of the stock solution were filtrated onto GF/F glass microfiber filters (Ø 25 mm, Whatman®) 

wrapped in aluminium foil, labeled and stored at – 80 °C for later pigment alanysis. The rest of 

the stock solution (D) was centrifuged for 10 minutes at 0 °C (4400 rpm). The supernatant 

contained the coral´s tissue and the pellet the algal tissue. For coral biomass determination, 8 – 

10 ml of the supernatant (F) were vortexed and filtrated on a pre-combusted and -weighed GF/C 

glass microfiber filter (Ø 25 mm, Whatman®) and dried overnight at 60 °C. 0.5 ml (H) of the 

remaining coral tissue solution was stored at -80°C in a separate cryovial for further protein 

examination. The pellet containing the symbiont´s tissue was 3 times resuspended in seawater, 

vortexed and centrifuged at 0 °C for 5 minutes (4400 rpm) to ensure a complete elution of any 

a b 

c d 
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remaining coral tissue before filling each sample to 3.5 ml with seawater (E). Two ml (G) of the 

symbiont solution (E) were filtrated on a pre-combusted and -weighed GF/C glass microfiber 

filter (Ø 25 mm, Whatman®) and dried over night at 60°C for later biomass determination. Half a 

ml (I) was stored at -80°C in a separate cryovial for further protein examination.  

2.5 Surface area determination 

The surface area (C) of the coral skeletons was determined geometrically by using a digital 

caliper (Insize®). Fragments of both coral species were measured to the nearest mm. Nubbins of 

P. lutea were mainly circular (Fig. 3a) or elliptic. Branches of S. hystrix had to be divided into 

several compartments for accurate calculation. Those were mainly cylindric (Fig. 3b) and/or 

cone shaped. 

Common geometric forms were used for the surface calculation: 

 

Circle: C = r2 𝜋 

Cone: C = 𝜋 r s  

Cylinder: C = 2 𝜋 r h 

Ellipse: C = ra rb 𝜋 

Triangle: C = ½ g h 

Trapezoid: C = ½ h (c + f) 

 

 

                    

Figure 3│Surface area analysis of Porites lutea which were mostly circular (a) while branches of Seriatopora. hystrix were 
composed and complex and had to be divided into smaller compartments such as single cylinders indicated by pencil lines (b).  

a b 

0.8 cm  

2.0 cm 

C = surface area 

a, b = opposite sides of the ellipse 

c, f = opposite sides of the trapezoid 

g = bottom side of the triangle 

h = height 

r = radius 

s = √ℎ2 + 𝑟2 
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2.6 Pigment analysis via HPLC 

Filters for pigment analyses were transferred into prepaired apex vials (2ml) filled with zirconia / 

silica beads (Ø 0.5 mm) and 1.5 ml 100 % acetone and 50 µl of Canthaxanthin analytical 

standard for extraction. Before each extraction, the absorbance of Canthaxanthin had been 

measured at 750 nm and 474 nm (Spectronic Genesis 5 photometer) and noted for later 

correction and analysis. The Apex vials were then placed in a Precellys homogenizer for 20 

seconds (5500 rpm) to homogenize the GF/F filters by the added zirconia / silica beads. After the 

following centrifugation (Heraeus Fresco 17 refrigerated centrifuge) for 5 minutes at 0 °C (1.500 

x g) the supernatant was drawn up into a syringe needle (Omnifix®-F Solo 3), filtered through a 

syringe filter (Rotilabo®, pore size 0.20 µm) and stored at – 80 °C before the actual HPLC 

measurements started. 

High performance liquid chromatography (HPLC) is a common method for separating and 

analyzing pigments. Each sample was dissolved in an eluent (liquid phase) and under high 

pressure, it was led through a column containing a stationary phase. Separation of the single 

molecules depends on size of the examined molecules, ionic charge and polarity. While the fluid 

phase is led through the stationary phase, the single analytes interact with the column and are 

separated at the same time (Madigan et al., 2013). Because of interaction with the stationary 

phase, they reach the detector at different times. If the pigments have a high affinity to the 

column, they need more time to migrate and vice versa (Wink, 2006). The result is a 

chromatogram with several peaks, which is displayed on a computer screen. The single pigments 

can be identified by their retention time (time that is needed between injection and detection) 

(Antranikian, 2006) and shape of the graph. Both are compared to a library containing graphs of 

standard pigments.  

The pigment content of each sub-sample used for HPLC was calculated backward to the stock 

solution and then related to the surface area of each fragment as the following equation shows:  

   
𝑃𝑃𝑃 �𝑛𝑛𝑙 �

1000  = Pgs �
𝑛𝑃
𝑚𝑚
�  

→ Pgs �
𝑛𝑃
𝑚𝑚
� ∙ A (ml) = Pgst (ng) 

→ 
𝑃𝑛𝑃 (𝑛𝑛)
1000 

𝐶 (𝑐𝑚2)
= Pgst �

µ𝑃
𝑐𝑚2� 

A = stock solution 

C = surface area 

Pgs = symbiont pigment content of sub-
sample 

Pgst = total symbiont pigment content per area 
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2.7 Coral and symbiont biomass content 

The biomass of both coral host and symbiont was determined gravimetrically by weighing 

the dried filters containing the filtrated coral or symbiont tissue, respectively. The biomass in mg 

cm-2 was then calculated backward to the stock solution and related to the surface area as the 

following equation shows: 

Coral: Bct �
𝑚𝑃
𝑐𝑚2� = �𝐵𝑐 (𝑚𝑃)

𝐹 (𝑚𝑚)
 ∙ 𝐴 (𝑚𝑚)�  ∙  1

𝐶 (𝑐𝑚2)
  

 

Symbiont: Bst �
𝑚𝑃
𝑐𝑚2� = 

𝐵𝑃 (𝑚𝑛) ∙𝐸 (𝑚𝑙) ∙𝐴 (𝑚𝑙)
𝐺 (𝑚𝑙)

𝐷 (𝑚𝑚)
 ∙ 1
𝐶 (𝑐𝑚2)  

 

 

 

2.8 Coral and symbiont protein content 

The protein content of both coral host and symbiont was determined after Lowry et al. 

(1951) with a protein assay kit (DC Protein Assay Kit, Bio-Rad) and a bovine serum albumin 

standard. Concentrations were measured spectrophotometrically (Shimadzu UV 1800) at 750 nm 

and the protein content of each sub-sample calculated backward to the stock solution and related 

to the surface area as the following equation shows: 

 

Coral: Pct�
µ𝑃
𝑐𝑚2� = 

𝑃𝑐 (µ𝑛𝑚𝑙)∙𝐴 (𝑚𝑚)

𝐶 (𝑐𝑚2)
 

Symbiont: Pst �
µ𝑃
𝑐𝑚2� = 

𝑃𝑃 (µ𝑔𝑚𝑚) ∙𝐴 (𝑚𝑚)

𝐶 (𝑐𝑚2)   

 

 

A = stock solution 

C = surface area 

Bc = coral biomass of sub-sample 

Bs = symbiont biomass of sub-sample 

Bct = total coral biomass per area 

Bst = total symbiont biomass per area 

D = remaining coral tissue solution 

E = symbiont solution 

F = sub-sample of coral biomass solution 

G = sub-sample of symbiont biomass  
solution 

 

A = stock solution 

C = surface area 

Pc = protein concentration per ml sub-sample of coral  
protein solution (H) 

Pct = total coral protein content 

Ps = protein concentration per ml sub-sample of symbiont 
protein solution (I) 

Pst = total symbiont protein content per area 
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2.9 Statistical analysis 

For the statistical analyses that program Sigma Plot 11 was used. All data of pigment, 

biomass and protein concentrations were first tested for normality with the t-test (Shapiro-Wilk) 

as always 2 different treatments were compared (vent and control site versus light exclusion and 

light control). Shapiro-Wilk test is a high power test which was invented for data of low samples 

size (< 50) (Razali & Wah, 2011). If normality test failed, rank sum test (Mann-Whitney) was 

used. This test is also used for comparison of 2 data sets and is a very powerful test for non-

parametric data (Herrmann, 1984). 
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3. Results 

For the sake of clarity, only remarkable changes in pigment, biomass and protein concentrations 
are shown and described in this section. Complete figures of each parameter can be found in the 
appendix (from p. 49). 

3.1 Zooxanthellate pigment concentration 

Light control: vent versus control site:  

Comparing vent and control nubbins in the light treatments of Porites lutea, concentrations of all 

pigments were clearly increased at the vent site from the start (Table 8; chlorophyll a: Fig. 4a,b; 

chlorophyll c2: Fig. 5a,b; peridinin: Fig. 6a,b; diadinoxanthin: Fig. 7a,b; ß-carotene: Fig. 9a,b; 

diatoxanthin: Fig. 8a,b). 

In light-treated vent fragments of Seriatopora hystrix concentrations of diadinoxanthin (Fig. 7 

c,d), diatoxanthin (Fig. 8 c,d) and ß-carotene (Fig. 9 c, d) did not change during the time of the 

study compared to control fragments (Table 18), but chlorophyll a (Fig. 4 c, d), chlorophyll c2 

(Fig. 5 c, d) and peridinin (Fig. 6 c, d) in control nubbins were clearly increased at the beginning 

of the experiment (Table 18).  

Light control versus light exclusion at vent site: 

At the vent site, concentrations of chlorophyll a, chlorophyll c2, peridinin and diadinoxanthin 

were clearly decreased in dark-treated compared to light-treated nubbins in both Porites lutea 

and Seriatopora hystrix at the end of the experiment (P. lutea: Table 3; chlorophyll a (Fig. 4a), 

chlorophyll c2 (Fig. 5a), peridinin (Fig. 6a) and diadinoxanthin (Fig. 7a); S. hystrix: Table 13; 

chlorophyll a (Fig. 4c), chlorophyll c2 (Fig. 5c), peridinin (Fig. 6c) and diadinoxanthin (Fig. 7c)).  

Instead, concentrations of diatoxanthin in dark-treated P. lutea and S. hystrix showed no effect 

until day 16 or 17, respectively, and were then clearly elevated compared to light-treated corals 

(P. lutea: Table 3; Fig. 8a; S. hystrix: Table 13; Fig. 8c).  

Light exclusion at vent site: 

 In the dark at the vent site, concentrations of chlorophyll a, chlorophyll c2, perdinin, 

diadinoxanthin in both corals and ß-carotene in S. hystrix clearly decreased at the end of the 

experiment compared to the beginning (P. lutea: Table 1, chlorophyll a: Fig. 4a; chlorophyll c2: 

Fig. 5a; peridinin: Fig. 6a; diadinoxanthin: Fig. 7a; S. hystrix: Table 11; chlorophyll a: Fig. 4b; 
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chlorophyll c2: Fig. 5b, peridinin: Fig. 6b, diadinoxanthin: Fig. 7b and ß-carotene: Fig. 9b; S. 

hystrix: Table 25, chlorophyll a: Fig. 4c; chlorophyll c2: Fig. 5c; peridinin: Fig. 6c; 

diadinoxanthin: Fig. 7c). In contrast to the other pigments however, concentrations of 

diatoxanthin (Fig. 8a) in Porites lutea were clearly elevated at the end of the experiment (Table 

1). 

Light exclusion: vent versus control site: 

S. hystrix showed clearly increased pigment concentrations at the vent compared to the control 

site at the end of the experiment ( Table 17; chlorophyll a: Fig. 4c,d: chlorophyll c2: Fig. 5c,d; 

peridinin: Fig. 6c,d; diadinoxanthin: Fig. 7 c, d). 

 

 

 
Figure 4 Chlorophyll a concentration in zooxanthellae over a time period of 16 and 17 days, respectively, at vent (pH 7.8 
and pCO2 862 ppm) and control (pH 8.1 and pCO2 323 ppm) site: Porites lutea (a,b) and Seriatopora hystrix (c,d). Central 
tendency box plots (median as solid line with 25th and 75th percentile and non-outlier range). Asterisks indicate results of 
parametric t-test / non-parametric rank sum test between treatments (light (white) and dark (grey)) and sampling date: Below 
lines light versus dark treatment at each point in time, above lines comparison to condition at day 2/3: left side: light treatment, 
right side: dark treatment. Significance levels: *p<0.05, **p<0.01, ***p<0.001. See Tables 1-8 (P. lutea); 11-18 (S. hystrix) for 
detailed results.  
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Figure 5 Chlorophyll c2 concentration in zooxanthellae over a time period of 16 and 17 days, respectively, at vent (pH 7.8 
and pCO2 862 ppm) and control (pH 8.1 and pCO2 323 ppm) site: Porites lutea (a,b) and Seriatopora hystrix (c,d). Central 
tendency box plots (median as solid line with 25th and 75th percentile and non-outlier range). Asterisks indicate results of 
parametric t-test / non-parametric rank sum test between treatments (light (white) and dark (grey)) and sampling date: Below 
lines light versus dark treatment at each point in time, above lines comparison to condition at day 2/3: left side: light treatment, 
right side: dark treatment. Significance levels: *p<0.05, **p<0.01, ***p<0.001. See Tables 1-8 (P. lutea); 11-18 (S. hystrix) for 
detailed results.  

 

Figure 6 Peridinin concentration in zooxanthellae over a time period of 16 and 17 days, respectively, at vent (pH 7.8 and 
pCO2 862 ppm) and control (pH 8.1 and pCO2 323 ppm) site: Porites lutea (a,b) and Seriatopora hystrix (c,d). Central tendency 
box plots (median as solid line with 25th and 75th percentile and non-outlier range). Asterisks indicate results of parametric t-test / 
non-parametric rank sum test between treatments (light (white) and dark (grey)) and sampling date: Below lines light versus dark 
treatment at each point in time, above lines comparison to condition at day 2/3: left side: light treatment, right side: dark 
treatment. Significance levels: *p<0.05, **p<0.01, ***p<0.001. See Tables 1-8 (P. lutea); 11-18 (S. hystrix) for detailed results.  
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Figure 7 Diadinoxanthin concentration in zooxanthellae over a time period of 16 and 17 days, respectively, at vent (pH 7.8 
and pCO2 862 ppm) and control (pH 8.1 and pCO2 323 ppm) site: Porites lutea (a,b) and Seriatopora hystrix (c,d). Central 
tendency box plots (median as solid line with 25th and 75th percentile and non-outlier range). Asterisks indicate results of 
parametric t-test / non-parametric rank sum test between treatments (light (white) and dark (grey)) and sampling date: Below 
lines light versus dark treatment at each point in time, above lines comparison to condition at day 2/3: left side: light treatment, 
right side: dark treatment. Significance levels: *p<0.05, **p<0.01, ***p<0.001. See Tables 1-8 (P. lutea); 11-18 (S. hystrix) for 
detailed results.  

 

 

Figure 8 Diatoxanthin concentration in zooxanthellae over a time period of 16 and 17 days, respectively, at vent (pH 7.8 and 
pCO2 862 ppm) and control (pH 8.1 and pCO2 323 ppm) site: Porites lutea (a,b) and Seriatopora hystrix (c,d). Central tendency 
box plots (median as solid line with 25th and 75th percentile and non-outlier range). Asterisks indicate results of parametric t-test / 
non-parametric rank sum test between treatments (light (white) and dark (grey)) and sampling date: Below lines light versus dark 
treatment at each point in time, above lines comparison to condition at day 2/3: left side: light treatment, right side: dark 
treatment. Significance levels: *p<0.05, **p<0.01, ***p<0.001. See Tables 1-8 (P. lutea); 11-18 (S. hystrix) for detailed results.  
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Figure 9 ß-carotene concentration in zooxanthellae over a time period of 16 and 17 days, respectively, at vent (pH 7.8 and 
pCO2 862 ppm) and control (pH 8.1 and pCO2 323 ppm) site: Porites lutea (a,b) and Seriatopora hystrix (c,d). Central tendency 
box plots (median as solid line with 25th and 75th percentile and non-outlier range). Asterisks indicate results of parametric t-test / 
non-parametric rank sum test between treatments (light (white) and dark (grey)) and sampling date: Below lines light versus dark 
treatment at each point in time, above lines comparison to condition at day 2/3: left side: light treatment, right side: dark 
treatment. Significance levels: *p<0.05, **p<0.01, ***p<0.001. See Tables 1-8 (P. lutea); 11-18 (S. hystrix) for detailed results.  
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3.2 Coral host and symbiont biomass concentration 

No clear trend of change could be detected in host and symbiont biomass concentrations of P. 

lutea at both vent and control site and in host and symbiont biomass concentrations of S. hystrix 

at control site wherefore those figures are not presented here but can be looked up in the 

appendix (Fig.13-14, p. 49-50). 

Light control at vent site: 

Coral host and symbiont biomass of S. hystrix showed an increase in the light at the vent site at 

the end of the experiment (Table 19; Fig. 10). 

Light control: vent versus control site: 

S. hystrix showed elevated coral host biomass values at the end of the experiment while the 

symbiont biomass was lower at the beginning of the study (Table 19; Fig. 10). 

Light control versus light exclusion at vent site: 

Coral and symbiont biomass in dark-treated S. hystrix were clearly elevated at the beginning and 

in the middle of the experiment compared to light treated nubbins (Table 19; Fig. 10). 
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Figure 10 Biomass concentration of Seriatopora hystrix over a time period of 17 days at vent (pH 7.8 and pCO2 862 ppm) 
site: coral (a) and symbiont (b). Central tendency box plots (median as solid line with 25th and 75th percentile and non-outlier 
range). Asterisks indicate results of parametric t-test / non-parametric rank sum test between treatments (light (white) and dark 
(grey)) and sampling date: Below lines light versus dark treatment at each point in time, above lines comparison to condition at 
day 2: left side: light treatment, right side: dark treatment. Significance levels: *p<0.05, **p<0.01, ***p<0.001. See Table 19 for 
detailed results.  
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3.3 Coral host and symbiont protein concentration 

Light control at vent site:  

Symbiont and coral protein concentrations of S. hystrix showed clearly declined values at the end 

of the experiment (Table 20; Fig. 12) whereas symbiont protein concentrations of P. lutea were 

clearly elevated at the vent site at the end of the experiment (Table 10; Fig. 11b). 

Light control versus light exclusion at vent site: 

Both coral and symbiont protein concentrations of S. hystrix in the dark at the vent site were 

clearly lower than the light controls right from the beginning of the experiment (Table 20; Fig. 

12). 

Light exclusion at vent site: 

Symbiont protein concentrations of S. hystrix were clearly lower at the end compared to the 

beginning of the experiment (Table 20; Fig. 12b). 
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Figure 11 Protein concentration of Porites lutea over a time period of 16 days, at vent (pH 7.8 and pCO2 862 ppm) site: coral 
(a) and symbiont (b). Central tendency box plots (median as solid line with 25th and 75th percentile and non-outlier range). 
Asterisks indicate results of parametric t-test / non-parametric rank sum test between treatments (light (white) and dark (grey)) 
and sampling date: Below lines light versus dark treatment at each point in time, above lines comparison to condition at day 3: 
left side: light treatment, right side: dark treatment. Significance levels: *p<0.05, **p<0.01, ***p<0.001. See Table 10 for 
detailed results.  

 

 

     * 
  



Results 

23 
 

 

Figure 12 Protein concentration of Seriatopora hystrix over a time period of 17 days at vent (pH 7.8 and pCO2 862 ppm) site: 
coral (a) and symbiont (b). Central tendency box plots (median as solid line with 25th and 75th percentile and non-outlier range). 
Asterisks indicate results of parametric t-test / non-parametric rank sum test between treatments (light (white) and dark (grey)) 
and sampling date: Below lines light versus dark treatment at each point in time, above lines comparison to condition at day 2: 
left side: light treatment, right side: dark treatment. Significance levels: *p<0.05, **p<0.01, ***p<0.001. See Table 20 for 
detailed results.  
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4. Discussion 

4.1 Porites lutea 

4.1.1 Ocean acidification (OA) and light control conditions 

Based on the results of the present study it can be assumed that Porites lutea did benefit 

from elevated pCO2 under normal light conditions and was probably even able to stimulate its 

photosynthetic rates (cf. Dunne, 2010; Strahl et al., 2015). These findings are concurrent with 

former studies where cover of massive Porites spp. was at least doubled at the vent site 

(Fabricius et al., 2011; Strahl et al., 2015). Although pigment concentrations of P. lutea did not 

change throughout the experiment at the vent site per se, photosynthetic pigment concentrations 

were clearly increased compared to the control (Fig. 4-9a, b, Table 8). Elevated pCO2 conditions 

under normal light were probably worthwhile for the algae to invest more energy into increasing 

pigment concentrations and thus, a more efficient photosynthetic rate (Dunne, 2010). It was 

found by Vogel et al. (2015) that corals suffer less from OA under normal light conditions than 

under reduced light intensity, explained by the fact that reduced photosynthetic active radiation 

(PAR) and high pCO2 enhance each other (Dunne, 2010). Photosynthesis works against OA by 

enhancing pH inside the coral´s cells and on its surface (Vogel et al., 2015) and also increases Ωa 

(de Beer et al., 2000) stimulating the deposition of CaCO3 (Al-Horani et al., 2003).  

The assumption of an increased photosynthetic rate is also supported by the fact that the 

zooxanthellate protein concentrations in vent nubbins were clearly increased at the end of the 

study compared to protein concentrations in control nubbins under same light conditions which 

stayed unchanged (Fig. 11, Table 10). It can be assumed that the zooxanthellae produced amino 

acids coming from fixed CO2 (Hofmann & Kremer, 1981; Streamer et al., 1993). Neither coral 

protein (Fig. 11, Table 10) nor coral or symbiont biomass concentrations however changed 

during the study period in the light controls (Fig. 13, Table 9). This could be due to a lack or due 

to a not increased nutrient transfer from the algae to the coral for an additional buildup of 

proteins and biomass (Trench, 1993). It is also possible that the experimental duration was too 

short. 

Algae from the genus Symbiodinium are haploid and the dinoflagellates living in symbiosis 

divide only mitotically. The cell cycle is both light and dark dependent. G1 to S phase and 

transition of S phase to G2/M phase happens during light and G2/M to G1 phase happens during 
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darkness (Smith and Muscatine, 1999; reviewed in Stambler, 2011, published in Dubinsky & 

Stambler, 2011) (G1 phase: algal cell growth; S phase: DNA doubling; G2 phase: cell 

preparation for mitosis (Alberts et al., 2004)). There is different information regarding doubling 

time of zooxanthellae in symbiosis. As reviewed in Stambler (2011), doubling time in 

zooxanthellae in the host is about 8 days without nutrient limitation. But under oligotroph 

conditions, doubling times can be extended to 70-100 days. Instead, Muscatine et al. (1984) 

observed division rates of symbiotic dinoflagellates in the coral S. pistillata under normal 

nutrient conditons under normal light and shade conditions. Algal cells doubled once within ~ 77 

days during normal light and once within ~ 106 days during shade conditions and therefore 1-2 

orders of magnitude lower than in free living dinoflagellates (Taylor, 1978). Thus, the division 

rate also depends on the type of zooxanthellae, light conditions, seasonal patterns and if they are 

living in symbiosis or in culture (reviewed in Stambler, 2011). But according to the different 

studies, it can be assumed that the doubling rate of symbiotic dinoflagellates is very slow in 

general. Thus, a change in symbiont biomass was unlikely to be detected within the short 

experimental duration of 16 days. It is also known, that the coral expels algae in case of a rapid 

increase or due to environmental changes (Stambler, 2011, reviewed in Dubinsky & Stambler, 

2011), which is another factor which should be taken into account.  

Zooxanthellae transfer up to 99% of their photosynthetic products to the coral (Muscatine 

and Cernichiari, 1969) but not only the amount but also the quality of the transferred organic 

material is important for coral tissue buildup. If transferred nutrients consist mainly of carbon 

and only little of nitrogen they will not preferentially used for coral tissue build up but rather be 

used as an energy resource (Muscatine et al., 1984). As nutrient content was not tested during 

this study it can only be assumed that an increase of coral protein and biomass content is very 

likely in a long-term perspective. 

4.1.2 OA and light exclusion 

      In the dark treatment at the vent site, concentrations of all pigments (Fig. 4-7a, 9a; Table 1) 

(except for diatoxanthin (Fig. 8a, Table 1)) clearly decreased. Photosynthesis is light dependent 

and main functions of photosynthetic pigments are light absorption, light harvesting and 

photoprotection (Wright et al., 1997). Thus, if light is absent, photosynthesis is no longer 

performable as light energy is needed for activation of the reaction center (RC) and by this the 
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zooxanthellae do not need to invest any energy in keeping it up and do not gain any energy from 

it. This explains the decrease in pigment concentration. 

 Opposed to the general pigment decrease, concentrations of diatoxanthin (Fig. 8a, b, 

Table 1) were clearly increased during light exclusion at both vent and control site. Diatoxanthin 

and diadinoxanthin are part of the diadinoxanthin cycle, a photoprotective mechanism (Demers 

et al., 1991; Arsalane, et al. 1994; Wright et al., 1997; Kirk, 2011) which enables excess light 

energy to be dissipated as heat (Brown et al., 1999). Diatoxanthin epoxidase (DEP) transforms 

diatoxanthin into diadinoxanthin (Gross & Jakob, 2010). This enzyme is not only completely 

inhibited during high light conditions due to the light-driven proton gradient (Mewes and Richter 

2002; Goss et al. 2006) but also during darkness due to a lack of NADPH (that can only be 

produced during light (Wright et al., 1997)), which is an essential cofactor to DEP. Thus, 

diatoxanthin concentrations increase during light exclusion as it cannot be converted backward 

into diadinoxanthin (Fig. 17; appendix p. 53) (Hager, 1975). 

Despite of the clear changes in pigment concentrations however, protein contents of both, 

coral host and algal symbiont, did not change during the dark treatment (Fig. 11, Table 10). This 

could be explained by a lack of photosynthesis on the one hand, and by this, a lack of any further 

synthesis of photosynthates and on the other hand by a slowed down metabolism of the coral. 

This assumption can be supported by the fact that biomass concentrations did not change (Fig. 

13 in appendix, Table 9) and P. lutea is a very slow growing coral (Veron, 2000). But as 

mentioned before, biomass buildup is a rather long-term process and changes are unlikely to be 

detected within a 16-day period. Stagnation in symbiont biomass concentrations could also be 

due to the fact, that parts of the algal cell cycle are light dependent (Smith & Muscatine, 1999; 

reviewed in Stambler, 2011, published in Dubinsky & Stambler, 2011). So, in constant darkness, 

it can be assumed that the cell cycle is ground to a halt and does not pass onto the G1 phase. 

However, Fitt (2000) still detected a low mitotic index of the observed zooxanthellae in the 

hydroid Myrionema amboinense which were kept in constant darkness. But anyhow, it can be 

assumed that cell division of symbiotic dinoflagellates is much slower during darkness than 

during normal light conditions. Light is not only necessary for the mitosis of the zooxanthellae. 

Photosynthesis provides carbon skeletons which are essential for assimilation of dissolved 

inorganic nitrogen (DIN) and for the completion of cytokinesis (Fitt, 2000). 

Another explanation for the unchanged protein and biomass content of P. lutea could be 

nutrient gathering from heterotrophic feeding. During night, hermatypic corals are generally able 
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to catch food from surrounding waters (Dana, 1853; Birkeland, 1997; Osborne, 2000). Feeding 

on zooplankton enables the coral to gather nitrogen-rich nutrients which are mainly used for 

biomass build up (Fitt, 2000). This parameter was not tested during this study but as former 

investigations show (Edmunds & Davies, 1986; Grottoli et al., 2006), Porites spp. does mainly 

rely on autotrophic feeding. Grottoli et al. (2006) found evidence during an initiated 30 day 

bleaching event by the fact that Porites spp. meets its daily metabolic energy (DME) by using up 

existing energy reserves and mostly relies on organic carbon provided by zooxanthellar 

photosynthesis (only 21–35% of their DME demand was met heterotrophically). 

Comparing dark treatments between vent and control site, no clear changes in pigment 

(Fig. 4a, b, Table 7) concentrations as well as biomass (Fig. 13 in appendix, Table 9) and protein 

(Fig. 11, Table 10) content of P. lutea and its symbiont could be detected. This leads to the 

assumption that there were no additive effects of OA and light exclusion in contrast to 

observations made by Vogel et al. (2015). Actually, OA should have a higher impact on corals 

under light exclusion as both symbiont and host respire and produce additional CO2. At the same 

time, no CO2 will be fixed as photosynthesis cannot work due to a lack of light. This in turn 

leads to enhanced reduction of pH and Ωa and hence, CaCO3 deposition is inhibited which 

eventually results in dissolution of the coral´s skeleton. Furthermore, without photosynthesis the 

coral receives a lack of energy and thus, it will no longer be able to grow (Vogel et al., 2015). 

But as P. lutea does not seem to be affected from both OA and light exclusion, it might be able 

to keep its energy demands on a minimum level and / or to still actively export excess H+ coming 

from elevated pCO2 despite of darkness. It might also have a high density of active ion 

exchanger Ca2+ -ATPase in their calicoblastic cells which would facilitate a control of its inner 

pH (also suggested in Strahl et al., 2015). Essential energy might come from a higher respiration 

rate and as examined in Strahl et al. (2015), dark respiration rate of Porites spp. was particularly 

increased during a similar length of light exclusion (14 days). But again, changes in biomass 

concentration are not informative regarding the experimental duration and thus, changes or non-

changes should not be used for any conclusions regarding the effect of OA and light exclusion 

on the coral P. lutea. 
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4.2 Seriatopora hystrix 

4.2.1 OA and light control conditions 

Protein concentrations of both coral host and algal symbiont decreased in the light control at 

the vent site (Fig. 12, Table 20). It can be assumed that the zooxanthellae were likely not able to 

transfer additional photosynthates (amino acids) to the coral host possibly because of their own 

demand for it. It is also possible that S. hystrix needed to invest any available energy reserves in 

actively exporting excess H+, caused from the high pCO2 and low pH conditions, out of the 

subcalicoblastic space (Zoccola et al., 2004) and thus, suffered from OA. Similar observations 

were made during former studies (cf. Fabricius et al., 2011; Strahl et al., 2015) where the 

abundance of branching corals such as S. hystrix was clearly reduced at the vent site and the 

corals were obviously suffering from OA.  

Pigment concentrations stayed unchanged in the light control treatments and comparing the 

vent and control site, no clear trend was detectable regarding higher or normal pCO2 conditions. 

Concentrations of chlorophyll a (Fig. 4c, d), c2 (Fig. 5c, d) and peridinin (Fig. 6c, d) increased 

initially at the control site, but were similar to the ones at the vent site until the end of the 

experimental period (Table 18). Obviously, the coral was not able to benefit from additional CO2 

concentrations and this in turn means that S. hystrix suffers from OA over time which was firstly 

recognizable in the decreased protein content at the end of the study. Strahl et al. (2015) also 

found that oxygen production rates were slightly lower at the vent site. The increased biomass 

contents of both coral and symbiont (Fig. 10; 14 in appendix, Table 19) are not very meaningful 

as already mentioned because biomass buildup in corals and its symbiont can be a very slow 

process (Taylor, 1978; reviewed in Stambler, 2011, published in Dubinsky & Stambler, 2011). 

So it is possible, that the higher biomass concentrations of the coral and its algae in dark treated 

nubbins compared to those of light control did still remain from former environmental 

conditions. 

4.2.2 OA and light exclusion 

Under high pCO2 and light-exclusion, symbiont protein concentrations were clearly 

decreased within the 17-day-period (Fig. 12b, Table 20). Similarly pigment concentrations 

declined strongly until the end of the study (Fig. 4-7c, d; 9c, d; Table 11) except for diatoxanthin 
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(8c, d, Table 11), which showed an increase in the dark. The latter is equally to P. lutea and 

might also be due to the lack of NAD(P)H and thus, inhibited DEP. Due to the absence of light, 

there was no need for the algae to invest energy in keeping pigment concentrations up and as 

photosynthesis was prevented, no photosynthates were produced and used to restock algal and/or 

coral energy reserves (protein content). Therefore a decrease in biomass would have been 

expected but the opposite was detected until the mid of the 17 days of experimental period 

(Fig.10; 14 in appendix, Table 19). This could be again due to short length of the experiment as 

biomass buildup is time-consuming and it is unlikely, that changes can be detected after 10 or 17 

days. It is also possible that the coral switched to heterotrophic feeding while zooxanthellae were 

put out of action.  

As dark-treated protein (Fig. 12; Table 20) concentrations of both coral and algae were 

clearly decreased at the vent compared to the control site, it can be assumed, that light exclusion 

and OA did additively affect S. hystrix. Similar findings were published by Vogel et al. (2015) 

concerning Acropora millepora, similary shaped as S. hystrix (Veron, 2000).  
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5. Conclusions and Perspectives 

Overall the present study showed that P. lutea did not seem to suffer from OA under normal 

light conditions but rather benefited from enhanced CO2 concentrations. P. lutea is apparently 

very effective in exporting excess H+ out of the calcifying fluid and by this not limited in using 

additional CO2 for a productive photosynthesis. But as there is only a slight trend visible at the 

end of the present experiment, which lasted only for a limited number of days, conclusions 

should be made cautiously. A long-term study would be more useful to strengthen this 

conclusion.  

S. hystrix on the other side did suffer from OA even under light conditions during the time of the 

experiment documented in the decrease of energy reserves in both, coral host and symbiont. 

Thus, the coral has probably more problems with actively exporting excess H+ ions and is not 

able to compensate this energy expenditure by the use of the additional CO2. Due to a lack of 

clear difference between vent and control treatments however, final conclusions should be drawn 

cautiously, especially because the S. hystrix might have suffered from the experimental setup 

itself indicated by a decrease in pigment concentrations in the light control treatments (Fig. 4-8d, 

Table 29). 

Regarding OA and light exclusion, both coral taxa were expected to suffer most as there was a 

lack of photosynthetic support from the zooxanthellae. Surprisingly, P. lutea was completely 

unaffected under these conditions and is probably quite independent from its zooxanthellae over 

a limited period of time. In comparison, S. hystrix was more fragile than P. lutea as symbiotic 

protein concentrations started to decrease while they stayed unaffected in P. lutea. Thus, S. 

hystrix relies more on its symbiotic algae than P. lutea. 

Regarding future climate change scenarios, P. lutea is expected to have rather no problems 

dealing with OA and is expected to be a dominant coral species in future coral reefs. This can 

already be seen at natural volcanic carbon dioxide seeps in Papua New Guinea (Fabricius et al, 

2011). In contrast, S. hystrix seems to be more fragile and is awaited to be less abundant in coral 

reefs of the future. This can also be observed at carbon dioxide seeps in PNG as cover of 

branching corals was reduced three fold compared to control sites (Fabricius, 2011). Anyhow, 

the symbiosis is essential for the welfare of the corals. Thus, not only OA can be a serious threat 

to coral reefs but also a decreasing water quality and linked turbidity. The latter can either be 

caused from coastal runoff, which results from forest clearing, or from dredging (reviewed in 
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Rogers, 1990) which is practiced by the fishing industry. Thus, additive effects of OA and 

increasing turbidity could be a serious problem to sensitive corals such as S. hystrix.  
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7. Appendix 

7.1 Raw data of Porites lutea and Seriatopora hystrix  

The raw data of both corals can be found on the enclosed CD. 

7.2 Statistical analysis  

Parametric test: t-test (Shapiro-Wilk) 

Non-parametric test: Rank sum test (Mann-Whitney) 

 

7.2.1 Pigment concentration of Porites lutea 

 

Table 1: Pigment concentration of Porites lutea: light exclusion at vent site 

Pigment  Comparison day 
3 + 16 

 
 

    
 

Chlorophyll a p <0.001 
 Test type parametric 
Chlorophyll c2 p 0.004 
 Test type non-parametric 
Peridinin p 0.038 
 Test type non-parametric 
Diadinoxanthin p 0.001 
 Test type parametric 
Diatoxanthin p 0.055 
 Test type parametric 
ß-carotene p 0.585 
 Test type parametric 

 

Table 2: Pigment concentration of Porites lutea: light control at vent site 

Pigment  Comparison day 
3+16 

Chlorophyll a p 0.867 
 Test type non-parametric 
Chlorophyll c2 p 0.694 
 Test type non-parametric 
Peridinin p 0.955 
 Test type non-parametric 
Diadinoxanthin p 0.463 
 Test type non-parametric 
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Diatoxanthin p 0.656 
 Test type parametric 
ß-carotene p 1.000 
 Test type non-parametric 

 

Table 3: Pigment concentration of Porites lutea: light control versus light exclusion at vent site 

Pigment  Day 3 Day 16 
Chlorophyll a p 0.477 0.001 
 Test type parametric non-parametric 
Chlorophyll c2 p 0.554 0.001 
 Test type parametric non-parametric 
Peridinin p 0.542 0.023 
 Test type parametric parametric 
Diadinoxanthin p 0.145 0.001 
 Test type parametric non-parametric 
Diatoxanthin p 0.383 0.040 
 Test type non-parametric non-parametric 
ß-carotene p 0.578 0.295 
 Test type parametric parametric 

 

Table 4: Pigment concentration of Porites lutea: light exclusion at control site 

Pigment  Comparison 
day 3 + 16 

Chlorophyll a p <0.001 
 Test type parametric 
Chlorophyll c2 p 0.001 
 Test type non-parametric 
Peridinin p <0.001 
 Test type parametric 
Diadinoxanthin p <0.001 
 Test type parametric 
Diatoxanthin p 0.034 
 Test type non-parametric 
ß-carotene p 0.007 
 Test type parametric 

 

Table 5: Pigment concentration of Porites lutea: light control at control site 

Pigment  Comparison 
day 3 + 16 

Chlorophyll a p 0.934 
 Test type parametric 
Chlorophyll c2 p 0.641 
 Test type parametric 
Peridinin p 0.818 
 Test type parametric 
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Diadinoxanthin p 0.841 
 Test type parametric 

Diatoxanthin p 0.959 
  Test type non-parametric 

ß-carotene p 0.919 
 Test type parametric 

 

Table 6: Pigment concentration of Porites lutea: light control versus light exclusion at control site 

Pigment  Day 3 Day 16 
Chlorophyll a p 0.012 <0.001 
 Test type parametric parametric 
Chlorophyll c2 p 0.016 <0.001 
 Test type parametric parametric 
Peridinin p 0.039 <0.001 
 Test type parametric parametric 
Diadinoxanthin p 0.023 <0.001 
 Test type parametric parametric 
Diatoxanthin p 0.348 0.007 
 Test type parametric parametric 
ß-carotene p 0.034 0.248 
 Test type parametric parametric 

 

Table 7: Pigment concentration of Porites lutea: light exclusion: vent versus control site 

Pigment  Day 3 Day 16 
Chlorophyll a p 0.652 0.074 
 Test type parametric parametric 
Chlorophyll c2 p 0.541 0.290 
 Test type parametric non-parametric 
Peridinin p 0.833 0.244 
 Test type parametric non-parametric 
Diadinoxanthin p 0.508 0.057 
 Test type parametric non-parametric 
Diatoxanthin p 0.303 0.169 
 Test type parametric parametric 
ß-carotene p 0.639 0.290 
 Test type parametric non-parametric 

 

Table 8: Pigment concentration of Porites lutea: light control: vent versus control site 

Pigment  Day 3 Day 16 
Chlorophyll a p <0.001 0.028 
 Test type parametric non-parametric 
Chlorophyll c2 p <0.001 0.010 
 Test type parametric non-parametric 
Peridinin p 0.002 0.028 
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 Test type parametric non-parametric 
Diadinoxanthin p <0.001 0.021 
 Test type parametric non-parametric 
Diatoxanthin p 0.189 0.124 
 Test type non-parametric parametric 
ß-carotene p 0.001 0.050 
 Test type parametric non-parametric 

 

 

7.2.2 Biomass concentration of Porites lutea 

 

Table 9: Biomass concentration of Porites lutea 

site treatment day organism test-type p-value 
control light control 3 + 16 coral parametric 0.445 

   symbiont non-parametric 0.361 
 light exclusion 3 + 16 coral non-parametric 0.397 
   symbiont parametric 0.204 
 light control 

versus 
exclusion 

3 coral  parametric 0.030 

   symbiont non-parametric 0.916 
  16 coral parametric 0.468 
   symbiont parametric 0.022 

vent light control 3 + 16 coral non-parametric 0.694 
   symbiont parametric 0.935 
 light exclusion 3 + 16 coral non-parametric 0.902 
   symbiont parametric 0.237 
 light control 

versus 
exclusion 

3 coral non-parametric 0.017 

   symbiont non-parametric 0.261 
  16 coral parametric 0.902 
   symbiont parametric 0.599                   

vent versus 
control 

light exclusion 3 coral parametric 0.341 

   symbiont non-parametric 1.000 
  16 coral non-parametric 0.574 
   symbiont parametric 0.212 
 light control 3 coral non-parametric 0.535 
   symbiont parametric 0.801 
  16 coral parametric 0.457 
   symbiont parametric 0.015 
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7.2.3 Protein concentration of Porites lutea 

 

Table 10: Protein concentration of Porites lutea 

site treatment day organism test-type p-value 
control light control 3 + 16 coral non-parametric 0.388 

   symbiont parametric 0.124 
 light exclusion 3 + 16 coral non-parametric 0.480 
   symbiont non-parametric 0,916 
 light control 

versus 
exclusion 

3 coral  non-parametric 0,825 

   symbiont non-parametric 0,011 
  16 coral non-parametric 0,178 
   symbiont non-parametric 0,413 

vent light control 3 + 16 coral parametric 0,573 
   symbiont parametric 0,035 
 light exclusion 3 + 16 coral parametric 0,131 
   symbiont parametric 0,296 
 light control 

versus 
exclusion 

3 coral parametric 0,372 

   symbiont parametric 0,907 
  16 coral non-parametric 0,336 
   symbiont parametric 0,197 

vent versus 
control 

light control 3 coral non-parametric 0,830 

   symbiont parametric 0,324 
  16 coral parametric 0,295 
   symbiont parametric 0,065 
 light exclusion 3 coral non-parametric 0,902 
   symbiont non-parametric 0,097 
  16 coral non-parametric 0,122 
   symbiont non-parametric 0,832 
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7.2.4 Pigment concentration of Seriatopora hystrix 

 

Table 11: Pigment concentration of Seriatopora hystrix: light exclusion at vent site 

Pigment  Comparison 
day 2 + 10 

Comparison 
day 2 + 17 

Comparison 
day 10 + 17 

Chlorophyll a p 0.721 0.003 0.006 
 Test type non-parametric parametric non-parametric 
Chlorophyll c2 p 0.500 0.751 0.006 
 Test type parametric parametric non-parametric 
Peridinin p 0.798 0.001 <0.001 
 Test type non-parametric parametric non-parametric 
Diadinoxanthin p 0.798 <0.001 0.004 
 Test type non-parametric parametric non-parametric 
Diatoxanthin p 0.383 0.336 0.963 
 Test type parametric non-

 
parametric 

ß-carotene p 0.021 0.337 0.006 
 Test type non-parametric parametric non-parametric 

 

Table 12: Pigment concentration of Seriatopora hystrix: light control at vent site 

Pigment  Comparison 
day 2 + 10 

Comparison 
day 2 + 17 

Comparison 
day 10 + 17 

Chlorophyll a p 0.878 0.574 0.382 
 Test type non-parametric non-parametric non-parametric 
Chlorophyll c2 p 0.382 0.105 0.505 
 Test type non-parametric non-parametric non-parametric 
Peridinin p 0.959 0.279 0.328 
 Test type non-parametric non-parametric non-parametric 
Diadinoxanthin p 0.234 0.798 0.105 
 Test type non-parametric non-parametric non-parametric 
Diatoxanthin p 0.785 0.173 0.174 
 Test type parametric parametric parametric 
ß-carotene p 0.130 0.282 0.574 
 Test type non-parametric parametric non-parametric 

 

Table 13: Pigment concentration of Seriatopora hystrix: light control versus light exclusion at vent site 

Pigment  Day 2 Day 10 Day 17 
Chlorophyll a p 0.456 0.279 0.004 
 Test type parametric 

 
non-parametric non-parametric 

 Chlorophyll c2 p 0.477 0.645 0.014 
 Test type parametric non-parametric 

 
non-parametric 
 Peridinin p 0.319 0.234 0.006 

 Test type parametric non-parametric non-parametric 
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Diadinoxanthin p 0.128 0.028 0.004 
 Test type parametric non-parametric non-parametric 
Diatoxanthin p 0.681 0.444 0.009 
 Test type parametric parametric non-parametric 
ß-carotene p 0.227 0.798 0.053 
 Test type parametric non-parametric parametric 

 

Table 14: Pigment concentration of Seriatopora hystrix: light exclusion at control site 

Pigment  Day 2 Day 10 Day 17 
Chlorophyll a p 0.196) 0.520 <0.001 
 Test type parametric 

 
parametric parametric 

Chlorophyll c2 p 0.121 0.216 <0.001 
 Test type parametric parametric parametric 
Peridinin p 0.166 0.953 <0.001 
 Test type parametric non-parametric parametric 
Diadinoxanthin p 0.220 0.439 <0.001 
 Test type parametric parametric parametric 
Diatoxanthin p 0.502 0.444 0.029 
 Test type parametric non-parametric non-parametric 
ß-carotene p 0.749 0.345 0.025 
 Test type parametric parametric parametric 

 

Table 15: Chlorophyll a concentration in Seriatopora hystrix: light control at control site 

Pigment  Comparison 
day 2 + 10 

Comparison 
day 2 + 17 

Comparison 
day 10 + 17 

Chlorophyll a p 0.028 0.004 0.462 
 Test type parametric parametric parametric 
Chlorophyll c2 p 0.002 0.002 0.674 
 Test type parametric parametric parametric 
Peridinin p 0.035 0.003 0.243 
 Test type parametric parametric parametric 
Diadinoxanthin p 0.732 0.067 0.109 
 Test type parametric parametric parametric 
Diatoxanthin p 0.018 0.065 0.002 
 Test type parametric non-parametric parametric 
ß-carotene p 0.282 0.613 0.216 
 Test type non-parametric parametric parametric 
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Table 16: Pigment concentration of Seriatopora hystrix: light control versus light exclusion at control site 

Pigment  Comparison 
day 2 + 10 

Comparison 
day 2 + 17 

Comparison 
day 10 + 17 

Chlorophyll a p 0.818 <0.001 0.004 
 Test type parametric non-parametric non-parametric 
Chlorophyll c2 p 0.598 <0.001 0.004 
 Test type parametric parametric non-parametric 
Peridinin p 0.609 <0.001 0.034 
 Test type parametric non-parametric non-parametric 
Diadinoxanthin p 0.841 <0.001 0.004 
 Test type parametric non-parametric non-parametric 
Diatoxanthin p 0.015 0.209 0.112 
 Test type non-parametric non-parametric non-parametric 
ß-carotene p 0.087 0.046  0.006 
 Test type parametric parametric non-parametric 

 

Table 17: Pigment concentration of Seriatopora hystrix: light exclusion: vent versus control site 

Pigment  Day 2 Day 10 Day 17 
Chlorophyll a p 0.189 0.291 0.009 
 Test type non-parametric parametric parametric 
Chlorophyll c2 p 0.091 0.203 0.023 
 Test type parametric parametric parametric 
Peridinin p 0.072 0.361 0.025 
 Test type non-parametric non-parametric parametric 
Diadinoxanthin p 0.336 0.218 0.003 
 Test type non-parametric parametric parametric 
Diatoxanthin p 0.225 0.160 0.535 
 Test type parametric parametric non-parametric 
ß-carotene p 0.172 0.163 0.239 
 Test type parametric non-parametric parametric 

 

Table 18: Pigment concentration of Seriatopora hystrix: light control: vent versus control site 

Pigment  Day 2 Day 10 Day 17 
Chlorophyll a p 0.022 0.950 0.878 
 Test type parametric non-parametric non-parametric 
Chlorophyll c2 p 0.017 0.852 0.442 
 Test type parametric non-parametric non-parametric 
Peridinin p 0.011 0.345 0.721 
 Test type parametric non-parametric non-parametric 
Diadinoxanthin p 0.075 0.228 0.505 
 Test type parametric non-parametric non-parametric 
Diatoxanthin p 0.744 0.215 0.798 
 Test type parametric parametric non-parametric 
ß-carotene p 0.368 0.662 0.439 
 Test type parametric non-parametric parametric 
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7.2.5 Biomass concentration of Seriatopora hystrix 

 

Table 19: Biomass concentration of Seriatopora hystrix 

site treatment day organism test-type p-value 
control light control 2 + 10 coral parametric 0.096 

   symbiont parametric 0.457 
  2 + 17 coral non-parametric 0.234 
   symbiont non-parametric 0.505 
  10 + 17 coral  non-parametric 0.491 
   symbiont parametric 0.904 
 light exclusion 2 + 10 coral parametric 0.215 
   symbiont non-parametric 0.290 
  2 + 17 coral non-parametric 0.620 
   symbiont non-parametric 0.805 
  10 + 17 coral parametric 0.302 
   symbiont parametric 0.359 
 light control 

versus 
exclusion 

2 coral  non-parametric 0.397 

   symbiont non-parametric 0.955 
  10 coral parametric 0.032 
   symbiont parametric 0.384 
  17 coral non-parametric 0.867 
   symbiont non-parametric 0.536 

vent light control 2 + 10 coral parametric 0.083 
   symbiont non-parametric 0.005 
  2 + 17 coral parametric <0.001 
   symbiont non-parametric <0.001 
  10 + 17 coral parametric 0.009 
   symbiont parametric 0.006 
 light exclusion 2 + 10 coral non-parametric 0.721 
   symbiont parametric 0.351 
  2 + 17 coral non-parametric 0.878 
   symbiont non-parametric 0.279 
  10 + 17 coral  parametric 0.378 
   symbiont non-parametric 0.382 
 light control 

versus 
exclusion 

2 coral non-parametric 0.007 

   symbiont parametric <0.001 
  10 coral non-parametric 0.038 
   symbiont parametric 0.047 
  17 coral non-parametric 0.505 
   symbiont non-parametric 0.442 

vent versus 
control 

light control 2 coral parametric 0.196 

   symbiont parametric <0.001 
  10 coral parametric 0.051 
   symbiont non-parametric 0.158 
  17 coral non-parametric 0.007 
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   symbiont non-parametric 0.195 
 light exclusion 2 coral non-parametric 0.029 

   symbiont non-parametric 0.779 
  10 coral parametric 0.236 
   symbiont parametric 0.394 
  17 coral non-parametric 0.072 
   symbiont non-parametric 0.189 

 

 

 

7.2.6 Protein concentration of Seriatopora hystrix 

 

Table 20: Protein concentration of Seriatopora hystrix 

site treatment day organism test-type p-value 
control light control 2 + 10 coral non-parametric 0.573 

   symbiont parametric 0.159 
  2 + 17 coral non-parametric 0.442 
   symbiont parametric 0.043 
  10 + 17 coral  non-parametric 0.852 
   symbiont parametric 0.722 
 light exclusion 2 + 10 coral parametric 0.137 
   symbiont non-parametric 0.266 
  2 + 17 coral parametric 0.498 
   symbiont non-parametric 0.165 
  10 + 17 coral non-parametric 1.000 
   symbiont parametric 0.695 
 light control 

versus 
exclusion 

2 coral  parametric 0.266 

   symbiont non-parametric 0.463 
  10 coral non-parametric 0.263 
   symbiont non-parametric 0.953 
  17 coral non-parametric 0.463 
   symbiont parametric 0.767 

vent light control 2 + 10 coral non-parametric 1.000 
   symbiont parametric 0.248 
  2 + 17 coral non-parametric 0.005 
   symbiont non-parametric <0.001 
  10 + 17 coral non-parametric 0.003 
   symbiont non-parametric 0.001 
 light exclusion 2 + 10 coral non-parametric 0.195 
   symbiont non-parametric 0.574 
  2 + 17 coral non-parametric 0.038 
   symbiont non-parametric 0.038 
  10 + 17 coral  non-parametric 0.574 
   symbiont parametric 0.150 
 light control 2 coral non-parametric 0.015 
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versus 
exclusion 

   symbiont non-parametric 0.005 
  10 coral non-parametric 0.001 
   symbiont parametric 0.013 
  17 coral parametric 0.002 
   symbiont parametric 0.008 

vent versus 
control 

light control 2 coral parametric 0.068 

   symbiont parametric 0.025 
  10 coral non-parametric 0.228 
   symbiont parametric 0.058 
  17 coral parametric 0023 
   symbiont parametric 0.188 
 light exclusion 2 coral parametric 0.145 
   symbiont non-parametric 0.232 
  10 coral non-parametric 0.061 
   symbiont non-parametric 0.413 
  17 coral non-parametric 0.014 
   symbiont parametric 0.006 
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7.3 Additional figures 

7.3.1 Biomass concentration of Porites lutea  

 

  

Figure 13 Biomass concentration of Porites lutea over a time period of 16 days at vent (pH 7.8 and pCO2 862 ppm) and 
control (pH 8.1 and pCO2 323 ppm) site: coral (a, b) and symbiont (c, d). Central tendency box plots (median as solid line with 
25th and 75th percentile and non-outlier range). Asterisks indicate results of parametric t-test / non-parametric rank sum test 
between treatments (light (white) and dark (grey)) and sampling date: Below lines light versus dark treatment at each point in 
time, above lines comparison to condition at day 3: left side: light treatment, right side: dark treatment. Significance levels: 
*p<0.05, **p<0.01, ***p<0.001. See Table 9 for detailed results.  
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7.3.2 Biomass concentration of Seriatopora hystrix 

 
 

 

Figure 14 Biomass concentration of Seriatopora hystrix over a time period of 17 days at vent (pH 7.8 and pCO2 862 ppm) 
and control (pH 8.1 and pCO2 323 ppm) site: coral (a, b) and symbiont (c, d). Central tendency box plots (median as solid line 
with 25th and 75th percentile and non-outlier range). Asterisks indicate results of parametric t-test / non-parametric rank sum test 
between treatments (light (white) and dark (grey)) and sampling date: Below lines light versus dark treatment at each point in 
time, above lines comparison to condition at day 2: left side: light treatment, right side: dark treatment. Significance levels: 
*p<0.05, **p<0.01, ***p<0.001. See Table 19 for detailed results.  
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7.3.3 Protein concentration of Porites lutea  

 

Figure 15 Protein concentration of Porites lutea over a time period of 16 days at vent (pH 7.8 and pCO2 862 ppm) and 
control (pH 8.1 and pCO2 323 ppm) site: coral (a, b) and symbiont (c, d). Central tendency box plots (median as solid line with 
25th and 75th percentile and non-outlier range). Asterisks indicate results of parametric t-test / non-parametric rank sum test 
between treatments (light (white) and dark (grey)) and sampling date: Below lines light versus dark treatment at each point in 
time, above lines comparison to condition at day 3: left side: light treatment. right side: dark treatment. Significance levels: 
*p<0.05, **p<0.01, ***p<0.001. See Table 10 for detailed results.  
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7.3.4 Protein concentration of Seriatopora hystrix 

 

Figure 16 Protein concentration of Seriatopora hystrix over a time period of 17 days at vent (pH 7.8 and pCO2 862 ppm) 
and control (pH 8.1 and pCO2 323 ppm) site: coral (a, b) and symbiont (c, d). Central tendency box plots (median as solid line 
with 25th and 75th percentile and non-outlier range). Asterisks indicate results of parametric t-test / non-parametric rank sum 
test between treatments (light (white) and dark (grey)) and sampling date: Below lines light versus dark treatment at each 
point in time, above lines comparison to condition at day 2: left side: light treatment, right side: dark treatment. Significance 
levels: *p<0.05, **p<0.01, ***p<0.001. See Table 20 for detailed results.  
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7.3.5 Scheme of NADPH dependent diatoxanthin epoxidase (DEP)  

 
Figure 17 NADPH dependent diatoxanthin epoxidase (DEP). Activation during light (A) and inactivation during darkness 
(B). For photoprotection, monoepoxide diadinoxanthin (Ddx) is converted into non-epoxide diatoxanthin (Dtx) via 
diadinoxanthin-ep-oxidase (DDE). Thus, Dtx dissipates excess light as heat. DEP catalyzes the reversible reaction. During 
darkness, DEP is inhibitied due to a lack of NADPH which can only be produced via light driven electron (e-) transport. 
Other abbreviations: Ndh: NADPH-dehydrogenase; Le: light energy; NADPH dehydrogenase; PQ: plastoquinone; PQ-Ox: 
plastoquinone oxidase; Fdx: ferredoxin; FNR: ferredoxin-NADP+ oxidoreductase; PS I: photosystem I; PS II: photosystem II; 
Cyt b6 f: cytochrome b6/f complex (Figure modified after Grouneva et al., 2009). 
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