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Abstract 

Amphipoda from the superfamily Lysianassoidea Dana, 1849 play an important role in Southern Ocean benthic 

food webs due to their high biomass, abundance and predominantly scavenging mode of feeding. Our knowledge 

on the lysianassoid fauna, even in well-studied areas of the Western Antarctic Peninsula, is incomplete. Here we 

report the findings of an integrated study of lysianassoid amphipods of Potter Cove, King George Island/ Isla 25 

de Mayo (KGI), combining morphological and molecular species identification (COI barcoding) methods, 

investigating more than 41,000 specimens from baited traps. For comparison, 2039 specimens from the adjacent 

Marian Cove were analysed. Ten lysianassoid species were recorded in the deeper outer Potter Cove, whereas 

the inner cove (<50 m) was dominated by a single species, Cheirimedon femoratus Pfeffer, 1888 (99.44% 

relative abundance). It is hypothesized that the impoverished lysianassoid fauna inside the meltwater-influenced 

inner cove represents a 1model for future conditions along the Western Antarctic Peninsula under conditions of 

increased glacial melting. 
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Abyssorchomene charcoti (Chevreux, 1912) and Orchomenella pinguides Walker, 1903 were recorded in KGI 

waters for the first time. Furthermore, one new lysianassoid amphipod species of the genus Orchomenella Sars, 

1890 is described: Orchomenella infinita sp. n. Seefeldt, 2017. First-time DNA barcode data was established 

for Cheirimedon femoratus, Hippomedon kergueleni Miers, 1875, Orchomenella rotundifrons K.H. Barnard, 

1932 and Orchomenella infinita sp. n. 
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Introduction 

Understanding the eco-functional role of species, communities, and ecosystems are prerequisites for biodiversity 

conservation. This is particularly true for remote and vulnerable environments, such as the Western Antarctic 

Peninsula (WAP) region. The WAP region belongs to one of the most rapidly changing environments worldwide 

caused, inter alia, by the increase of air temperatures and its consequences such as rapid glacier retreats and loss 

of sea ice (see e.g. Gutt 2016; Turner et al. 2005, 2014). Thus, an accurate assessment of species diversity and 

community composition is needed. The Antarctic marine biota is characterized by a surprisingly high species 

richness and a high rate of species endemism, which is generally assumed to be a consequence of the isolating 

effect of the Antarctic Circumpolar Current (Arntz et al. 1997; Brandt 1999; Poulin 2002; Clarke and Johnston 

2003) as well as the effect of glacial and interglacial periods, subsequently isolating and reconnecting shelf 

populations and those on the surrounding slope and in the deep sea (Clarke and Crame 1989; Allcock and 

Strugnell 2012). With over 900 species recorded in the Southern Ocean and more than 500 species in the 

Antarctic region, amphipods represent the dominant taxon among peracarid crustaceans (De Broyer et al. 2007). 

The superfamily Lysianassoidea is one of the key amphipod taxa with respect to species richness, abundance and 

ecological importance in the region. Many lysianassoid species are scavengers, known to gather in enormous 

numbers on large carcasses which they are able to devour within hours or days (e.g. Slattery and Oliver 1986). 

At the same time, they function as an important food source for higher taxa particularly fish, birds and mammals 

(Dauby et al. 2001; De Broyer et al. 2004; Moreira 2015; Moreira et al. 2016). The amphipod scavenger fauna 

can be easily sampled and studied by the deployment of baited traps, an approach which has a century-long 

history of investigations on scavenging amphipods of the world-wide oceans from the shelf to the deep sea (e.g. 

Arntz and Gutt, 1997; De Broyer et al. 2004; Horton et al. 2013; Hurley, 1965; Ingólfsson and Agnarsson, 1999; 

Legeżyńska et al. 2000; Presler, 1986; Walker, 1907; Wickins, 1982). These trap deployments, with which huge 

umbers of specimens could be sampled and new species described, served investigations on marine biodiversity 

in the WAP area from the very beginning of Antarctic research to nowadays (for an overview see De Broyer et 

al. 2011).  

King George Island (KGI) is the largest island of the South Shetland Islands and has three bays: King George 

Bay, Admiralty Bay and Maxwell Bay. The latter two bays consist of many fjord-like inlets. Amongst others, the 

Argentinean scientific station Carlini (formerly known as Jubany), where also the Argentinean-German 

Dallmann Laboratory is situated, is located in Potter Cove, Maxwell Bay. For the last three decades, 

international research has focused on environmental changes caused by the climate-driven retreat of the 
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Fourcade Glacier, increase of water temperature and its consequences, including freshwater runoff, high 

sedimentation and benthic community shifts (e.g. Wiencke et al. 1998, 2008; Rückamp et al. 2011, Quartino et 

al. 2013; Pasotti et al. 2014; Schloss et al. 2014; Falk et al. 2015, Sahade et al. 2015; Fuentes et al. 2016). 

Extensive research data already exists for the amphipod fauna of Admiralty Bay (e.g. Jażdżewski 1981; Presler 

1986; Jażdżewski et al. 1991, 1992, 1995, 2001; Chapelle and Peck 1995; Jażdżewski and Konopacka 1999; 

Jażdżewska 2011), primarily acquired by scientists from the Polish Arctowski station and the Brazilian 

Comandante Ferraz Antarctic Station. The Admiralty Bay Benthos Diversity Database web page (ABBED, 

www.abbed.uni.lodz.pl; Siciński et al. 2011) lists 172 amphipod species, of which 29 belong to the superfamily 

Lysianassoidea (pers. communication A. Jażdżewska), representing six families. Kim et al. (2014) published the 

first amphipod checklist of the sublittoral zone of Marian Cove, one of several fjord-like inlets situated in 

Maxwell Bay. The authors listed 22 amphipod species belonging to twelve families, including two lysianassid 

species. In the studies of Rauschert (1988, 1989, 1990, 1991), focussing on the Fildes Peninsula shore, the south 

western part of KGI, and the Fildes Strait, amphipod data has been published, listing 103 species. However, the 

presence of some of these amphipod species is questionable and needs reevaluation. For example, Rauschert 

(1990, 1991) reported the occurrence of Tryphosella cf. sarsi Bonnier, 1893, a lysianassid species previously 

only known from the North Sea and North Atlantic, and Casaux et al. (1990) as well as Momo et al. (1998) 

reported the occurrence of the deep-sea species Valettia coheres Stebbing, 1888 (moved to the familiy Valettidae 

by Thurston, 1989) in Potter Cove.  

Due to conservative and often slight morphological diagnostic characteristics, species identification of 

lysianassoid amphipods is error-prone. At the same time, accurate species identifications are paramount for a 

multitude of downstream analyses dealing with or relying on ecological and biodiversity data. Here we report the 

results of the first integrative taxonomic study of lysianassoid amphipods of Potter Cove (KGI, Antarctica), 

applying morphological and molecular data to provide up-to-date species delimitation hypotheses and 

examination of the taxonomy of an important group in the Potter Cove scavenging guild. Furthermore, the new 

lysianassid species Orchomenella infinita sp. n. Seefeldt, 2017 is described and species diversity and taxonomic 

composition compared to the lysianassoid amphipod fauna of the adjacent Maxwell Bay and Admiralty Bay. 
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Material & Methods 

Study area and sampling  

The study was conducted at the Argentinean-German Dallmann Laboratory at the Argentinean scientific 

research station Carlini situated at Potter Cove, Maxwell Bay, on King George Island. Potter Cove is divided 

into an outer and inner cove defined by an underwater sill at 30 m depth. While the outer cove is characterized 

by a depth up to 200 m and mainly rocky hard substrate, the inner cove has a maximal depth of 50 m and is 

dominated by soft sediments. Further detailed hydrographical and biological features of the cove can be found in 

Klöser et al. (1994), Wiencke et al. (1998) and Wölfl et al. (2014).  

Scavenging amphipods were sampled using traps made of a perspex hollow cylinder (50 cm length, 10 cm 

diameter, 5 mm wall thickness) closed on one side and equipped with a funnel-shaped entrance on the other side 

(1 cm diameter entrance). The traps were baited with accessable, either entire but dissected or pieces of dead 

Antarctic fish (Notothenioidei: Notothenia rossii Richardson, 1844; N. coriiceps Richardson, 1844; 

Chaenocephalus aceratus (Lönnberg, 1906)) of variable weights (100-250 g). To avoid unnecessarily killings of 

fish specimens as bait, and the given opportunity of a reutilisation of fish specimens from another project on-site, 

the variation of bait species and quantity was depending on their availability. Traps were deployed from a zodiac 

boat in the Antarctic spring/summer season 2014/2015 and summer season 2016 at depths between 12 and 43 m 

depth, positioned at 1 m above the bottom (Fig. 1, Table 1). Due to unpredictable weather conditions, which 

limited the ability of trap recovery, the duration of deployment varied from 44 hours to 65 hours with one 

extreme deviation of 8 days (Table 1; Station ID 02). A comparable number of traps were deployed in the outer 

and inner cove (11 and 9, respectively). In addition, four baited traps were deployed in Marian Cove at depths 

between 20 and 40 m to serve as a comparison with the recent study of Kim et al. (2014).  

Identification and species description 

Specimens were identified morphologically using original species descriptions, taxonomic revisions and 

redescriptions including Barnard K.H. (1932), Bellan-Santini (1972), d´Udekem d´Acoz and Havermans (2012). 

Sorting, identification and counting were performed using the stereomicroscopes Olympus SZH10 and ZEISS 

Stemi. Prior to preservation, selected animals were photographed using an Olympus DP21 camera attached to the 

stereomicroscope Olympus SZ-DF or with the digital camera Olympus OM-D EM-5 using a 60 mm macro lens. 

In particular cases, preserved specimens were pictured using the camera Olympus SDF attached to the 

stereomicroscope Olympus SZX16. All specimens were fixed and preserved predominantly in 96% undenatured 
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ethanol. For species description, appendages (except uropods) of the left side of the body of the female holotype 

specimen were dissected and temporary glycerine slides of appendages were prepared. As some characters of the 

holotype specimen were not in a sufficient condition, complementary drawings of the pleon and antenna 1 as 

well as a description of epimerons of a male paratype specimen (ZMB 30508) were additionally prepared. The 

pencil drawings were produced using Olympus BX40, Olympus SZH10 and LEICA MZ16 camera lucidas 

attached. Drawings were digitized using Adobe Illustrator CS4 following the instructions and settings of 

Coleman (2003, 2009) using WACOM Intuos tablets 3 and 5. 

The terminology for setae and spines used in the species description follows the suggestions of d´Udekem 

d´Acoz (2010) and Krapp-Schickel (2011) where spines are defined as stout, articulated, inflexible structures and 

setae being slender, flexible and articulated structures. 

The following abbreviations are used in figures 8-10: A1-2: antennae 1-2; Mx1-2: maxillae 1-2; MD: mandible; 

Mxp: maxilliped; Gn1-2: gnathopods 1-2; P3-7: pereopods 3-7; Cx: coxa; Ba: basis; Ca: carpus; Pr: propodus; 

D: dactylus; Ep1-3: epimerons 1-3; Uros1-3: urosomites 1-3; U1-3: uropods 1-3 

 

DNA isolation, PCR and sequence processing 

Specimens from Potter Cove used for molecular analyses were sorted to morphotypes and are registered and 

deposited at the Museum für Naturkunde, Leibnitz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, 

Germany (ZMB, Table 2). For DNA isolation, three pairs of pleopods and in cases of small specimens (approx. 5 

mm - 1 cm) also pereopods from one side of the body were used to ensure a sufficient amount of DNA. 

Extraction followed the Blood & Tissue DNeasy Kit (Qiagen) manufacturer's protocol. Only 100 µL TE buffer 

were used for sample elution. PCR-amplification of the CO1 barcoding region (i.e. Folmer fragment of the 

Cytochrome C Oxidase subunit I gene) was carried out by using the modified Folmer-primers LCO1490-JJ (5′-

CHACWAAYCATAAAGATATYGG-3′) and HCO2198-JJ (5′-AWACTTCVGGRTGVCCAAARAATCA-3′) 

of Astrin and Stüben (2008). The premix for polymerase chain reaction consisted of a total volume of 25 μL 

containing 2.5 μL 10X PCR buffer, 2.5 μL dNTPs (2  mM), 0.125  μL of each primer (100 pmol/μL), 0.125  μL 

of HotMaster Taq DNA Polymerase (5  U/μL, 5 PRIME GmbH, Hamburg, Germany), 2 μL or 5 μL of template 

DNA and replenished with 17.625 µL or 14.625 µL molecular grade water. PCR settings for CO1 amplification 

were: initial denaturation at 94 °C for 120 s; 36 cycles of denaturation at 94 °C for 40 s, annealing at 52.5 °C for 

40s, extension at 65 °C for 120 s; final extension at 65 °C for 8 min. The PCR products were sequenced with 

terminal primers using the sequencing services of EUROFINS (Germany), and GATC Biotech AG (Konstanz, 
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Germany). Sequence chromatograms were edited and assembled in Geneious 5.6.7 (Kearse et al. 2012). The 

CO1 alignment was constructed using the Geneious-plugin MAFFT v7.017 under the G-INS-i option 

recommended for sequences with global homology (Katoh et al. 2002). 

 

Genetic diversity 

Since two pseudo-cryptic lineages of Waldeckia obesa (Chevreux, 1905) are known (Havermans 2012), we 

included as references a total of ten sequences of Waldeckia obesa cluster ‘A’ and ‘B’ sensu Havermans (2012) 

in the analyses (Table 2). Mean genetic diversity for each species (intraspecific) and between species 

(interspecific) were calculated in MEGA 6.06 (Tamura et al. 2013) under the Kimura-2 parameter (K2P) 

substitution model generally used for DNA barcode data and the pairwise deletion option. A trimmed 544 bp 

CO1 alignment was used, as some sequences demonstrated missing data at either the 5’ or 3’ end. In the final 

alignment, all except two sequences were of full length, i.e. MT002Ppl001 (70 bp shorter at 5’ end) and 

MT002Oro013 (6 bp shorter at 3’ end). A CO1 neighbour-joining tree was generated in MEGA 6.06 using the 

K2P substitution model including transitions and transversions, 1000 bootstrap replicates and midpoint rooting. 

All DNA barcodes are cross-checked against the Barcode of Life Data System (BOLD, 

http://www.barcodinglife.org). DNA barcode data (i.e. sequences and additional information) of all genetically 

analysed specimens are stored and publically available in the project LYAPO (Lysianassoid Amphipods of Potter 

Cove) of the Barcode of Life Data System (BOLD, Ratnasingham and Hebert 2007) as well as in the public 

database of the National Centre for Biotechnology Information (NCBI). 

 

 

Results 

Species composition and morphological diversity 

A total of more than 43,900 lysianassoid amphipod specimens (suppl. material 1) were sampled in 24 deployed 

baited traps. In the 20 analysed traps deployed throughout Potter Cove, 41,898 specimens of eleven distinct 

lysianassoid morphospecies were recorded, of which nine could be identified as known species (Fig. 2, Fig. 3). 

The two species Abyssorchomene charcoti (Chevreux, 1912) and Orchomenella pinguides Walker, 1903 were 

recorded in KGI waters for the first time. One new species – Orchomenella infinita sp. n. – is described herein. 

Individuals of Hippomedon kergueleni (Miers, 1875) demonstrated different colour patterns (morphotypes) 
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indicating that specimens may belong to two distinct species. While some H. kergueleni specimens had an off-

white body colour (white morphotype), others were of a darker yellow colour with reddish pigmentation dorsally 

on pereonites and pleonites as well as on peduncle of antenna 1 and dorsal parts of the coxal plates (red 

morphotype) (Fig. 2a, b). This colour pattern was consistent for both sexes.  

Some specimens of Orchomenella rotundifrons K.H. Barnard, 1932 showed morphological variations, sharing 

some character states with Orchomenella denticulata Rauschert, 1995, i.e. a serrated posterior margin of 

epimeral plate 3 and intermediate forms of dorsal humps and carinations on urosomite 1. For this reason some 

individuals were determined as O. cf. rotundifrons, designated as ‘Oxx’ (Table 2) and included in the barcoding 

analyses in order to clarify their taxonomic status.  

Two lineages (cluster ‘A’, and ‘B’) of Waldeckia obesa were revealed by Havermans (2012). Our morphological 

reexamination of specimens from these lineages were compared and both comparisons with the original 

description and redescription of W. obesa in the publications of Chevreux (1905, 1906) as well as the recent 

revision of the genus Waldeckia by Lowry and Kilgallen (2014), enabled us to identify morphological evidence 

for considering the clusters as two distinct species. While the nominal W. obesa (cluster ‘A’, sensu Havermans 

2012) has a labrum with a separate epistome and upper lip, a relatively short, acute hump on urosomite 1 and the 

posterolateral corner of epimeron 3 sickle-shaped and hooked, specimens belonging to cluster ‘B’ bear a longer, 

more curved hump on urosomite 1 with a flattened notch before ending into a small tooth. The labrum, epistome 

and upper lip are fused. Since specimens from cluster ‘B’ do not resemble any other described species of the 

genus Waldeckia, this is here confirmed as new to science and will be described elsewhere. Finally, all 

morphospecies, but not morphotypes, for which CO1 sequence data were obtained, were also supported as 

distinct taxa by molecular data (Fig. 4). 

 

Genetic diversity and DNA barcode data 

CO1 sequences (i.e. DNA barcodes) were generated for all species except Orchomenella pinguides and 

Pseudorchomene coatsi (Tab.2). The total molecular dataset comprised 79 sequences, of which 69 have been 

newly generated from Potter Cove. Those comprise eight morphospecies including a red coloured (11 

specimens) and a white coloured (8 specimens) morphotype of Hippomedon kergueleni Miers, 1875. The dataset 

was complemented with two sequences of Waldeckia obesa cluster ‘A’ and eight sequences of the pseudo-

cryptic and co-occurring lineage cluster ‘B’ sensu Havermans (2012) from different localities of the Southern 

Ocean. 
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Existing CO1 sequences data in BOLD is augmented for P. rossi (Barcode Index Number [BIN]: 

BOLD:AAG7165, identified in BOLD as Abyssorchomene rossi), P. plebs (BOLD:AAL8109), A. charcoti 

(BOLD:AAN0316) and W. obesa. Our sequences of W. obesa from Potter Cove demonstrate only max. 86.6% 

identity with two sequences taxonomically designated as W. obesa in BOLD. Since they are not yet publically 

available, no further information could be retrieved. However, 100% and 99.1% sequence identity is achieved 

with two single-specimen BINs (BOLD:AAL8112) and (BOLD:AAL8113) currently identified only as 

‘Amphipoda’ in BOLD. These two specimens originate from Moon Bay (Livingston Island, South Shetland 

Islands). For H. kergueleni, O. rotundifrons, Cheirimedon femoratus and O. infinita sp. n. we establish first-time 

DNA barcode data. 

Intraspecific genetic diversity is generally low (Table 3, Fig. 5), with the highest value obsesrved for W. obesa 

cluster ‘A’ (2.8%). Interspecific genetic diversity ranges from 10.2% (A. charcoti / O. rotundifrons) to 40.1% 

(Waldeckia obesa cluster ‘B’ / O. infinita sp. n.). Specimens of H. kergueleni with red and white morphotypes 

possess identical CO1 sequences, as do all analysed specimens of O. rotundifrons bearing morphological 

variations as indicated earlier (Fig. 4). 

 

Relative abundances 

The analysis of the sampled amphipod specimens demonstrated clear patterns in distribution and species 

composition. The omnivore lysianassid Cheirimedon femoratus (Pfeffer, 1888) represented 79.81% of all 

collected specimens and was the most abundant species in Potter Cove (Table 4, Fig. 6) followed by 

Hippomedon kergueleni (Miers, 1875) (13.86%), Orchomenella rotundifrons K.H. Barnard, 1932 (5.04%) and 

Waldeckia obesa (Chevreux, 1905) (1.25%). Orchomenella infinita sp. n., O. pinguides, Pseudorchomene coatsi 

(Chilton, 1912), Pseudorchomene plebs (Hurley, 1965), Pseudorchomene rossi (Walker, 1903), and 

Abyssorchomene charcoti contributed only with less than 0.01% to the total number of specimens sampled in 

Potter Cove. Considering the relative abundances of lysianassid amphipods in the inner cove only, C. femoratus 

reached the highest proportion of 99.44%, whereas the other seven trapped species occurred in far lower 

abundances (Table 4: from 0.38% to <0.01%). The highest number of C. femoratus individuals per trap (11,922 

specimens, suppl. material 1) was found at 12 m depth at approximately 60 m distance from the glacier. The 

species composition and relative abundances of the outer cove differed from the inner cove in that besides C. 

femoratus (67.61%) also H. kergueleni (22.25%), O. rotundifrons (8.07%) and W. obesa (2.02%) occurred at 

higher relative abundances in the outer cove (Table 4). In the adjacent Marian Cove the relative abundances of 

species differ compared to Potter Cove. Here, 2,039 specimens of four lysianassid species were found: W. obesa 
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dominated with 87.00% , while C. femoratus (12.75%), H. kergueleni (1.47%) and P. rossi (0.10%) occurred in 

much lower relative abundances. 

 

Taxonomy 

Order. Amphipoda Latreille, 1816 

Superfamily. Lysianassoidea Dana, 1849 

Family. Lysianassidae Dana, 1849 

Subfamily. Tryphosinae Lowry and Stoddart, 1997 

Genus. Orchomenella Sars, 1890  

Type species. O. minuta Sars, 1890 

Species composition. After Horton et al. (2016): Orchomenella aahu (Lowry and Stoddart, 1983); O. 

acanthurus (Schellenberg, 1931); O. cavimanus (Stebbing, 1888); O. chelipes Walker, 1906; O. chilensis 

(Heller, 1868); O. decipiens Hurley, 1963; O. denticulata Rauschert, 1995; O. franklini Walker, 1903; O. 

goniops (Walker, 1906); O. guillei De Broyer, 1985; O. hiata (Andres, 1983); O. holmesi Hurley, 1963; O. 

hureaui (De Broyer, 1973); O. japonica Gurjanova, 1962; O. kryptopinguides (Andres, 1983); O. lepidula 

Gurjanova, 1962; O. littoralis Nagata, 1965; O. macrophthalma (Birstein and Vinogradov, 1962; O. minuta 

(Krøyer, 1846); O. obtusa (G.O. Sars, 1891); O. pacifica Gurjanova, 1938; O. perdido Lowry and Stoddart, 

1997; O. pinguides Walker, 1903; O. pinguis (Boeck, 1861); O. rotundifrons K.H. Barnard, 1932; O. tabasco 

(J.L. Barnard, 1967); O. thomasi Lowry and Stoddart, 1997; O. ultima (Bellan-Santini, 1972); O. zschaui 

(Pfeffer, 1888) 

Remarks. Currently, 29 species are attributed to the genus Orchomenella Sars, 1890, of which 15 are distributed 

in the Southern Ocean (De Broyer et al. 2007; Horton et al. 2016). The phylogenetic relationships between many 

lysianassoid families and genera remain unsolved. Molecular studies revealed the polyphyly of the genera 

Orchomenella and Abyssorchomene De Broyer, 1984 (Corrigan et al. 2014; Havermans et al. 2010). D´Udekem 

d´Acoz and Havermans (2012) made a detailed listing on the systematic history of the genus Tryphosa Boeck, 

1871 also summarizing the phylogenetic relationship to Orchomenella. Resolution of phylogenetic relationships 

within the Lysianassoidea is beyond the scope of this paper and therefore our new species is placed in the 

currently defined genus Orchomenella. However, it should be stated that some morphological differences are 

apparent between our species and the current diagnosis of Orchomenella. The antenna 1 peduncle article 3 is 

well-developed and unusually long and the first article of the flagellum is not elongate in O. infinita.  
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Orchomenella infinita sp. n. Seefeldt 

(Figs. 3, 7-10; Tables 2-4) 

Orchomenella cf. ultima– Jażdżewski et al. 1991:109–110, 112, 115 

Orchomenella cf. ultima– Jażdżewski et al. 1995:371 

Orchomenella cf. ultima– Jażdżewski et al. 2001:910–917 (eco) 

Orchomenella sp.– Barrera-Oro and Piacentino 2007:792 

Orchomenella (Orchomenella) cf. ultima– ABBED, www.abbed.uni.lodz.pl; Siciński et al. 2011 

Orchomenella cf. ultima– Siciński et al. 2012:359–360, 365 

Orchomenella cf. ultima– Kim et al. 2014:106, 108–109, 111, Fig 5 G 

Lysianassid sp.– Moreira 2015 

Orchomenella sp. n.– Barrera-Oro et al. (in prep.) 

Type material. 1 HOLOTYPE female, 5.5 mm. ZMB 30506, dissected preserved in 70% ethanol (temporarily 

stored in 1:1 glycerin-ethanol (70%)) , King George Island, Potter Cove, sta.9, 62°14´23.43”S 58°41´52.3”W, 

baited trap, 39 m, 16.12.2014. Pleopods and right pereopods were used for DNA extractions, specimen ID 

MT009Oul006; BOLD ID: LYAPO020-16. PARATYPE specimens in 96% ethanol; BOLD ID LYAPO021-16 

(MT002Oul014, ZMB 30507): female, 4 mm, sta. 2, 62°14´21.5“S 58°41`52.5“W, baited trap, 30 m, 

14.11.2014; LYAPO022-16 (MT014Oul001, ZMB 30508): male, 4 mm, sta. 14, 62°14´23.4”S 58°41´52.5“W, 

baited trap, 40 m, 20.12.2014; MT014Oul003, ZMB 30593: male, 4 mm sta. 14, 62°14´23.4”S 58°41´52.5“W, 

baited trap, 40 m, 20.12.2014; MT002Oul015, ZMB 30592: female, 5 mm, sta. 2, 62°14´03.2”S 58°39`17.3”W, 

baited trap, 30 m, 14.11.2014. 

Type locality. Potter Cove, King George Island, South Shetland Islands, Antarctica (62° 14'S 58°41”W). 

Etymology. The epitheton infinita (latin: boundless, unlimited, endless, infinite) refers to the seemingly endless 

discovery of new species and the never ending chaos within the group of ´orchomenids´. It expresses the 

opposite to the morphologically most similar species, O. ultima, whose name could be misleadingly interpreted 

as the last species ever described in that genus. 

Diagnosis: Eye blazing red when alive. Antenna 1 peduncle article 3 well-developed, unusually long; first article 

of flagellum not elongate; article 1 of accessory flagellum not strongly elongate; gnathopod 1 basis slender, palm 

concave; urosomite 1 no dorsal depression, without carina, keel or hump; somites of pereon and pleon with 

brownish pigmentation forming transversal striped colour patterns, some merging until dorsal parts of coxae 

(may vanish in alcohol). 
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Description. Based on HOLOTYPE female, ZMB 30506. Body: typical lysianassoid appearance in shape. Head: 

as broad as long, lateral cephalic lobes convex. Eyes large, somewhat pyriform, well-developed ommatidia, 

blazing red in living organism, colour is fading when preserved in alcohol. Antenna 1: subequal in length to 

Antenna 2; primary flagellum 11-articulate, first article not elongate, broader than long; accessory flagellum 

present, 4- articulated, first article not strongly elongated, 2.5x longer than broad; calceoli absent. Antenna 2: 

calceoli absent; flagellum 9-articulate. Mouthparts: subquadrate. Labrum (Epistome and upper lip): separate; 

epistome produced subequally, slightly convex. Mandible: incisor with smooth edge with a small denticle on 

each side; lacinia mobilis present on the left side, slender peg; molar process oval, ridged and fully triturating; 

palp 3- articulate, attached proximal, markedly below molar process, article 2 slender (7.3x longer than broad), 

article 3 slender (4x longer than broad) and bent in a sickle shape. Maxilla 1: inner plate elongate, bearing two 

stout plumose setae distally, equal in size; outer plate with 11 spines (setal-teeth, ST), (modified 6/5 

arrangement), ST1-ST5 stout, ST6-ST7 very stout, ST1 three-cuspidate, ST2 four-cuspidate, ST3 four-cuspidate, 

ST4; ST5 five-cuspidate; ST6 multicuspidate; ST7 multicuspidate, slightly displaced from ST6, STA-D more 

slender than ST1-ST7, STA five-cuspidate, STB, four-cuspidate, STC six-cuspidate, STD six-cuspidate, palp 

distal margin with five cuspidate spines and one antero-distal flag seta. Maxilla 2: inner plate slightly shorter 

than outer plate; outer plate with long denticulate and simple setae distally; inner plate with long plumose setae. 

Maxilliped: inner and outer plate well-developed; inner plate narrow, with few plumose setae medially; outer 

plate reaching halfway along 3rd article of palp, bearing two larger stout, nodular spines distally, several shorter 

stout, nodular spines along medial margin; palp 4- articulated, dactylus long,well-developed. Gnathopod 1: 

subchelate; coxa large, shorter than coxa 2, subrectangular, not tapering, anterior and posterior margins almost 

parallel, anterodorsal margin slightly concave, basis elongate and slender (3.5x longer than broad); ischium 

short; merus missing/broken, carpus subtriangular, subequal in length to propodus; propodus subrectangular, 

margins subparallel; palm transverse and concave, minutely serrate bearing two long, stout spines at the 

posteroventral corner; dactylus stout but simple Gnathopod 2: minutely chelate; coxa large, subrectangular, 

subequal in size to coxa 3; basis elongate, long (8x longer than broad); ischium long (4x longer than broad); 

posterior margin of merus with several long, simple setae and short brush setae; carpus 2.3x as long as wide, 

2.3x as long as propodus, posterior margin lobate, from midway to distal end of posterior margin with area of 

dense, very short setae, anterior distal margin with several longer setae; propodus subquadrate, length 1.6x 

breadth, anterodistal with many long setae, posterior margin with long setae; dactylus reaching beyond posterior 

margin of propodus; palm concave. Pereopod 3: coxa large, subrectangular; basis slender (3x longer than broad); 

anterior margin of merus convex, posterior margin with a few, long setae. Pereopod 4: coxa 1.5x deeper than 
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broad, posteroventral lobe well-developed (1.5x broader than deep), posteroventral corner of lobe rounded; basis 

slender (3.3x longer than broad), no setae visible; ischium and merus similar to Pereopod 3. Pereopod 5: shorter 

than pereopod 6 and 7; coxa posteriolobate; basis expanded posteriorly, broadly rounded, posterior margin 

crenate with one short, simple seta in each notch, anterior margin with several short, cone-shaped spines and one 

longer spine at the anteroventral corner; merus expanded posteriorly longer than broad; carpus longer than broad; 

propodus 6x longer than broad bearing spines on the anterior margin, anteroventral and posteroventral corner; 

dactylus slender and curved. Pereopod 6: coxa distinctly smaller than coxa 5, posteriorlobate; basis longer than 

pereopod 5 basis, expanded posteriorly, posterior margin crenate with one short, simple seta in each notch, 

anterior margin with cone-shaped spines from midway until just before anteroventral corner, anteroventral 

corner with two long, stout setae and two slender setae, posteroventral lobe well-developed; merus longer than 

broad, posterior margin expanded with two crenations, posteroventral corner produced bearing a cone-shaped 

spine, anterior margin with one long and one short cone-shaped spine, anteroventral corner with one long seta; 

carpus longer than broad, posterior margin slightly convex, anterior margin with one large cone-shaped spine; 

propodus much longer than broad, anterior margin with five cone-shaped spines; dactylus, slender and curved. 

Pereopod 7: coxa round, small; basis expanded, posterior margin convex, crenate with one short, simple seta in 

each notch, anterior margin with cone-shaped spine from midway until just before anteroventral corner, 

anteroventral corner with one stout spine, posteroventral lobe well-developed; ischium missing/broken; merus 

longer than broad, expanded, anterior margin straight, posterior margin convex, with one crenation bearing one 

cone-shaped spine, posteroventral corner with one stout spine, anteroventral corner with one stout spine; carpus 

longer than broad, anteroventral corner with spines, posteroventral corner with setae; propodus 5.7x longer than 

broad, slender anterior margin crenate with stout, cone-shaped spines; dactylus  slender and curved. Urosome: 

urosomite 1 flat, no carina nor hump, nor keel. Uropod 1: peduncle, 1.12x longer than outer ramus with three 

lateral spines; outer ramus 1.15x longer than inner ramus with thre dorsomedial spines; inner ramus, with two 

dorso medial spines. Uropod 2: peduncle, length, 0.94x than outer ramus; outer ramus longer than inner, lengh 

1.35x inner, with four dorsomedial spines, without constriction; inner ramus with two dorsomedial spines, 

without constriction. Uropod 3: peduncle short, length 0.78x outer ramus; rami stout without plumose setae; 

outer ramus 2-articulate, article 2 very short, length 0.25x article 1, with two apical spines; inner ramus distinctly 

shorter than outer, length 0.74x outer ramus. Telson: 1.3x longer than broad, half length cleft (50%), reaching 

just past peduncle of uropod 3. 

Complementary description. Due to insufficient character condition of epimeron of the holotype specimen a 

complementary description of a paratype male (ZMB 30508) is given. 
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Epimeron 1: anterior margin slightly concave; anteroventral corner rounded; posteroventral corner convex, 

broadly rounded. Epimeron 2: anteroventral corner convex, rounded; posteroventral corner bluntly subquadrate. 

Epimeron 3: anteroventral corner convex, broadly rounded; posterior margin straight; posteroventral corner 

subacutely rounded, not produced. 

Colour pattern. This species has brownish pigmentation forming transverse stripes on each segment of the 

pereon and pleon (Fig. 3a). This colour pattern might fade or disappear altogether following preservation. 

Size. 4.0-5.5 mm (based on type series). 

Sexual dimorphism. In males antenna 2 is longer than antenna 1, while in females antenna 2 is subequal to 

antenna 1. Moreover, males bear calceoli on antennae 1 and 2, wheras females lack calceoli on antennae 1 and 2. 

Distribution and depth. King George Island, Potter Cove (30-40 m, present study), Marian Cove (0.5 m, Kim 

et al. 2014), Admiralty Bay (10 m, Jażdżewski et al. 1991; 5-10 cm, underneath waterline, Jażdżewski et al. 

2001). 

Biology. The scavenger status of this species remains unclear since the species did only occure in very low 

numbers in baited traps in this study. Due to the fact that it was attracted to bait bearing mouthparts typical for 

feeding on animal carcasses it is assumed that O. infinita is, at least, a facultative carrion-feeder. Jażdżewski et 

al. (2001) reported this species as an epibenthic dweller being also able to burrow in sediments.  

Remarks. O. infinita sp. n. is most closly related to O. ultima but differs from this species in having the anterior 

margin of lateral lobe of the head broader and more convex, article 1 of the flagellum of antenna 1 is much 

shorter, not elongate (broader than long, not longer than broad as in O. ultima) and article 1 of the accessory 

flagellum is not strongly elongated (2,5x longer than broad) as it is in O. ultima (5x longer than broad). 

Urosomite 1 has no dorsal depression, no carina or hump while O. ultima has a deep dorsal depression followed 

by a prominent rounded dorsal hump.  

The newly described species O. infinita has been detected in several earlier studies (e.g. Jażdżewski et al. 1991; 

Jażdżewski et al. 2001; Kim et al. 2014). It was identified as Orchomenella cf. ultima and morphological 

differences were already discussed by Jażdżewski et al. (1991) and Kim et al. (2014). After a detailed 

examination of the holotype of O. ultima, the original description of Bellan-Santini (1972), and a careful 

examination of the specimens within this study, the morphological differences between our specimens and O. 

ultima are evident and justify the description of a new species. Since the holotype specimen of O. ultima, stored 

at Museo Civico di Storia Naturale, Verona, Italy, MSNVRCr479, is in a fragile condition and the history of 

fixation is unknown, we decided not to risk a destruction of the valuable material for DNA extraction.  
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Discussion 

Species inventory and identification 

Taxonomic misidentifications can have serious consequences for subsequent data analyses especially for 

population assessments and conservation managements (Metcalf et al. 2007; Beerkircher et al. 2009), but also 

for evolutionary and ecology-based research (Bortolus 2008). It is therefore recommended that an integrative 

taxonomic approach should be conducted whenever possible. Our results are in large agreement with the general 

performance of DNA barcoding data in marine metazoans (Bucklin et al. 2011), crustaceans (Costa et al. 2007) 

including marine amphipods and demonstrated the identification potential of an integrative approach combining 

morphology and genetics (Radulovici et al. 2009; Havermans et al. 2010, 2011; Havermans 2012).  

In our integrated study of scavenging lysianassoid amphipods from Potter Cove we contributed to the 

biodiversity inventory of the Antarctic marine fauna by analysing more than 43,900 amphipod specimens 

representing ten lysianassoid species in two families. Momo et al (1998) investigated the amphipod species 

composition from outer Potter Cove only. In their study they recorded three lysianassid species: Cheirimedon 

dentimanus Chevreux, 1905, Valettia coheres Stebbing, 1888 and Orchomenella acanthurus (Schellenberg, 

1931). C. dentimanus is a junior synonym of C. femoratus (Chilton 1913; Lowry 2010). The record of V. coheres 

is very likely the result of a misidentification. This species belongs to a little known deep-sea genus, comprising 

only two species. In the study of Casaux et al. (1990) the occurrence of V. coheres was reported as a component 

of the algal bed fauna in Potter Cove, without giving any evidence and reference for this. Besides the 

questionable records of Casaux et al. (1990) and Momo et al. (1998), only one specimen of V. coheres is known, 

subsequently designated as the holotype (Thurston and Allen, 1969). The sibling species Valettia hystrix 

Thurston, 1989 is only known from the alimentary canal of two species of holothurian collected in the North 

East Atlantic Ocean (Thurston 1989). In addition, the type locality of V. coheres is in the Southern Ocean Indian 

Ocean sector but at more than 3600 m depth (Stebbing, 1888). For this reason, it is very unlikely that V. coheres 

is found sub-littorally and not more frequently in an Antarctic sampling hotspot such as the western Antarctic 

islands. It is herein postulated that the records of V. coheres by Casaux et al. (1990) and Momo et al. (1998) are 

misidentifications. 

 

Intra- or interspecific morphological variation? 

We investigated if two colour morphs (red and white) of H. kergueleni might represent two distinct species. 
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Species delimitation has been carried out successfully on the basis of colouration and subsequently supported by 

molecular data in the amphipod Paramphithoe hystrix complex (Schnabel and Hebert 2003) as well as in the 

decapod Petrolisthes galathinus complex (Hiller et al. 2006, Hiller and Werding 2007). However, in our study, 

both colour morphs of H. kergueleni can not be distinguished by molecular data. A similar case of a species 

bearing distinct morphotypes, but with pairwise genetic divergence values within the intraspecific range (max. 

4% K2P distance) both in mitochondrial (CO1, 16S rDNA; 0-1% mean K2P distance) as well as in nuclear 

marker (28S rDNA; 0% mean K2P distance) was described for the Antarctic deep-sea lysianassoid Eurythenes 

andhakarae D´Udekem d´Acoz and Havermans, 2015 (Havermans et al. 2013; d´Udekem d´Acoz and 

Havermans, 2015). D´Udekem d´Acoz and Havermans (2015) explained the differences in colour patterns as a 

result of the interdependence between pigmentation and moult and intermoult stages – a phenomenon already 

known from the shore crab Carcinus maenas (Linnaeus, 1758) (Baldwin and Smith 1987; Reid et al. 1997; 

Styrishave et al. 2004; Lewis 2011). This is likely also the case for the two detected morphotypes of H. 

kergueleni. 

The species Orchomenella rotundifrons represents another case of a species with a high morphological 

variability. Due to the fact that some specimens of O. rotundifrons share morphological traits fitting to the 

characteristics of O. denticulata without being genetically distinct, we can assume that O. denticulata might 

represents a morphotype within the variability range of O. rotundifrons. However, it should be noted that 

investigations of DNA barcode data or mitochondrial DNA can be misleading or wrong in cases of relatively 

recent speciation or introgression events (Moritz and Cicero 2004). More detailed analyses with the integration 

of nuclear data should address the aforementioned taxonomic issues. On the other hand, CO1 data can highlight 

cases of cryptic species complexes, for which amphipods provide well-known examples (e.g. see Costa et al. 

2007; Havermans et al. 2011; Havermans 2012; Katouzian et al. 2016). Havermans (2012) revealed two 

genetically distinct clusters of W. obesa (>15% K2P distance) which we could corroborate with new 

morphological data, thus supporting their interpretation as reproductively isolated species (nominal W. obesa 

cluster ‘A’ and W. obesa cluster ‘B’). We included sequences of nominal W. obesa and W. obesa cluster ‘B’. 

sensu Havermans (2012) in our study and have obtained evidence for the occurrence of nominal W. obesa in 

Potter Cove. 

 

 



17 
 

The influence of sampling method and environmental factors on species occurrences and 

abundances 

In previous studies in which the amphipod scavenging fauna has been investigated by baited traps, the number of 

species reported was related to the sampling effort and coverage area. De Broyer et al. (2004) recorded for a 

sampling effort of 31 baited traps covering the eastern and western Weddell Sea, including King George Island, 

37 lysianassoid species from the 70,000 specimens investigated up to 1000m depth. A study on deep-sea 

lysianassoid scavengers from the Mid-Atlantic Ridge (Horton et al. 2013) has given an account of 31 species out 

of more then 250,000 specimens sampled from sixteen baited trap deployments over a 4-year study period. 

Results of biodiversity assessments often vary according to the sampling methods and the sample sizes used. In 

this context, the use of baited traps as a non-quantitative and selective method presents difficulties when 

estimating species abundances. Scavengers are specifically attracted by chemical cues and the challenges of 

defining the certain area of attraction has been made a subject of discussion (Gros and Santarelli, 1986; Ingram 

and Hessler, 1983; Premke et al. 2003; Sainte-Marie and Hargrave, 1987). Sainte-Marie and Hargrave (1987) 

made an attempt to develop a model for estimating amphipod species abundances inferred from baited traps. 

They stated that variables such as species-specific swimming speeds, current velocity, site specific eddy 

diffusivity, bait-specific odour leaking rate and species-specific chemosensory thresholds are critical parameters 

for estimation models. Without these information the estimation of species abundances inferred from baited traps 

will not be accurate. Furthermore, bait size, daytime (Sainte-Marie, 1986) and entrance size of the trap also 

affect the sampling results. However, the use of baited traps for collecting scavenging, mobile organisms such as 

amphipods helps to avoid sources of errors such as gear avoidance or inefficient retention of (smaller) organisms 

associated with other commonly used sampling methods (hand nets, Van Veen grabs, epibenthic sledges, trawls). 

Indeed, these could introduce a sampling bias of unknown magnitude.  

The omnivorous scavenger C. femoratus is ubiquitously distributed both in the soft sediment dominated part of 

Potter Cove (inner cove) as well as in the hard substrated area (outer cove). Moreover, C. femoratus occupied a 

dominant role among scavenging lysianassoids in the inner cove being the only species occurring in high relative 

abundances and particularly in the recently ice-free areas of Potter Cove. These areas are greatly influenced by 

the retreat of the Fourcade Glacier as well as by high rates of freshwater run-off and sedimentation caused by the 

meltwater creeks disemboguing into the cove. This has already led to shifts in the benthic communities and has 

also created new habitats available for colonization (Quartino et al. 2013; Sahade et al. 2015; Deregibus et al. 

2016). Pioneer species as well as species with a broad ecological niche, are expected to occupy new areas within 
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the succession process. The sporadic and rare occurrence of other lysianassoid species suggests that the inner 

cove is not a favourable habitat although potential candidate colonizers are present in the outer cove. Hence, it is 

very likely that C. femoratus is a pioneer species of sublittoral coastal systems, with a broad ecological niche. 

When compared to the inner cove, the outer cove seems to provide a more suitable habitat for other lysianassoid 

amphipod species, and this is where the highest numbers of lysianassoid amphipod species were found. This 

finding indicates that some or all of the conditions present in the inner cove may be challenging to lysianassoid 

amphipods: shallower depths, the strong influence of sedimentation processes, fluctuating salinity, 

predominantly soft sediment and low coverage of macroalgae beds (Barrera-Oro and Casaux 1990; Quartino et 

al. 2013; Sahade et al. 2015). Most of the less abundant species found in our study such as P. plebs, P. rossi, P. 

coatsi, A. charcoti and W. obesa have been frequently reported at greater depths (De Broyer et al. 2004, 2007; 

Presler 1986) indicating a preference for deeper waters. However, the conclusion of the aforementioned records 

could also be biased due to the restricted sampling possibilities for shallow-water samplings on board of a 

research vessel. 

C. femoratus plays an important role in the shallow-water benthic communities of Maxwell Bay, being the only 

scavenging amphipod species found in high numbers compared to other amphipods (Rauschert 1991; Siciński et 

al. 2012; Kim et al. 2014). Siciński et al. (2011) reported C. femoratus dominating the necrophagous benthic 

community of Admiralty Bay in winter while being replaced in summers by H. kergueleni. A smilar seasonal 

species shift was revealed by Smale et al. (2007) in which a replacement of C. femoratus in summers by the 

nemertean Parborlasia corrugatus (McIntosh, 1876) was reported. Our data did not corroborate this species 

shift: we found C. femoratus in higher numbers than H. kergueleni in our summer samples. Finally, and in 

addition to the findings of Kim et al. (2014), who only reported C. femoratus and O. infinita sp. n., we now can 

add H. kergueleni as well as O. rotundifrons to the species list of the sublittoral of Maxwell Bay.  

 

In a compilation of thirty years of benthic biodiversity research from Admiralty Bay, Siciński et al. (2011) listed 

27 lysianassoid amphipod species (subsequently corrected into 29 species; pers. communication A. Jażdżewska) 

sampled by various methods. Eight of the ten lysianassoid species we detected for Potter Cove are also known 

from Admiralty Bay, while A. charcoti and O. pinguides were reported for KGI for the first time. The higher 

species number for lysianassoid amphipods in Admiralty Bay is not surprising given that a) the amphipod 

community in Admiralty Bay has been studied for more than 30 years and therefore likely higher due the greater 

number of total samples investigated, b) the use of additional sampling methods (e.g. netting, van Veen grabs), 

and c) the larger size of Admiralty Bay (25.3 km coastline) and greater depths (up to 535 m), which might favour 
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a higher alpha diversity by providing more microhabitats (Siciński et al. 2011). Moreover, variations in soak 

time, bait quantity and the limited size of trap entrance could have also affected the number of sampled species 

from Potter Cove. However, assuming that abiotic conditions (e.g. sedimentation, freshwater input) are one of 

the major limiting factors of the taxonomic diversity of scavenging amphipods in the shallower inner Potter 

Cove, the increased influence of meltwater-related conditions along the Antarctic Peninsula could lead to 

similarly impoverished communities in affected habitats. A continuation of studying scavenging amphipods 

from Potter Cove and understanding the reason for the broad ecological niche of C. femoratus will improve 

future species distribution modelling and predictions on the effects of ongoing and future environmental 

changes.  

 

 

Outlook 

As an omnivorous scavenger, the lysianassoid amphipod C. femoratus is a key species Potter Cove food web, 

illustrated by its wide distribution and high abundances in both the outer and inner cove. It is an important 

element for the decomposition of organic matter in Potter Cove. A recent study of fish gut content analyses 

showed that C. femoratus is also an important food source for the locally abundant Antarctic fish species 

Notothenia rossii Richardson, 1844 at 10 and 20 m depths (Index of relative importance, IRI%= 19.24; 9.47) as 

well as for Notothenia coriiceps Richardson, 1844 at 10 and 20 m depths (IRI%= 4.52; 9.25) (Barrera-Oro et al. 

unpubl. data). The ecological role of lysianassoid amphipods, but particularly the trophic position of C. 

femoratus in the food web of Potter Cove needs more detailed study as omnivorous species in general do not 

necessarily have a flexible position in food webs (Johnston et al. 2011). Studies addressing species-specific 

feeding and decomposition rates (Lastra et al. 2014) as well as stable isotope and fatty acid analyses (Nyssen et 

al. 2002, 2005) are needed to further elucidate the role and importance of lysianassoid amphipods in the coastal 

Antarctic ecosystem, which are exposed to a rapidly changing environment due to climate-induced glacier 

retreat. 
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Fig. 2 Lysianassoid amphipod species of Potter Cove. Scale bars correspond 
           to 1 mm. f, i, j) post mortem 
           a) Hippomedon kergueleni white colour morph 
           b) Hippomedon kergueleni red colour morph 
           c) Abyssorchomene charcoti                d) Cheirimedon femoratus 
           e) Orchomenella rotundifrons              f) Orchomenella pinguides 
           g) Pseudorchomene rossi                     h) Waldeckia obesa 
           i) Pseudorchomene coatsi                    j) Pseudorchomene plebs



a b

c d

 Fig. 3 Orchomenella infinita sp. n., holotype, female, 5.5 mm; Potter Cove,
            station 9. a, c, d) in vivo b) preserved in ethanol. a +b) habitus and 
            colour pattern, scale bars correspond to 1 mm. c+d) scale bars 
            correspond to 250 µm c) emphasizing antenna 1 d) emphasizing 
            epistome and upper lip and chelation of gnathopod 2
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Fig. 5 Frequency distribution of pairwise K2P distances within and 
           between Antarctic lysianassoid species
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Fig. 7 Habitus of Orchomenella infinita sp. n., holotype, female, 5.5 mm; Potter Cove, station 9



50 µm

e

g

125 µm

f

50 µm

250 µm

c

500 µm

d250 µm

a

250 µm

b

h

125 µm

Fig. 8 Orchomenella infinita sp. n., holotype, female, 5.5 mm; Potter Cove, station 9. a) left A1 b) left A2 d) head, 
          antennae, epistome and upper lip e) left Mx1 f) left Mx2 g) left MD h) Mxp. Orchomenella infinita sp. n., paratype, 
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Fig. 10 Orchomenella infinita sp. n., holotype, female, 5.5 mm; Potter Cove, station 9. a) left P3: Cx, Ba, Is, Me b) left P4: 
             Cx, Ba, Is, Me c) left P5 d) left P6 e) left P7:Cx, Ba f) left P7: Me, Ca, Pr, D



Table 1 Sampling stations in Potter Cove and Marian Cove analysed in the present study 

 

Station ID Locality Coordinates Depth Date 
02 King George Island, Potter Cove, outer cove 62° 14'03.2"S  58° 39'17.3"W 30 m  14.11.2014 
07 King George Island, Potter Cove, inner cove 62° 13'30.1"S  58° 38'43.7"W 43 m 13.12.2014 
09 King George Island, Potter Cove, outer cove 62° 14'23.4"S  58° 41'52.3"W 39 m 16.12.2014 
10 King George Island, Potter Cove, outer cove 62° 14'23.4"S  58° 41'52.5"W 40 m 16.12.2014 
11 King George Island, Potter Cove, outer cove 62° 14'23.4"S  58° 41'52.5"W 40 m 18.12.2014 
12 King George Island, Potter Cove, outer cove 62° 14'23.4"S  58° 41'52.5"W 40 m 18.12.2014 
13 King George Island, Potter Cove, outer cove 62° 14'23.4"S  58° 41'52.5"W 40 m 20.12.2014 
14 King George Island, Potter Cove, outer cove 62° 14'23.4"S  58° 41'52.5"W 40 m 20.12.2014 
16 King George Island, Potter Cove, inner cove 62° 13'36.9"S  58° 40'40.5"W 28 m 22.12.2014 
17 King George Island, Potter Cove, inner cove 62° 13'37.0"S  58° 40'40.9"W 20 m 24.12.2014 
18 King George Island, Potter Cove, inner cove 62° 13'25.3"S  58° 39'16.3"W 19 m 24.12.2014 
19 King George Island, Potter Cove, outer cove 62° 14'23.6"S  58° 43'07.2"W 21 m 26.12.2014 
27 King George Island, Potter Cove, outer cove 62° 14'22.3"S  58° 43'01.4"W 30 m 03.01.2015 
28 King George Island, Potter Cove, outer cove 62° 14'23.9"S  58° 43'05.3"W 20 m 03.01.2015 
31 King George Island, Marian Cove  62° 12'47.8"S  58° 47'37.1"W 30 m 08.01.2015 
32 King George Island, Marian Cove  62° 12'46.5"S  58° 47'26.3"W 40 m 08.01.2015 
33 King George Island, Marian Cove  62° 12'49.4"S  58° 44' 55.2"W 25 m 08.01.2015 
35 King George Island, Marian Cove  62° 12' 25.1"S 58° 46' 19.9"W 20 m 10.01.2015 
37 King George Island, Potter Cove, inner cove 62° 14' 00.3"S  58° 40' 09.1"W 30 m 10.01.2015 
38 King George Island, Potter Cove, inner cove 62° 13' 34.3"S  58° 40' 18.2"W 20 m 10.01.2015 
41 King George Island, Potter Cove, inner cove 62° 13' 34.6"S  58° 38' 19.1"W 12 m 24.02.2016 
42 King George Island, Potter Cove, inner cove 62° 13' 45.1"S  58° 41' 18.0"W 20 m 01.03.2016 
43 King George Island, Potter Cove, inner cove 62° 13' 44.7"S  58° 41' 41.2"W 13 m 01.03.2016 
45 King George Island, Potter Cove, outer cove 62° 14' 33.9"S  58° 41' 43.8"W 35 m 24.02.2016 



Table 2 Information of CO1 barcoded specimens including information of W. obesa (Cluster ‘A’ and ‘B’) generated by Havermans (2012) 

Morphospecies ID Code BOLD ID Museums ID 
ZMB Locality Expedition/ 

station ID Coordinates Depth 

Orchomenella cf. rotundifrons MT014Oxx047 LYAPO001-16 
30509 Potter Cove, outer cove Carlini 14-15 

st 14 62°14´23.4"S, 58°41´52.5"W 40 m 

Orchomenella cf. rotundifrons MT010Oxx003 LYAPO002-16 
30510 Potter Cove, outer cove Carlini 14-15 

st 10 62°14´23.4"S, 58°41´52.5"W 40 m 

Orchomenella rotundifrons MT038Oro008 LYAPO003-16 
30511 Potter Cove, inner cove Carlini 14-15 

st 38 62°13´34.3"S 58°40´18.2"W 20 m 

Orchomenella rotundifrons MT038Oro001 LYAPO004-16 
30512 Potter Cove, inner cove Carlini 14-15 

st 38 62°13´34.3"S 58°40´18.2"W 30 m 

Orchomenella rotundifrons MT002Oro019 LYAPO005-16 
30513 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 20 m 

Orchomenella rotundifrons MT002Oro017 LYAPO006-16 
30514 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Orchomenella cf. rotundifrons MT038Oxx010 LYAPO007-16 
30515 Potter Cove, inner cove Carlini 14-15 

st 38 62°13´34.3"S 58°40´18.2"W 20 m 

Orchomenella rotundifrons MT002Oro012 LYAPO008-16 
30516 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Orchomenella rotundifrons MT002Oro018 LYAPO009-16 
30517 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Orchomenella rotundifrons MT002Oro020 LYAPO010-16 
30518 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Orchomenella cf. rotundifrons MT010Oxx002 LYAPO011-16 
30519 Potter Cove, outer cove Carlini 14-15 

st 10 62°14´23.4"S, 58°41´52.5"W 40 m 

Orchomenella rotundifrons MT002Oro013 LYAPO012-16 
30520 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Orchomenella cf. rotundifrons MT014Oxx048 LYAPO013-16 
30521 Potter Cove, outer cove Carlini 14-15 

st 14 62°14´23.4"S, 58°41´52.5"W 40 m 

Orchomenella rotundifrons MT002Oro008 LYAPO014-16 
30522 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Orchomenella cf. rotundifrons MT010Oxx001 LYAPO015-16 
30523 Potter Cove, outer cove Carlini 14-15 

st 10 62°14´23.4"S, 58°41´52.5"W 40 m 

Orchomenella cf. rotundifrons MT010Oxx004 LYAPO016-16 
30524 Potter Cove, outer cove Carlini 14-15 

st 10 62°14´23.4"S, 58°41´52.5"W 40 m 

Orchomenella rotundifrons MT002Oro016 LYAPO017-16 
30525 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Orchomenella cf. rotundifrons MT010Oxx005 LYAPO018-16 
30526 Potter Cove, outer cove Carlini 14-15 

st 10 62°14´23.4"S, 58°41´52.5"W 40 m 



Orchomenella rotundifrons MT002Oro011 LYAPO019-16 
30527 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Orchomenella infinita sp.n. MT009Oul006 LYAPO020-16 
30506 
holotype 

Potter Cove, outer cove Carlini 14-15 
st 09 62°14´23.4"S, 58° 41´52.3"W 39 m 

Orchomenella infinita sp.n. MT002Oul014 LYAPO021-16 
30507 
paratypes Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Orchomenella infinita sp.n. MT014Oul001 LYAPO022-16 
30508 
paratypes Potter Cove, outer cove Carlini 14-15 

st 14 62°14´23.4"S, 58°41´52.5"W 40 m 

Cheirimedon femoratus MT038Cfe007 LYAPO023-16 
30528 Potter Cove, inner cove Carlini 14-15 

st38 62°13´34.3"S 58°40´18.2"W 20 m 

Cheirimedon femoratus MT013Cfe011 LYAPO024-16 
30529 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Cheirimedon femoratus MT038Cfe004 LYAPO025-16 
30530 Potter Cove, inner cove Carlini 14-15 

st38 62°13´34.3"S 58°40´18.2"W 20 m 

Cheirimedon femoratus MT013Cfe010 LYAPO026-16 
30531 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Cheirimedon femoratus MT038Cfe006 LYAPO027-16 
30532 Potter Cove, inner cove Carlini 14-15 

st38 62°13´34.3"S 58°40´18.2"W 20 m 

Cheirimedon femoratus MT038Cfe002 LYAPO028-16 
30533 Potter Cove, inner cove Carlini 14-15 

st38 62°13´34.3"S 58°40´18.2"W 20 m 

Cheirimedon femoratus MT038Cfe005 LYAPO029-16 
30534 Potter Cove, inner cove Carlini 14-15 

st38 62°13´34.3"S 58°40´18.2"W 20 m 

Cheirimedon femoratus MT038Cfe003 LYAPO030-16 
30535 Potter Cove, inner cove Carlini 14-15 

st38 62°13´34.3"S 58°40´18.2"W 20 m 

Cheirimedon femoratus MT002Cfe009 LYAPO031-16 
30536 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Cheirimedon femoratus MT013Cfe012 LYAPO032-16 
30537 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Cheirimedon femoratus MT002Cfe010 LYAPO033-16 
30538 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Cheirimedon femoratus MT018Cfe002 LYAPO034-16 
30539 Potter Cove, inner cove Carlini 14-15 

st 18 62°13´25.3"S, 58°39`16.3"W 19 m 

Cheirimedon femoratus MT013Cfe009 LYAPO035-16 
30540 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Cheirimedon femoratus MT013Cfe008 LYAPO036-16 
30541 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Abyssorchomene charcoti MT002Ach006 LYAPO037-16 
30542 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Pseudorchomene plebs MT002Ppl001 LYAPO038-16 
30543 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Pseudorchomene rossi MT033Pro001 LYAPO039-16 30544 Marian Cove Carlini 14-15 62°12´49.4"S 58°44´55.2"W 25 m 



st 33 

Hippomedon kergueleni MT013Hke006 LYAPO040-16 
30545 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT013Hke004 LYAPO041-16 
30546 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT009Hke001 LYAPO042-16 
30547 Potter Cove, outer cove Carlini 14-15 

st 09 62°14´23.4"S, 58° 41´52.3"W 39 m 

Hippomedon kergueleni MT013Hke001 LYAPO043-16 
30548 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT009Hke003 LYAPO044-16 
30549 Potter Cove, outer cove Carlini 14-15 

st 09 62°14´23.4"S, 58° 41´52.3"W 39 m 

Hippomedon kergueleni MT013Hke003 LYAPO045-16 
30550 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT013Hke005 LYAPO046-16 
30551 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT009Hke002 LYAPO047-16 
30552 Potter Cove, outer cove Carlini 14-15 

st 09 62°14´23.4"S, 58° 41´52.3"W 39 m 

Hippomedon kergueleni MT013Hke007 LYAPO048-16 
30553 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT009Hke005 LYAPO049-16 
30554 Potter Cove, outer cove Carlini 14-15 

st 09 62°14´23.4"S, 58° 41´52.3"W 39 m 

Hippomedon kergueleni MT002Hke004 LYAPO050-16 
30555 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Hippomedon kergueleni MT002Hke005 LYAPO051-16 
30556 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Hippomedon kergueleni MT011Hke001 LYAPO052-16 
30557 Potter Cove, outer cove Carlini 14-15 

st 11 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT002Hke021 LYAPO053-16 
30558 Potter Cove, outer cove Carlini 14-15 

st 02 62°14´03.2"S, 58°39´17.3"W 30 m 

Hippomedon kergueleni MT011Hke003 LYAPO054-16 
30559 Potter Cove, outer cove Carlini 14-15 

st 11 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT011Hke006 LYAPO055-16 
30560 Potter Cove, outer cove Carlini 14-15 

st 11 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT011Hke002 LYAPO056-16 
30561 Potter Cove, outer cove Carlini 14-15 

st 11 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT011Hke005 LYAPO057-16 
30562 Potter Cove, outer cove Carlini 14-15 

st 11 62°14´23.4"S, 58°41´52.5"W 40 m 

Hippomedon kergueleni MT011Hke004 LYAPO058-16 
30563 Potter Cove, outer cove Carlini 14-15 

st 11 62°14´23.4"S, 58°41´52.5"W 40 m 

Waldeckia obesa cluster 'A' MT011Wob010 LYAPO059-16 
30564 Potter Cove, outer cove Carlini 14-15 

st 11 62°14´23.4"S, 58°41´52.5"W 40 m 



Waldeckia obesa cluster 'A' MT013Wob014 LYAPO060-16 
30565 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Waldeckia obesa cluster 'A' MT011Wob008 LYAPO061-16 
30566 Potter Cove, outer cove Carlini 14-15 

st 11 62°14´23.4"S, 58°41´52.5"W 40 m 

Waldeckia obesa cluster 'A' MT013Wob016 LYAPO062-16 
30567 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Waldeckia obesa cluster 'A' MT011Wob009 LYAPO063-16 
30568 Potter Cove, outer cove Carlini 14-15 

st 11 62°14´23.4"S, 58°41´52.5"W 40 m 

Waldeckia obesa cluster 'A' MT013Wob013 LYAPO064-16 
30569 Potter Cove, outer cove Carlini 14-15 

st 13 62°14´23.4"S, 58°41´52.5"W 40 m 

Waldeckia obesa cluster 'A' MT011Wob007 LYAPO065-16 
30570 Potter Cove, outer cove Carlini 14-15 

st 11 62°14´23.4"S, 58°41´52.5"W 40 m 

Waldeckia obesa cluster 'A' MT009Wob008  LYAPO066-16 
30571 Potter Cove, outer cove Carlini 14-15 

st 09 62°14´23.4"S, 58° 41´52.3"W 39 m 

Waldeckia obesa cluster 'A' MT014Wob135 LYAPO067-16 
30572 Potter Cove, outer cove Carlini 14-15 

st 14 62°14´23.4"S, 58°41´52.5"W 40 m 

Waldeckia obesa cluster 'A' MT014Wob134 LYAPO068-16 
30573 Potter Cove, outer cove Carlini 14-15 

st 14 62°14´23.4"S, 58°41´52.5"W 40 m 

Waldeckia obesa cluster 'A' MT009Wob007 LYAPO069-16 
30574 Potter Cove, outer cove Carlini 14-15 

st 09 62°14´23.4"S, 58° 41´52.3"W 39 m 

Waldeckia obesa cluster 'A' Wo-1412103 LYAPO070-17 
- Antarctic Peninsula ANT-XXIII-8  

689-5 62°27"S, 55°25"W 211 m 

Waldeckia obesa cluster 'A' Wo-2311094 LYAPO071-17 
- Haakon VII Sea BELARE  

AT 70°S, 5° E 130 m 

Waldeckia obesa cluster 'B' Wo-18051013 LYAPO072-17 
- Terre Adélie Coast CEAMARC  

ST13A EV 465 66°08"S, 140°38"E 213 m 

Waldeckia obesa cluster 'B' Wo-02121013 LYAPO073-17 
- George V Coast CEAMARC 

St47EV201(1243) 
67°04"S, 144°39"E 194 m 

Waldeckia obesa cluster 'B' Wo-23110910-
AMPBE019-10 AMPBE019-10 

- Haakon VII Sea Crown 
Bay BELARE AT 70°S, 23°E 230 

Waldeckia obesa cluster 'B' Wo-2904104 LYAPO074-17 
- Amundsen Sea JR179 BIOPEARL II 

KL-06-0769 n.a. n.a. 

Waldeckia obesa cluster 'B' Wo-06041013-
AMPBE044-10 AMPBE044-10 

- Eastern Weddell Sea ANT XXVII-3  
275-3 AGT 70° 56"S, 10°29"W 226 m 

Waldeckia obesa cluster 'B' Wo-ANT27 
3-118 LYAPO075-17 

- Haakon VII Sea Crown 
Bay 

BELARE  
AT 70°S, 5°E 130 m 

Waldeckia obesa cluster 'B' Wo-1412106 LYAPO076-17 
- Eastern Weddell Sea ANT XXIV-2 

48 AGT 70°24"S, 08°19"W 602 m 

Waldeckia obesa cluster 'B' Wo-1412108 LYAPO077-17 
- Eastern Weddell Sea ANT XXIV-2 

48 AGT 70°24"S, 08°19"W 602 m 

 



Table 3 K2P genetic distances within and between species, Ach: Abyssorchomene charcoti, Cfe: Cheirimedon 

femoratus, Hke: Hippomedon kergueleni, Oul: Orchomenella infinita sp. n. Oro: Orchomenella rotundifrons, Ppl: 

Pseudorchomene plebs, Pro: Pseudorchomene rossi, Wob_A: Waldeckia obesa cluster ‘A’, Wob_B: Waldeckia obesa 

cluster ‘B’, n.a.: not applicable 

 
Ach Cfe Oin Oro Hke Ppl Pro Wob_A Wob_B 

Ach n.a.         
Cfe 10.3-10.7 0.0-0.7        
Oin 17.4-17.5 17.4-17.7 0.00       
Oro 10.2-11.3 12.9-13.8 19.5-20.3 0.0-1.5      
Hke 29.8-30.7 29.4-30.7 36.1-37.0 30.5-32.5 0.0-0.7     
Ppl 15.5 14.2-14.7 18.8 17.3-18.1 30.8-32.2 n.a.    
Pro 15.8 15.5-16.2 16.4-16.5 15.7-16.6 30.6-32.2 12.0 n.a.   
Wob_A 29.6-32.5 31.7-35.6 34.0-37.0 30.2-33.7 27.6-30.4 34.2-37.3 33.6-36.2 0.0-2.8  
Wob_B 33.3-35.4 34.4-37.2 37.3-40.1 34.1-37.8 24.8-28.2 37.3-38.9 34.8-37.4 15.0-18.1 0.0-1.7 

 



Table 4 Relative and total abundances of lysianassoid amphipod species found in Potter Cove and Marian Cove 

 Potter Cove         Outer cove  Inner cove  Marian Cove  

         
 
 
 

No of specimens % No of specimens  % No of specimens  % No of specimens % 

Cheirimedon femoratus 33,440  79.81 17,466 67.61 15,974 99.44 260 12.75 
Hippomedon kergueleni 5808  13.86 5747 22.25 61 0.38 3 1.47 
Orchomenella rotundifrons  2110  5.04 2086 8.07 24 0.15 - - 
Waldeckia obesa 525  1.25 524 2.02 1 0.006 1774 87.00 
Orchomenella infinita sp. n.  6  <0.01 5 0.02 1 0.006 - - 
Pseudorchomene coatsi 3  <0.01 - - 3 0.02 - - 
Pseudorchomene plebs 2  <0.01 1 <0.01 1 0.006 - - 
Abyssorchomene charcoti 2  <0.01 2 <0.01 0 - - - 
Pseudorchomene rossi 3  <0.01 - - 1 0.006 2 0.1 
Orchomenella pinguides 1  <0.01 1 <0.01 0 - - - 
Total 41,898  25,832  16,064  2039  
 



Supplement material 1 Numbers of lysianassoid amphipod specimens per species and station in Potter Cove and Marian Cove. Yellow: Outer Potter Cove; Blue: Inner Potter Cove; 
Grey: Marian Cove 

Station ID Cheirimedon 
femoratus 

Waldeckia 
obesa 

Hippomedon 
kergueleni 

Orchomenella 
rotundifrons 

Orchomenella 
infinita sp.n 

Abyssorchomene 
charcoti 

Pseudorchomene 
rossi 

Pseudorchomene 
plebs 

Pseudorchomene 
coatsi 

Orchomenella 
pinguides 

 

02 793 0 658 1589 2 2 0 1 0 0  

07 8 0 0 0 0 0 0 0 0 0  

09 404 196 275 2 1 0 0 0 0 0  

10 1664 2 2 23 0 0 0 0 0 0  

11 360 83 30 20 0 0 0 0 0 0  

12 3 7 29 3 0 0 0 0 0 0  

13 1082 123 55 34 0 0 0 0 0 0  

14 893 111 539 116 2 0 0 0 0 0  

16 536 0 6 1 0 0 0 0 0 0  

17 156 0 4 0 0 0 0 0 0 0  

18 227 0 0 0 0 0 0 0 0 0  

19 2667 2 978 195 0 0 0 0 0 0  

27 462 0 2790 63 0 0 0 0 0 0  

28 2004 0 346 29 0 0 0 0 0 0  

31 11 605 2 0 0 0 0 0 0 0  

32 78 856 1 0 0 0 0 0 0 0  

33 23 313 0 0 0 0 2 0 0 0  

35 148 0 0 0 0 0 0 0 0 0  

37 6 0 6 0 0 0 0 0 0 0  

38 2403 0 3 12 0 0 0 0 0 0  

41 11,922 0 0 0 0 0 0 0 0 0  

42 548 0 20 8 0 0 1 1 0 0  

43 168 1 22 3 1 0 0 0 3 0  

45 7134 0 45 12 0 0 0 0 0 1  

Total 33,700 2,299 5,811 2,110 6 2 3 2 3 1 43,937 
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