European Coral Reef Symposium 13-15 December 2017, Oxford, United Kingdom Session 6 "Cold-water corals in a changing ocean"

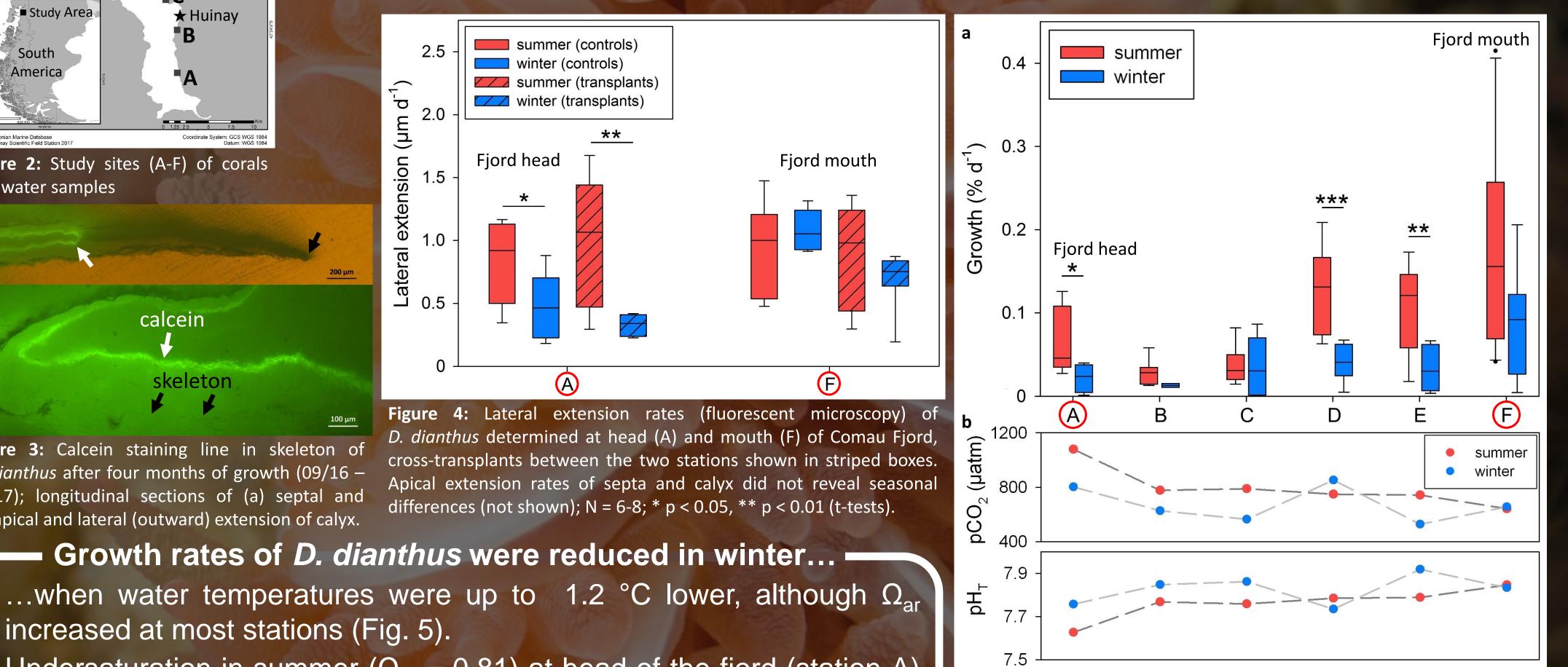
Seasonal growth of the cold-water coral Desmophyllum dianthus along an in situ aragonite saturation gradient

Kristina K. Beck^{1,2}, Gernot Nehrke¹, Grit Steinhöfel¹, Jürgen Laudien¹, Kathrin Vossen^{1,2}, Aurelia Reichardt^{1,2} Lea Happel^{1,3}, E. Maria U. Jung^{1,2}, Vreni Häussermann⁴, Claudio Richter^{1,2}, Gertraud M. Schmidt^{1,5}

¹Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; ²University of Bremen, Bremen, Germany; ³University of Oldenburg, Oldenburg, Germany; ⁴Huinay Scientific Field Station, Huinay, Chile; ⁵Max Planck Institute for Marine Microbiology, Bremen, Germany

Cold-water corals (CWC) are considered especially vulnerable...

...to ocean acidification⁽¹⁾ but in situ studies on the response of CWC to low aragonite saturation (Ω_{ar}) are still scarce. Comau Fjord in northern Patagonia (Chile) is naturally stratified with vertical and horizontal pH gradients and harbours high densities of the cosmopolitan CWC Desmophyllum dianthus at $\Omega_{ar} \leq 1^{(2,3)}$. Previous studies revealed high growth rates of *D. dianthus* in summer⁽⁴⁾ but it is unknown if skeletal growth shows seasonal fluctuations due to changes in Ω_{ar} and/or food supply.


Figure 1: D. dianthus corals glued on plastic screws and attached to holders to re-transplant them in their natural orientation on the fjord wall.

Desmophyllum dianthus' growth and linear extension rates....

Study Area 🛨 Huinay South America Figure 2: Study sites (A-F) of corals and water samples calcein skeleton

Figure 3: Calcein staining line in skeleton of D. dianthus after four months of growth (09/16 -01/17); longitudinal sections of (a) septal and (b) apical and lateral (outward) extension of calyx.

...(buoyant weight technique⁽⁵⁾; calcein staining and fluorescent microscopy, Fig. 3) were compared with the physico-chemical conditions in the water column (T, Ω_{ar}) in austral summer 2016/17 and winter 2017. Water samples were collected near corals with a CTD rosette at six stations in 20m depth between the fjord's head and its mouth (Fig. 2) and analysed for TA, DIC and temperature, from which pH_T , Ω_{ar} and pCO_2 was calculated⁽⁶⁾.

Undersaturation in summer ($\Omega_{ar} = 0.81$) at head of the fjord (station A)

 \rightarrow growth rates were still higher in summer than in winter (Fig. 5a)

Lateral extension (µm d⁻¹)

- Both coral controls and transplants showed seasonal differences in lateral growth of the calyx at station A (Fig. 4)
- Horizontal pH gradient in 20m water depth in austral summer and \bullet winter; summer values generally 0.1 units lower (Fig. 5b)
- Reproduction of *D. dianthus* takes place in August⁽⁷⁾ leading to reduced growth in winter as less energy is available for growth
- Food supply (plankton availability) is assumed to be better in summer ullet-> may further explain striking difference in growth performances between summer and winter

Literature

Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L & George R (2006). Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Frontiers in Ecology and the Environment, 4(3), 141-146.

²Fillinger L & Richter C (2013). Vertical and horizontal distribution of *Desmophyllum dianthus* in Comau Fjord, Chile: a cold-water coral thriving at low pH. PeerJ, 1, e194.

Jantzen C, Häussermann V, Försterra G, Laudien J, Ardelan M, Maier S & Richter C (2013). Occurrence of a cold-water coral along natural pH gradients (Patagonia, Chile). Marine Biology, 160(10), 2597-2607.

¹ Jantzen C, Laudien J, Sokol S, Försterra G, Häussermann V, Kupprat F & Richter C (2013). In situ short-term growth rates of a cold-water coral. Marine and Freshwater Research, 64(7), 631-641. Jokiel P, Maragos J & Franzisket L (1978). Coral growth: buoyant weight technique. Monographs Oceanography Methodology (UNESCO), 5, 529-542.

Pierrot D, Lewis E & Wallace DWR (2006). MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, doi: 10.3334/CDIAC/otg.CO2SYS XLS CDIAC105a. ⁷ Rhian Waller, personal communication.

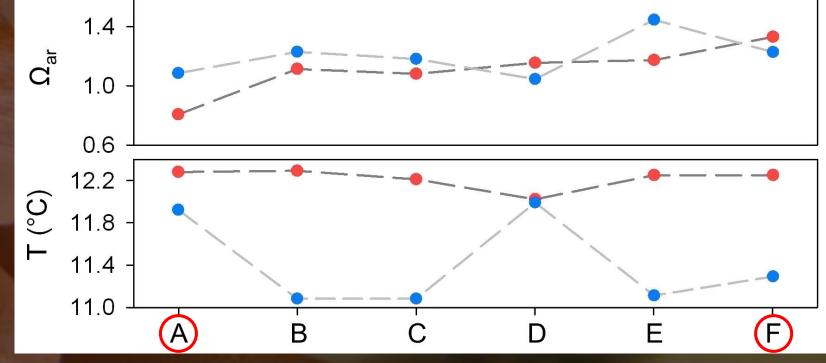


Figure 5: a) Seasonal growth (buoyant weight) of D. dianthus in summer \bullet = 09/16 - 01/17 and winter \circ = 05/17 - 08/17; N = 5-10 (station B winter N = 2); * p < 0.05, ** p < 0.01, *** p < 0.001 (t-tests). b) Carbonate chemistry of Comau Fjord, calculated from total alkalinity (TA) and dissolved inorganic carbon (DIC) at stations A-F using CO2sys⁽⁶⁾.

Acknowledgements

We thank the scientific divers (Adrian Gruhn, Annika Müller, Benedikt Caskie, Felix Butschek, Maximilian Neffe and Thomas Heran) for collecting the corals and Ulrike Holtz and Beate Müller for their help with processing and analysing coral and water samples.

Funding

Bi-lateral BMBF-CONICYT project PACOC (Plankton and cold-water coral ecology in Comau Fjord, Chile): 01DN15024 (2015-2018).

Pictures of *D. dianthus:* © Thomas Heran

Kristina.Beck@awi.de