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Abstract

Ontogenetic changes in biomass and chemical composition were studied in the laboratory

during the abbreviated larval and early juvenile development of the caridean shrimp

Campylonotus vagans from the subantarctic Beagle Channel, Argentina. At 7F 0.5 jC,
development from hatching to metamorphosis took about 44 days. The larvae started feeding

on Artemia nauplii immediately after hatching, although larval resistance to starvation was high

(average 18 days, maximum 29 days). Dry mass (DM), carbon (C), nitrogen (N) and hydrogen

(H) contents increased about a fourfold from hatching to metamorphosis, while the C:N mass

ratio increased from about 3.7 to 4.3. The protein and total lipid contents increased gradually

from hatching to the first juvenile stage, the former from 190 to 640 Ag/individual, the latter

from 37 to 95 Ag/individual. The lipid mass fraction was low throughout larval development

(3–9% of DM), while the protein content was much higher and almost constant (30–40%).

The dominating fatty acids were 18:1(n-9), 16:0, 20:5(n-3), 18:1(n-7), 18:3(n-3), 18:0, 16:1(n-

7). Except for 20:5(n-3), these resulted mainly from food uptake (Artemia nauplii). Exuvial

losses of C, H and N (all larval stages combined) accounted for only 7%, 1% and 1% of the

initial values at hatching. In contrast, 37% of initial DM was lost. Partially food-independent
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(endotrophic) larval development is discussed as an adaptation to food scarcity at high

latitudes, while the abbreviated planktotrophic larval development appears to be synchronised

with seasonal peaks in primary production, allowing for an optimal resource exploitation in a

food-limited environment.

D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

On a macroecological scale, many marine invertebrate groups show a remarkable

reduction in species diversity towards higher latitudes, probably best documented for

marine bivalve molluscs (Crame, 1999, 2000a,b) and decapod crustaceans (Gorny, 1999).

Both groups present a bell-shaped pattern with decreasing species diversity towards high

latitudes. Among the decapods, only eight natant shrimp species have been found in the

high Antarctic Weddell Sea (Arntz et al., 1992). Reptant crabs seem to be entirely absent

from the high Antarctic shelf, although a few lithodid crab species have been found off the

shelf, mostly at depths below 250 m (Klages et al., 1995; Arana and Retamal, 1999). In

contrast, a high diversity of reptants has been recorded in cold-temperate areas of the

subpolar regime (Gorny, 1999).

Strongly pronounced seasonality in planktonic food availability due to short periods of

primary production is, besides low temperatures, presumably a major selective force in

high latitudes (for discussion, see Clarke, 1987; Pearse et al., 1991; Knox, 1994). Species

without a fully planktotrophic mode of larval development may thus have to adapt to such

a food-limited conditions, synchronising their larval phase with short and pulsed primary

production. However, the adaptability may be limited by physiological constraints

associated with low temperatures, which cause slow development in both embryos and

larvae (Clarke, 1982, 1983).

In the present study we have chosen the subantarctic caridean shrimp Campylonotus

vagans Bate, 1888, as an example of early life history adaptations to strongly pulsed food

availability. The family Campylonotidae shows several ecological and biogeographic

patterns, which enable us to discuss our findings in a wider ecological context, and in

relation to high Antarctic shrimp species. The Campylonotidae show a circumpolar

distribution and consist of five representatives exclusively known from the Southern

Ocean, one of which was recently discovered in Antarctic waters (Torti and Boschi, 1973;

Thatje, 2003).
2. Materials and methods

2.1. Capture and maintenance of ovigerous females

Ovigerous C. vagans were caught in the Beagle Channel in September 2001

(54j53VS, 68j17VW, Fig. 1) using an inflatable dinghy equipped with an epibenthic



Fig. 1. C. vagans. Changes in dry mass (DM) and contents of carbon (C), nitrogen (N) and hydrogen (H) (all in

Ag/individual; xF S.D.) during larval and early juvenile development in the presence of food (Artemia sp.).
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trawl (1.7 m mouth width, net with 1 cm mesh size) at about 15 m depth. Maintenance

of females and rearing of larvae took place in the local institute Centro Austral de

Investigaciones Cientı́ficas (CADIC) in Ushuaia, Tierra del Fuego (Argentina), under

constant conditions of temperature (7.0F 0.5 jC), salinity (ca. 30), and a 12:12-h light/

dark rhythm.

Each female was kept individually in a tank of about 30 l water content, equipped

with permanent seawater flow from a closed circulation filter system. Food (commer-

cial TETRA AniMin pellets for aquaristics, TetraWerke, Germany) was given twice a

week.

2.2. Rearing of larvae and juveniles

The first larvae hatched at night, about a fortnight after capturing the ovigerous females.

Due to strong demersal behaviour, the larvae were collected every night from the bottom

of the aquaria using long glass pipettes. Each day, randomly selected larvae were

transferred to individual rearing cups with about 100 ml seawater, which were checked
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daily for dead or moulted individuals. Every other day, water was changed and food

(Artemia sp. nauplii; Argent Chemical Laboratories, USA) was supplied.

The larval development of C. vagans passed invariably through two zoeal stages and

one decapodid stage, with mean durations of 12, 17 and 15 days, respectively (see Thatje

et al., 2004). Their separation was based on the appearance of an exuvia and visual

observation of morphological differences (cf. Thatje et al., 2001; Thatje and Lovrich,

2003).

2.3. Determination of dry mass (DM) and elemental composition (C, H, N)

Samples for the determination of dry mass (DM) and elemental composition (C, N, H;

with n = 5 replicates each; one individual per replicate) were taken immediately after

hatching (day 0) and subsequently on days 5 and 10 of each larval and the first juvenile

instar (see Table 1). Larval samples for the study of physiological changes during the

complete larval and early juvenile development resulted from the same females A and B in

parallel rearings. Due to extremely low fecundity (Thatje et al., 2004), parallel analyses of

unfed larvae are based on larval material from an additional female. Exuviae were sampled

from each larval stage to quantify biomass losses during successive moults. Since a

minimum of 0.2 Ag dry mass is needed for each elemental analysis, 10–20 exuviae

(depending on availability) originating from two different females (females A +B) per

replicate sample (with n = 1–6 replicates) were pooled.

Dry mass was measured to the nearest 0.1 Ag on an autobalance (Mettler, UMT 2).

C, N and H contents of larvae and the first juvenile instar were analysed as described

by Anger and Harms (1990): short rinsing in distilled water, blotting on fluff-free

Kleenex paper for optical use, freezing at � 18 jC, vacuum drying at < 10� 2 mbar,
Table 1

C. vagans. Changes in dry mass (DM) and contents of carbon (C), nitrogen (N) and hydrogen (H) (all in percent

of DM; xF S.D.) during larval development and in the first juvenile shrimp stage in presence of food (Artemia

sp.); age given in days (a) within each stage and (b) from hatching

Stage Female Age DM (Ag/individual)
with Artemia

C (%DM)

with Artemia

N (%DM)

with Artemia

H (%DM)

with Artemia

(a) (b) x F x F x F X F

Zoea I A 0 0 493 8 40.8 0.8 11.1 0.2 5.8 0.1

B 0 0 426 55 43.5 5.0 11.8 1.5 6.2 0.7

C 0 0 474 15 41.5 1.0 10.9 0.2 5.9 0.1

D 0 0 416 36 42.4 0.6 11.7 0.3 6.2 0.1

E 0 0 406 29 41.9 0.9 11.1 0.5 5.9 0.1

A 5 5 668 25 44.0 0.5 11.2 0.2 6.7 0.1

A 10 10 712 77 44.0 0.5 11.6 0.3 6.7 0.1

Zoea II A 5 17 903 51 40.7 1.7 10.7 0.4 6.0 0.3

A 10 22 941 43 41.4 2.4 10.9 0.5 6.1 0.3

Decapodid A 5 34 1342 221 44.2 1.5 10.9 0.1 6.5 0.3

A 10 39 1446 49 44.3 1.6 10.8 0.3 6.6 0.3

Juvenile A 5 49 2077 122 40.8 0.9 9.6 0.3 6.0 0.2

A 10 54 1937 61 41.2 2.2 9.8 0.5 6.1 0.3
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weighing and combusting at 1020 jC in a Fison (Carlo Erba) 1108 Elemental

Analyser.

2.4. Protein analyses

Samples for protein analyses (n = 5) were gently rinsed in distilled water, dried on filter

paper, transferred individually into an Eppendorf vial and deep frozen at � 80 jC. Protein
samples were dried for 48 h using the Finn-Aqua Lyovac GT2E vacuum drier, and W was

afterwards measured in a Sartorius MC1 RC 210 S Balance (precision: 0,01 mg, capacity

210 g). Following drying, samples were homogenised by sonication (Branson, Sonifer,

Cell Disruptor B 15) and each homogenate was divided in two aliquots for protein

analyses. We used the Lowry method for protein determination (Lowry et al., 1951),

modified to perform measurements using microplates (Pfaff, 1997, Paschke, 1998).

Spectrometric measurements were made in triplicate in a microplate spectrophotometer

(750-nm filter, Dynatech, MR 7000).

2.5. Total lipid and fatty acid analyses

Since the amount of larval material in all biochemical studies was extremely limited

due to low female fecundity, we calculated individual total lipid content on the basis of

lipid extraction, precipitation and drying, previous to transesterification of the sample

material for fatty acid analyses.

The fatty acid composition was determined by gas chromatography (Kattner and

Fricke, 1986). Briefly, fatty acids were converted to methyl esters by transesterification in

methanol containing 3% concentrated sulphuric acid at 80 jC for 4 h. The obtained fatty

acid methyl esters were then analysed using a gas chromatograph (GC) (HP6890) on a 30

m� 0.25 mm i.d. wall-coated open tubular column (film thickness: 0.25 Am; liquid phase:

DB-FFAP) using temperature programming. Fatty acids were identified with standard

mixtures and quantified by internal standard (Kattner et al., 1998).

2.6. Statistical analyses

Differences in larval elemental composition at hatching were compared in five

different females. Statistical differences were tested by means of a one-way ANOVA
Table 2

C. vagans. Changes in dry mass (DM) and contents of carbon (C), nitrogen (N) and hydrogen (H) (all in percent

of DM; xF S.D.) in the zoea I stage in the absence of food; age given in days

Stage Female Age DM (Ag/individual)
without Artemia

C (%DM)

without Artemia

N (%DM)

without Artemia

H (%DM)

without Artemia

x F x F x F x F

Zoea I C 0 474 15 41.5 1.0 10.9 0.2 5.9 0.1

C 5 455 23 37.7 1.0 10.6 0.3 5.5 0.1

C 10 441 16 37.5 1.1 10.4 0.3 5.3 0.2
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(Sokal and Rohlf, 1995). Changes in dry mass, elemental composition (C, N, H), protein

and lipid were described and compared with linear regressions in relation to larval age

(Sokal and Rohlf, 1995). The elemental and protein data were log-transformed to

achieve normality and homoscedasticity (tested with Kolmogorov–Smirnov and Bar-

tlett’s tests, respectively). Slopes of linear regressions were compared with an ANCOVA

using the F-statistic (Sokal and Rohlf, 1995).
3. Results

3.1. Changes in dry mass, C, N, H and C:N mass ratio

The elemental composition and protein content of recently hatched larvae varied

significantly among the five different females (DM, F = 6.753, C, F = 10.787, H,

F = 13.218, N, F = 10.707, proteins F = 16.2; all P < 0.001).

First feeding was microscopically observed following hatching. Dry mass as well as C,

H and N increased significantly in fed larvae from hatching to metamorphosis, reaching

fourfold higher values on day 5 of the first juvenile stage (Tables 1 and 3; Fig. 1). A

stronger increase in the C fraction in relation to DM is reflected by an increasing C:N mass

ratio during larval development. This ratio remained comparably constant from day 5 to

day 22 (end of zoea II stage), but increased subsequently from about 3.8 to 4.1, when the

decapodid stage was reached (Fig. 2).
Fig. 2. C. vagans. Carbon/nitrogen (C:N) mass ratio during larval and early juvenile development in the presence

of food (Artemia sp.).



Table 3

C. vagans. Parameters of linear regressions describing changes in dry mass (DM), contents of carbon (C),

nitrogen (N), hydrogen (H) (all in Ag/individual, after logarithmic transformation) as functions of the time of

development during larval development until day 5 of the first juvenile instar (i.e. day 49 of development)

Stage Biomass

parameter

Slope Intercept F reg P

With Artemia

Zoea I–Decapodid

(days 0–49)

DM 0.012 2.735 925.0 < 0.001

C 0.012 2.362 627.5 < 0.001

H 0.012 1.533 466.2 < 0.001

N 0.011 1.790 774.5 < 0.001

Proteins 0.010 2.367 148.7 < 0.001

Without Artemia

Zoea I (days 0–10) DM � 0.003 2.676 9.76 0.008

C � 0.008 2.290 52.45 < 0.001

H � 0.008 1.448 41.09 < 0.001

N � 0.005 1.714 28.98 < 0.001

Proteins � 0.008 2.365 1.951 0.186

All slopes are significantly different from zero ( P< 0.001); the slopes of regressions obtained from different

treatments do not differ significantly from each other (ANCOVA: all P>0.05).
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Despite the significant differences in elemental composition and protein content of

recently hatched larvae among all five females, the initial elemental composition and

protein contents of larvae from female A (with Artemia) and female C (without

Artemia) were similar (Tukey post hoc tests for C, N, H and protein per larvae, all

P>0.41; Tables 1–3). Larvae kept under starvation conditions (female C) did not

reach the moult to the zoea II stage. DM, C, N and H decreased significantly within

the first 10 days of the zoea I (Table 3), when this sampling was finished due to

lack of larval material. The protein content, in contrast, remained constant throughout

this time span (cf. Table 2). Starved larvae survived on average about 14 days. In fed

larvae, the proportion of C, N and H (in %DM) remained equal during the entire

larval and early juvenile development (Table 1). C contributed always about 40–44%
Table 4

C. vagans. Dry mass (DM), contents of carbon (C), nitrogen (N) and hydrogen (H) (all in Ag/individual and in

percent of W), C:N mass ratio of the exuviae of all larval stages; xF S.D.

Stage N DM C N H C:N mass ratio

x F x F x F x F x F

Zoea I Ag/ind. 7 39.3 4.2 7.4 1.3 1.3 0.1 1.2 0.2 5.6 1.1

%DM 8.5 0.9 1.6 0.2 0.3 0.1 0.3 0.1

Zoea II Ag/ind. 5 57.8 13.1 10.2 1.0 1.9 0.2 1.6 0.2 5.3 0.1

%DM 12.4 2.9 2.2 0.2 0.4 0.1 0.3 0.1

Decapodid Ag/ind. 1 74.9 16.4 3.2 2.7 5.2

%DM 16.3 3.6 0.7 0.6
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DM, while the N and H values ranged from about 10–12% and 6–7%, respectively

(Table 1). The values for unfed larvae of female C were slightly below those of fed

larvae (Table 1).

3.2. Exuvial losses

Very few exuviae were available for elemental analyses, especially in late develop-

mental stages, hence no replicate analyses were possible (Table 4); many exuviae fell

rapidly apart shortly after moulting.

The zoeal stages as well as the decapodid stage of C. vagans produced strikingly thin

and fragile exuviae. Therefore, total exuvial dry mass and C, N, H contents per individual

were low, but gradually increased in successive ontogenetic stages, more or less doubling

the above values of zoea I exuviation at metamorphosis (Table 3; Fig. 3). The C, N, H

values (in percent of exuvial DM) were generally much lower than those of the whole

body mass. The C:N mass ratio, in contrast, was always higher in the exuviae than in total

body DM of larval and juvenile stages (Tables 1 and 4).

In both zoeal stages combined, about 21% of the initial DM at hatching, 4% of the

initially present C, and about 1% of both, N and H was lost with the shed exuviae.

Roughly the same amounts were lost with the decapodid exuvia cast at metamorphosis.

The losses in DM, however, were slightly lower in the decapodid, compared to those in the

zoeal stages I and II combined (Fig. 3). Total exuvial losses of DM from hatching to

metamorphosis (all larval stages combined) amounted to about 172 Ag DM or 37% of the

initially present dry mass at hatching (Fig. 3).
Fig. 3. C. vagans. Exuvial losses of dry mass (DM), carbon (C), nitrogen (N) and hydrogen (H), given in Ag/
individual (xF S.D.) and in percent of the initial biomass at hatching.



Table 5

Changes in the protein content (Ag/individual) during larval and early juvenile development of C. vagans (�Artemia=without Artemia sp.)

Female Developmental stage

Zoea I Zoea II Decapodid Juvenile I

d-0 d-5 d-10 d-17 d-22 d-34 d-39 d-49

A Ag/ind. 189.5F 30.7 281.3F 25.2 336.1F 37.8 388.1 F 38.6 389.5F 49.1 496.1F 46.8 587.4 F 65.6 642.1F 204.8

%DM 38.6F 0.7 42.1F1.6 47.5F 5.8 43.1F 2.5 41.4F 1.9 37.8F 6.5 40.6F 1.4 31.0F 1.7

B Ag/ind. 201.1F 21.1 280.8F 68.6 273.0 F 34.3 326.5F 38.5 407.6F 56.9 479.4F 39.4

%DM 48.0F 6.6 46.5F 6.6 40.9F 1.6 35.9F 2.6 44.2F 5.1 37.4F 1.9

C �Artemia Ag/ind. 229.6F 77.6 236.5F 12.0 181.1F11.9

%DM 48.3F 1.5 51.9F 2.5 63.9F 2.2

D Ag/ind. 209.3F 18.6

%DM 49.8F 6.9

E Ag/ind. 191.1F 27.6

%DM 47.2F 3.6

d-0: freshly hatched larvae (unfed).
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3.3. Changes in protein and lipid contents

The protein content varied from 31% to 50% of DM (Table 5). The gradual increase

in the absolute protein content (in Ag/individual) during larval development showed a

similar pattern as observed in elemental composition. Larvae maintained without food

lost about 22% from hatching to day 10, indicating significant protein utilisation.

Total lipid content increased continuously from hatching to the first juvenile instar (37–

95 Ag/individual, Table 6), however, with variable values in the decapodid stage (Table 6).

In terms of %DM, lipid contents of about 8% decreased slightly throughout larval

development (Table 6). A decreasing lipid content by about 27% in the decapodid stage

a few days before metamorphosis (from day 34 to day 39) indicates a considerable use of

lipids (Table 6). Total lipid in larvae kept under starvation conditions decreased from

hatching until day 5. This may indicate utilisation of lipids as an energy source during

absence of food (Table 6).

3.4. Fatty acid composition

The dominant fatty acids during the subsequent larval development of C. vagans were

18:1(n-9), 16:0 and 20:5(n-3), contributing on average 20%, 15% and 12%, respectively,

to the total fatty acid pool (Table 7). Other important fatty acids were 18:1(n-7), 18:3(n-3),

18:0 and 16:1(n-7), contributing 8%, 7%, 6% and 4%, respectively, to the total fatty acid

pool (Table 7). Other fatty acids occurred only in small amounts and most of these were

polyunsaturates. On average, about 15% saturated, 35% monounsaturated and 40%

polyunsaturated fatty acids were found throughout larval and early juvenile development

(Table 7).

The food offered (Artemia sp. nauplii) was dominated by 18:1(n-9), 18:3(n-3), 16:0 and

16:1(n-7), contributing 29%, 22%, 12% and 6%, respectively, to all fatty acids (Table 7).

The strong variability in fatty acid content as, e.g. observed throughout larval development

in 18:3(n-3), might be due to individual feeding conditions of larvae (Table 7). After 10

days of starvation, a dramatic decrease occurred in all previously dominating fatty acids

(all < 7%).

The contribution of three detected fatty alcohols (14:OA, 16:OA, 18:OA) was

extremely low in all samples; they varied from 0 to 3% of total mass, indicating
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Table 6

C. vagans. Total lipid content in fed and unfed (�Artemia=without Artemia) larvae (all in Ag/individual and in

percent of DM)

Female Developmental stage

Zoea I Zoea II Decapodid Juvenile I

d-0 d-5 d-10 d-17 d-22 d-34 d-39 d-49 d-54

A Ag/ind. 37 52 64 60 63 51 37 95 70

%DM 8 8 9 7 7 4 3 5 4

C �Artemia Ag/ind. 41 11 39

%DM 9 2 9



Table 7

C. vagans. Changes in fatty acid composition (mass percent of total fatty acids) during larval and early juvenile

development, and in the Artemia nauplii offered as food

Fatty acids Zoea I Zoea II Decapodid Juvenile I Artemia sp.

d-0 d-5 d-10 d-17 d-22 d-34 d-39 d-49 d-54

13:0 0.4 0.3 0.2 0.2 0,4 0.1 – – – –

14:0 3.0 2.1 1.8 2.3 2.8 1.1 0.9 7.0 1.3 1.0

14:1(n-5) 0.4 0.2 – – – – – – – 0.1

15:0 1.2 0.7 0.4 1.3 1.5 0.3 0.3 0.4 0.3 0.4

16:0 18.8 13.9 13.8 16.3 15.5 13.9 11.4 17.3 11.6 11.7

16:1(n-7) 3.3 3.8 3.8 3.7 3.7 4.3 4.2 9.3 3.8 6.1

16:1(n-5) 0.3 0.2 – 0.3 – 0.1 0.1 0.2 0.1 0.2

16:2(n-4) 0.7 0.4 0.5 0.4 0.3 0.2 0.2 1.9 – 0.3

16:3(n-4) 0.8 0.9 0.9 1.0 1.2 1.0 0.9 1.6 0.9 1.2

16:4(n-1) 0.5 – – 0.2 – – 0.2 3.1 0.8 –

17:0 1.1 0.7 0.7 1.0 1.6 0.9 0.7 0.3 0.7 0.7

17:1 – 0.1 – 0.3 – 0.2 0.2 – – 0.6

18:0 7.4 7.1 5.8 6.8 7.8 6.1 5.3 2.9 5.9 3.5

18:1(n-9) 12.9 19.9 20.8 20.5 21.5 25.7 24.6 12.2 24.7 29.2

18:1(n-7) 7.5 8.2 8.8 7.8 8.1 12.3 10.7 2.5 10.1 7.1

18:2(n-6) 2.6 9.4 4.6 6.6 5.8 5.9 4.7 0.9 4.9 5.1

18:3(n-6) 0.7 0.6 1.0 0.7 0.4 2.1 0.8 0.4 1.4 1.3

18:3(n-3) 0.4 0.3 10.9 11.1 5.3 0.4 15.5 0.7 14.4 21.5

18:4(n-3) – 0.8 0.9 1.1 1.0 1.6 1.5 3.4 1.3 4.1

20:1(n-9) 0.5 0.5 0.9 1.0 1.1 1.3 1.2 1.2 1.1 0.7

20:1(n-7) 0.7 0.5 0.3 0.2 – 0.3 0.3 0.2 – –

20:2(n-6) 0.4 2.3 – 0.1 0.6 0.5 0.4 – – –

20:3(n-6) 0.5 0.3 – 0.2 0.3 0.1 0.2 0.2 – 0.2

20:3(n-3) – 0.3 0.4 0.4 3.5 1.0 0.8 1.1 0.9 0.2

20:4(n-6) 3.6 3.0 2.9 2.0 1.6 3.1 2.8 0.7 2.7 1.0

20:4(n-3) – 0.3 – 0.3 – 0.5 0.4 – – 0.3

20:5(n-3) 16.3 12.7 11.7 8.6 8.7 11.3 8.1 19.7 9.9 3.5

22:1(n-11) – – – – – – – 1.8 – –

22:1(n-9) 0.4 0.2 – 0.4 – 0.2 0.1 0.2 – –

22:4(n-3) 2.5 1.3 1.1 1.0 1.2 0.6 0.5 0.8 0.7 –

22:5(n-3) 1.1 0.6 0.4 0.8 0.3 0.2 – 1.3 – –

22:6(n-3) 12.1 8.4 7.3 3.6 5.8 4.4 2.8 8.5 3.5 –

24:1(n-11) – – – – – – – 0.4 – –

S Saturates 31.8 24.7 22.8 27.7 29.6 22.4 18.7 28.0 19.7 17.3

S Monounsats. 26.0 33.7 34.6 34.2 34.4 44.4 41.4 27.9 39.8 44.1

S Polyunsats. 42.2 41.6 42.6 38.1 36.0 33.2 39.9 44.1 40.5 38.6
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that wax esters were negligible as an energy source during starvation and

metamorphosis.
4. Discussion

Based on the comprehensive work of Thorson (1936, 1950), it has been suggested

that polar marine invertebrates tend to reduce planktotrophic larval developments
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(Mileikovsky, 1971). This generalisation generated intense scientific discussions and

was frequently modified (e.g. Chia, 1974; Stanwell-Smith et al., 1999; Gallardo and

Penchaszadeh, 2001; see also Arntz and Gili, 2001). At high latitudes, there exists a

conspicuous mismatch of long larval development due to low temperatures and short

intensed periods of primary production, i.e. food availability (Clarke, 1982, 1987).

This should select against a planktotrophic mode of development, in particular in the

high Antarctic regime. Studies on invertebrate reproduction in the Southern Ocean

demonstrated that reproductive traits in cold environments are more diverse than

previously assumed. This includes a high frequency of brooding species including

those with benthic, demersal or direct larval development (Bosch and Pearse, 1990),

which is often associated with various levels of food independence. Pelagic studies

showed that the meroplanktonic community may be more diverse than previously

recorded, occurring in low abundance, but with long-lived and slowly developing

larvae (Stanwell-Smith et al., 1999). Such modes, however, require some degree of

endotrophic or partially lecithotrophic development allowing for a high resistance to

starvation. These processes are still far from understood in high latitudinal benthic

decapods.

In the subantarctic Magellan region, the meroplanktonic community is dominated by

decapod larvae (Lovrich, 1999; Thatje et al., 2003b). For instance, endotrophic food-

independent, demersal modes of development have been observed in some lithodid

crabs (e.g. Calcagno et al., 2003; Lovrich et al., 2003), but planktotrophic or partially

food-independent developments seem to be the dominating modes in decapod repro-

duction (Thatje et al., 2003b). The use of plankton as a food source basically requires

a strong synchronisation of larval release with seasonal peaks of plankton productivity.

Such hatching processes may be triggered by sinking phytoplankton particles to the sea

floor, or directly by the development of a phytoplankton bloom (Starr et al., 1990,

1994). On the other hand, some decapods at high latitudes show extended hatching

periods of varying length, ranging from a few weeks to months (e.g. Lithodidae:

Paralomis granulosa, Lithodes santolla, Thatje et al., 2003a; Crangonidae: Notocran-

gon antarcticus, Bruns, 1992). This same pattern is evident also in C. vagans with 2–

3 weeks of duration (Thatje et al., 2004). Extended periods of larval release in

combination with high larval resistance to starvation (for C. vagans, see Thatje et al.,

2004) reduce the necessity of synchronisation with food availability (Stanwell-Smith et

al., 1999). In addition, low daily hatching rates should help to avoid predation on the

small offspring (Thatje et al., 2003a). Extended hatching periods occur also in decapod

species with completely food-independent larvae (e.g. the lithodid P. granulosa;

Calcagno et al., 2003). The abbreviated larval development in C. vagans may be

another important adaptation to food limitation, as it allows a better synchronisation

with food availability. Lack of variability in the number of instars appears to be typical

of high latitudinal caridean species, again aiding to synchronisation with peaks in

plankton production (high variability in larval developmental pathways is typical of

low latitude decapods, i.e. tropic carideans, Wehrtmann and Albornoz, 1998; Anger,

2001). The production of extremely thin exuviae in C. vagans is an energy saving

mechanism (Anger, 2001). This was demonstrated also in lithodid crab larvae from

cold-temperate regions (e.g. Lovrich et al., 2003).
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Most campylonotid species (C. vagans, C. semistriatus, C. rathbunae) apparently

have an abbreviated larval development (Thatje et al., 2001). Larvae of these species

usually occur in extremely low abundance in the plankton, which is typical of high

latitudinal meroplankton communities (Stanwell Smith et al., 1999; Thatje et al.,

2003b). Since also larvae of the deepwater species C. capensis migrate vertically to

the upper ocean stratum (larvae have been found from 100 m depth to sea surface,

Thatje et al., 2001), a planktotrophic and abbreviated larval development may be

typical of this family. Although larvae of C. vagans showed a carnivorous feeding

behaviour, they may actually be omnivorous. Nutritional dependence on secondary

production (mesozooplankton) would explain an extended mode of hatching, since the

development of a phytoplankton bloom would only predict subsequent food avail-

ability in developing zooplankton. However, Bruns (1992) assumed that the extended

hatching mode in a high Antarctic herbivorous caridean, N. antarcticus, may represent

a mechanism of synchronisation with primary production which, in the case of the

high Antarctic shelf, is highly variable due to annual variability in the sea ice extent

(Strass and Fahrbach, 1998). Recently, Graeve and Wehrtmann (2003) demonstrated

that eggs of polar crustaceans do not contain significantly more lipids than species

from tropical regions (see also Wehrtmann and Kattner, 1998). This was surprising,

because previous studies suggested that high latitudinal crustacean eggs, which are

generally larger, have a higher nutrient content per embryo (Clarke, 1993), as the

adult Antarctic shrimps appear to accumulate large amounts of lipids (Clarke, 1983,

1987). Larger eggs are assumed to reflect environmental conditions such as low

temperature, often associated with hatching of advanced larvae and an abbreviated

development (for discussion, see Clarke, 1993; Wehrtmann and Kattner, 1998; Anger

et al., 2002). Total lipid contents of C. vagans larvae are low, but in the usual range

of carideans from temperate zones (Graeve and Wehrtmann, 2003). Starved larvae

rely mainly on proteins as internal energetic contents. The dominating fatty acids

utilised during the course of larval development are very similar to the fatty acids

found in eggs of Antarctic shrimps (Graeve and Wehrtmann, 2003). The variability in

the fatty acid composition during the larval development in C. vagans is high (Table

7). This may be due to intraspecific variability in larval fitness and feeding condition.

Especially the fatty acid 18:3(n-3) which resulted mainly from food uptake (Table 7)

may indicate feeding conditions of larvae. Other dominant fatty acids remained

comparably constant during the complete larval development (Table 7). Larval

starvation is especially known before ecdysis (Anger, 2001) and the fatty acid

composition should help to distinguish periods of active feeding from starvation.

However, since our samples were always taken at days 5 and 10 of each stage, but

subsequent larval stages are of different length in duration (Thatje et al., 2004, zoea

I: 12, zoea II: 17, decapodid: 15 days in duration), we need a higher temporal

dissolution in future sampling.

In conclusion, the present observations of planktotrophic development in a caridean

shrimp from the cold-temperate Magellan region suggests that actively feeding

decapod larvae with a high starvation resistance, in combination with a strongly

abbreviated mode of larval development, is a successful reproductive strategy at higher

latitudes.
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