

HOKKAIDO UNIVERSITY

Title	Metabolism and chemical composition of mysid crustaceans: synthesis toward a global-bathymetric model
Author(s)	Ikeda, Tsutomu
Citation	Journal of Experimental Marine Biology and Ecology, 445, 79-87 https://doi.org/10.1016/j.jembe.2013.04.001
Issue Date	2013-07
Doc URL	http://hdl.handle.net/2115/59729
Туре	article (author version)
File Information	HUSCUP-Mysids.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

1	J. Exp. Mar. Biol. Ecol. 445: 79–87 (2013)
2	
3	Metabolism and chemical composition of mysid crustaceans: synthesis toward a
4	global-bathymetric model
5	
6	Tsutomu Ikeda*
7	16-3-1001 Toyokawa-cho, Hakodate, 040-0065 Japan
8	ikeda.tutomu@sepia.plala.or.jp
9	Tel: +81-138-22-5612
10	
11	
12	
13	
14	Running head: Global-bathymetric model of amphipod metabolism
15	
16	Keywords: ammonia excretion, CN composition, global-bathymetric model, mysids,
17	O:N ratio, respiration
18	
19	
20	
21	
22	

23 ABSTRACT

Respiration and ammonia excretion data and chemical composition data [water content, ash, carbon (C), nitrogen (N) and C:N ratios] of 13-32 mysids from freshwater, coastal littoral, epipelagic and abyssopelagic zones of the world's oceans were compiled. The independent variables including body mass, habitat temperature and sampling depth were all significant predictors of respiration, accounting for 74-85% of the variance in the data, while the former two variables were significant predictors of ammonia excretion, accounting for 85-86% of the variance. Atomic O:N ratios (respiration : ammonia excretion) ranged from 7.9 to 44.8 (median: 18.7), indicating protein-oriented metabolism. Body water content and ash were not correlated with habitat temperature and sampling depth, but C and N composition increased and decreased with the increase of sampling depth. As judged by C:N ratios, protein was considered to be the major organic component of most mysids. Some mysids from > 500 m depth exhibited high C:N ratios (8.6–10.6) suggesting a deposition of lipids in the body.

 $\mathbf{2}$

47 Introduction

Mysidacea (Crustacea, Malacostraca) includes approximately 1000 species and is distributed to freshwater, coastal littoral, epipelagic and abyssopelagic zones of the world's oceans (Mauchline and Murano 1977; Mauchline and Fisher 1980; Meland and Willassen 2007). As plankton or hyperbenthos, mysids feed on a wide range of preys including detritus, phytoplankton, microzooplanktin and mesozooplankton, and are preyed upon by a variety of fishes (Mauchline and Fisher 1980).

From global viewpoints, the importance of mysids has long been overlooked in 5455the study of energy flow and matter cycling in aquatic ecosystems. This is particularly 56true in the marine pelagic realm where their contributions to the total zooplankton 57abundance and biomass are low (0.17% and 0.01%, respectively, Longhurst 1985). From regional viewpoints, however, mysid populations have been reported to exert 5859variable feeding impacts; 33–154% on secondary production in a tropical lagoon along the Gulf of Guinea shoreline (Kouassi et al. 2006), 1% on zooplankton production in the 60 61 top 1000 m of the eastern Gulf of Mexico (Hopkins et al. 1994), and < 21% of detrital sedimentation in a coral reef lagoon in the Great Barrier Reef (Carleton and McKinnon 6263 2007).

Information about metabolism [respiration rates, ammonia excretion rates, O:N (as NH_4 -N) ratios has proved to be useful in understanding the energy demand, major metabolic substrates and nutritional condition of marine zooplankton (cf. Ikeda et al. 2000). While body mass and temperature have been regarded as two major parameters for defining the metabolic characteristics of marine pelagic animals (Ivleva 1980; Ikeda 1985), the habitat depth has emerged as an additional parameter since the observation that metabolic rates decrease rapidly with depth for large pelagic animals with

functional eyes such as micronektonic fishes, crustaceans, and cephalopods (Childress
1995; Seibel and Drazen 2007). To date, the effect of habitat depth on respiration rates
and O:N ratios of mysids has only been analyzed as a group "crustaceans" together with
amphipods, decapods and other crustacean taxa (Childress 1975; Quetin et al.1980;
Ikeda 1988; Torres et al. 1994); no analyses have attempted for mysids as an individual
taxon.

77The metabolic rate of animals is defined with respect to the activity of animals as 78 'standard' or 'basal' metabolism (maintenance only), 'routine' (uncontrolled but minimum motor activity), and 'active' metabolism (enforced activity at a maximal 7980 level). Presently available metabolic data of mysids are those derived from sealed 81 chamber method, in which specimens are confined in containers filled with filtered seawater for a certain period and the decrease of oxygen or increase in ammonia during 82 83 the period (several hours to a day) are monitored throughout, or determined at the end of the incubation (Ikeda et al. 2000). Thus obtained respiration and ammonia excretion 84 85 data of mysids without control of their activities are considered to be close to routine 86 metabolism (Ikeda et al. 2000). It is noted that Cowles and Childress (1988) and Buskey 87 (1998) established the relationship between respiration rates and swimming speed in Mysidium columbiae and Gnathophausia ingens, respectively. According to their results, 88 89 active metabolism is 2.7 times greater than routine metabolism and routine metabolism 90 is 1.7 times greater than standard metabolism for *M. columbiae*, and respective values 91 were 1.9 and 1.4 times for G. ingens (calculated from Fig.3 of Cowles and Childress 1988). 92

Comparing carbon (C) and nitrogen (N) composition of diverse zooplankton taxa
 from tropical, subtropical, temperate and subarctic waters, Ikeda (1974) noted a general

increase in C composition toward higher latitude seas. Båmstedt (1986) compiled 95 96 voluminous data on the chemical composition (proximate composition and elemental C and N) of pelagic copepods from high, intermediate and low latitude seas and from 97 98 surface and deep, and confirmed higher C and lower N composition for those living in lower temperature habitats (= high latitude seas and deep waters). Higher C and lower N 99100 composition of zooplankton living in high latitude seas have been interpreted as results 101 from an accumulation of energy reserves (lipids) to compensate for unstable food supply. 102According to a recent study on pelagic copepods from the surface to 5000 m depth in the subarctic Pacific where vertical change in temperature is less pronounced, the 103104 chemical composition of deeper living copepods is characterized by stable C 105composition but low N composition, possibly because of reduced musculaturr or 106 reduced swimming activities in dark environments (Ikeda et al. 2006a). For mysids, 107 analysis of the data to reveal global and bathymetric trends has not yet been attempted. 108 In order to evaluate global-bathymetric patterns of metabolism and chemical 109 composition of mysids I compiled published data of respiration, ammonia excretion, O:N ratio, water content, ash, C, N and C:N ratio of mysids from various bathymetric 110 111 levels of polar, temperate and tropical/subtropical seas and inland freshwater lakes, and significant parameters attributing to the variance were explored. Body mass, habitat 112113 temperature, sampling depth have been used as determinants of metabolic rates as in the 114 global-bathymetic model for pelagic copepods, chaetognaths and euphausiids (Ikeda et 115al. 2007; Ikeda and Takahashi 2012; Ikeda in press).

116

117 Materials and methods

118 **The data compilation**

 $\mathbf{5}$

Because of high diversity in habitats, information about metabolism on mysids is widely spread in the literature. For the present analyses, the data compiled were those which met the following criteria:

1. Data are on fresh specimens collected from the field and used for experiments
without considerable time delay (< 24 h).

124 2. Measurements were made in the absence of food at near *in situ* temperatures and

salinities in the dark. For deep-sea mysids, experiments were those undertaken at

126 normal pressure (1 atm) since hydrostatic pressure is known to affect little to the

127 metabolic rates of deep-sea pelagic crustaceans [cf. review of Ikeda et al. (2000)]. This

128 practice, combined with the criterion above, make it possible to compare the data of

129 various mysids for which information about feeding conditions in the field prior to the

130 experiments is not available.

3. O:N ratios were computed from simultaneous measurements of respiration rates andammonia excretion rates.

4. Body mass in terms of wet mass (WM), dry mass (DM), C or N units were given

together with metabolic data (note: body mass specific rates without body mass data arenot useful).

136 5. Body composition (water contents, ash, C and N) were derived with standard

137 methods (Omori and Ikeda 1984; Postel et al. 2000).

As exceptions, the respiration data of *Gnathophausia ingesns* which maintained at near *in situ* temperature for 5–11 days in the laboratory after capture, and those of

140 *Metamysidopsis elongata* raised in the laboratory were included in the present analyses.

141 In case where multiple papers were available on the same species from similar regions,

142 one or two representative data were chosen. Data sets were separated into males and

143females if the information was available. Eucopia grimaldii (= E. australis, cf. Krygier and Murano 1988) and Meterythropsis microphthalma were separated into two 144size-groups (small and large). As a result, a total 38 mysids (including 2 freshwater 145146species) was selected, including 32 species for metabolism data, amongst which 147simultaneous measurements of respiration and ammonia excretion rates were available 148 on 13 mysids (Table 1). Eighteen data sets of water content and ash, and 24 data sets of 149C, N and C:N ratios were those on 14 and 20 mysids, respectively (Table 2). Missing habitat temperature data in some literatures in Table 2 were substituted by those in the 150World Ocean Atlas of the National Oceanography Data Center (NODC) Homepage by 151152knowing location, season and depth. Study sites of all mysids are plotted on the world 153map (fig. 1) to illustrate the worldwide coverage of the data sets in the present study.

154

155 **Regression models**

To analyze metabolic data, two regression models were adopted according to the mathematical form of the temperature and body mass effects. One was a theoretical model characterized by the Arrhenius relationship and the other was empirical (or log/linear) model characterized by the Van't Hoff rule (Q_{10}) (Ikeda et al. 2007; Ikeda

160 and Takahashi 2012; Ikeda in press);

161 Theoretical model:
$$\ln Y = a_0 + a_1 \ln X_1 + a_2 (1000 X_2^{-1}) + a_3 \ln X_3$$

162 Empirical model: $\ln Y = a_0 + a_1 \ln X_1 + a_2 X_2 + a_3 \ln X_3$

163 Common to these models, Y is respiration rate (μ lO₂ ind.⁻¹ h⁻¹) or ammonia excretion

164 rate (μ gN ind.⁻¹ h⁻¹), X₁ is body mass (mgDM), X₂ is habitat temperature (K for the

165 theoretical model, and $^{\circ}C$ for the empirical model), and X₃: is mid-sampling depth (m).

166	It is noted that a_1 was 0.75 (= 3/4) for the theoretical model. As indices of temperature
167	effects, Arrhenius activation energy (E_a) of the theoretical model and Q_{10} of empirical
168	model could be computed as $E_a = a_2 \times 1000 \times 8.62 \times 10^{-5}$ and $Q_{10} = \exp(10 \times a_2)$,
169	respectively. The attributes of these variables were analyzed simultaneously by using
170	stepwise multiple regression (forward selection) method (Sokal and Rohlf 1995).
171	Independent variables were added and removed at the $p = 0.05$. The calculation was
172	conducted using SYSTAT version 10.2.
173	The effects of body mass, habitat temperature and sampling depth to the chemical
174	composition data were analyzed by the same stepwise multiple regression method,
175	substituting water content, ash, C, N or C:N ratios into Y of the empirical model.
176	
177	Results
178	Metabolic rates
179	Of the mysids considered in the present analyses, the smallest and largest species
180	were Anisomysis pelewensis (0.07 mgDM) and Gnathophausia ingens (1040 mgDM),
181	respectively. Respiration rates at <i>in situ</i> temperature ranged from 0.37 μ lO ₂ ind. ⁻¹ h ⁻¹ (A.
182	<i>pelewensis</i>) to 235 μ lO ₂ ind. ⁻¹ h ⁻¹ (<i>G. ingens</i>), and ammonia excretion rates from 0.10
183	μ gN ind. ⁻¹ h ⁻¹ (<i>Hemimysis speluncola</i>) to 13.8 μ gN ind. ⁻¹ h ⁻¹ (<i>Gnathophausia gracilis</i>)
184	(Table 2).
185	A preliminary analysis was performed to test the effects of temperature and
186	sampling depth on the rates of respiration (R) and ammonia excretion (E) by first
187	plotting the rates standardized to the rate of specimens weighing 1 mg DM ($R_0 = R \times$

188	$DM^{-0.75}$ or $E_0 = E \times DM^{-0.75}$) against temperature (1000/K or °C) where the scale
189	coefficient of body mass was assumed as 0.75 (as in the theoretical model) (Fig. 2). To
190	facilitate analysis, the data were separated into two groups depending on the depth of
191	mysids sampled (< 500 m and \geq 500 m). Within < 500 m data sets, no marked deviation
192	of the two freshwater data sets from those of marine data sets was obvious. Only the
193	data of < 500 m were used for the analysis of temperature effect on R_0 or E_0 . The
194	resultant slope (-6.788 for respiration rates, and -6.634 for ammonia excretion rates) of
195	the regression lines was used to compute R_0 or E_0 at a given temperature (designated as
196	10°C) of the mysids from these sampling depths (< 500 m + \ge 500 m), which were
197	plotted against the mid-sampling depth (Fig. 3). The standardized R_0 or E_0 at 10°C of
198	these mysids were correlated negatively with the sampling depth ($p < 0.01$).
199	The results of stepwise multiple regressions showed that the variable X_3
200	(sampling depth) was significant (p < 0.05) irrespective of the choice of the theoretical
201	or empirical model for respiration rates. For ammonia excretion rates, the variable X_3
202	was not significant in both theoretical and empirical models ($p = 0.074-0.163$), which
203	contrast to the results in Fig 3 where the data were standardized by body mass and
204	temperature (e.g., R_0 or E_0 at 10°C, respectively) and grouped based on a single
205	criterion (mid-sampling depth). As judged by R^2 values, the empirical model was
206	superior to the theoretical model, attributing 85.0% and 73.5%, respectively, for the
207	respiration rates, but models yielded similar results (85.2% and 85.6%, respectively) for
208	ammonia excretion rates (Table 3).

O:N ratios

The O:N ratios ranged from 7.9 (Rhopalophthaalmus africana adult) to 44.8

212	(Gnathophausia gigas from Prydz Bay, Antarctica) (Table 2). The O:N ratio data were
213	separated into two depth groups (< 500 m and \geq 500 m) and plotted against habitat
214	temperature of the mysids (Fig. 4). The multiple regression analysis of the O:N ratios
215	(pooled data of the two depth groups) on body mass, habitat temperature and
216	mid-sampling depth revealed that neither body mass ($p = 0.916$) nor sampling depth (p
217	> 0.760) were significant. The O:N ratios were correlated with habitat temperature (p =
218	0.015), which accounted for 37.7% of the variance in the O:N ratios ($R^2 = 0.377$) (Fig.
219	4). Mean and median O:N ratio were 20.3 (\pm 10.6, SD) and 18.7, respectively.
220	
221	Chemical composition
222	Water content varied from 63.0 to 83.4% of WM (mean; 77.6), and ash from 8.9 to
223	22.9% of DM (13.6), C from 36.8 to 58.1% of DM (46.0), N from 4.8 to 11.5of DM
224	(8.8), C:N ratios from 3.2 to 11.6 (5.8)(Table 4). Multiple regression analyses between
225	these chemical components and designated parameters (body mass, habitat temperature
226	and mid-sampling depth) revealed that the contribution of these parameters to the
227	variation in water content and ash was insignificant. Among the three parameters, the
228	sampling depth was the only parameter affecting C, N and C:N ratios. Deeper-living
229	mysids exhibited higher C and lower N (Fig. 5), resulting higher C:N ratios.
230	
231	Discussion
232	Body mass and habitat temperature as traditional parameters
233	While no information is currently available for ammonia excretion rates, the
234	respiration rates has been reported as a power function of body mass for many

individual mysid species (Table 5). The scale exponent of body mass varied from 0.38

236	(at 10°C) for <i>Hemimysis speluncola</i> to 0.78 for <i>Neomysis intermedia</i> , which partially
237	overlaps the 95% CI (0.65–0.86) of that computed from inter-specific data of 31 mysids
238	of the present study. Small differences in the scale exponents may be not important
239	since a large marginal error is associated with it derived from small body mass (DM)
240	ranges. In this regard, the mean scale exponent (0.75 for respiration, and 0.69 for
241	ammonia excretion) computed from inter-specific data (DM range: 4 orders of
242	magnitude) of the present study can be taken as a typical for mysids, as all previous data
243	are from intra-specific data of narrow DM ranges (1 or 2 orders of magnitude). The
244	inter-specific scale exponent of DM body mass of the mysids (0.754) is similar or near
245	similar to 0.750 for pelagic copepods (Ikeda et al. 2007) and 0.753 for euphausiids
246	(Ikeda unpublished data), both derived from global-bathymetric models based on the
247	broad body mass (DM) ranges of animals (4 orders of magnitude). The scale exponents
248	have been reported as 0.7–0.8 for diverse animal phyla (Zeuthen 1947).
249	The effect of temperature on metabolism has been studied in individual mysid
250	species at graded temperatures within the range of their habitats. According to the
251	definition by Clarke (1987), this is "acclimation" (adjustment of an organism to a new
252	temperature in the laboratory), in contrast to "adaptation" (the evolutionary adjustment
253	of an organism's physiology to environment). The Q_{10} values thus obtained for
254	acclimated mysid species by previous workers are 1.6-3.3 for respiration rates, and
255	1.8–4.0 for ammonia excretion rate (Table 5). Similar intra-specific Q_{10} values (2–3) are
256	typical for the respiration rates measured at graded temperatures within the ranges of
257	natural habitats of acclimated aquatic fishes and crustaceans living in arctic and tropical
258	regions (Scholander et al. 1953). Inter-specific Q_{10} values (2.1 for respiration rates, and
259	3.0 for ammonia excretion rates) derived from global data sets of adapted mysids of the

present study overlap these intra-specific Q_{10} values. Taking into account a wide marginal errors (1.5–2.6), Q_{10} value for respiration rates of mysids does not differ significantly from 1.9 for copepods (Ikeda et al. 2007), 1.7 for chaetognaths (Ikeda and Takahashi 2012), and 1.7 for euphausiids (Ikeda in press).

264

Habitat (= sampling) depth as a new parameter

266 The effect of habitat depth was significant for respiration rates but not for 267ammonia excretion rates in mysids in the present study (Table 2). The present results 268contrast with those of Quetin et al. (1980) and Ikeda (1988), who compared ammonia 269excretion rates of various pelagic crustaceans (including amphipods) and found a 270pattern of reduction in the rates with increasing the depth of occurrence. Perhaps, the 271effect of habitat depth on ammonia excretion rates may be masked by a large scatter of 272the data together with fewer data sets in the multiple regression analyses (see Fig. 3). 273The negative effects of habitat depth on respiration rates of mysids are consistent 274with those of micronektonic crustaceans, fishes and cephalopods with image-forming eyes (Torres et al. 1994; Childress 1995; Seibel and Drazen 2007), and zooplankton 275276with no such eyes including copepods (Ikeda et al. 2006b, 2007), chaetognaths (Kruse 277et al. 2011; Ikeda and Takahashi 2012). For the reduction in respiration rates for deeper-living pelagic animals, the "visual-interactions hypothesis" (Childress 1995) or 278279"predation-mediated selection hypothesis" (Ikeda et al. 2006b) have been proposed. 280These two hypotheses are similar as both interpret the phenomena as a result of lowered selective pressure for high activity at depth because of the decrease in visual predators 281282in the dark. However, these two hypotheses are different in that the former applies 283strictly to micronekton with functional eyes, and the latter to both micronekton and

zooplankton irrespective of presence/absence of functional eyes. In terms of size-based
classification, most mysids in the present study belong to zooplankton rather than
micronekton (> 20 mm body length, cf. Omori and Ikeda 1984) though they posses
functional eyes.

Torres et al. (1994) compiled the relationship between respiration rates and the 288289depth of occurrence for pelagic crustaceans (amphipods, decapods, euphausiids, isopods, 290mysids and ostracods) off California, in the Gulf of Mexico, off Hawaii and in Antarctic waters. According to their results, the respiration rates [standardized to a body size of 1 291mg wet mass by using the scale exponent of 0.75 (equivalent to the theoretical model 292293adopted in the present study), and at 0.5° C by assuming $Q_{10} = 2.0$)], the reduction in the 294rates of a specimen due to the increase of its habitat depth from 1 m to 1000 m depth is 295in the order of 0.1–0.5 times. Similar calculations for the mysids based on the present 296results (theoretical models in Table 3) showed that the reduction was 0.5 times, which 297 fall within the range of the mixed crustacean taxa by Torres et al. (1994).

298

299 O:N ratios

300 The theoretical minimum O:N ratio is 7 when protein alone catabolized in a 301 zooplankter (Mayzaud and Conover 1988; Ikeda et al. 2000). When protein and lipid or 302carbohydrate are catabolized in equal quantities at the same time, O:N ratios are 303 calculated as 21 or 13 (mid-point: 17). Thus, the O:N ratio is highly sensitive to the N 304 content of the diets. From this view, the between-species variation (7.9–44.8, Table 2) 305 and median O:N ratio (18.7) of 13 mysids may reflect their diverse food sources (detritus, phytoplankton, microzooplanktin and mesozooplankton), yet suggesting the 306 importance of protein as a metabolite. For grazing copepods and euphausiids living high 307

308	latitude seas, the O:N ratios have been reported to vary greatly with season [around 8
309	during active feeding spring season to > 100 during food poor winter season (Conover
310	and Corner 1968; Ikeda and Kirkwood 1989) . While no comparable information is
311	available for shallow-living mysids, Hillar-Adams and Childress (1983) reported no
312	marked seasonal variations in specific respiration and ammonia excretion rates and O:N
313	ratios (mean: 44.3) for the bathypelagic mysid Gnathophausia ingens off Southern
314	California, implying that the seasonality in food supply to deep-sea is less marked.
315	Generalization of the O:N ratio-habitat temperature relationship of the 13 mysids
316	requires a caution because of smaller data sets $(N = 15)$ and regionally biased trophic
317	features of the mysids. Among the three tropical mysids used in the analysis,
318	<i>Rhopalophthalmus africana</i> (O:N = $7.9-8.5$) and <i>Siriella thompsoni</i> (14.4) have been
319	documented as highly carnivorous, based on selective feeding experiments (Kouassi et
320	al. 2006) and stable isotope analyses (Richoux and Froneman 2009), respectively. No
321	information about food habit of <i>Siriella media</i> (O:N = 19.6) is not available at present.
322	From the analysis of comprehensive data sets ($N = 607$), the effect of habitat
323	temperature on O:N ratios has been reported insignificant for diverse zooplankton taxa
324	from the world's oceans (Ikeda 1985).
325	

326 Chemical composition

Habitat depth was identified as only parameter affecting chemical composition of mysids. With the increase in habitat depth, N composition declined and C composition increased, resulting the increase in C:N ratios (Table 4, Fig. 5). Similar results have already been reported on various marine zooplankton taxa (Ikeda 1974) and copepods

(Båmstedt 1986; Ikeda et al. 2006a). The reduction in N composition in deeper-living
mysids implies the decrease in musculature (= protein) in the body or sluggish
swimming activity, which is consistent with their lowered respiration rates discussed
above.

335Based on chemical composition data on 182 zooplankton species (mostly 336 crustaceans), Ventura (2006) calculated average C and N composition of protein to be 337 52.8% and 16.0%, and lipids (represented by wax esters) to be 81.0% and 0%. With 338 these results, the C:N ratio is calculated as 3.3 for protein alone and 8.4 for organic 339 matter composed of equal amounts of protein and lipid. Carbohydrate in zooplankton 340 has been reported to be < 8.5% of DM (Ventura 2006) and is therefore omitted in this calculation. Then, C:N ratios of 3.3-8.4 and > 8.4 can be used as indices of protein- and 341342lipid-dominated composition, respectively, for planktonic crustaceans. On this basis, body C:N ratios of the majority of the mysids in Table 2 of the present study fell into the 343 344 range of protein-dominated composition. As exceptions, some mysids from > 500 m 345depth (Boreomysis californica, B. intermedia, Eucopia grimaldii, Gnathophausia gigas 346 and Longithorax fuscus) exhibited C:N ratios of 8.6–10.6, indicating lipid dominated 347composition. According to Ikeda (2012), the C:N ratio as high as 13 has been recorded 348 on deep-sea copepods and amphipods. Major lipid classes in Gnathophausia spp. have 349been known as triacylglycerols (Lee et al. 2006), but little has been studied on the function of lipids in deep-sea mysids. For copepods and euphausiids, the function of 350large lipid deposits (mostly as wax esters, triacylglycerols or phospholipids) is 351

352	considered as an energy reserve for coping with temporal food scarcity and reproduction,
353	or energy saving for swimming by achieving neutral buoyancy (Lee et al. 2006).
354	In conclusion, global-bathymetric models designed in the present study could
355	explain 74–85% of the variance in respiration rates and 85–86% of the variance in
356	ammonia excretion rates. The scale exponents of body mass and temperature
357	coefficients (Q_{10}) for single mysid species by previous studies overlapped those derived
358	from the global-bathymetric models. The O:N ratios of the mysids suggested that
359	protein is of prime importance as a metabolic substrate in them. Deeper-living mysids
360	were characterized by lower N and higher C composition (result in higher C:N ratios).
361	As judged by body C:N ratios, protein was the major organic component of the body of
362	most mysids (C:N = $3.3-8.4$). However, some mysids from > 500 m depth exhibited
363	high C:N ratios (8.6–10.6) indicating a deposition of C-rich organic matter (lipids) in
364	the body.
365	
366	Acknowledgments
367	
368	

References

371	Båmstedt U (1979) Seasonal variation in the respiratory rate and ETS activity of
372	deep-water zooplankton from the Swedish west coast. In: Naylor E, Hartnoll
373	RG (eds.), Cyclic Phenomena in Marine Plants and Animals. Pergamon Press,
374	Oxford, pp 267–274
375	Båmstedt U (1986) Chemical composition and energy content. In: Corner EDS,
376	O'Hara SCM (eds), The biological chemistry of marine copepods. Clarendon
377	Press, Oxford, pp 1–58
378	Buskey EJ (1998) Energetic costs of position-holding behavior in the planktonic mysid
379	Mysidium columbiae. Mar Ecol Prog Ser 172: 139–147
380	Carleton JH, McKinnon AD (2007) Resident mysids: secondary production,
381	consumption, and trophic role in a coral reef lagoon. Mar Ecol Prog Ser 336:
382	89–98
383	Childress JJ (1975) The respiratory rates of midwater crustaceans as a function of
384	depth occurrence and relation to the oxygen minimum layer off Southern
385	California. Comp Biochem Physiol A 50: 787–799
386	Childress JJ (1995) Are there physiological and biochemical adaptation of metabolism
387	in deep-sea animals? Trends Ecol Evol 10: 30–36
388	Clarke A (1987) The adaptation of aquatic animals to low temperatures. In: Grout
389	BWW, Morris GJ (eds), The effects of low temperatures on biological systems,
390	Edward Arnold, London, pp 315–348
391	Clutter RI, Theilacker GH (1971) Ecological efficiency of a pelagic mysid shrimp;
392	estimates from growth, energy budget, and mortality studies. Fish Bull 69:
393	93–115

394	Conover RJ, Corner EDS (1968) Respiration and nitrogen excretion by some marine
395	zooplankton in relation to their life cycles. J Mar Biol Ass UK, 48: 49–75
396	Cowles DL, Childress JJ (1988) Swimming speed and oxygen consumption in the
397	bathypelagic mysid Gnathophausia ingens. Biol Bull 175: 111-121
398	Donnelly J, Kawall H, Geiger P, Torres JJ (2004) Metabolism of Antarctic
399	micronektonic crustacea across a summer ice-edge bloom: respiration,
400	composition, and enzymatic activity. Deep-Sea Res Ii 51: 2225-2245
401	Gaudy R, Guérin JP, Pagano M (1980) Écophysiologie comparée des mysidaciés
402	Hemimysis speluncola Ladoyer (cavernicole) et Leptomysis lingvula G.O. Sars
403	(non cavernicole). Respiration et excrétion. J Exp Mar Biol Ecol 44: 24-46
404	Gorsky G, Dallot S, Sardou J, Fenaux R, Carré C, Palazzoli I (1988) C and N
405	composition of some northwestern Mediterranean zooplankton and
406	micronekton species. J Exp Mar Biol Ecol 124: 133-144
407	Hiller-Adams P, Childress JJ (1983) Effects of season on the bathypelagic mysid
408	Gnathophausia ingens: water content, respiration and excretion. Deep-Sea Res
409	30: 629–638
410	Hopkins TL, Flock ME, Gartner JV, Torres JJ (1994) Structure and trophic ecology of a
411	low latitude midwater decapods and mysid assemblage. Mar Ecol Prog Ser 109:
412	143–156
413	Ikeda T (1974) Nutritional ecology of marine zooplankton. Mem Fac Fish Hokkaido
414	Univ 22: 1–97
415	Ikeda T (1985) Metabolic rates of epipelagic marine zooplankton as a function of body
416	mass and temperature. Mar Biol 85: 1–11
417	Ikeda T (1988) Metabolism and chemical composition of crustaceans from the Antarctic

418	mesopelagic zone. Deep-Sea Res 35: 1991–2002
419	Ikeda T (1991) Ecological and physiological features of the mesopelagic mysid,
420	Meterythrops microphthalma, in the Japan Sea. J Oceanogr Soc Japan 47:
421	94–103
422	Ikeda T (2012) Metabolism and chemical composition of zooplankton from 500 to
423	5,000 m depth of the western subarctic Pacific Ocean. J Oceanogr 68: 641-649
424	Ikeda T Respiration and ammonia excretion of eupahusid crustaceans: synthesis
425	towards a global-bathymetric model.Mar Biol (in press)
426	Ikeda T, Bruce B (1986) Metabolic activity and elemental composition of krill and other
427	zooplankton from Prydz Bay, Antarctica, during early summer
428	(November-December). Mar Biol.92: 545–555
429	Ikeda T, Kirkwood R (1989) Metabolism and body composition of two euphausiid
430	(Euphausia superba and E. crystallorophias) collected from under the
431	pack-ice off Enderby Land, Antarctica. Mar Biol 100: 301–308
432	Ikeda T, Mckinnon DA (2012) Metabolism and chemical composition of zooplankton
433	and hyperbenthos from the Great Barrier Reef waters, North Queensland,
434	Australia. Plankton Benthos Res 7: 8–19
435	Ikeda T, Takahashi T. (2012) Synthesis towards a global-bathymetric model of
436	metabolism and chemical composition of marine pelagic chaetognaths. J Exp
437	Mar Biol Ecol 424–425: 78–88
438	Ikeda T, Torres JJ, Hernández-León S, Geiger SP (2000) Metabolism. In: Harris RP,
439	Wiebe PH, Lenz J, Skjoldal HR, Huntley M (eds), ICES zooplankton
440	methodology manual. Academic Press, San Diego, pp 455–532
441	Ikeda T, Yamaguchi A, Matsuishi T (2006a) Chemical composition and energy content

442	of deep-sea calanoid copepods in the western North Pacific Ocean. Deep-Sea
443	Res I 53: 1791–1809
444	Ikeda T, Sano F, Yamaguchi A, Matsuishi T (2006b) Metabolism of mesopelagic and
445	bathypelagic copepods in the western North Pacific Ocean. Mar Ecol Prog Ser
446	322:199-211
447	Ikeda T, Sano F, Yamaguchi A (2007) Respiration in marine pelagic copepods: a
448	global-bathymetric model. Mar Ecol Prog Ser 339: 215–219
449	Ivleva IV (1980) The dependence of crustacean respiration rate on body mass and
450	habitat temperature. Int Revue ges Hydrobiol 65: 1-47
451	Jawd M (1973) Effects of environmental factors and body size on rates of oxygen
452	consumption in Archaeomysis grebnitzkii and Neomysis awatschensis
453	(Crustacea: Mysidae). Mar Biol 21: 173–179
454	Kouassi E, Pagano M, Saint-Jean L, Sorbe JC (2006) Diel vertical migrations and
455	feeding behavior of the mysid Rhopalophthalmus Africana (Crustacea:
456	Mysidacea) in a tropical lagoon (Ebrié, Côte d'Ivoire). Estuar Coast Shelf Sci
457	67: 355–368
458	Krygier EE, Murano M (1988) Vertical distribution and zoogeography of oceanic
459	mysids from the northeastern Pacific Ocean. Bull Ocean Res Inst Univ Tokyo
460	26: 109–122
461	Kruse S, Brey T, Bathmann U (2010) Role of midwater chaetognaths in Southern
462	Ocean pelagic energy flow. Mar Ecol Prog Ser.416: 105–113
463	Lasenby DC, Langford RR (1972) Growth, life history, and respiration of Mysis relicta
464	in an Arctic and temperate Lake. J Fish Res Bd Canada 29: 1701–1708
465	Lee RF, Hagen W, Kattner G (2006) Lipid storage in marine zooplankton. Mar Ecol

466	Prog Ser 307: 273–306
-----	-----------------------

- 467 Longhurst AR (1985) The structure and evolution of plankton communities. Prog
 468 Oceanogr 15: 1–35
- 469 Mauchline J, Fisher LR (1967) The biology of euphausiids. Adv Mar Biol 7: 1–454
- 470 Mauchline J, Murano M (1977) World list of the Mysidacea, Crustacea. J Tokyo Univ
 471 Fish 64: 39–88
- 472 Meland K, Willassen E (2007) The disunity of "Mysidacea" (Crustacea). Mol
- 473 Phylogenet Evol 44: 1083–1104
- 474 Mayzaud P, Conover RJ (1988) O:N atomic ratio as a tool to describe zooplankton
 475 metabolism. Mar Ecol Prog Ser 45: 289–302
- 476 Morioka Y, Nakamura J, Kimoto K (1987) Oxygen consumption and biological
- 477 productivity of mysid population in a small inlet of Kyushu. Bull Seikai Reg
 478 Fish Res Lab 65: 115–123
- Morris MJ, Hopkins TL (1983) Biochemical composition of crustacean zooplankton
 from the eastern Gulf of Mexico. J Exp Mar Biol Ecol 69: 1–19
- 481 Ogonowski M, Andersson K, Hansson S (2012) A weight- and temperature-dependent
- 482 model of respiration in *Praunus flexuosus* (Cruatacea, Mysidacea) J Plankton
 483 Res 34: 642–645
- 484 Omori M (1969) Weight and chemical composition of some important oceanic
- 485 zooplankton in the North Pacific Ocean. Mar Biol 3: 4–10
- 486 Omori, M. & T. Ikeda 1984. *Methods in marine zooplankton ecology*. John Wiley and
 487 Sons Inc., USA, 332pp
- 488 Postel L, Fock H, Hagen W (2000) Biomass and abundance. In: Harris RP, Wiebe PH,
- 489 Lenz J, Skjoldal HR, Huntley M (eds), ICES zooplankton methodology manual.

490	Academic Press, San Diego, pp 83–192
491	Quetin LB, Ross RM, Uchio K (1980) Metabolic characteristics of midwater
492	zooplankton: ammonia excretion, O:N ratios, and the effect of starvation. Mar
493	Biol 59: 201–209
494	Ranta E, Hakala I (1978) Respiration of Mysis relicta (Crustacea, Malacostraca). Arch
495	Hydrobiol 83: 515–523
496	Raymont JEG, Conover RJ (1961) Further investigations on the carbohydrate content
497	of marine zooplankton. Limnol Oceanogr 6: 154–164
498	Richoux NB, Froneman PW (2009) Plankton trophodynamics at the subtropical
499	convergence, Southern Ocean J Plankton Res 31: 1059–1073
500	Scholander PF, Flagg W, Walters V, Irving L (1953) Climatic adaptation in arctic and
501	tropical poikilotherms. Physiol Zool 26: 67–92
502	Seibel, BA, Drazen JC (2007) The rate of metabolism in marine animals:
503	environmental constraints, ecological demands and energetic opportunities. Phil
504	Trans.R Soc B 362: 2061–2078
505	Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in
506	biological research. Freeman, New York
507	Toda H, Arima T, Takahashi M, Ichimura S (1987) Physiological evaluation of
508	temperature effect on the growth processes of the mysid, Neomysis intermedia
509	Czerniawsky. J Plankton Res 9: 51–63
510	Torres JJ, Aarset AV, Donnelly J, Hopkins TL, Lancraft TM, Ainley DJ (1994)
511	Metabolism of Antarctic micronektonic Crustacea as a function of depth of
512	occurrence and season. Mar Ecol Prog Ser 113: 207–219
513	Ventura M (2006) Linking biochemical and elemental composition in freshwater and

514	marine crustacean zooplankton. Mar Ecol Prog Ser 327: 233–246
515	Vilas C, Drake P, Pascual E (2006) Oxygen consumption and osmoregulatory capacity
516	in Neomysis integer reduce competition for resources among mysid shrimp in a
517	temperate estuary. Physiol Biochem Zool 79: 866–877
518	Weisse T, Rudstam LG (1989) Excretion and respiration rates of Neomysis integer
519	(Mysidaceae): effects of temperature, sex and starvation. Hydrobiol 178:
520	253–258
521	Zeuthen E (1947) Body size and metabolic rate in the Animal Kingdom with special
522	regard to the marine microfauna. C r Trav Lab.Carlsberg (Sér chim) 26: 17-161
523	
524	
525	
526	
527	
528	
529	
530	
531	
532	
533	
534	
535	
536	
537	

538 **Figure captions**

539 Fig. 1. Study sites of metabolic rates and chemical composition of mysids. The sites

540 were separated into three groups depending on freshwater (FW) and marine (M)

habitats and the latter divided further into shallow (< 500 m) and deep (> 500 M).

542 The number and associated character alongside the symbol corresponds to the code of

each mysid listed in Table 1.

544 Fig. 2. Mysids. Relationship between the respiration rate (top) or ammonia excretion

rate (bottom) standardized to a body size of 1 mg body DM (R_0 or E_0) and

temperature (T^{-1} : 1000/K, or T: $^{\circ}$ C) of the specimens from shallow (open triangles;

547 freshwater, open circles; marine from < 500 m) and deep layers (closed triangles;

548 marine from \geq 500 m). The data points represent means from the data sets in Table 2,

and the regression line is derived from shallow layer species only. **: p < 0.01.

550 Fig. 3. Mysids. Relationship between respiration rates (top) or ammonia excretion rates

(bottom) standardized to a body size of 1 mgDM (R_0 or E_0) at 10°C and

mid-sampling depth. The data points represent means derived from the data sets in

Table 2. For symbols see Fig. 2. **: p < 0.01.

554 Fig. 4. Mysids. Relationship between O:N (as NH₄-N) ratios and habitat temperatures.

555 The data points represent means in Tables 2. For symbols see Fig. 2. *: p < 0.05

556 Fig. 5. Mysids. Relationship between N composition and mid-sampling depth. The data

points represent means in Tables 2. For symbols see Fig. 2. **: p < 0.01.

- 558
- 559
- 560

Code	Species	Collection site	Habitat	Date	Reference
1	Acanthomysis pseudomacropsis	Oshoro Bay, W Hokkaido, Japan	Neritic	Jul 1970	Ikeda (1974)
2	Acanthomysis sp.A	Usujiri, SW Hokkaido, Japan	Neritic	May 1971	Ikeda (1974)
3	Acanthomysis sp.B	W. subarctic Pacific Ocean	Oceanic	Mar 2005	Ikeda (2012)
4	Anisomysis lamellicauda	Great Barrier Reef, Australia	Neritic	Jul 1980–May 1981	Carleton & McKinnon (2007)
5	Anisomysis pelewensis	Hidado Island, Kyushu, Japan	Neritic	Jul 1985	Morioka et al. (1987)
6	Antarctomysis maxima	Prydz Bay, Antarctica	Oceanic	Nov 1982	Ikeda & Bruce (1986)
7	Archaeomysis grebnitzkii	San Juan Island, Washington, USA	Littoral	Spring/summer 1970	Jawed (1973)
8	Boreomysis arctica	Kosterfjorden, W. Sweden	Oceanic	Dec-Sep ?	Båmstedt (1979)
9a	Boreomysis californica	Off S. California, USA	Oceanic	1969-1972	Childress (1975)
9b	Boreomysis californica	W. subarctic Pacific Ocean	Oceanic	May 2005	Ikeda (unpublished data)
10	Boreomysis intermedia	W. subarctic Pacific Ocean	Oceanic	May 2005	Ikeda (unpublished data)
11	Boreomysis rostrata	Weddell Sea, Antarctica	Oceanic	Nov-Dec 1993	Donnelly et al. (2004)
12	Charalaspidium sp.	Off S. California, USA	Oceanic	1976-1977	Quetin et al. (1980)
13	Eucopia hanseni	NW Mediterranean	Oceanic	Mar–May 1985	Gorskey et al (1988)
14	Eucopia grimaldii	W. subarctic Pacific Ocean	Oceanic	Dec 2004, Mar 2005, 2006	Ikeda (2012)
15a	Gnathophausia gigas	Prydz Bay, Antarctica	Oceanic	Dec 1984–Feb.1985	Ikeda (1988)
15b	Gnathophausia gigas	Scotia/Weddell Sea	Oceanic	Nov-Dec 1983, Jun-Aug 1988	Torres et al. (1994)
16	Gnathophausia gracilis	Off S. California, USA	Oceanic	1976-1977	Quetin et al. (1980)
17	Gnathophausia ingens	Off S. California, USA	Oceanic	Sep 1980, Jan 1981, Jul 1981	Hiller-Adams & Childress (1983a)
18	Hemimysis abyssicola	Kosterfjorden, W. Sweden	Neritic	Dec-Sep ?	Båmstedt (1979)
19	Hemimysis speluncola	Submarine cave, Gulf of Marseille, Mediterranean	Neritic	Apr, Oct 1977	Gaudy et al. (1980)
20a	Leptomysis lingvura	Gulf of Marseille, Mediterranean	Neritic	May, Oct 1977	Gaudy et al. (1980)
20b	Leptomysis lingvura	NW Mediterranean	Neritic	Mar–May 1985	Gorskey et al (1988)
21	Longithorax fuscus	W. subarctic Pacific Ocean	Oceanic	Dec 2004	Ikeda (2012)
22	Mesopodopsis slabberi, female	Guadelquivir estuary, SW Spain	Littoral	May 2001, Jun 2003	Vilas et al. (2006)
23a	Metamysidopsis elongata, female	Off La Jolla, California	Littoral		Clutter & Theilacker (1971)
23b	Metamysidopsis elongata, male	Off La Jolla, California	Littoral		Clutter & Theilacker (1971)
24	Meterythropsis microphthalma	S Japan Sea	Oceanic	May 1989	Ikeda (1991)
25	Mysidopsis surugae	Hidado Island, Kyushu, Japan	Neritic	Jun 1985	Morioka et al. (1987)
26a	Mysis relicta	Char Lake, N.W.T., Canada	Freshwater		Lasenby & Langford (1972)
26b	Mysis relicta	Lake Pääjärvi, S. Finland*	Freshwater	Feb-Oct 1976	Ranta & Hakala (1978)
27	Neomysis americana	Cape Cod Bay, USA	Neritic	Aug 1959	Raymont & Conover (1961)
28	Neomysis awatschensis	San Juan Island, Washington, USA	Littoral	Spring/summer 1970	Jawed (1973)
29a	Neomysis integer, female	Guadelquivir estuary, SW Spain	Littoral	May 2001, Jun 2003	Vilas et al. (2006)
29b	Neomysis integer, female	Northern Baltic coast, Sweden	Littoral	Sept 1984	Weisse & Rudstam (1989)
29c	Neomysis integer, male	Northern Baltic coast, Sweden	Littoral	Sept 1984	Weisse & Rudstam (1989)
30	Neomysis intermedia	Lake Kasumigaura, Japan	Freshwater	Apr, Oct 1982	Toda et al. (1987)
31	Praunus flexuosus	N Baltic Sea	Littoral	Sep-Oct 2009	Ogonowski et al. (2012)
32a	Rhopalophthalmus africana, juvenile	Ebrie lagoon, Ivory-Coast	Neritic	Oct-Nov 1997	Kouassi et al. (2006)
32b	Rhopalophthalmus africana, adult	Ebrie lagoon, Ivory-Coast	Neritic	Oct-Nov 1997	Kouassi et al. (2006)
33	Rhopalophthalmus mediterraneus, female	Guadelquivir estuary, SW Spain	Neritic	May 2001, Jun 2003	Vilas et al. (2006)
34	Siriella aequiremis	NW Pacific Ocean	Oceanic	Dec 1967	Omori (1969)
35	Siriella armata	NW Mediterranean	Oceanic	Mar–May 1985	Gorskey et al (1988)
36	Striella media	Great Barrier Reef, Australia	Neritic	Dec 2009	Ikeda & McKinnon (2012)
37	Siriella sp.	Usujiri, SW Hokkaido, Japan	Neritic	May 1971	Ikeda (1974)
38a	Siriella thompsoni	Tropical Indian Ocean	Oceanic	Nov 1971	Ikeda (1974)
38b	Siriella thompsoni	E Gulf of Mexico	Oceanic	Summer 1978	Morris & Hopkins (1983)

		Mid-sampling depth								Body	chemical comp	osition	
	Subcode	(range)	Т		Body mass	Respiration	Ammonia excretion	O:N ratio	Water	Ash	С	Ν	C:N
Code	(size)	(m)	(°C)	Ν	(mg DM ind. ⁻¹)	$(\mu lO_2 \text{ ind.}^{-1} h^{-1})$	$(\mu g N ind^{-1}h^{-1})$	(by atoms)	(% of WM)	(% of DM)	(% of DM)	(% of DM)	(by mass)
1		2 (0-5)	14.9	2	2.9 ± 0.7	4.4 ± 0.1	0.63 ± 0.10	8.6 ± 1.8			44.3	11.3	3.9
2		2 (0-5)	10	1	1.9	3.1	0.13 ±	29.8 ±			41.4	10.7	3.9
3		750 (500-1000)	3	1	12.9	1.3			72.3	8.9	55.1	7.2	7.7
4		10 (8-11)	28.8	15	0.3 ± 0.1	3.0 ± 1.0							
5		6 (5-7)	20	2	0.071 ± 0.001	0.37 ± 0.02							
6		60 (0-120)	-1.6	8	171 ± 52	29.4 ± 8.2	1.97 ± 0.77	19.5 ± 3.5	76.5	13.6	44.1	10.5	4.2
7		1	10	10	1.0	1.4							
8		100 (0-200)	5.5	8	19.2	4.0							
9a		650 (400-900)	5.5	6	12.2	13.4 ± 1.7			82.6	19.0	43.4	7.9	5.5
9b		4000 (3000-5000)	1.5		53.1				81.6	14.4	52.3	5.8	9.1
10		4000 (3000-5000)	1.5		53.8				76.2	11.4	55.2	5.3	10.4
11		100 (0-200)	0.5	1	589	51.4			63.0	5.3			
12		600 (400-800)	5.5	2	280 ± 80	51.2 ± 0.6	3.3 ± 0.1	20.0 ± 0.4					
13		800	13								43.1	7.3	5.9
14	S	750 (500-1000)	3	11	19.9 ± 11.6	1.6 ± 0.8			78.3	9.0	58.0	6.5	8.9
	L	1250 (1000-1500)	2.4	7	82.0 ± 47.3	5.1 ± 2.1			77.4	10.2	58.1	6.5	9.0
15a		600 (200-1000)	0.15	4	127 ± 156	19.2 ± 19.6	0.61 ± 0.61	40.7 ± 21.3	83.4	22.9	41.3	7.3	5.7
15b		500 (0-1000)	0.5	3	131 ± 62	22.3 ± 5.0			71.2	17.8	51.1	4.8	10.6
16		600 (400-800)	5.5	3	930 ± 470	164 ± 34	13.8 ± 3.4	15.0 ± 1.6					
17		550 (400-700)	5.5	3 ^a	1040 ± 135	235 ± 23	6.56 ± 0.52	44.8 ± 1.8	79.2	14.3 ^b	49.2 ^b	6.3 ^b	7.8 ^b
18		100 (0-200)	5.5	1	3.3	1.4							
19		1	14	2	0.8 ± 0.3	1.6 ± 0.0	0.10 ± 0.02	21.1 ± 5.1					
20a		1	14	3	1.7 ± 0.8	3.4 ± 0.8	0.27 ± 0.08	15.6 ± 5.9					
20b		15	15								37.5	11.1	3.4
21		750 (500-1000)	3	1	24.6	2.0			82.9	9.9	55.6	6.5	8.6
22		1	20		0.6	2.4							
23a		1	15.2		0.3	0.55				12.5	36.8	11.5	3.2
23b		1	13.8		0.3	1.1							
24	S	550 (400-700)	0.5	13	5.2 ± 1.7	2.6 ± 1.1			80.3	18.2	40.5	10.0	4.0
	L	550 (400-700)	0.5	20	18.1 ± 4.0	6.9 ± 2.7			79.5	15.2	43.6	9.6	4.6
25		6 (5–7)	20	1	0.607	1.11							
26a		10	2		0.3	0.41							
26b		40	5	209	4.6 ^c	3.4							
27		100	4	2	1.5 ± 0.0	2.0 ± 0.1							
28		1	10	10	2.0	7.4							
29a		1	20		3.2	7.9							
29b		1	16		4.2	9.7	0.59	20.5					
29c		1	16		2.9	8.4	0.47	22.5					
30		1	15	14	1.0	2.0			82.4		45.2	11.3	4.0
31		1	8.2	17	6.2 ± 1.1	3.5 ± 0.7							
32a		2 (0-4.5)	28.5	14	0.16 ± 0.06	3.3 ± 1.3	0.49 ± 0.18	8.5 ± 2.4					
32b		2 (0-4.5)	28.5	16	1.3 ± 0.2	13.3 ± 2.3	2.10 ± 0.53	7.9 ± 2.1					
33		1	20		5.3	10.8							
34		1 surface	30		0.98				81.3		42.2	11.0	3.9
35		15	15								43.1	11.4	3.8
36		1 surface	28.5	6	4.1 ± 0.4	16.5 ± 1.1	1.12 ± 0.29	$19.6 ~\pm~ 5.0$	69.8	14.2	43.8	10.9	4.0
37		2 (0-5)	9	1	1.1	2.8					39.3	10.9	3.6
38a		2 (0-5)	27.8	2	1.5 ± 0.2	7.5 ± 2.8	0.64 ± 0.15	$14.4 \ \pm \ 2.1$			40.3	10.1	4.0
38h		8 (0, 15)	28		0.65				70.5	15.3			

Table 2. Sampling depth, temperature, body mass, rates of respiration and ammonia excretion, O:N ratios, water content, ash, C, N and C:N ratios of mysids. For codes, see Table 1. Code 11 and 21 were separated into two size groups (S: small, L: large). *Italic* values for sampling depth were those not described, and estimated for the present analyses. Blank = no data.

^a grand mean of Sept, Jul, and Jan means

^b after Childress & Nygaard (1974)

571 ° converted from AFDM, assuming ash to be 13.6% of DM (grand mean of this table)

Table 3. Stepwise (forward selection) multiple regression statistics of theoretical and empirical models of respiration rates $(Y: \mu l O_2 \text{ ind.}^{-1}h^{-1})$ or ammonia excretion rates $(Y: \mu gN \text{ ind.}^{-1}h^{-1})$ of mysids on body mass $(X_1: mgDM \text{ ind.}^{-1})$, habitat temperature $(X_2: 1000/K \text{ for the former, }^{\circ}C \text{ for the latter})$ and depth sampled $(X_3: m)$.

				Regression equation:					
Regression	Ν	Step	$\ln Y = a_0 + a_1 \ln X_1 + a_2 X_2 + a_3 \ln X_3 + a_4 X_4$						
model		No.	a ₀	a ₁	a ₂	a ₃	R^2 (adjusted R^2)		
Respiration									
Theoretical	42	1		0.75	-8.221		0.712		
		2	22.611	0.75	-6.227	-0.108	0.748 (0.735)		
Empirical	42	1		0.481			0.641		
-		2		0.698	0.092		0.842		
		3	-0.157	0.755	0.075	-0.115	0.861 (0.850)		
Ammonia excretion									
Theoretical	15	1	33.592	0.75	-10.163		0.866 (0.856)		
Empirical	15	1		0.374			0.59		
		2	-3.272	0.691	0.111		0.873 (0.852)		

			Regression	n equation:		
V	N	Y =				
1	IN	a ₀	a ₁	a ₂	a ₃	Adjusted R ²
Water (% of WM)	18	78.575**	NS	NS	NS	0.100
Ash (% of DM)	18	12.946*	NS	NS	NS	0.000
C (% of DM)	24	36.529**	NS	NS	1.760*	0.409
N (% of DM)	24	12.805**	NS	NS	-0.674**	0.778
C:N (by mass)	24	NS	NS	NS	0.687*	0.605

Table 4. Multiple regression statistics of chemical composition (Y: water content, ash, C, N or C:N ratio) of right side on body mass (X₁; mgDM ind.⁻¹), habitat temperature (X₂; $^{\circ}$ C) and depth sampled (X₂; m), NS p > 0.05.

	Body mass effect		Tempera	ture effect	
Amphipod species	a ₂	Range (mgDM)	Q ₁₀	Range (°C)	Reference
Respiration					
Mixed (31 species)	0.754 (0.645–0.861)	0.3–1040	2.12 (1.47-2.60)	-1.6 to 28.8	This study
Archaeomysis grebnitzkii	0.70	0.20-1.97	(111) 2100)		Jawed (1973)
Hemimysis speluncola	0.38-0.70	0.58-1.07	$2.52-2.62^{a}$	10–20	Gaudy et al. (1980)
Leptomysis lingvura	0.56-0.72	0.91-2.40	$1.62 - 1.94^{a}$	10-20	Gaudy et al. (1980)
Mesopodopsis slabberi Metamysidopsis elongata	0.692 ^b 0.680	0.06–0.58 0.03–0.66			Vilas et al. (2006) Clutter & Theilacker (1971)
Mysis relicta Neomysis awatschensis	0.75 0.62	0.04–0.9 0.48–4.37	2.45 [°]	0–8	Lasenby & Langford (1972) Jawed (1973)
Neomysis integer	0.505 ^b	0.08-3.19			Vilas et al. (2006)
Neomysis integer, female			3.3 ^d	6–16	Weisse & Rudstam (1989)
Neomysis integer, male Neomysis intermedia	0.778	0.07-6.0	3.1 ^d 1.86	6–16 5–25	Weisse & Rudstam (1989) Toda et al. (1987)
Praunus flexuosus	0.597	5–7 ^e	2.05	3.1-18.7	Ogonowski et al. (2012)
Rhopalophthalmus mediterraneus	0.772 ^b	0.08-5.29			Vilas et al. (2006)
Ammonia excretion					
Mixed (12 species)	0.691 (0.522–0.860)	0.8–1040	3.03 (1.92–4.80)	-1.6 to 28.5	This study
Hemimysis speluncola			$2.08 - 4.01^{a}$	10-20	Gaudy et al. (1980)
Leptomysis lingvura			$1.79 - 1.90^{a}$	10–20	Gaudy et al. (1980)
Neomysis integer, female			2.1 ^c	6–16	Weisse & Rudstam (1989)
Neomysis integer, male			2.9 ^c	6–16	Weisse & Rudstam (1989)

Table 5. Effects of body mass (as the scale exponent of body mass = a_2 of the regression model adopted in the present study) and temperature (= a_3) on respiration and ammonia excretion rates of mysids. The a_3 was assessed as Q_{10} of Van't Hoff rule. Values in parentheses denote the range of 95% CI.

^a range of seasonal variations

^b at optimal salinity

^c calculated from their data

^d data from 6 h starvation

^e The means of the DMs of the specimens used in the experiments at 4 temperatures

622	
623	
624	

 $\begin{array}{c} 620\\ 621 \end{array}$

Ikeda Fig. 2

Ikeda Fig. 3

Ikeda Fig. 4

Ikeda Fig. 5