

# Effects of elevated CO2 and temperature on an intertidal harpacticoid copepod community

| Journal:                      | ICES Journal of Marine Science                                                                                                                                                                                                                                                           |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | ICESJMS-2016-270.R1                                                                                                                                                                                                                                                                      |
| Manuscript Types:             | Original Article                                                                                                                                                                                                                                                                         |
| Date Submitted by the Author: | 19-Sep-2016                                                                                                                                                                                                                                                                              |
| Complete List of Authors:     | Sarmento, Visnu; Universidade Federal de Pernambuco, Zoology<br>Santos, Paulo; Universidade Federal de Pernambuco, Zoology<br>Hale, Rachel; University of Southampton Waterfront Campus<br>Ingels, Jeroen; Plymouth Marine Laboratory<br>Widdicombe, Stephen; Plymouth Marine Laboratory |
| Keyword:                      | climate change, ocean acidification, warming, meiofauna, benthos                                                                                                                                                                                                                         |
|                               |                                                                                                                                                                                                                                                                                          |

SCHOLARONE<sup>™</sup> Manuscripts

3

1 2

| 3        |  |
|----------|--|
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 30       |  |
| 31       |  |
| აი<br>20 |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43<br>44 |  |
| 44       |  |
| 45       |  |
| 40       |  |
| 48       |  |
| 40       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |

60

# 1 Effects of elevated CO<sub>2</sub> and temperature on an intertidal

# harpacticoid copepod community

4 Visnu Cunha Sarmento<sup>1\*</sup>, Paulo Jorge Parreira Santos<sup>1</sup>, Rachel Hale<sup>2</sup>, Jeroen Ingels<sup>3</sup>,

5 Stephen Widdicombe<sup>3</sup>

6 <sup>1</sup>Dept. Zoologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco,

7 Av. Prof. Morais Rêgo s/n, 50670-420, Recife, Pernambuco, Brazil.

8 <sup>2</sup>Ocean and Earth Science, National Oceanography Centre, Southampton, University of

9 Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH United

10 Kingdom.

12

14

<sup>3</sup>*Plymouth Marine Laboratory, Prospect Place, West Hoe, PL1 3DH Plymouth, UK.* 

13 \**Corresponding author: tel:* +5581 21268854; *fax:* +5581 21268353; *e-mail:* <u>visnu.ubi@gmail.com</u>

15 Among the major consequences of global climate changes, warming and ocean 16 acidification have been shown to have significant impacts on many marine organisms 17 and ecosystems. However, few studies have addressed the impact of these two stressors 18 on meiofaunal organisms and none on harpacticoid copepod community structure and 19 diversity specifically. A mesocosm experiment was conducted to assess the potential 20 interactive impact of different levels of elevated CO<sub>2</sub> and temperature on an intertidal 21 harpacticoid copepod community. Artificial Substrate Units (ASUs) colonized by 22 meiofauna from the extreme low intertidal zone were exposed to eight experimental treatments (four pH levels: 8.0, 7.7, 7.3 and 6.7, crossed with two temperature levels: 12 23 24 and 16 ° C). After 60 days exposure communities were seen to be significantly affected 25 by reduced pH and increased temperature. The dominant harpacticoid species were 26 mainly affected at treatments held at pH 6.7, but with divergent biological response 27 patterns. At pH 6.7 Tisbe sp and Ectinosoma sp2 exhibited important density reductions, 28 while considerable density increases were observed for Amphiascus longarticulatus and 29 Amphiascoides golikovi. Furthermore, these changes were also accompanied by 30 differential responses to temperature treatments. This study has demonstrated that the 31 combination of elevated levels of CO<sub>2</sub> and ocean warming may have substantial effects 32 on the structure of benthic harpacticoid communities, and that a precautionary approach 33 may be required when interpreting predictions from single species stressor, but also 34 single species studies. Importantly, the significant increase in malformations observed 35 in the most severe treatment indicated that, even though copepod species may survive to 36 high pCO<sub>2</sub>ocean acidification and warming stress, we need to consider sub-lethal effects 37 that could have negative consequences for populations after long periods of exposure.

**Keywords:** *climate change, ocean acidification, warming, meiofauna, benthos.* 

# Introduction

The increasing concentration of atmospheric carbon dioxide (CO<sub>2</sub>) is altering the levels of co-occurring stressors, resulting in increasing sea surface temperatures and seawater pCO<sub>2</sub>, as well as decreasing the oceans' pH and its level of saturation of carbonate minerals (Feely *et al.*, 2009). Since the beginning of the industrial revolution in the mid-eighteenth century, the release of CO<sub>2</sub> from human activities has resulted in an increase in atmospheric CO<sub>2</sub> concentrations by nearly 40% (Feely *et al.*, 2009). The present Earth's atmospheric CO<sub>2</sub> levels are higher than at anytime in at least the last 800,000 years (Lüthi *et al.*, 2008), and is expected to continue to rise at an accelerating rate (Feely *et al.*, 2009). Globally averaged combined land and ocean surface temperature data show a warming of 0.85 [0.65 to 1.06] °C over the period 1880 to 2012 (IPCC, 2014).

Due to its large volume and the ability of seawater to buffer  $CO_2$ , the ocean has absorbed nearly a third of all the anthropogenic carbon added to the atmosphere, attenuating the overall effects (Sabine *et al.*, 2004). However, oceanic uptake of  $CO_2$ has resulted in changes in seawater carbonate chemistry, a process known as 'ocean acidification' and the pH of ocean surface water has decreased by 0.1 units since the beginning of the industrial era, corresponding to a 26% increase in acidity (IPCC, 2014).

The rise in greenhouse gas (primarily  $CO_2$ ) atmospheric concentration is predicted to continue, with estimates for the year 2100 ranging from 475 to 1313 ppm (IPCC, 2013). Best estimates of ocean warming in the top one hundred meters of the water column are about 0.6 °C to 2.0 °C by the end of the 21st century (IPCC, 2013).

However, an additional warming of global mean surface temperatures is forecasted to reach 2.6 °C to 4.8 °C by the end of 21st century (IPCC, 2014). As a consequence of ocean  $CO_2$  uptake, an additional drop in ocean pH of 0.3 units by 2100 and 0.7 units by 2250 is predicted (Caldeira and Wickett, 2003).

Climate change is causing alterations to marine ecosystems with impacts that are evident from polar to tropical regions (Harley et al., 2006; IPCC, 2014). Temperature and pH are among the most important environmental factors controlling the distribution, physiological performance, morphology and behaviour of marine invertebrates (e.g. Pörtner, 2008; Widdicombe and Spicer, 2008; Doney et al., 2009). However, global warming and ocean acidification are the Moreover, among all of the expected impacts of the global climate changes in coastal areas, the two major consequences of climate change that have arebeen alreadyare being observed are global warming and ocean acidification. Climate change is thus causing alterations to marine ecosystems with impacts that are evident from polar to tropical regions (Harley et al., 2006; IPCC, 2014).

Environmental stressors can have simple additive effects (both significant, but no significant interaction) or have complex interactive effects where they have synergistic (increased stress) or antagonistic (decreased stress) effects on biological processes (Folt et al., 1999). Despite the well-known controlling influence of temperature on metabolism and development, the interactive effects of ocean warming and CO<sub>2</sub>--driven acidification on organisms at community level have been poorly studied and require use of factorial experimental designs.

Harpacticoid copepods are usually the most important meiofaunal group in terms of abundance in phytal areas with high diversity (Giere, 2009). Due to their high nutritional value, they are a predominant element in the diet of many fishes of both

| 89 | ecological and economic importance (Huys and Boxshall, 1991). Furthermore,               |
|----|------------------------------------------------------------------------------------------|
| 90 | copepods have been extensively used to show natural environmental changes (e.g.          |
| 91 | Sarmento et al., 2012; Kitahashi et al., 2014) as well as to evaluate different types of |
| 92 | human impacts (e.g. Costa et al., 2016; Sarmento and Santos 2012). DueOwing to the       |
| 93 | higher sensibilitygreater sensitivity that harpacticoid copepods can exhibit in          |
| 94 | comparison to other dominant meiofaunal groups such as nematodes (Hale et al., 2011;     |
| 95 | Sarmento et al., 2015), these organisms they have been recently suggested as a valuable  |
| 96 | group for predicting climate changes (Zeppilli et al., 2015). However, no studies on     |
| 97 | how the combination of elevated seawater CO2 and temperature will impact intertidal      |
| 98 | harpacticoid multi-species assemblages are available <u>as yet</u> .                     |
| 99 | The present study used a mesocosm experiment to assess the potential                     |
|    |                                                                                          |

100 interactive impacts of different levels of elevated  $CO_2$  and temperature on the fauna 101 from an intertidal zone using the harpacticoid copepod community as a model system to 102 evaluate changes in community structure and species responses. The present study used 103 a mesocosm experiment to assess the potential interactive impacts of different levels of 104 elevated  $CO_2$  and temperature on the harpacticoid copepod community from the 105 intertidal zone collected using Artificial Substrate Units (ASUs).

# 107 Materials and methods

The meiofauna samples used in this study are from a mesocosm experiment carried out at Plymouth Marine Laboratory in 2009 (Hale *et al.*, 2011), where intertidal benthic communities were exposed to elevated temperature crossed with different levels of reduction in the pH of seawater. Sample collection and mesocosm experimental setup were described in detail by Hale *et al.*, (2011), and are summarized here.

114 Material collection

Fifty Artificial Substrate Units (ASU, each one made from 4 nylon mesh pan scourers tied together,  $9 \text{ cm } \emptyset$ , 2.5 cm thick) were deployed in a sheltered area of rocky intertidal at Mount Batten, Plymouth, UK (50.3567 N, 4.1277 W). The area is characterized as a kelp habitat dominated by brown and red algae. The ASUs were attached to the rock between 0.6 m and 1 m above lowest chart datum (LCD), during the spring low tide on the-14 January 2009. They were left for a period of twelve weeks to allow colonization and collected on 8 April 2009. The ASUs were retrieved and transported in plastic bags to the mesocosm facility at the Plymouth Marine Laboratory (PML) 1h after collection. Once at PML, five ASUs were randomly selected and preserved in 10% formaldehyde solution, to represent the standard invertebrate communities at the start of the exposure period.

#### 127 Mesocosm experiment

Forty of the remaining ASUs were each placed individually in separate food grade plastic buckets (vol. 6 L) containing seawater at ambient pH and temperature. Each bucket was randomly allocated to one of eight treatments (four pH levels crossed with two temperature levels), with five replicates for each combination. Control pH was 8.0 (the ambient seawater pH measured at the fauna collection site).-, and the decreased pH levels used were 0.3 units below ambient (the predicted drop in ocean pH by 2100), 0.7 units below ambient (the predicted drop in pH by 2250, Caldeira and Wickett, 2003) and a pH of 6.7 (to simulate  $CO_2$  storage site continuous point source leakage under already acidified conditions, Blackford et al., 2009). Seawater was acidified to pH levels of 7.7, 7.3 and 6.7 by bubbling with 100% CO<sub>2</sub>. The mesocosm was held at a control temperature of 12 °C (the ambient temperature measured at the fauna collection site)

and the elevated temperature treatment was 4 °C above the control (simulating a rise in temperature midway within the range predicted, 2 to 6.4 °C, as a result of increased atmospheric CO<sub>2</sub> by 2099 (Sokolov et al., 2009). Buckets containing the ASUs were maintained in water baths (5 buckets per water bath) and the artificial manipulation of temperature was achieved and regulated by heaters (Hale et al., 2011). Artificial manipulation of temperature was achieved by placing the treatment buckets in water baths containing heaters. Seawater was bubbled with CO<sub>2</sub> into the header tanks., than Each eEach 6 L bucket was continuously supplied with high  $pCO_2$  seawater (8-10 ml min<sup>-1</sup> using peristaltic pumps) and oxygen was bubbled through the water held within the buckets to assist with maintenance of the correct pH and to increase water mixing and oxygen levels. The monitoring system as described in Hale et al. (2011) maintained the nominated pH and temperature treatments throughout the experimental period with little variation (Table 1) and was therefore considered a suitable method for the artificial manipulation of seawater pH and temperature.-\_The natural light regime was approximated using daylight simulation lights within the mesocosm with an average 8-h photoperiod per day. The experiment ran for 60 days, with little variation in the treatment levels (Table 1). During that time, each bucket received 1.68 ml of shellfish feed once a week to simulate the food availability at the Mount Batten collection site. No tidal simulation was applied during the experiment (Hale *et al.*, 2011). [Table 1] At the end of the exposure period, the ASUs were removed from the buckets

and the resident fauna were extracted. The collected material was passed through two

Formatted: Superscript

sieves (0.5 mm and 63  $\mu$ m) to separate the macrofauna fraction from the meiofauna fraction (Somerfield et al., 2007). Results from the macrofauna fraction are published in Hale et al. (2011) and from the meiofauna (major taxonomic groups) and Nematoda community results have been are-published in Meadows et al. (2015). Due to the high number of meiofauna organisms in each sample, thirty-six samples (the four first replicates per treatment + 4 initial samples; instead of 5) were randomly selected for copepod species identification. Under a stereo microscope, the first sixty copepod individuals were selected from each replicate, placed in Eppendorf tubes and preserved in 75% Industrial Methylated Spirit (IMS). The identification of Copepoda Harpacticoida (copepodite V and adult stages) was done under a compound microscope (1000× magnification) and identified to species by the analyses of the entire animal following the taxonomic keys of Lang (1948, 1965), Huys et al. (1996) and Wells (2007) as well as publications with specific descriptions.

178 Statistical analysis

Permutational multivariate analysis of variance (PERMANOVA) (McArdle and Anderson, 2001), based on Bray-Curtis dissimilarities of copepod abundance  $\log_{(x+1)}$  transformed data, was used to evaluate the impact of different temperatures (factor Temperature) and pH levels (factor pH) on the community structure. For all analyses, 9,999 random permutations were used. Pair-wise a posteriori comparisons (the multivariate version of the t statistic) were made for calculation of significant differences. A similarity percentage (SIMPER) analysis was applied to determine which species were responsible for the dissimilarities among pH and temperatures. The Shannon–Wiener (H', using log<sub>2</sub>), Pielou's evenness (J') and the number of species in each sample (S) were calculated. The population parameters malformed animal ratio,

copepodite ratio, ovigerous female and female/male ratios were <u>also</u> calculated. In the
present study, malformations were considered as external morphological abnormalities
in important taxonomic characteristics, i.e., when parts of the body do not have the
normal or expected shape for a given species (e.g. the number and shape of limbs or
thorns). Minor variations in ornamentation were not considered malformations.

Two-way analysis of variance (ANOVA) was used to examine the effects of the different pH and temperatures on the densities of harpacticoid's more abundant species (>2% of total), on the ecological descriptors (S, J' and H') and on population parameters (ratios of copepodites, female/male, ovigerous females and malformed animals).

PERMANOVA, SIMPER and MDS were applied using the software Primer®
6 with add-on PERMANOVA+ (Plymouth Routines in Multivariate Ecological
Researches). The two-way ANOVAs were calculated using the software STATISTICA
12. Data normally distribution-Distribution normality and homogeneity of variance were
checked. The level of significance was set at P<0.05 for all analyses. Confidence</li>
intervals of 95% (CI) were used to express the variation of the calculated means.
Parametric statistical analysis followed Zar (1996).

#### **Results**

A total of 2160 copepod individuals were analyzed, 60.09% of which were identified as harpacticoids at the species level, 0.79% were adult cyclopoids, 38.7% were copepodites (total) and 0.42% were broken animals which could not be identified to species level. Among the harpacticoids, 12 families, 33 genera and 51 species were recorded (Table 2).

[Table 2]

Tisbe sp (37.42%), Harpacticus obscurus (11.91%), Ectinosoma sp2 (5.45%), Ectinosoma sp1 (4.8%), Amphiascoides sp1 (4.55%), Paradactylopodia sp (4.49%), Dactylopusia vulgaris dissimilis (4.26%), Ameiropsis mixta (3.94%), Amphiascus longarticulatus (3.25%), Amphiascoides golikovi (3.06%) and Ameira sp (1.67%), accounted for ~85% of total.

MDS ordination analyses indicated marked differences in the structure of copepod community among field and treatment samples. Among treatments the most important difference was observed between samples maintained at pH 6.7 and those from the other pH treatments (Figure 1).

[Figure 1]

The pattern illustrated in the MDS ordination (Figure 1) was confirmed by PERMANOVA. Significant differences in the copepod community structures were detected for the factor pH and Temperature, but not for the interaction between the two factors (Table 3).

233 [Table 3]

The pattern of response of copepod community structure to the different pH levels was mainly caused by differences among samples kept at pH 6.7, while no differences were detected among control and the other treatments (Table 4).

| 239  | [Table 4]                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------|
| 240  |                                                                                                             |
| 241  | SIMPER analyses showed that decreases in the density of <i>Ectinosoma</i> sp2 and                           |
| 242  | Tisbe sp in samples at pH 6.7, were important to dissimilarities among treatments                           |
| 243  | (Table 5).                                                                                                  |
| 244  |                                                                                                             |
| 245  | [Table 5]                                                                                                   |
| 246  |                                                                                                             |
| 0.47 |                                                                                                             |
| 247  | SIMPER analyses showed that many species were important contributors to the                                 |
| 248  | dissimilarity between communities kept at the two different temperature levels (Table                       |
| 249  | 6).                                                                                                         |
| 250  |                                                                                                             |
| 251  | [Table 6]                                                                                                   |
| 252  |                                                                                                             |
| 253  | ANOVA results for species richness, evenness and diversity showed no                                        |
| 254  | significant differences for the factors pH and temperature nor for interaction between                      |
| 255  | the two factors (p>0.1 for all) (Figure 2).                                                                 |
| 256  |                                                                                                             |
| 257  | [Figure 2]                                                                                                  |
| 258  |                                                                                                             |
| 259  | ANOVA results for copepod population parameters showed no differences for                                   |
| 260  | female/male ratio (p>0.6 for all comparisons) nor for the percentage of ovigerous                           |
| 261  | females (p>0.15 for all comparisons) for both pH and temperature or interaction                             |
| 262  | between factors. The copepodite ratio showed significant differences for the factor pH                      |
| 263  | $(F_{(3,24)}= 3.12; p=0.045)$ and for <u>the</u> factor Temperature $(F_{(1,24)}= 5.41; p=0.029)$ , but not |
|      | 10                                                                                                          |
|      |                                                                                                             |

for the<u>ir</u> interaction between factors (p>0.18). The *a posteriori* Fisher test indicated that copepodite ratio at pH 6.7 was lower than at pH 7.7 (p=0.007) and higher at 16 °C compared to 12 °C. Malformed animals ratio showed significant differences for factor pH ( $F_{(3,24)}$ = 3.24; p=0.039). <u>The</u> Fisher test indicated that the ratio of malformed animals at pH 6.7 was significantly higher when compared to pH 8.0 (p=0.014), 7.7 (p=0.013) and 7.3 (p=0.041) (Figure 3).

[Figure 3]

Only few harpacticoid species showed significant differences among treatments, and the majority were sensitive only to pH 6.7 (Figure 4). The two-way ANOVA indicated that *Tisbe* sp showed significant interaction between the factors pH and Temperature ( $F_{(3,24)}$ = 5.22, p<0.01). At pH 6.7, *Tisbe* sp showed higher densities at 12 °C than at 16 °C (p<0.001). Moreover, the density of *Tisbe* sp in samples held at pH 6.7 and 16 °C was lower than in the all other treatments (p<0.001). *Ectinosoma* sp2 was sensitive for to the factor pH ( $F_{(3,24)}$ = 6.99, p<0.01) and Temperature ( $F_{(1,24)}$ = 5.33, p=0.03) changes, but not for thethe interaction was not significant ( $F_{(3,24)}$ = 0.44, p=0.72). Results of the *a posteriori* test showed that the density of *Ectinosoma* sp2 was lower at pH 6.7 when compared to all other pH levels (p<0.01 for all comparisons). Considering the factor temperature, *Ectinosoma* sp2 density was higher at 16 °C than at 12 °C (p=0.03). The species *Amphiascoides* sp1 showed significant differences only for the factor Temperature ( $F_{(1,24)}$ = 5.11, p=0.033), with higher densities found at 16 °C.

[Figure 4]

#### **Discussion**

The results presented here indicate the potential impacts to intertidal copepods that are likely to occur across a range of predicted pH (in the context of global change at highly variable coastal areas and CO<sub>2</sub> storage leakage) and temperature levels (Caldeira and Wickett, 2003; IPCC, 2014). Since ocean acidification and warming are the two major consequences that arehave already been observed in response to increased atmospheric CO<sub>2</sub>Since ocean acidification and warming are both caused by increased atmospheric CO<sub>2</sub>, organisms are being exposed to these two stressors simultaneously in natural ecosystems (Byrne, 2011; Hale et al., 2011; Melatunan et al., 2013). In the present study, harpacticoid community structure was affected by pH and temperature separately, with samples exposed to pH 6.7 showing the strongest effect. Following Using the same patternsexperimental procedures, Meadows et al. (2015) found that the total density of copepods was significantly affected by pH and temperature separately, and that copepod abundance at pH 6.7 was significantly lower compared to other pH levels (Meadows et al., 2015). However, the here presented detailed analysis at lower taxonomic level showed that different harpacticoid species exhibited divergent response patterns highlighting the species-specific nature of responding to stressors. The direct effects on taxa and the indirect effects through ecological interactions are both important factors influencing the response of a multispecies

interactions are both important factors influencing the response of a multispecies intertidal community to increasing pCO<sub>2</sub> and warming (Hale *et al.*, 2011; Melatunan *et al.*, 2013). The response of a multispecies intertidal community to ocean warming and acidification is influenced by direct effects on taxa and indirect effects through ecological interactions (Hale *et al.*, 2011; Melatunan *et al.*, 2013). Species interactions may attenuate or amplify the direct effects on individual species (Kroeker *et al.*, 2012). In the present study, harpacticoid species responded mainly to treatments held at pH

6.7. Differences between pH 6.7 and the other pH treatments were due caused to by important reductions in the densities of *Tisbe* sp and *Ectinosoma* sp2, followed by a considerable increase in the densities of A. longarticulatus and A. golikovi at this-pH 6.7. These changes were also accompanied by differential species response to temperature at this pH, where the densities of A. longarticulatus and of Amphiascoides sp1 were higher at 16 °C and the density of Tisbe sp was higher at 12 °C. These results show that in multispecies communities it is likely that certain trade-offs between species will occur under environmental change, with both species that suffer and benefit from the changing conditions altering the resulting communities.

Most of the studies investigating the effects of <u>increased pCO<sub>2</sub>ocean</u> acidification on copepods have found that acidification associated to with a wide range of CO<sub>2</sub> concentrations predicted for this century cause no significant effects on mortality, development, metabolism or reproductive parameters (Mayor *et al.*, 2012; McConville *et al.*, 2013; Vehmaa *et al.*, 2013; Hildebrant *et al.*, 2014; Li *et al.*, 2015). However, when copepods are exposed to a range of pCO<sub>2</sub> predicted for a future ocean in combination with increasing temperatures they become more sensitive to <u>high</u> pCO<sub>2</sub>ocean acidification with impacts on offspring viability, hatching success, egg production and metabolic rates (Mayor *et al.*, 2012; Vehmaa *et al.*, 2013; Hildebrant *et al.*, 2014; Zervoudaki *et al.*, 2014).

Some studies have applied  $CO_2$  concentrations far beyond those expected for the next 100 years by as reported by the IPCC reports. However, such predictions are for open ocean conditions and coastal environments already experienceing pCO<sub>2</sub> levels much higher than those predicted under future open ocean scenarios (Blackford *et al.*, 2009; Hofmann *et al.*, 2011). Consequently, these higher treatment levels can still be considered as relevant to future ocean acidification impacts in highly variable inshore

Page 14 of 40

339 systems. At these levels (5000–10,000 ppm  $CO_2$ , pH 7.02 – 6.7), copepods were 340 negatively affected in terms of reproduction but not in terms of mortality, with 341 reductions in hatching success and egg production and with increases in hatching and 342 nauplius mortality (Kurihara *et al.*, 2004a,b; Mayor *et al.*, 2007; McConville *et al.*, 343 2013).

Contrarily to what was observed for single-species experiments, in the present study, the copepod communities were negatively affected in terms of mortality at these high  $pCO_2$  levels. Under these conditions, the patterns of response patterns were complex. Despite the sensitivity of the dominant species *Tisbe* sp, the densities of other species increased, suggesting that the impact of increased pCO<sub>2</sub>ocean acidification in combination with warming can cause responses that are not predictably unidirectional. Our results confirm the increasing consensus in literature that experiments on whole assemblages should be prioritized performed alongside species and population specific studies. The former can reveal since they comprise complex changes in ecological and biological interactions and present an ecosystem-level view of changes, whilst the latter may provide the necessary information on physiology and ecology of species and population to interpret a more complex system with many ecological interactions. Thus This way, results and predictions from single species studies could can be interpreted in the light of multi-specific assemblages (e.g. Kroeker et al., 2013; Gaylord et al., 2015). The present results confirm the increasing consensus in literature that experiments on whole assemblages should be prioritized since they comprise complex changes in ecological and biological interactions. The present results confirm the increasing consensus in literature that experiments on whole assemblages can be more informative than single species ones, revealing complex changes in ecological and biological interactions. Thus, predictions from single species studies

<u>could be interpreted in the light of multi specific assemblages</u>. Thus, a precautionary approach may be required when interpreting predictions from single species studies, once potential changes due to species interactions are not considered (e.g. Kroeker *et al.*, 2013; Gaylord *et al.*, 2015).

In the present study, strong impacts were observed only at the most severe pH treatment, and copepods were not affected at less severe pH reductions. This apparent high tolerance is to be expected considering that communities from temperate intertidal environments experience high variability of abiotic factors in their natural environment and thus, most intertidal animals would have developed effective physiological adaptations for surviving such a highly variable and harsh-testing environment. In fact, there have been studies that found no effects of high pCO<sub>2</sub>ocean acidification (pH between 7.78 to 7.2) on copepods from the Arctic or temperate environments and/or from laboratory cultures (Mayor et al., 2012; McConville et al., 2013; Vehmaa et al., 2013; Hildebrant et al., 2014; Li et al., 2015). It is expected that fauna from habitats characterized by strong abiotic variability (e.g. areas with volcanic emissions in the sea, areas with excessive respiration in confined areas filled with plant and animal life, like rockpools of the intertidal zone, marine sediments or hypoxic bottom waters) would exhibit higher greater tolerance to climate change predictions expected for this century (Pörtner et al., 2004). Pascal et al. (2010) suggested that among two harpacticoid species, the species (Shizopera knabeni) that came from environments that are more prone to hypercapnia (e.g. mudflats) was less sensitive to future acidification than Amphiascoides stopus, which is found on large grained beaches. Li et al. (2015) found that the combination of heat shock and high pCO<sub>2</sub>ocean acidification did not affect the mortality of Tigriopus japonicus, a harpacticoid copepod which inhabits a highly variable intertidal environment. However, when exposed to very high  $CO_2$  levels,

| 389 | reduction in egg production rate and hatching success was observed for Centropages                            |  |
|-----|---------------------------------------------------------------------------------------------------------------|--|
| 390 | typicus, but not for Temora longicornis (both calanoid copepods). Since both species                          |  |
| 391 | were collected from the western English Channel the results suggest that even species                         |  |
| 392 | from the same locality and with similar life histories could present different tolerances                     |  |
| 393 | to ocean acidification (McConville et al., 2013). Additionally, alternative theories                          |  |
| 394 | suggest that for some of the organisms, particularly if they are from populations at the                      |  |
| 395 | edges of their geographical distribution, individuals may already be close to their upper                     |  |
| 396 | tolerance capacity and even a slight increase in pCO <sub>2</sub> could have significant impacts on           |  |
| 397 | community structure (Findlay et al., 2010).                                                                   |  |
| 398 | Tisbe sp was the dominant species and the general community pattern of                                        |  |
| 399 | response to increased pCO <sub>2</sub> and warming observed was influenced by this species.                   |  |
| 400 | Species of this genera are characterized by having high fecundity and a short generation                      |  |
| 401 | time (7 – 16 days, Williamns and Jones, 1994; Pinto et al., 2001), a wide range of body                       |  |
| 402 | sizes, tolerance to a wide range of environmental changes and by having the ability to                        |  |
| 403 | grow on different food sources and attaining high population densities (e.g. 205 ind.                         |  |
| 404 | mL <sup>-1</sup> ) (Souza-Santos et al., 2006), characteristics that allows <i>Tisbe</i> species to be easily |  |
| 405 | reared in the laboratory (e.g. Williams and Jones, 1999; Souza-Santos et al., 2015).                          |  |
| 406 | However, despite the absence of significant effects on Tisbe sp density at pH 7.7 and                         |  |
| 407 | 7.3, it is possible - if not likely - that sub-lethal impacts could occur (Fitzer et al.,                     |  |
| 408 | 2012). Tisbe sp was the dominant species in all treatment samples and general                                 |  |
| 409 | community pattern of response to ocean acidification and warming observed was                                 |  |
| 410 | influenced by this species. Species of the genera Tisbe are characterized by having high                      |  |
| 411 | fecundity and a short generation time, a wide range of body sizes, tolerance to a wide                        |  |
| 412 | range of environmental changes and by having the ability to grow on different food                            |  |
| 413 | sources and attaining high population densities. Tisbe species are easily reared in the                       |  |
|     |                                                                                                               |  |

414 laboratory and have been extensively cultured for tests as live food for fish and
415 crustacean larvae as well as for ecotoxicological bioassays (e.g. Williams and Jones,
416 1999; Souza-Santos *et al.*, 2006; Souza-Santos *et al.*, 2015). However, despite the
417 absence of significant effects on *Tisbe* sp density at pH 7.7 and 7.3, it is possible – if not
418 likely that sub lethal impacts could occur (Fitzer *et al.*, 2012).

In the present study, the positive increase of malformed adult animals with the increased level of warming and pCO<sub>2</sub>ocean acidification is presented for the first time for copepods. This kind of approach has been conducted only for large representatives of macrobenthic species at early development stages. For those animals, an increase in abnormal development in larval and juveniles stages of some coral, molluscs and echinoderms has been correlated to increases in pCO<sub>2</sub>ocean acidification and warming (Byrne, 2011). Since the time difference between the nauplii stage and the last copepodite stage is very short (10 and 18 days) for most of harpacticoid species (Giere, 2009), the evaluation of abnormality at these stages would be a very difficult task, and for studies at community level almost impossible. On the other hand, assessing the presence of malformed appendices in adults during microscope identification does not increase time significantly. The analysis of this parameter indicates that, species that do not suffer mortality in response to high pCO<sub>2</sub>ocean acidification and warming entering the adult stage (like *Tisbe* sp) are not free from sub-lethal symptoms that could have negative consequences for populations after long periods of exposition exposure.

434 The exposure period of 60 days could be a brief time scale to detect subtle 435 effects for other communities such as macrofauna (Hale *et al.*, 2011). However, due to 436 the rapid life cycles of harpacticoid copepods, the present results were most probably 437 the response of a natural community exposed to elevated  $pCO_2$  and warming over 6-8 438 generations (Giere, 2009). A limitation of the present study is the exposure of intertidal

communities to artificially constant low pH. Consequently, high priorities for future
 research should consider the natural variability of pH and temperature that organisms
 are subjected in field in order to investigate climate change effects on species and
 community responses through natural and manipulative experiments.

The results presented in this study demonstrated that the combination of elevated levels of  $CO_2$  and ocean warming may have substantial effects on harpacticoid communities from intertidal environments. Moreover, they showed that ecological interactions may lead to complex community responses to pH and temperature changes that cannot be encompassed by single species and/or single stressor experiments.

# Acknowledgment

VC Sarmento gratefully acknowledges a PhD scholarship from the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à
Ciência e Tecnologia do Estado de Pernambuco (FACEPE), PJP Santos acknowledge
research fellowships (CNPq 305417/2011-8) from the Conselho Nacional de Ciência e
Tecnologia (CNPq). JI was supported by a Plymouth Marine Laboratory Post-doctoral
Research Fellowship in collaboration with University of Exeter and a Marie Curie IntraEuropean Fellowship within the 7th European Commission Framework Programme
(Grant Agreement FP7-PEOPLE-2011-IEF no. 00879). The initial study was
undertaken while R Hale was in receipt of a NERC Advanced Course Studentship.
Thanks are also due to anonymous referees for providing comments that improved the
manuscript.

# References

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| õ        |  |
| 7        |  |
| 0        |  |
| 0        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 27       |  |
| 28       |  |
| 29       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 24       |  |
| 34       |  |
| 30       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 40<br>⊿7 |  |
| <br>10   |  |
| 40       |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |
| 00       |  |

| 464 | Blackford, J., Jones, N., Proctor, R., Holt, J., Widdicombe, S., Lowe, D., and Rees, A.     |
|-----|---------------------------------------------------------------------------------------------|
| 465 | 2009. An initial assessment of the potential environmental impact of CO <sub>2</sub> escape |
| 466 | from marine carbon capture and storage systems. Proceedings of the Institution of           |
| 467 | Mechanical Engineers, Part A: Journal of Power and Energy. 223: 269-280.                    |
| 468 | Byrne, M. 2011. Impact of ocean warming and ocean acidification on marine                   |
| 469 | invertebrate life history stages: vulnerabilities and potential for persistence in a        |
| 470 | changing ocean. Oceanography and Marine Biology: an Annual Review, 49: 1-42.                |
| 471 | Caldeira, K., and Wickett, M. E. 2003. Anthropogenic carbon and ocean pH. Nature,           |
| 472 | 425: 365–365.                                                                               |
| 473 | Costa, A. B. H. P., Valença, A. P. M. C., and Santos, P. J. P. 2016. Is meiofauna           |
| 474 | community structure in Artificial Substrate Units a good tool to assess                     |
| 475 | anthropogenic impact in estuaries? Marine Pollution Bulletin, 110: 354-361.                 |
| 476 | Doney, S. C., Balch, W. M., Fabry, V. J., and Feely, R. A. 2009. Ocean acidification: A     |
| 477 | Critical Emerging Problem for the Ocean Sciences. Oceanography, 22: 16–25.                  |
| 478 | Feely, R. A., Doney, S. C., and Cooley, S. R. 2009. Ocean acidification: present            |
| 479 | conditions and future changes in a high-CO <sub>2</sub> world. Oceanography, 22: 36–47.     |
| 480 | Findlay, H. S., Kendall, M. A., Spicer, J. I., and Widdicombe, S. 2010. Post-larval         |
| 481 | development of two intertidal barnacles at elevated CO <sub>2</sub> and temperature. Marine |
| 482 | <u>Biology, 157: 725–735.</u>                                                               |
| 483 | Fitzer, S. C., Caldwell, G. S., Close, A. J., Clare, A. S., Upstill-Goddard, R. C., and     |
| 484 | Bentley, M. G. 2012. Ocean acidification induces multi-generational decline in              |
| 485 | copepod naupliar production with possible conflict for reproductive resource                |
| 486 | allocation. Journal of Experimental Marine Biology and Ecology, 418-419: 30-36.             |
| 487 | Folt, C. L., Chen, C. Y., Moore, M. V., and Burnaford, J. 1999. Synergism and               |
| 488 | antagonism among multiple stressors. Limnology and Oceanography, 44: 864-877.               |
|     |                                                                                             |

| 2          |
|------------|
| 3          |
| 4          |
| 5          |
| 5          |
| 6          |
| 7          |
| 8          |
| à          |
| 10         |
| 10         |
| 11         |
| 12         |
| 13         |
| 14         |
| 14         |
| 15         |
| 16         |
| 17         |
| 18         |
| 10         |
| 19         |
| 20         |
| 21         |
| 22         |
| 22         |
| 23         |
| 24         |
| 25         |
| 26         |
| 27         |
| 21         |
| 28         |
| 29         |
| 30         |
| 24         |
| 31         |
| 32         |
| 33         |
| 34         |
| 25         |
| 30         |
| 36         |
| 37         |
| 38         |
| 20         |
| 39         |
| 40         |
| 41         |
| 42         |
| 12         |
|            |
| 44         |
| 45         |
| 46         |
| <u>4</u> 7 |
| 10         |
| 4ð         |
| 49         |
| 50         |
| 51         |
| 50         |
| 52         |
| 53         |
| 54         |
| 55         |
| 56         |
| 00         |
| 57         |
| 58         |
| 59         |
| 60         |
| υU         |

| 489 | Gaylord, B., Kroeker, K. J., Sunday, J. M., Anderson, K. M., Barry, J. P., Brown, N. E.,              |  |
|-----|-------------------------------------------------------------------------------------------------------|--|
| 490 | Connell, S. D., et al. 2015. Ocean acidification through the lens of ecological                       |  |
| 491 | theory. Ecology, 96: 3–15.                                                                            |  |
| 492 | Giere, O. 2009. Meiobenthology: The microscopic motile fauna of aquatic sediments,                    |  |
| 493 | 2nd edn, Springer-Verlag, Berlin. 527 pp.                                                             |  |
| 494 | Hale, R., Calosi, P., McNeill, L., Mieszkowska, N., and Widdicombe, S. 2011.                          |  |
| 495 | Predicted levels of future ocean acidification and temperature rise could alter                       |  |
| 496 | community structure and biodiversity in marine benthic communities. Oikos, 120:                       |  |
| 497 | 661–674.                                                                                              |  |
| 498 | Harley, C. D. G., Hughes, A. R., Hultgren, K. M., Miner, B. G., Sorte, C. J. B.,                      |  |
| 499 | Thornber, C. S., Rodriguez, L. F., et al. 2006. The impacts of climate change in                      |  |
| 500 | coastal marine systems. Ecology Letters, 9: 228–241.                                                  |  |
| 501 | Hicks, G. R. F. 1985. Meiofauna associated with rock shore algae. In The ecology of                   |  |
| 502 | rocky coasts, pp. 36-56. Ed. by P.G. Moore, and R. Seed. Hodder and Stoughton,                        |  |
| 503 | London, 467 pp.                                                                                       |  |
| 504 | Hildebrandt, N., Niehoff, B., and Sartoris, F. J. 2014. Long-term effects of elevated CO <sub>2</sub> |  |
| 505 | and temperature on the Arctic calanoid copepods Calanus glacialis and C.                              |  |
| 506 | hyperboreus. Marine Pollution Bulletin, 80: 59–70.                                                    |  |
| 507 | Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F.,                    |  |
| 508 | Paytan, A., et al. 2011. High-Frequency Dynamics of Ocean pH: A Multi-                                |  |
| 509 | Ecosystem Comparison. PLoS ONE 6: e28983.                                                             |  |
| 510 | Huys, R., and Boxshall, G. A. 1991. Copepod evolution. The Ray Society, London,                       |  |
| 511 | England, 468 pp.                                                                                      |  |
| 512 | Huys, R., Gee, J. M., Moore, C. G., and Hamond, R. 1996. Marine and Brackish Water                    |  |
| 513 | Harpacticoid Copepods. Part 1: keys and notes for identification of the species; p.                   |  |
|     |                                                                                                       |  |
|     | 20                                                                                                    |  |

| 1        |     |
|----------|-----|
| 2        |     |
| 3        |     |
| 5        |     |
| 6        | 514 |
| 8        | 515 |
| 9<br>10  | 516 |
| 11<br>12 | 517 |
| 13<br>14 | 518 |
| 15<br>16 | 519 |
| 17<br>18 | 520 |
| 19<br>20 | 521 |
| 21<br>22 | 522 |
| 23<br>24 | 523 |
| 25<br>26 | 524 |
| 27<br>28 | 525 |
| 29<br>30 | 526 |
| 31<br>32 | 527 |
| 33<br>34 | 528 |
| 35<br>36 | 529 |
| 37<br>38 | 530 |
| 39<br>40 | 531 |
| 41<br>42 | 532 |
| 43<br>44 | 533 |
| 45<br>46 | 534 |
| 47<br>48 | 535 |
| 49<br>50 | 536 |
| 51<br>52 | 537 |
| 53<br>54 | 538 |
| 55       |     |
| 56<br>57 |     |
| 58       |     |
| 59<br>60 |     |

| 14 | 1-352. In Synopses of the British Fauna (New Series) no. 51. Ed. By R.S.K. Barnes               |
|----|-------------------------------------------------------------------------------------------------|
| 15 | and J.H. Crothers. Shrewsbury: Field Studies Council.                                           |
| 16 | IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of                    |
| 17 | Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on                |
| 18 | Climate Change. Ed. by T.F. Stocker, D. Qin, GK. Plattner, M. Tignor, S.K.                      |
| 19 | Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley. Cambridge                       |
| 20 | University Press, Cambridge, United Kingdom and New York, USA, 1535 pp.                         |
| 21 | IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability.                        |
| 22 | Contribution of Working Group II to the Fifth Assessment Report of the                          |
| 23 | Intergovernmental Panel on Climate Change. Cambridge University Press, New                      |
| 24 | York, USA, 1820 pp.                                                                             |
| 25 | Kitahashi, T., Kawamura, K., Kojima, S., and Shimanag, M. 2014. Bathymetric patterns            |
| 26 | of $\alpha$ and $\beta$ diversity of harpacticoid copepods at the genus level around the Ryukyu |
| 27 | Trench, and turnover diversity between trenches around Japan. Progress in                       |
| 28 | Oceanography, 123: 54–63.                                                                       |
| 29 | Jakobi, H. 1953. Novos Laophontidae (Copepoda Crustacea) da costa brasileira.                   |
| 30 | <del>Dusenia, 4: 47–60.</del>                                                                   |
| 31 | Jenkins, G. P., Walker Smith, G. K., and Hamer, P. A. 2002. Elements of habitat                 |
| 32 | complexity that influence harpacticoid copepods associated with seagrass beds in a              |
| 33 | temperate bay. Oecologia, 131: 598-605.                                                         |
| 34 | Kroeker, K. J., Micheli, F., and Gambi, M. C. 2012. Ocean acidification causes                  |
| 35 | ecosystem shifts via altered competitive interactions. Nature Climate Change, 3:                |
| 36 | 156–159.                                                                                        |
| 37 | Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., and         |
| 38 | Duarte, C. M. 2013. Impacts of ocean acidification on marine organisms:                         |
|    |                                                                                                 |
|    | 21                                                                                              |

| 1          |
|------------|
| 2          |
| 3          |
| 4          |
| 5          |
| 6          |
| 7          |
| 1          |
| 8          |
| 9          |
| 10         |
| 11         |
| 12         |
| 12         |
| 13         |
| 14         |
| 15         |
| 16         |
| 17         |
| 10         |
| 10         |
| 19         |
| 20         |
| 21         |
| 22         |
| 23         |
| 21         |
| 24         |
| 25         |
| 26         |
| 27         |
| 28         |
| 29         |
| 20         |
| 30         |
| 31         |
| 32         |
| 33         |
| 34         |
| 35         |
| 36         |
| 07         |
| 37         |
| 38         |
| 39         |
| 40         |
| 41         |
| 12<br>12   |
| 72<br>40   |
| 43         |
| 44         |
| 45         |
| 46         |
| 47         |
| <u>1</u> 8 |
| 40         |
| 49         |
| 50         |
| 51         |
| 52         |
| 53         |
| 54         |
| 55         |
| 22         |
| 56         |
| 57         |
| 58         |
| 59         |
| 60         |

553

554

558

559

560

561

562

563

quantifying sensitivities and interaction with warming. Global Change Biology, 19:
1884–1896.

Kurihara, H., Shimode, S., and Shirayama,Y. 2004a. Sub-lethal effects of elevated
concentration of CO<sub>2</sub> on planktonic copepods and sea urchins. Journal of
Oceanography. 60: 743–750.

Kurihara, H., Shimode, S., and Shirayama, Y. 2004b. Effects of raised CO<sub>2</sub>
concentration on the egg production rate and early development of two marine
copepods (*Acartia steuri* and *Acartia erythraea*). Marine Pollution Bulletin, 49:
721–727.

Lang, K. 1948. Monographie der Harpacticiden: I: 1-896; II: 897-1682. Lund: Håkan
Ohlsson Booksellers. Stockholm, Nordiska Bökhandeln, 1682 pp.

- Lang, K. 1965. Copepoda Harpacticoidea from the Californian Pacific Coast. Kungliga
  Svenska Vetenskapsakademiens Handlingar. Fjärde Serien, 10: 1–560.
  - Li, W., Han, W., Dong, Y., Ishimatsu, A., Russell, B. D., and Gao, K. 2015. Combined effects of short<u>-t</u>-term ocean acidification and heat shock in a benthic copepod *Tigriopus japonicus* Mori. Marine Biology, 162: 1901–1912.
- Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J-M., Siegenthaler, U.,
  Raynaud, D., *et al.* 2008. High-resolution carbon dioxide concentration record
  650,000–800,000 years before present. Nature, 453: 379–382.
  - Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F., and Hay, S. 2007. CO<sub>2</sub>-induced acidification affects hatching success in *Calanus finmarchicus*. Marine Ecology Progress Series, 350: 91–97.
  - Mayor, D. J., Everett, N. R., and Cook, K. B. 2012. End of century ocean warming and acidification effects on reproductive success in a temperate marine copepod.
     Journal of Plankton Research, 34: 258–262.

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| 5        |  |
| 6        |  |
| 7        |  |
| 8        |  |
| 9<br>10  |  |
| 10       |  |
| 12       |  |
| 12       |  |
| 14       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20       |  |
| 21       |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 20       |  |
| 21       |  |
| 20<br>20 |  |
| 29       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34       |  |
| 35       |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 43       |  |
| 44<br>45 |  |
| 45       |  |
| 40       |  |
| 47<br>78 |  |
| 49       |  |
| 50       |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 56       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |

| 564 | McArdle, B. H., and Anderson, M. J. 2001. Fitting multivariate models to community          |
|-----|---------------------------------------------------------------------------------------------|
| 565 | data: a comment on distance based redundancy analysis. Ecology, 82: 290–297.                |
| 566 | McConville, K., Halsband, C., Fileman, E. S., Somerfield, P. J., Findlay, H. S., and        |
| 567 | Spicer, J. I. 2013. Effects of elevated CO <sub>2</sub> on the reproduction of two calanoid |
| 568 | copepods. Marine Pollution Bulletin, 73: 428–434.                                           |
| 569 | Meadows, A. S., Ingels, J., Widdicombe, S., Hale, R., and Rundle, S. D. 2015. Effects       |
| 570 | of elevated CO <sub>2</sub> and temperature on an intertidal meiobenthic community. Journal |
| 571 | of Experimental Marine Biology and Ecology, 469: 44-56.                                     |
| 572 | Melatunan, S., Calosi, P., Rundle, S. D., Widdicombe, S., and Moody, A. J. 2013.            |
| 573 | Effects of ocean acidification and elevated temperature on shell plasticity and its         |
| 574 | energetic basis in an intertidal gastropod. Marine Ecology Progress Series, 472:            |
| 575 | 155–168.                                                                                    |
| 576 | Menge, B. A., and Sutherland, J. P. 1987. Community regulation: variation in                |
| 577 | disturbance, competition, and predation in relation to environmental stress and             |
| 578 | recruitment. The American Naturalist, 130: 730-757.                                         |
| 579 | Pallares, R. E. 1968. Copépodos marinos de la Ría Deseado (Santa Cruz, Argentina). I.       |
| 580 | <del>Physis, 27: 1–125.</del>                                                               |
| 581 | Pascal, P. Y., Fleeger, J. W., Galvez, F., and Carman, K. R. 2010. The toxicological        |
| 582 | interaction between ocean acidity and metals in coastal meiobenthic copepods.               |
| 583 | Marine Pollution Bulletin, 60: 2201–2208.                                                   |
| 584 | Pinto, C. S. C., Souza-Santos, L. P., and Santos, P. J. P. (2001) Development and           |
| 585 | population dynamics of Tisbe biminiensis Copepoda: Harpacticoida reared on                  |
| 586 | different diets. Aquaculture, 198: 253-267.                                                 |
| 587 | Por, F. D. 1964. A study of the Levantine and Pontic Harpacticoida (Crustacea,              |
| 588 | Copepoda). Zoologische Verhandelingen, 64: 1–128.                                           |
|     |                                                                                             |
|     | 23                                                                                          |

| 2         |
|-----------|
| З         |
| 4         |
| 4         |
| 5         |
| 6         |
| 7         |
| 0         |
| 0         |
| 9         |
| 10        |
| 11        |
| 12        |
| 12        |
| 13        |
| 14        |
| 15        |
| 16        |
| 10        |
| 17        |
| 18        |
| 19        |
| 20        |
| 24        |
| 21        |
| 22        |
| 23        |
| 24        |
| 27        |
| 25        |
| 26        |
| 27        |
| 28        |
| 20        |
| 29        |
| 30        |
| 31        |
| 32        |
| 22        |
| 33        |
| 34        |
| 35        |
| 36        |
| 27        |
| 51        |
| 38        |
| 39        |
| 40        |
| 10        |
| 41        |
| 42        |
| 43        |
| 44        |
| 45        |
| 40        |
| 40        |
| 47        |
| 48        |
| 40        |
|           |
| 50        |
| 51        |
| 52        |
| 53        |
| 50        |
| <b>04</b> |
| 55        |
| 56        |
| 57        |
| 50        |
| 00        |
| 59        |
| ~~        |

| 589 | Pörtner, H. O. 2008. Ecosystem effects of ocean acidification in times of ocean            |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 590 | warming: a physiologist's view. Marine Ecology Progress Series, 373: 203–217.              |  |  |  |  |  |  |  |
| 591 | Pörtner, H. O., Langenbuch, M., and Reipschläger, A. 2004. Biological impact of            |  |  |  |  |  |  |  |
| 592 | elevated ocean CO <sub>2</sub> concentrations: lessons from animal physiology and earth    |  |  |  |  |  |  |  |
| 593 | history. Journal of Oceanography, 60: 705–718.                                             |  |  |  |  |  |  |  |
| 594 | Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L.,            |  |  |  |  |  |  |  |
| 595 | Wanninkhof, R., et al. 2004. The oceanic sink for anthropogenic CO <sub>2</sub> . Science, |  |  |  |  |  |  |  |
| 596 | 305: 367–371.                                                                              |  |  |  |  |  |  |  |
| 597 | Sarmento, V. C., and Santos, P. J. P. (2012) Trampling on coral reefs: tourism effects on  |  |  |  |  |  |  |  |
| 598 | harpacticoid copepods. Coral Reefs, 31: 135-146.                                           |  |  |  |  |  |  |  |
| 599 | Sarmento, V. C., Lage, L. M., and Santos, P.J.P. (2012) Copepoda Harpacticoida             |  |  |  |  |  |  |  |
| 600 | community of a rocky shore under the influence of upwelling (Arraial do Cabo,              |  |  |  |  |  |  |  |
| 601 | southeastern Brazil). Journal of the Marine Biological Association of the United           |  |  |  |  |  |  |  |
| 602 | <u>Kingdom, 92: 1117–1126.</u>                                                             |  |  |  |  |  |  |  |
| 603 | Sarmento, V. C., Souza, T. P., Esteves, A. M., and Santos, P. J. P. 2015. Effects of       |  |  |  |  |  |  |  |
| 604 | seawater acidification on a coral reef meiofauna community. Coral Reefs, 34: 955-          |  |  |  |  |  |  |  |
| 605 | <u>966.</u>                                                                                |  |  |  |  |  |  |  |
| 606 | Sokolov, A. P., Stone, P. H., Forest, C. E., Prinn, R., Sarofim, M.C., Webster, M.,        |  |  |  |  |  |  |  |
| 607 | Paltsev, S., et al. 2009. Probabilistic forecast for 21st century climate based on         |  |  |  |  |  |  |  |
| 608 | uncertainties in emissions (without policy) and climate parameters. MIT Joint              |  |  |  |  |  |  |  |
| 609 | Program on the Science and Policy of Global Climate Change, Rep. No. 169.                  |  |  |  |  |  |  |  |
| 610 | Sarmento, V. C., Lage, L. M., and Santos, P. J. P. 2012. Copepoda Harpacticoida            |  |  |  |  |  |  |  |
| 611 | community of a rocky shore under the influence of upwelling (Arraial do Cabo,              |  |  |  |  |  |  |  |
| 612 | southeastern Brazil). Journal of the Marine Biological Association of United               |  |  |  |  |  |  |  |
| 613 | Kingdom, 92: 1117–1126.                                                                    |  |  |  |  |  |  |  |
|     |                                                                                            |  |  |  |  |  |  |  |
|     | 24                                                                                         |  |  |  |  |  |  |  |

| 1<br>2   |   |
|----------|---|
| 3<br>4   |   |
| 5<br>6   | 6 |
| 7<br>8   | 6 |
| 9<br>10  | 6 |
| 11<br>12 | 6 |
| 13<br>14 | 6 |
| 15<br>16 | 6 |
| 17<br>18 | 6 |
| 19<br>20 | 6 |
| 21<br>22 | 6 |
| 23<br>24 | 6 |
| 25<br>26 | 6 |
| 27<br>28 | 6 |
| 29<br>30 | 6 |
| 31<br>32 | 6 |
| 33<br>34 | 6 |
| 35<br>36 | 6 |
| 37<br>38 | 6 |
| 39<br>40 | 6 |
| 41<br>42 | 6 |
| 43<br>44 | 6 |
| 45<br>46 | 6 |
| 47<br>48 | 6 |
| 49<br>50 | 6 |
| 51<br>52 | 6 |
| 53<br>54 | 6 |
| 55<br>56 |   |
| 50<br>57 |   |
| 58<br>59 |   |
| 60       |   |

| 14 | Somerfield, P. J., Warwick, R. M., Moens, T., 2007. Meiofauna techniques. In Methods     |
|----|------------------------------------------------------------------------------------------|
| 15 | for the Study of Marine Benthos, 3rd edn, pp. 229-272. Ed. by A. Eleftheriou, and        |
| 16 | A. McIntyre. Blackwell Science Ltd, Oxford, UK 440 pp.                                   |
| 17 | Souza-Santos, L. P., Pastor, J. M. O., Ferreira, N. G., Costa, W. M., Castro, C. M. V.   |
| 18 | A., and Santos, P. J. P. 2006. Developing the harpacticoid copepod Tisbe                 |
| 19 | biminiensis culture: testing for salinity tolerance, ration levels, presence of sediment |
| 20 | and density dependent analyses. Aquaculture, Res. 37: 1516- 1523.                        |
| 21 | Souza-Santos, L. P., Oliveira, D. D., and Lima, E. S. 2015. The use of epibenthic        |
| 22 | copepod Tisbe biminiensis nauplii to assess the toxicity of seawater samples in          |
| 23 | Suape Bay (state of Pernambuco; Brazil). Ecotoxicology and Environment                   |
| 24 | Contamination, 10: 61–69.                                                                |
| 25 | Vehmaa, A., Hogfors, H., Gorokhova, E., Brutemark, A., Holmborn, T., and Engström-       |
| 26 | Öst, J. 2013. Projected marine climate change: effects on copepod oxidative status       |
| 27 | and reproduction. Ecology and Evolution, 3: 4548–4557.                                   |
| 28 | Walters, K., and Bell, S. S. 1994. Significance of copepod emergence to benthic,         |
| 29 | pelagic, and phytal linkages in a subtidal seagrass bed. Marine Ecology Progress         |
| 30 | <del>Series, 108: 237-24.</del>                                                          |
| 31 | Wells, J. B. J. 2007. An annotated checklist and keys to the species of Copepoda         |
| 32 | Harpacticoida (Crustacea). Zootaxa, 1568: 1–872.                                         |
| 33 | Widdicombe, S., and Spicer, J. I. 2008. Predicting the impact of ocean acidification on  |
| 34 | benthic biodiversity: What can animal physiology tell us? Journal of Experimental        |
| 35 | Marine Biology and Ecology, 366: 187–197.                                                |
| 36 | William Williams, T. D., and Jones, M. B. 1999. Effects of temperature and food          |
| 37 | quantity on the reproduction of Tisbe battagliai (Copepoda: Harpacticoida). Journal      |
| 38 | of Experimental Marine Biology and Ecology, 236: 273-290.                                |
|    |                                                                                          |
|    | 25                                                                                       |

| 2<br>3         |     |
|----------------|-----|
| 4<br>5         |     |
| 6<br>7         | 639 |
| 8<br>9         | 640 |
| 10             | 641 |
| 12             | 642 |
| 13<br>14<br>15 | 643 |
| 15<br>16       | 644 |
| 17             | 645 |
| 19<br>20       | 646 |
| 21<br>22       | 647 |
| 23<br>24       | 648 |
| 25<br>26       | 649 |
| 27<br>28       | 650 |
| 29<br>30       |     |
| 31<br>32       |     |
| 33<br>34       |     |
| 35<br>36       |     |
| 37             |     |
| 38<br>39       |     |
| 40<br>41       |     |
| 42<br>43       |     |
| 44<br>45       |     |
| 46<br>47       |     |
| 48<br>40       |     |
| 49<br>50       |     |
| 51<br>52       |     |
| 53<br>54       |     |
| 55<br>56       |     |
| 57<br>58       |     |
| 59<br>60       |     |
|                |     |

| Williams, T. D., and Jones, M. B. 1994. Effects of temperature and food quantity on   |
|---------------------------------------------------------------------------------------|
| postembryonic development of Tisbe battagliai (Copepoda: Harpacticoida). Journal      |
| of Experimental Marine Biology and Ecology 183: 283-298.                              |
| Zar, J. H. 1996. Biostatistical Analysis, 3rd edn. Prentice-Hall, New Jersey. 662 pp. |
| Zeppilli, D., Sarrazin, J., Leduc, D., Arbizu, P. M., Fontaneto, D., Fontanier, C.,   |
| Gooday, A. J., et al. 2015. Is the meiofauna a good indicator for climate change and  |
| anthropogenic impacts? Marine Biodiversity, 45: 505-535.                              |
| Zervoudaki, S., Frangoulis, C., Giannoudi, L., and Krasakopoulou, E. 2014. Effects of |
| low pH and raised temperature on egg production, hatching and metabolic rates of a    |
| Mediterranean copepod species (Acartia clausi) under oligotrophic conditions.         |
| Mediterranean Marine Science, 15: 74–83.                                              |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |

| 2<br>3   |     |                                                                                                     |
|----------|-----|-----------------------------------------------------------------------------------------------------|
| 4<br>5   |     |                                                                                                     |
| 6<br>7   | 651 | Figure legends                                                                                      |
| 8        | 652 | Figure 1. MDS ordination plots for the Bray-Curtis similarity for Copepod community                 |
| 9<br>10  | 653 | structure. + (cross) Field samples, ● (circle) 8.0, ▲ (triangle) 7.7, ■ (square) 7.3, ♦             |
| 11       | 654 | (diamond) 6.7 (12 °C closed symbols, 16 °C open symbols).                                           |
| 13<br>14 | 655 |                                                                                                     |
| 15<br>16 | 656 | Figure 2. Shannon diversity (H' log <sub>2</sub> ), Pielou's evenness (J') and Species richness (S) |
| 17<br>18 | 657 | for copepod community at different pH and temperatures. Values: mean ±95 %                          |
| 19<br>20 | 658 | confidence intervals.                                                                               |
| 21<br>22 | 659 |                                                                                                     |
| 23<br>24 | 660 | Figure 3. Mean (±95 % confidence intervals) of ovigerous female, female/male ratios,                |
| 25<br>26 | 661 | copepodite and malformed animals ratios at different pH and temperatures.                           |
| 27<br>28 | 662 |                                                                                                     |
| 29<br>30 | 663 | Figure 4. The effects of pH and temperature on the mean abundance and relative                      |
| 31<br>32 | 664 | abundance (±95 % confidence intervals) of the main harpacticoids species.                           |
| 33<br>34 | 665 |                                                                                                     |
| 35<br>36 |     |                                                                                                     |
| 37<br>38 |     |                                                                                                     |
| 39<br>40 |     |                                                                                                     |
| 41<br>42 |     |                                                                                                     |
| 43       |     |                                                                                                     |
| 44       |     |                                                                                                     |
| 46<br>47 |     |                                                                                                     |
| 48<br>49 |     |                                                                                                     |
| 50<br>51 |     |                                                                                                     |
| 52       |     |                                                                                                     |
| 53<br>54 |     |                                                                                                     |
| 55<br>56 |     |                                                                                                     |
| วง<br>57 |     | 27                                                                                                  |
| 58       |     |                                                                                                     |
| 59<br>60 |     |                                                                                                     |

**Table 1.** Seawater chemistry within a) buckets and b) reservoir tanks during the experimental exposure period (Hale *et al.*, 2011). (Sal – salinity, TCO<sub>2</sub> – total water carbon dioxide concentration, TA – total alkalinity,  $_{p}CO_{2}$  – partial pressure of carbon dioxide,  $\Omega_{Ca}$  – calcite saturation state,  $\Omega_{Ar}$  – argonite saturation state, HCO<sub>3</sub>- – bicarbonate concentration, CO<sub>3</sub><sup>2-</sup> – carbonate concentration). Values: mean, ±SD, 95% CI.

|                        | Nominal | Temp  |      |       |                  |         | pCO <sub>2</sub> |               |                        |                    |              |
|------------------------|---------|-------|------|-------|------------------|---------|------------------|---------------|------------------------|--------------------|--------------|
|                        | pН      | (°C)  | рН   | Sal   | TCO <sub>2</sub> | TA      | (µatm)           | $\Omega_{Ca}$ | $\Omega_{\mathrm{Ar}}$ | HCO <sub>3</sub> - | $CO_{3}^{2}$ |
| Buckets                |         |       |      |       |                  |         |                  |               |                        |                    |              |
| 12°C                   | 8       | 11.78 | 7.86 | 34.88 | 1858.80          | 1956.61 | 729.23           | 1.59          | 1.01                   | 1784.99            | 66.59        |
|                        |         | 0.35  | 0.09 | 0.19  | 314.04           | 293.36  | 160.4            | 0.3           | 0.19                   | 275.4              | 12.5         |
|                        |         | 0.07  | 0.02 | 0.05  | 72.54            | 74.23   | 40.59            | 0.08          | 0.05                   | 69.68              | 3.16         |
|                        | 7.7     | 11.93 | 7.66 | 34.89 | 2084.49          | 2155.52 | 1295.53          | 1.17          | 0.75                   | 2031.97            | 49.03        |
|                        |         | 0.35  | 0.08 | 0.24  | 331.50           | 303.58  | 244.51           | 0.24          | 0.15                   | 286.88             | 10.09        |
|                        |         | 0.07  | 0.01 | 0.06  | 76.57            | 76.81   | 61.87            | 0.06          | 0.04                   | 72.59              | 2.55         |
|                        | 7.3     | 11.66 | 7.35 | 34.94 | 2181.94          | 2098.44 | 2729.23          | 0.55          | 0.35                   | 2039.57            | 23.22        |
|                        |         | 0.41  | 0.07 | 0.13  | 227.68           | 228.21  | 499.36           | 0.11          | 0.07                   | 222.75             | 4.5          |
|                        |         | 0.09  | 0.01 | 0.03  | 52.59            | 57.74   | 126.35           | 0.03          | 0.02                   | 56.36              | 1.14         |
|                        | 6.7     | 11.53 | 6.81 | 34.82 | 2409.95          | 1942.01 | 2268.73          | 0.16          | 0.1                    | 1925.14            | 6.6          |
|                        |         | 0.38  | 0.23 | 0.14  | 313.33           | 221.04  | 3127.42          | 0.11          | 0.07                   | 220.99             | 4.56         |
|                        |         | 0.08  | 0.04 | 0.04  | 72.37            | 55.93   | 791.33           | 0.03          | 0.02                   | 55.92              | 1.15         |
| 16°C                   | 8       | 16.04 | 7.85 | 35.31 | 1915.97          | 1984.25 | 822.18           | 1.91          | 1.23                   | 1779.26            | 80.3         |
|                        |         | 0.40  | 0.13 | 0.26  | 216.12           | 226.77  | 743.4            | 0.38          | 0.27                   | 204.34             | 15.83        |
|                        |         | 0.08  | 0.02 | 0.07  | 49.92            | 57.38   | 188.1            | 0.1           | 0.06                   | 51.7               | 4.01         |
|                        | 7.7     | 16.01 | 7.61 | 35.13 | 2046.30          | 2072.27 | 1422.98          | 1.21          | 0.78                   | 1943.53            | 50.94        |
|                        |         | 0.63  | 0.15 | 0.21  | 241.83           | 246.16  | 388.9            | 0.29          | 0.19                   | 233.63             | 12.18        |
|                        |         | 0.13  | 0.03 | 0.05  | 55.86            | 62.29   | 98.4             | 0.07          | 0.05                   | 59.12              | 3.08         |
|                        | 7.3     | 15.76 | 7.37 | 35.06 | 2105.32          | 2051.74 | 2611.66          | 0.67          | 0.43                   | 1980.85            | 28.01        |
|                        |         | 0.31  | 0.1  | 0.15  | 254.15           | 232.74  | 547.02           | 0.15          | 0.1                    | 225.48             | 6.43         |
|                        |         | 0.07  | 0.02 | 0.04  | 58.70            | 58.89   | 138.41           | 0.04          | 0.02                   | 57.05              | 1.63         |
|                        | 6.7     | 15.48 | 6.66 | 34.99 | 2423.61          | 1957.02 | 3010.36          | 0.15          | 0.1                    | 1940.63            | 6.5          |
|                        |         | 1.52  | 0.19 | 0.18  | 284.04           | 25.08   | 4141.2           | 0.08          | 0.05                   | 212.54             | 3.41         |
|                        |         | 0.32  | 0.04 | 0.04  | 65.60            | 54.42   | 1047.85          | 0.02          | 0.01                   | 53.78              | 0.86         |
| <b>Reservoir tanks</b> |         |       |      |       |                  |         |                  |               |                        |                    |              |
|                        | 8       | 14.08 | 7.89 | 34.95 | 1930             | 2018.97 | 680.76           | 1.93          | 1.24                   | 1811.93            | 81.15        |
|                        |         | 0.44  | 0.14 | 0.10  | 273.13           | 307.01  | 156.68           | 0.31          | 0.2                    | 287.81             | 12.89        |
|                        |         | 0.19  | 0.06 | 0.05  | 138.22           | 166.89  | 85.17            | 0.17          | 0.11                   | 156.45             | 7.01         |
|                        |         | 15.56 | 7.98 | 34.84 | 1860             | 1970.58 | 527.15           | 2.38          | 1.53                   | 1715.41            | 99.82        |
|                        |         | 0.41  | 0.14 | 0.13  | 257.68           | 290.3   | 96.68            | 0.39          | 0.25                   | 231.67             | 16.49        |
|                        |         | 0.18  | 0.06 | 0.07  | 130.40           | 157.81  | 52.56            | 0.21          | 0.14                   | 142.08             | 8.97         |
|                        | 7.7     | 15.46 | 7.68 | 34.82 | 2086.67          | 2116.32 | 1211.65          | 1.38          | 0.89                   | 1970.45            | 57.92        |
|                        |         |       |      |       |                  |         |                  |               |                        |                    |              |

|     | 0.43  | 0.19 | 0.12  | 206.13  | 225.18  | 243.27  | 0.23 | 0.15 | 216.55  | 9.6   |
|-----|-------|------|-------|---------|---------|---------|------|------|---------|-------|
|     | 0.19  | 0.08 | 0.06  | 104.31  | 122.41  | 132.24  | 0.12 | 0.08 | 117.71  | 5.22  |
|     | 14.33 | 7.63 | 34.75 | 2033.33 | 2084.55 | 1308.57 | 1.21 | 0.77 | 1957.12 | 50.53 |
|     | 0.56  | 0.18 | 0.15  | 287.90  | 323.71  | 230.09  | 0.37 | 0.23 | 297.01  | 15.36 |
|     | 0.24  | 0.08 | 0.08  | 145.70  | 175.97  | 125.07  | 0.2  | 0.13 | 161.46  | 8.35  |
| 7.3 | 15.39 | 7.26 | 34.86 | 2156.67 | 2066.85 | 3279.5  | 0.54 | 0.35 | 2010.12 | 22.48 |
|     | 0.55  | 0.19 | 0.13  | 130.21  | 141.82  | 584.35  | 0.12 | 0.08 | 135.28  | 5.21  |
|     | 0.24  | 0.08 | 0.07  | 65.90   | 77.09   | 317.65  | 0.07 | 0.04 | 73.54   | 2.83  |
|     | 14.26 | 7.35 | 34.82 | 2106.67 | 2043.55 | 2905.94 | 0.55 | 0.35 | 1984.88 | 23.14 |
|     | 0.43  | 0.2  | 0.14  | 264.49  | 286.94  | 484.55  | 0.12 | 0.08 | 278.31  | 5.16  |
|     | 0.19  | 0.08 | 0.07  | 133.85  | 155.98  | 263.4   | 0.07 | 0.04 | 151.29  | 2.8   |
| 6.7 | 13.86 | 6.33 | 34.76 | 2686.67 | 1770.66 | 243.69  | 0.05 | 0.03 | 1765.47 | 2.16  |
|     | 0.44  | 0.14 | 0.14  | 311.7   | 247     | 42.29   | 0.02 | 0.01 | 245.84  | 0.64  |
|     | 0.19  | 0.06 | 0.08  | 157.74  | 134.27  | 22.99   | 0.01 | 0.01 | 133.64  | 0.35  |
|     | 15.3  | 6.34 | 34.76 | 2693.33 | 1763.27 | 238.83  | 0.06 | 0.04 | 1757.66 | 2.31  |
|     | 0.7   | 0.2  | 0.16  | 358.17  | 220.64  | 41.23   | 0.02 | 0.01 | 219.47  | 0.63  |
|     | 0.3   | 0.08 | 0.09  | 181.26  | 119.94  | 22.41   | 0.01 | 0.01 | 119.31  | 0.34  |

Table 2. List of Copepoda Harpacticoida species from collected at the rocky shore at

Mount Batten, Plymouth, UK.

| Order Harp<br>Suborder Ol                   | acticoida Sars, 1903<br>igoarthra Lang, 1944    |  |  |  |  |  |
|---------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| Family Laophontidae T. Scott, 1905          | Family Canthocamptidae Brady, 1880              |  |  |  |  |  |
| Laophonte cornuta Philippi, 1840            | Mesochra pygmaea (Claus, 1863)                  |  |  |  |  |  |
| Laophonte setosa Boeck, 1865                | Nannomesochra arupinensis (Brian, 1925)         |  |  |  |  |  |
| Laophonte sima Gurney, 1927                 | Family Dactylopusiidae Lang, 1936               |  |  |  |  |  |
| Laophonte sp                                | Dactylopusia vulgaris dissimilis Brian, 1921    |  |  |  |  |  |
| Laophontinae sp1                            | Diarthrodes sp                                  |  |  |  |  |  |
| Laophontinae sp2                            | Paradactylopodia sp                             |  |  |  |  |  |
| Paralaophonte brevirostris (Claus, 1863)    | Family Ectinosomatidae Sars, 1903               |  |  |  |  |  |
| Family Miraciidae Dana, 1846                | Ectinosomatidae sp 1                            |  |  |  |  |  |
| Amonardia normani (Brady, 1872)             | Ectinosoma sp1                                  |  |  |  |  |  |
| Amphiascoides golikovi Chislenko, 1977      | Ectinosoma sp2                                  |  |  |  |  |  |
| Amphiascoides sp1                           | Halectinosoma sp1                               |  |  |  |  |  |
| Amphiascopsis sp                            | Halectinosoma sp2                               |  |  |  |  |  |
| Amphiascus minutus (Claus, 1863)            | Halectinosoma sp3                               |  |  |  |  |  |
| Amphiascus longarticulatus Marcus, 1974 🌽   | Pseudobradya sp1                                |  |  |  |  |  |
| Amphiascus (varians) sp                     | Pseudobradya sp2                                |  |  |  |  |  |
| Amphiascus parvus Sars, 1906                | Pseudobradya sp3                                |  |  |  |  |  |
| Amphiascus angustipes Gurney, 1927          | Sigmatidium sp                                  |  |  |  |  |  |
| Bulbamphiascus sp                           | Family Longipediidae Boeck, 1865                |  |  |  |  |  |
| Delavalia sp                                | Longipedia sp                                   |  |  |  |  |  |
| Haloshizopera lima Becker, 1974             | Family Normanellidae Lang, 1944                 |  |  |  |  |  |
| Paramphiascella sp                          | Normanella sp                                   |  |  |  |  |  |
| <i>Robertgurneya</i> sp                     | Family Harpacticidae Dana, 1846                 |  |  |  |  |  |
| <i>Robersonia</i> sp                        | Harpacticus obscurus T. Scott, 1895             |  |  |  |  |  |
| Family Ameiridae Boeck, 1865                | Family Pseudotachidiidae Lang, 1936             |  |  |  |  |  |
| Ameira sp                                   | Idomene purpurocincta (Norman & T. Scott, 1905) |  |  |  |  |  |
| Ameiropsis mixta Sars, 1907                 | Family Peltidiidae Claus, 1860                  |  |  |  |  |  |
| <i>Nitocra</i> sp                           | Alteutha depressa (Baird, 1837)                 |  |  |  |  |  |
| Proameira hiddensoensis (Schäfer, 1936)     | <i>Eupelte</i> sp                               |  |  |  |  |  |
| Proameira thetiensis Pallares, 1982         | Family Tisbidae Stebbing, 1910                  |  |  |  |  |  |
| Psyllocamptus (L) triarticulatus Lang, 1965 | <i>Tisbe</i> sp                                 |  |  |  |  |  |
|                                             | Harpacticoida sp                                |  |  |  |  |  |

Table 3. PERMANOVA results for the Copepod community exposed to different pH and temperatures. Significant values are highlighted in bold.

| Source          | df | MS     | F    | Р      |
|-----------------|----|--------|------|--------|
| Temperature (T) | 1  | 3584.5 | 2.52 | 0.0044 |
| pН              | 3  | 3147.1 | 2.22 | 0.0004 |
| рН х Т          | 3  | 1467.1 | 1.03 | 0.422  |
| Residual        | 24 | 1420.3 |      |        |

**Table 4.** Pair-wise a posteriori comparisons for pH. Significant values are highlighted in bold.

| pri comparisons | t     | Р      |
|-----------------|-------|--------|
| 8.0 x 7.7       | 0.821 | 0.759  |
| 7.7 x 7.3       | 1.000 | 0.466  |
| 7.7 x 6.7       | 1.951 | 0.0001 |
| 8.0 x 7.3       | 0.911 | 0.6551 |
| 8.0 x 6.7       | 2.066 | 0.0001 |
| 7.3 x 6.7       | 1.839 | 0.0002 |
|                 |       |        |
|                 |       |        |

Page 34 of 40

Table 5. Percent contribution (Contrib. %) of Cyclopoida and species of Harpacticoida to average dissimilarity (Diss.) among different pH (Cut

off for low contributions: 70%).

| 8.0 vs 6.7                       |               | 7.7 vs 6.7                       |               | 7.3 vs 6.7                       |               |
|----------------------------------|---------------|----------------------------------|---------------|----------------------------------|---------------|
| Diss.= 63.88                     | Contrib.<br>% | Diss.= 60.36                     | Contrib.<br>% | Diss.= 58.61                     | Contrib.<br>% |
| Amphiascus longarticulatus       | 5.84          | Ectinosoma sp2                   | 6.63          | Ectinosoma sp2                   | 6.18          |
| <i>Tisbe</i> sp                  | 5.80          | <i>Tisbe</i> sp                  | 6.45          | <i>Tisbe</i> sp                  | 6.02          |
| Ectinosoma sp2                   | 5.62          | Amphiascoides golikovi           | 5.40          | Paradactylopodia sp              | 5.51          |
| Dactylopusia vulgaris dissimilis | 5.04          | Amphiascoides sp1                | 4.89          | Amphiascus longarticulatus       | 5.31          |
| Amphiascoides golikovi           | 4.81          | <i>Delavalia</i> sp              | 4.85          | Amphiascoides sp1                | 4.66          |
| Laophonte cornuta                | 4.65          | Amphiascus longarticulatus       | 4.82          | Laophonte cornuta                | 4.44          |
| Amphiascoides sp1                | 4.65          | Laophonte cornuta                | 4.70          | <i>Robertgurneya</i> sp          | 4.01          |
| Paradactylopodia sp              | 4.54          | Ameiropsis mixta                 | 4.44          | Ameiropsis mixta                 | 3.68          |
| <i>Normanella</i> sp             | 4.09          | Paradactylopodia sp              | 4.32          | Pseudobradya sp2                 | 3.67          |
| Ectinosoma sp1                   | 4.07          | Cyclopoida                       | 4.23          | Ectinosoma sp1                   | 3.58          |
| <i>Ameira</i> sp                 | 4.01          | Dactylopusia vulgaris dissimilis | 4.14          | Dactylopusia vulgaris dissimilis | 3.54          |
| Cyclopoida                       | 3.76          | Ectinosoma sp1                   | 4.01          | Amphiascoides golikovi           | 3.52          |
| Ameiropsis mixta                 | 3.22          | <i>Normanella</i> sp             | 3.69          | <i>Pseudobradya</i> sp1          | 3.25          |
| Pseudobradya sp1                 | 2.88          | Idomene purpurocincta            | 3.39          | Idomene purpurocincta            | 3.18          |
| Pseudobradya sp2                 | 2.86          | Pseudobradya sp1                 | 3.35          | <i>Ameira</i> sp                 | 3.17          |
| Laophonte sima                   | 2.84          |                                  |               | <i>Normanella</i> sp             | 2.82          |
|                                  |               |                                  |               | Laophontinae sp2                 | 2.53          |

Table 6. Percent contribution (Contrib. %) of Cyclopoida and species of Harpacticoida to average dissimilarity (Diss.) between temperatures (Cut off for low contributions: 70%).

| Amphiascoides sp1                | Contrib.% |
|----------------------------------|-----------|
| 1 1                              | 5.18      |
| Paradactylopodia sp              | 4.98      |
| Amphiascus longarticulatus       | 4.81      |
| Ectinosoma sp                    | 4.68      |
| Amphiascoides golikovi           | 4.38      |
| Dactylopusia vulgaris dissimilis | 4.25      |
| Cyclopoida                       | 4.11      |
| <i>Tisbe</i> sp                  | 4.11      |
| Ameiropsis mixta                 | 4.06      |
| Ectinosoma sp1                   | 3.83      |
| Laophonte cornuta                | 3.81      |
| Normanella sp                    | 3.72      |
| Ameira sp                        | 3.68      |
| Pseudobradya sp1                 | 3.42      |
| Delavalia sp                     | 3.38      |
| Robertgurneya sp                 | 3.15      |
| Idomene purpurocincta            | 2.93      |



Figure 1. MDS ordination plots for the Bray–Curtis similarity for Copepod community structure. + (cross) Field samples, • (circle) 8.0, ▲ (triangle) 7.7, ■ (square) 7.3, • (diamond) 6.7 (12 °C closed symbols, 16 °C open symbols).

56x38mm (300 x 300 DPI)

http://mc.manuscriptcentral.com/icesjms





126x187mm (300 x 300 DPI)





Figure 3. Mean (±95 % confidence intervals) of ovigerous female, female/male ratios, copepodite and malformed animals ratios at different pH and temperatures.





Figure 4. The effects of pH and temperature on the mean abundance and relative abundance (±95 % confidence intervals) of the main harpacticoids species.

95x107mm (300 x 300 DPI)





100x117mm (300 x 300 DPI)