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Faunal assemblages at hydrothermal vents associated with
island-arc volcanism are less well known than those at vents on
mid-ocean ridges and back-arc spreading centres. This study
characterizes chemosynthetic biotopes at active hydrothermal
vents discovered at the Kemp Caldera in the South Sandwich
Arc. The caldera hosts sulfur and anhydrite vent chimneys
in 1375–1487 m depth, which emit sulfide-rich fluids with
temperatures up to 212°C, and the microbial community of
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water samples in the buoyant plume rising from the vents was dominated by sulfur-oxidizing
Gammaproteobacteria. A total of 12 macro- and megafaunal taxa depending on hydrothermal
activity were collected in these biotopes, of which seven species were known from the East Scotia
Ridge (ESR) vents and three species from vents outside the Southern Ocean. Faunal assemblages
were dominated by large vesicomyid clams, actinostolid anemones, Sericosura sea spiders and
lepetodrilid and cocculinid limpets, but several taxa abundant at nearby ESR hydrothermal vents
were rare such as the stalked barnacle Neolepas scotiaensis. Multivariate analysis of fauna at Kemp
Caldera and vents in neighbouring areas indicated that the Kemp Caldera is most similar to vent
fields in the previously established Southern Ocean vent biogeographic province, showing that the
species composition at island-arc hydrothermal vents can be distinct from nearby seafloor-
spreading systems. δ13C and δ15N isotope values of megafaunal species analysed from the Kemp
Caldera were similar to those of the same or related species at other vent fields, but none of the
fauna sampled at Kemp Caldera had δ13C values, indicating nutritional dependence on
Epsilonproteobacteria, unlike fauna at other island-arc hydrothermal vents.
c.open
sci.6:191501
1. Introduction
The presence of active volcanoes on the Antarctic continent and several islands in the Southern Ocean was
recorded by early polar explorers, such as Sir James Clark Ross who observed an eruption ofMount Erebus
in 1841 [1]. These clearly visible volcanoes have been the subject of geological and biological research for a
long time (e.g. [2,3]). The presence of volcanic and measurable tectonic activity, such as eruptions, steam
fields, fumaroles and earthquakes on the Antarctic Peninsula, Marie Byrd Land, Victoria Land, the
islands of the South Shetlands and South Sandwich Arc and their surrounding seas (e.g. [2,4]), has
implied the presence of sub-ice and submarine volcanism and hydrothermal activity [5–8].

In the Antarctic and Southern Ocean marine environment, shallow-water hydrothermal fumaroles
occur in the caldera of Deception Island and are characterized by depleted marine life with low
species richness and faunal abundance compared to other Antarctic shallows (e.g. [9–11]). Hot vents
and cold seeps have been discovered in the Bransfield Strait in 990–1500 m depth [12–17], in the
Larsen B ice shelf area, eastern Antarctic Peninsula, in 215–850 m water depth [18–20], and on the
shelf of South Georgia in 250–350 m water depth [21,22], but the fauna associated with these locations
mostly comprise elements of typical Antarctic and Southern Ocean shelf fauna, with two exceptions
associated with chemosynthetic environments including the siboglinid polychaete Sclerolinum
contortum at Hook Ridge, Bransfield Strait [23] and a large vesicomyid clam at Larsen B [22,24–26].

Hydrothermal vent fields with abundant novel fauna have been discovered on the back-arc spreading
centre of the East Scotia Ridge (ESR) in 2400–2600 m depth, and on the Australian Antarctic Ridge (AAR)
in 1800–1900 m depth [27,28]. High-temperature ‘black-smoker’ venting occurs at two vent fields, on ESR
segments E2 and E9 [27,29,30], which are inhabited by vent-specific species including the yeti crab Kiwa
tyleri, the gastropods Gigantopelta chessoia and Lepetodrilus concentricus, the stalked barnacle Neolepas
scotiaensis, the seven-armed sea star Paulasterias tyleri and undescribed actinostolid anemones [31–36],
in assemblages supported by chemoautotrophic carbon fixation [37–40]. To date, the AAR sites have
not been visited and imaged by remotely operated vehicles (ROVs), but specimens of associated vent
fauna Kiwa araonae and Paulasterias tyleri have been collected, indicating the presence of faunal
assemblages supported by chemosynthesis [28,41].

Situated on the Sandwich Plate, the South Sandwich Arc of the Southern Ocean comprises actively
erupting volcanic South Sandwich Islands and their associated seamounts [42,43]. The minor tectonic
Sandwich Plate is separated in the west from the Scotia Plate by the ESR, a back-arc spreading centre
formed by the subduction of South American Plate on the eastern margin of the microplate, which also
forms the South Sandwich Trench [42,44,45]. To the south, the Sandwich Plate is bordered by the
Antarctic Plate [42]. The active volcanic arc ranges from northern Protector Shoal seamounts via eleven
volcanic islands to seamounts in the south, one of the southernmost being the Kemp Seamount [42].
Submarine hydrothermal vents have been reported from this island arc at Adventure Crater [46],
Protector Shoal seamounts and Quest Caldera [47], and Kemp Caldera near the Kemp Seamount
[29,48], which is the focus of this study. The Kemp Caldera is situated within a restricted zone of the
South Georgia and the South Sandwich Islands Marine Protected Area (SGSSI MPA), where both
research and fisheries activities are regulated by the SGSSI government [49]. In the SGSSI MPA,
commercial benthic bottom trawling is banned and longline fisheries are restricted to depths between
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700 and 2250 m (www.gov.gs). The SGSSI government is in the process of enacting legislation to protect

the environment of the SGSSI MPA from any future mining or hydrocarbon activity (exploration and
exploitation) to align with the Madrid Protocol of the Antarctic Treaty, and elucidating the faunal
assemblages associated with hydrothermal vents in the SGSSI MPA informs that legislative effort.

The ecology of deep-sea hydrothermal vents associated with island-arc volcanism is less well known
compared to vents on mid-ocean ridges and back-arc spreading centres, despite island-arcs extending
over a total distance of 22 000 km in the oceans [50,51]. Island-arc hydrothermal vents in the Pacific
and Caribbean exhibit contrasting vent fluid geochemistry to hydrothermal systems on seafloor
spreading centres. Hydrothermal vents in the Mariana arc produce fluids with low pH, high CO2 and
low H2S concentrations compared to ‘black smoker’ vents on mid-ocean ridges [51]. At vents on the
Loihi Seamount of the Hawaiian archipelago, low concentrations of H2S favour microbial communities
dominated by Fe-oxidizing bacteria rather than sulfide-oxidizers [52]. Hydrothermal vents on the
Nafanua cone in the crater of Vailulu’u Seamount in the Samoan archipelago produce fluids with pH
2.7 and droplets of liquid CO2; dead midwater metazoans are abundant on the seafloor around those
vents, where an acid-tolerant polynoid polychaete feeds on bacteria colonizing animal carcasses [53].
A similar ‘dead zone’ of midwater shrimp has been observed around hydrothermal vents in the
summit crater of Kick’em Jenny submarine volcano in the Lesser Antilles arc of the Caribbean [54],
which also hosts a cold-seep ecosystem on a debris avalanche deposit on its western flank [55].

Environmental differences between island-arc hydrothermal systems and those on seafloor spreading
centres may result in differences in their associated faunal assemblages, but few faunal assemblages have
been characterized from island-arc vent systems, and none have been previously described from the
Southern Ocean. Although some species found at ESR vents have also been reported from the Kemp
Caldera, such as the limpet Lepetodrilus concentricus, the stalked barnacle N. scotiaensis, the sea star P. tyleri
and the sea spiders Sericosura spp. [33–35,56], the faunal assemblage associated with this island-arc
hydrothermal system has not yet been described in detail. The aims of this study are, therefore, to define
the different biotopes in the hydrothermally active areas of the caldera, characterize the trophic ecology of
the faunal assemblage and determine the levels of similarity between the fauna of this island-arc vent
system and assemblages at hydrothermal vents on seafloor spreading centres in neighbouring regions.

We hypothesize that the chemosynthetic fauna present in the venting sites of the Kemp Caldera will
be similar to that of the ESR segments E2 and E9, based on their relatively close distance of only
approximately 440 km and approximately 90 km away, respectively.

2. Material and methods
Data for this study were collected during two expeditions at sea: expedition JR224 on board the Royal
Research Ship (RRS) James Clark Ross in February 2009 [57] and expedition JC42 on board the RRS
James Cook in January 2010 [58].

2.1. Hydro-acoustic data
Multibeam swathe bathymetry surveys of the caldera were conducted by the RRS James Clark Ross’s
hull-mounted Kongsberg SIMRAD EM120 multibeam echo sounder during expedition JR224 and by
the SIMRAD SM2000 high-resolution (200 kHz) multibeam echosounder mounted on ROV Isis during
expedition JC42 [27,58,59]. ROV-mounted swathe data were processed using the IFREMER software
package CARAIBES [59].

2.2. Water column and hydrothermal fluid sampling
On JC42, water column samples were collected using a titanium frame with 24 externally sprung Niskin
bottles, specifically designed for sampling waters with low levels of trace metals and nutrients. The frame
also included a Seabird + 911 CTD, a light scattering sensor (LSS) and a reductive potential (Eh) detector.
The 10 l Niskin bottles were Teflon lined, with Teflon taps and non-metallic parts, any metallic
components were constructed using titanium or high-quality stainless steel. Water samples were
analysed for particulate, dissolved and soluble concentrations of metals and oxyanions [29] as well as
microbial diversity (detailed below).

Hydrothermal fluid sampling was achieved using titanium (Ti) samplers on the ROV, equipped with
an inductively coupled link (ICL) high-temperature sensor to ensure the collection of high-quality
samples. In the case of diffuse flow fluid sampling or sampling of friable chimney structures, the Ti

http://www.gov.gs
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Figure 1. Map of the Southern Ocean; (a) location of Kemp Caldera in the Southern Ocean; (b) bathymetric profile, west to east
through the Kemp Caldera; (c) bathymetric profile, south to north through the Kemp Caldera; (d ) map of Kemp Seamount and the
Kemp Caldera showing the resurgent cone; (e) sampling sites in the vicinity of the resurgent cone in the Kemp Caldera.
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samplers were used in conjunction with a specially constructed Ti diffuse sampler, which was used to
prevent entrainment of surrounding seawater into the path of the fluid during sampling [27].

2.3. Seabed imagery
During expedition JR224, the towed seabed high-resolution imaging platform (SHRIMP) was deployed
once in the caldera near the Kemp Seamount to collect video imagery of the seabed that enabled
identification of megafaunal (greater than 3 cm) benthic invertebrates [57]. SHRIMP was equipped with
three video-only recording cameras, a forward-looking Simrad PAL colour charge-coupled device
(CCD) camera type OE1364, a downward-looking Bowtech PAL colour CCD camera type L3C-550 and
a downward-looking three-chip Panasonic camcorder.

In 2010, during expedition JC42 the ROV Isiswas deployed for 8 dives with a total of 118 h deployment
time at the Kemp Caldera (figure 1; electronic supplementary material, table 1). For seafloor imagery
(photos, video and frame grabs of videos) ROV Isis was equipped with a three-chip CCD video camera
(Insite Pacific Atlas), a 1080i high-definition video camera (Insite Pacific Mini Zeus) on a pan-and-tilt-
mount and a 3.3-megapixel stills camera (Insite Scorpio) [59]. Additionally, two lasers, 0.1 m apart, were
mounted parallel to the focal axis of the video camera to provide scale in images. Footage from the
video cameras was recorded on DVCAM tapes and DVD and from the still camera on a memory card [27].
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2.4. Macro- and megafauna sample treatment

Benthic invertebrates were collected by either the ROV Isis’s suction sampler or scoop and brought to the
surface in ambient seawater. Once on board, samples were immediately transferred to seawater in a
temperature-controlled laboratory set to +4°C where individuals were dissected and either frozen or
stored in molecular grade ethanol for molecular analysis, frozen for isotope analysis or fixed in 10%
seawater formalin for morphological analysis.

2.4.1. Stable isotopes

For stable isotope analysis of the food web structure in and outside the venting areas in the Kemp
Caldera, different tissues were used for different species: tube feet in the asteroids, tentacles in the sea
anemones and foot muscle tissue in the vesicomyid clam. Pycnogonids were sampled whole while the
cocculinid gastropods were removed from their shells and sampled whole. Faunal tissue samples were
freeze-dried and ground to homogeneous powder using a pestle and mortar. Aliquots of fauna were
tested for carbonates prior to analysis. The samples did not effervesce and therefore no acidification
was carried out. Dual δ13C and δ15N were measured by elemental analysis–isotope ratio mass
spectrometry (EA-IRMS) using a Roboprep-CN sample preparation module coupled to a Europa
Scientific 20–20 IRMS on 1.0 mg of sample. δ34S was measured using a SERCON elemental analyser
coupled to a Europa Scientific 20–20 IRMS on 2 mg of sample with an additional 4 mg of vanadium
pentoxide as a catalyst. All analyses were carried out by Iso-Analytical (Crewe, UK). Stable isotope
ratios were expressed in delta (δ) notation as parts per thousand (‰). An external reference material
of freeze-dried and ground deep-sea fish white muscle (Antimora rostrata) was also analysed (δ13C, n =
28, −18.82‰ ± 0.10 s.d.; δ15N, n = 28, 13.11‰ ± 0.38 s.d.; δ34S, n = 7, 18.56‰ ± 0.44 s.d.).

2.5. Multivariate analysis of faunal similarity with vent fields in neighbouring regions
The species inventory for the site was compared with species lists compiled from published literature for
15 well-studied vent fields in neighbouring regions: the ESR (E2 and E9 vent fields), the Indian Ocean
(Longqi, Duanqiao, Tiancheng on the Southwest Indian Ridge; Kairei, Edmond and Solitaire fields on
the Central Indian Ridge) and Mid-Atlantic Ridge (Lucky Strike, Rainbow, Broken Spur, TAG, Snake
Pit, Ashadze-1 and Logatchev fields), updating the dataset previously published by Copley et al. [60]
with subsequently published records of additional sites and taxa [61–64].

Meiofauna were not sampled at the Kemp Caldera during this study, and meiofaunal taxa were,
therefore, excluded from species lists of other vent fields for comparison, following the protocol of
Copley et al. [60], as their true absence cannot be inferred reliably from the literature for each vent
field. ‘Non-vent’ taxa (defined as species originally described from non-chemosynthetic environments)
were also excluded for the same reason, as such ‘normal’ deep-sea taxa on the periphery of vent fields
are not consistently included in published species inventories of vent fields. The omission of these
variably recorded groups, therefore, ensures equivalent datasets from each vent field for comparative
analysis by only considering the presence/absence of macro- and megafaunal taxa considered to be
endemic to chemosynthetic environments.

The identities of taxa were recorded to species level in the dataset where possible, and indeterminate
species of the same genus at different sites were conservatively assigned to separate taxonomic units to
avoid potential false conflation of faunal similarity. In total, the resulting database of vent fauna
(presented in the electronic supplementary material) contains 329 records of 159 taxa across 16 vent
fields. A similarity matrix between vent fields was calculated from taxon presence/absence records
using Sørensen’s Index. Hierarchical agglomerative clustering using group-average linkage, and non-
metric multidimensional scaling (MDS) with a 5% proportion of the metric MDS solution to reduce
sample-point collapse, were applied to the similarity matrix using PRIMER v. 7 to produce a
dendrogram and two-dimensional ordination representing similarity relationships.

2.6. Microbiological sample treatment
For the analysis of the microbial biodiversity in the water column, 30 l of water from one sample within
the buoyant vent plume, at a depth of 1355 m (about 60 m above the seafloor) taken with CTD Niskin
bottles were filtered through a 0.2 µm pore size nitrocellulose filter (Whatman GE Healthcare). The
water at the sampling depth showed a strong decrease in the redox potential of 342 mV with
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concomitant increase in LSS of 0.538 compared to surface water. The filters were frozen at −80°C until

further analysis. DNA was extracted from the filters using a phenol/chloroform protocol [42]. To test
for the presence of endosymbiont in the vesicomyid clams, gill tissue was frozen at −80°C. DNA from
gill tissue was extracted with phenol/chloroform as above, but using a longer Proteinase K digest (1 h
at 37°C followed by 1 h at 50°C).

The near full-length 16S rRNA gene was amplified by PCR using the universal bacterial primers 27F
[65] and 1492R [66] and universal archaeal primers ARCH46F [67] and UA1406R [68]. PCR conditions
were 3 min at 94°C, followed by 30 cycles of 60 s at 94°C, 45 s at 50°C, 90 s at 72°C and a final
elongation of 5 min at 72°C. PCR products were cloned into the pCR2.1 vector by TOPO TA cloning
(Invitrogen-Life Technologies, USA), following the manufacturer’s recommendations and plated on
LB-Ampicillin plates containing X-gal for blue-white screening. White clones were checked for correct
insert size by PCR using the plasmid primers M13F and M13R. A total of 134 clones from the filters
and 131 clones from the clams’ gill tissues were sequenced bi-directionally by Sanger sequencing at
LGC Genomics (Berlin, Germany). The sequences were trimmed, QC checked and overlapping ends
assembled with the software package Geneious (www.geneious.com) to obtain the near full-length
16S rRNA sequence and subsequently aligned to a reference database (SILVA 102 www.arb-silva.de)
and phylogenetically identified within arb [69]. Sequences have been submitted to GenBank (accession
numbers MK736312–MK736351).

For flow cytometry, 1.5 ml of fivewater samples takenwith CTDNiskin bottles at different pointswithin
the vent plume of each water sample was fixed in 0.5% (v/v) glutaraldehyde and frozen at −80°C until
analysis. Samples were stained in 0.001% (v/v) SYBR green I (Sigma) for 1 h before measurement in a
FACScan flow cytometer (Becton Dickinson, Oxford, UK). Flow cytometry data were analysed with
CytoWin [70].
3. Results
3.1. Study area
In 2009, multibeam bathymetry surveys in the vicinity of the Vysokaya Bank, southern South Sandwich
Island volcanic arc, revealed a caldera to the west of the Kemp Seamount (59°42’ S, 28°20’ W) (figure 1).
This previously unseen feature measures an E–W rim-to-rim width of 8300 m, a N–S width of 6500 m
and a flat bottom floor width of approximately 2500 m. The sill depth is at 900 m while the inner
floor depth is approximately 1600 m resulting in a difference of approximately 700 m from rim to
floor. These dimensions indicated that the depression is a caldera (i.e. formed by collapse of the sea
floor into a drained magma chamber; [71]), rather than a crater (formed as a direct result of an
eruption), as the latter rarely exceed 2 km in diameter and typically have lower width/depth ratios
[72,73]. The structure is referred to as ‘Kemp Caldera’ hereafter.

The ‘fresh’ morphology of the structure and its lack of sedimentary infill, demonstrated by seafloor
observations of exposed rock surfaces and by the presence of blocky lavas at the caldera floor, suggest a
particularly young age for the caldera. Further observations within and away from the caldera included
the presence of slide blocks and mass movement structures (e.g. debris flow chutes) on the flanks of the
caldera and seamount, which testified to the instability of slopes both here and elsewhere along
the South Sandwich arc [45,74]. The rim of the caldera was marked by a heterogeneous topography
featuring multiple cones and craters, indicating post-collapse activities, which commonly occurs around
caldera rims.

The topography of the inner caldera floor was virtually flat apart from the presence of a mounded
feature at the centre of the caldera, interpreted here as a resurgent cone. The cone had a neighbouring
bank on the western side (figure 1b,c). The resurgent cone rose approximately 250 m from the caldera
floor and is approximately 1000 m in diameter. On the SE base of the resurgent cone and on the NE
flank of the bank in 1375–1487 m depth, hydrothermally active areas including venting chimneys and
diffuse flow sites were discovered.

The deep-water oceanography around the Vysokaya Bank, including the Kemp Caldera, is
characterized by the Weddell-Scotia Confluence [75] and two main water masses, the Circumpolar
Deep Water (CDW) and the Weddell Sea Deep Water (WSDW) [76,77]. The CDW is driven by the
Antarctic Circumpolar Current into the eastern Scotia Sea, while WSDW in the area originates either
from it overflowing the South Scotia Ridge east of the Orkney Passage or entering through the
Georgia Passage [76]. The waters within the Kemp Caldera show the characteristics of modified CDW.

http://www.geneious.com
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halo zone with halichondriids, 59°41.64 S, 28°21.13 W; (e) basalt in diffuse flow with actinostolid anemones, pycnogonid Sericosura
and cocculinid limpet, 59°41.67 S, 28°21.10 W; ( f ) basalt next to ‘Great Wall’ with actinostolids, Sericosura, cocculinids and
vesicomyid clams Archivesica s.l. puertodeseadoi, 59°41.69 S, 28°21.10 W; (g) ‘Fine Sediment in Diffuse Flow’ with Archivesica
s.l. puertodeseadoi, Sericosura, and cocculinids, 59°41.66 S, 28°20.99 W; (h) ‘Clam Road’ with Archivesica s.l. puertodeseadoi and
cocculinids, 59°42.03 S, 28°21.23 W; (i) ‘Coarse Sediment in Diffuse Flow’ with cocculinids, Sericosura and actonostilids,
59°42.05 S, 28°21.22 W; ( j ) ‘Great Wall’, sulfur structure with white bacterial mats, 59°41.68 S, 28°21.09 W; (k) ‘Precipitated
Sediment’ with cocculinids and Lepetodrilus concentricus, 59°41.67 S, 28°21.14 W; (l ) ‘Winter Palace’, chimneys covered in
anhydrite and with Lepetodrilus concentricus, 59°41.69 S, 28°20.97 W. The white bar is approximately 10 cm.
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3.2. Hydrothermal vent biotopes and their fauna
Fauna inside the Kemp Caldera was studied by analysing underwater imagery and samples collected
from specific faunal assemblages, and their habitats are described as follows. The focus was on the
benthic fauna of the identified hydrothermally actives areas, characterized by the presence of ‘white
smoking’ venting, diffuse flow, precipitates and/or bacterial mats, while an overview is given on the
observed benthic and pelagic fauna from surrounding non-venting environments. The video analyses
defined eight assemblage types, classified as biotopes, under the influence of hydrothermal activities
based either on the dominating macro- and megafauna or on the type of substrate (figures 2 and 3,
tables 1 and 2). A further chemosynthetic biotope discovered in the Kemp Caldera adjacent to the
resurgent cone, the decomposing skeleton of an Antarctic minke whale, has been described by
Amon et al. [78].



(a) (b)

(c) (d)

(g) (h)

(e) ( f )

Figure 3. In situ Kemp Caldera chemosynthetic fauna; (a) actinostolid sp. and cocculinid limpet at ‘Clam Road’, 59°42.05 S, 28°
21.23 W; (b) Sericosura bamberi (yellow arrow), cocculinid limpet, Lepetodrilus concentricus at ‘Basalt next to Great Wall’, 59°41.67
S, 28°21.09 W; (c) cocculinid limpet and Sericosura bamberi (yellow arrow) at ‘Coarse Sediment in Diffuse Flow’, 59°42.06 S, 28°
21.24 W; (d ) Neolepas scotiaensis (yellow arrow) at ‘Basalt in Diffuse Flow’, 59°42.66 S, 28°20.98 W; (e) burrowed, live Archivesica
s.l. puertodeseadoi with siphons visible (yellow arrow) at ‘Fine Sediment in Diffuse Flow’, 59°41.67 S, 28°21.01 W; ( f ) epilithically
living Archivesica s.l. puertodeseadoi with siphons visible (yellow arrow) at ‘Clam Road’, 59°42.02 S, 28°21.23 W; (g) Paulasterias
tyleri at ‘Fine Sediment in Diffuse Flow’, 59°41.71 S, 28°21.07 W; (h) Sclerolinum sp. at ‘Precipitated Sediment’, 59°41.68 S, 28°20.99 W.
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3.2.1. Descriptions of the Kemp Biotopes

3.2.1.1. Great Wall (GW)
‘Great Wall’ (figure 2j) was defined by sulfurous structures, which include pure bright yellow crystalline
sulfur, emerging from the seafloor, which hosted no macrofauna. The maximum temperature measured
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at ‘GW’ was 21°C. The macrofauna seen in close proximity to the biotope ‘GW’ belonged to assemblages

associated with basalt rocks and boulders.

3.2.1.2. Winter Palace (WP)
This biotope was characterized by an area of dense ‘white smoking’ sulfide chimneys covered in bacterial
mats (figure 2l) and emitting fluids with temperatures ranging from 103 to 212°C [48]. Pelagic animals,
including squid or shrimp, swimming through the white smoke were observed to change colour from red
to white and then drop to the seafloor. The only macro- or megafaunal species collected from chimney
samples and observed living on the chimney surfaces was the vent limpet Lepetodrilus concentricus
(figure 3b). The shell of limpets collected from these chimneys were covered in anhydrite and the
limpets left what appeared to be ‘home scars’ around their sitting positions on the chimneys.

3.2.1.3. Basalt next to Great Wall (BGW)
Basalt outcrops, including rocks and boulders, and the soft sediment between them (figure 2f ), next to
the ‘GW’ structure, were characterized by the rare presence of large, infaunal specimens of the
vesicomyid clam Archivesica s.l. puertodeseadoi (figure 3e), occasional large, dark red actinostolid
anemones (figure 3a) and Sericosura spp. sea spiders (figure 3b,c) together with numerous individuals
of L. concentricus and a cocculinid limpet (figure 3c). A single specimen of the stalked barnacle
Neolepas scotiaensis (figure 3d ) was seen in this biotope.

3.2.1.4. Basalt in Diffuse Flow (BDF)
Rigid and continuous basalts on the slope of the resurgent cone were associated with diffuse
hydrothermal flow and hosted an assemblage of abundant macrofauna (figure 2e). The cocculinid
limpet and Lepetodrilus conentricus both occurred at very high abundances and both actinostolid
anemones and Sericosura spp. were frequent. Occasionally, halichondriid sponges (figure 2d ) were
seen and several lone specimens of Neolepas scotiaensis were present. Towards the outer edges of this
biotope, very occasional non-vent-associated fauna, such as the sessile holothurians (genus Psolus) and
cnidarians (genus Anthomastus), were recorded.

3.2.1.5. Clam Road (CR)
The bank just south of the resurgent cone hosted the ‘Clam Road’ biotope (figure 2h), characterized by
rough-edged basalt and frequent vesicomyid clams living epilithically. The most common species were
the cocculinid limpet, Lepetodrilus concentricus, and pycnogonids of the genus Sericosura, with actinostolid
anemones and halichondriid sponges being occasionally present. Within the finer sediment rubble
collected by the suction sampler, several species of polychaetes belonging to several families were
present (table 1).

3.2.1.6. Precipitated Sediment (PS)
Near the ‘Winter Palace’ biotope, large areas of flat, sedimented seafloors were covered in white
precipitate with the occasional basalt rock penetrating the surface (figure 2k). A characteristic area for
this biotope is the ‘Glacier’ locality (figure 1e). Lepetodrilus concentricus and Sericosura spp. sea spiders
were seen on dense white precipitate, while the vesicomyid clam Archivesica s.l. puertodeseadoi was
frequently seen burrowed in areas with thinner precipitate cover. Collections in this area revealed the
presence of thyasirid bivalves and several polychaete species. Specimens of the actinostolid anemone
and the cocculinid limpet were less abundant in this biotope and mostly found on the basalt
outcrops. The sediments taken, coated in pale bacterial mats, in this biotope had a strong sulfur odour
and contained tubes of Sclerolinum worms (figure 3h). Some of the precipitate-covered seafloor areas
formed ‘dead zones’ in which numerous dead Nematocarcinus shrimps and squids were seen lying on
the white precipitate. Sericosura spp. sea spiders were seen in clusters over individual dead shrimps
and were presumed to be feeding on them.

3.2.1.7. Coarse Sediment in Diffuse Flow (CSDF)
The top of the bank south of the resurgent cone was influenced by diffuse venting and covered by coarse-
grained anhydrite aggregates and basalt fragments (figure 2i), which led to the location name ‘Ash
Mount’. The macrofauna there was dominated by very high abundances of Sericosura spp. and the
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Figure 4. Idealized schematic of the spatial distribution of the Kemp Caldera vent field faunal assemblages with increasing distance
from sulfur vent or vent fluid orifice.
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cocculinid limpet, with the occasional L. concentricus and actinostolid anemone. No vesicomyid clams,
common in the adjacent biotope ‘Clam Road’, were present here.

3.2.1.8. Fine Sediment in Diffuse Flow (FSDF)
This biotope, defined by fine sediments in the influence of the diffuse flow, was characterized by clusters
of burrowing vesicomyid clams. Thyasirid bivalves [79] lived infaunally among the vesicomyid clams
and the sea star Paulasterias tyleri was also observed on the clam beds. Individuals of the shrimp
Nematocarcinus sp. were seen walking around on the sediment and occasionally siboglinid worm tubes
and ophiuroids could be seen.

3.2.1.9. Basalt covered in white mat (BWM)
The ‘BWM’ biotope is characterized by the presence of halichondriid sponges and a fine white bacterial
or mineral precipitate cover on the basalt (figure 2d ). In this biotope, few macrofauna were seen apart
from sponges and the occasional sea star Paulasterias tyleri. Towards the border of this zone, near
areas influenced by hydrothermal activity, macrofauna associated with the hydrothermal environment
including Sericosura spp., the cocculinid limpet, and actinostolid anemones began to appear; initially
animals were rare, but they then increased in numbers as the abundance of the halichondriid
sponge decreased.

Overall, the Kemp Caldera vent field showed a consistent pattern of faunal zonation, with changing
assemblage types in different biotopes andwith increasing distance from the hot vent fluid source (figure 4).

3.2.2. Vent biotope associated macro- and megafauna

In total, 26 benthic species were recovered from the chemosynthetic biotopes in the Kemp Caldera
(table 1), of which ten taxa were known from non-chemosynthetic environments in the Southern
Ocean, and 13 species have so far been discovered only at hydrothermally active areas.

The demosponge dominating the fauna in the ‘BWM’ biotope and occasionally occurring in diffuse
flow areas was identified as a species belonging to the family Halichondriidae based on the morphology
of the simple spicules (D. Janussen 2011, personal communication).

The actinostolid anemones with dark red tentacles were relatively large with a pedal disc greater than
10 cm diameter. The tentacles were armed with strong cnidocytes, which stung through double-layered
nitrile examination gloves resulting in a numbing, tingling sensation (C.N. Roterman 2010, personal
communication). This species occurred in six of the biotopes but highest abundances were seen in
‘BDF’ and ‘CR’.
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The small vent limpet Lepetodrilus concentricus occurred in six of the eight hydrothermal biotopes in

the Kemp Caldera as well as on the natural whale fall [78], but was missing in the toxic environment of
‘GW’ and in the outermost area influenced by diffuse flow, the ‘BWM’ biotope. Molecular analysis of the
barcode gene region of COI confirmed that Lepetodrilus limpets from the Kemp Caldera were conspecific
with L. concentricus from the ESR vents [33,80].

The cocculinid limpet was the visually most abundant species in the hydrothermal biotopes being
found in six of them and was also found on the natural whale fall. The gill morphology suggests
affinity to Cocculinidae within the order Cocculinida [81,82]

The large vesicomyid clam was present in six biotopes of the Kemp Caldera, showing two different
lifestyle modes; one group was seen buried in the soft sediments, while the other was seen living
epilithically on basalt. Morphologically, based on shell and soft part characteristics, the specimens
resemble Archivesica s.l. puertodeseadoi (Signorelli & Pastorino, 2015) (E. Krylova 2019, personal
communication). To determine the presence of endosymbionts in the gill tissue, clone libraries were
constructed for 16S rDNA and resulted in 16 sequences from epifaunal and 115 sequences from
infaunal specimens. The sequence analysis showed that only one single symbiotic species of
Gammaproteobacteria from the SUP05 cluster is present in the vesicomyid clams in the Kemp
Caldera. The phylogenetic identification in the arb search indicated a species of Oceanospirillales, an
endosymbiont in vesicomyid clams off Florida, as the closest relative (figure 5).

In the precipitate and diffuse flow fine sediment areas, a few specimens of thyasarid bivalves were
found and identified as Spinaxinus caldarium and Parathyasira cf. dearborni [79]. While P. cf. dearborni
did not host symbiotic bacteria, S. caldarium hosted endosymbiotic bacteria in their gills, which were
of the same phylotype as symbiotic bacteria in Spinaxinus emicatus from the Gulf of Mexico [79].
Siboglinid polychaetes matching the tube morphology of Sclerolinum contortum were found in sulfidic
sediments at ‘PS’ (figure 3h). The maldanid Nicomache lokii was found at ‘PS’, ‘CR’ and ‘FSDF’.

The stalked neolepadid barnacles occasionally found on the basalt of the diffuse flow areas were
Neolepas scotiaensis, a species described from the ESR vents at segment E2 and E9 and also the Kemp
Caldera [34]. As only three barnacle specimens were collected in Kemp and used for taxonomy, no
material was available for stable isotope analysis.

The medium-sized pycnogonids present in the Kemp hydrothermal biotopes belonged to three
species of the vent-affiliated genus Sericosura [56]. Molecular COI sequence analysis showed that
Sericosura bamberi, S. curva and S. dimorpha were closely related to each other and form a sister clade
to Sericosura venticola from Northern Pacific vents [56].

The multi-armed (7- to 8-armed) forcipulatacean sea star reported from clam fields and basalts in low
diffuse flow areas belong to the recently described Paulasterias tyleri [35]. Only four specimens of P. tyleri
were collected in the Kemp Caldera and were used for taxonomic identification.
3.3. Faunal similarity of the vent assemblage at Kemp Caldera with vent fields in
neighbouring regions

Multivariate analyses of the presence/absence data for 159 macrofaunal and megafaunal taxa endemic to
chemosynthetic environments from 16 vent fields in the Southern, Indian and Atlantic Oceans (figure 6a)
show that the vent fauna at Kemp Caldera is most similar to faunal assemblages at E2 and E9
hydrothermal vent fields on the ESR, but with a lower degree of similarity than that found between
those two ESR vent fields (figure 6b). The vent fauna of Kemp Caldera was most similar to the fauna
at E9, showing a 44% Sørensen similarity, followed by E2 with a 32% Sørensen similarity, while E2
and E9 exhibited 85% Sørensen similarity. At a regional scale, vent fields within each ocean (Southern,
Indian and Atlantic) were more similar to each other in faunal composition than to those in other
oceans (figure 6b,c).
3.4. Macro- and megafauna of non-venting environments

3.4.1. Pelagic fauna

A high abundance of pelagic fauna, especially nekton, was observed in the water column of the caldera
and some seemed to follow the ROV Isis, presumably attracted to the lights of the underwater camera
systems. Several species of megafaunal pelagic crustaceans were present, e.g. the Antarctic krill
Euphausia superba, dark red mysids and the bentho-pelagic shrimp Nematocarcinus lanceopes, as well as



Figure 5. Phylogenetic position of the Kemp Caldera 16S rRNA sequences (in bold) from the water and the vesicomyid
endosymbiont within the SUP05 cluster. Sequences were added to the Silva102 guide tree by parsimony. Bootstrap values
(only values greater than 50 are shown) were calculated by nearest neighbour interchange within arb.
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individuals of large jellyfish, similar to the genus Poralia (D. Lindsay 2014, personal communication) and
comb jellies. In near-bottom waters different fish species were present. Once a large toothfish Dissostichus
mawsoni was seen, while often individuals of two different macrourid species (rattails), a muraenolepid
and the paralepidid Notolepis annulata were observed in non-venting areas. Three morphotypes of squid
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were reported; a mid-sized (approx. 40 cm) red-coloured species was identified as Alluroteuthis antarcticus

(L. Allcock 2013, personal communication), a smaller (approx. 20 cm) white species was identified as
Slosarczykovia circumantarctica and a red-spotted squid similar to Moroteuthis knipovitchi was also seen
but less frequently.

3.4.2. Benthic fauna

The general benthic faunal distribution in the Kemp Caldera were assessed based on a single SHRIMP
transect from the deepest point of the caldera via the resurgent cone to the NE rim during JR224,
while ROV Isis dived several times on the resurgent cone during JC042 and enabled a closer
examination of the sediments and taxa present. The seabed in the deeper part of the caldera was
covered with a thin sediment layer, interrupted by a series of lava outcrops, giving way to a cobbled
seafloor closer to the resurgent cone, which is described in detail below. Mobile species of
holothurians were abundant on the sedimented floor of the caldera, oriented in the same direction,
along with occasional dense patches of cerianthid sea anemones and some asteroids. Lava outcrops
were dominated by dense coverage of ophiuroids, with brisingid asteroids and other suspension
feeders including soft coral, sponges and sea anemones also occasionally present. The caldera wall
towards the rim consisted of a series of sheer faces of lava displaying hexagonal cooling joints. The
fauna there was dominated by ophiacanthid ophiuroids, particularly on lava blocks at the base of the
wall of hexagonal columns. The hexagonal cooling joints were occupied by yellow tube-forming
sponges, with brisingids and ophiacanthids on the upper edges of pillar steps.

On the lower eastern flank of the resurgent cone around 1415 m deep, orange-coloured metalliferous,
raised sediment structures were present with orange-coloured soft sediments covering the seafloor
between them (figure 2a). No epifaunal macrobenthic specimens were visible on these sediments or on
the orange structures, but notothenioid (e.g. Notolepis annulata) and macrourid fishes, as well as krill
could be seen in the area. When the soft sediment colour changed to grey-brown and rough-edged
basalt boulders appeared on the flank higher up the resurgent cone, epifaunal macrofauna specimens
became present, increasing in abundance with increasing distance from the orange-coloured substrates
(figure 2b,c). The areas of the resurgent cone were under no influence of hydrothermal activity and
hosted benthic faunal assemblages similar to those known from the Antarctic and Southern Ocean
continental slope and deep-sea plains. The sessile faunal component on the basalt consisted of
cnidarians, especially hormathiid anemones and octocorals of the genus Anthomastus, bryozoans similar
to Hornea sp., the stauromedusae Lacunaria sp., sabellid polychaetes, psolid holothurians, as well as
synascidians, while no hexactinellid sponges were recorded. The comatulid Promachochrinus sp. and the
brisingid Freyella cf. fragilissima were observed on raised boulders. In the sedimented areas, burrowing
anemones, the pennatularian Umbellula carpenteri and a variety of asteroids, ophiuroids, holothurians
and echinoids (Sterechinus dentifer, Ctenocidaris spinosa) were present and the bentho-pelagic shrimp
Nematocarcinus lanceopes was also seen. The majority of observed macrofauna were mobile species like
the nemertean Parbolasia cf. corrugatus, the decapod Eualus amandae, the gastropods Austrodoris
kerguelensis and a pleurobranchid, several species of the polychaete families Dorvilleidae, Polynoidae,
Maldanidae, Scalibregmatidae, Hesionidae, Ampharetidae, Amphinomidae, the pygnogonids Nymphon
cf. longicoxa and Colossendeis sp. A variety of echinoderms was seen, including ophiuroids like
Ophiolimna antarctica, Ophioperla sp. and ophiacanthids, asteroids, e.g. Hymenaster cf. coccinatus,
Odontaster penicillatus and holothurians including Bathyplotes cf. gourdoni, Protelipidia sp., Elaspodida
sp., Scotoplanes sp., Molpadiodemas sp. The ecology of O. antarctica collected away from the
hydrothermally active sites in the Kemp Caldera was studied and no apparent influence of venting on
the diet of the ophiuroid was observed [83].

The abundance and presence of the Southern Ocean benthic species decreased nearer to the
hydrothermal active zones. In the ‘BWM’ zone, the outermost hydrothermally active biotope defined
by the halicondriid sponges, psolid holothurians were occasionally observed.

3.5. Microbiology
The number of prokaryotic cells (determined by flow cytometry) in water samples taken at five points
within the vent plume in the Kemp Caldera ranged 1.70–2.15 × 105 cells ml−1. Examination of the
microbial composition based on 16S rDNA clone libraries from one water sample taken within the
buoyant vent plume (60 m above the chimney) at ‘GW’ showed that Gammaproteobacteria make up
95% of the bacterial community (table 3). Within the Gammaproteobacteria, the majority of sequences



Table 2. Mean δ13C, δ15N and δ34S (‰) of hydrothermal vent fauna and non-vent fauna collected from the Kemp Caldera.
Standard deviations are in parentheses.

taxon tissue biotope N δ13C δ15N N δ34S

Halichondriidae sp. whole BWM 9 −40.93 (0.28) 5.68 (0.58) 3 3.53 (0.25)

Actinostolidae sp. tentacle BDF 35 −24.59 (0.62) 8.54 (0.52) 13 15.05 (1.51)

Cocculinidae sp. whole BGW 14 −26.80 (2.05) 3.46 (0.64) 12 3.94 (0.73)

Cocculinidae sp. whole CSDF 11 −23.81 (1.59) 6.06 (1.17) 8 7.16 (0.61)

Archivesica s.l.

puertodeseadoi

foot FSDF 38 −35.61 (0.36) −6.47 (1.73) 9 4.97 (2.856)

Archivesica s.l.

puertodeseadoi

foot CR 28 −35.20 (0.38) −3.24 (1.61) 10 8.79 (0.85)

Maldanidae sp. whole CR 1 −26.98 3.55 0 —

Terebellidae sp. whole CR 1 −27.45 2.81 0 —

Sericosura bamberi whole BGW 8 −24.18 (0.76) 8.59 (0.62) 8 8.15 (1.93)

Sericosura bamberi whole CSDF 16 −21.89 (2.25) 8.64 (0.68) 15 8.75 (2.29)

Anthomastus sp. polyps non-vent 4 −22.45 (1.35) 9.30 (0.29) 1 18.93

Echinoid sp. gonad non-vent 3 −26.96 (0.81) 8.97 (0.81) 0 —

Freyella sp. tube feet non-vent 3 −23.48 (1.41) 9.99 (0.90) 3 18.34 (0.29)

Bathyplotes sp. muscle non-vent 2 −22.73 (0.24) 7.25 (0.08) 1 18.13

Holothuroidea sp. 1 muscle non-vent 3 −22.44 (0.10) 8.08 (0.67) 3 17.46 (0.45)

Hymenaster sp. tube feet non-vent 3 −22.27 (0.58) 10.92 (0.48) 0 —

Odontaster penicillatus arm non-vent 1 −23.33 14.99 0 —

Ophiolimna antarctica arm non-vent 3 −22.29 (0.27) 9.88 (0.26) 0 —

Psolus sp. muscle non-vent 2 −22.60 (0.99) 9.07 (0.26) 0 —

Polynoidae sp. whole non-vent 1 −23.70 11.02 0 —

Nematocarcinus

lanceopes

muscle non-vent 4 −24.01 (0.47) 7.33 (0.26) 0 —

Macrouridae sp. muscle non-vent 1 −24.60 10.93 1 16.03

Notolepis annulata muscle non-vent 3 −26.00 (0.65) 7.53 (0.14) 2 17.02 (1.08)

Notolepis annulata

(dead)

muscle BDF 1 −26.09 8.33 1 17.13
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(57% of total bacterial sequences) were assigned to the SUP05 cluster (figure 5), with high sequence
similarity (greater than 98%) to uncultured free-living bacteria found in other vent systems and
moderate sequence similarity (95–97%) to vesicomyid symbionts. Archaeal sequences were split into
two groups: marine group I (Crenarchaeota), making up 72% of the sequences and Thermoplasmatales
(Euryarchaeota) making up the rest (28%).
3.6. Trophodynamics
The mean δ13C values of hydrothermal vent macrofauna covered a range of 19.04‰ with the minimum
value of −40.93‰ (±0.28 s.d.) observed in the Halichondriidae sp. sampled at ‘BWM’ and the maximum
value of −21.89‰ (±2.25 s.d.) in S. bamberi found in ‘CSDF’ (table 2). The large vesicomyid clam,
Archivesica s.l. puertodeseadoi, was noticeably depleted in 12C relative to other hydrothermal
macrofauna with δ13C values of −35.61‰ (±0.36 s.d.) at ‘FSDF’ and −35.20‰ (±0.38 s.d.) at ‘CR’.
Mean δ15N values ranged from −6.47‰ (±0.52 s.d.) in A. s.l. puertodeseadoi from ‘FSDF’ to 8.64‰
(±1.73 s.d.) in S. bamberi found in ‘CSDF’. Archivesica s.l. puertodeseadoi was the only species with
negative δ15N values, with all other hydrothermal vent macrofauna having values greater than 2.81‰,



Table 3. Microbial composition based on 16S rDNA clone libraries from the buoyant vent plume at ‘Great Wall’.

sequences %

Archaea 47 100

Crenarchaeota—marine group I 34 72

Euryarchaeota—Thermoplasmatales 13 28

Bacteria 87 100

Bacteroidetes—Flammeovirgaceae 1 1

Proteobacteria 86 99

Alphaproteobacteria—SAR11 1 1

Deltaproteobacteria—SAR324 2 2

Gammaproteobacteria 83 95

Alteromonadales—Alteromonadaceae 16 18

Oceanospirillales—Halomonadaceae 10 11

Oceanospirillales—SUP05 cluster 50 57

Oceanospirillales—other 4 5

Pseudomonadales 3 3
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which was found in the Terebellidae spp. from ‘CR’. The minimum mean δ34S value was observed in the
Halichondriidae sp. at ‘BWM’ (3.53‰ ± 0.25 s.d.) while the maximum value was observed in
Actinostolidae sp. (15.05‰ ± 1.51 s.d.) in the ‘BDF’ biotope. The ranges of stable isotope values of the
non-vent fauna in the Kemp Caldera were much narrower than those within chemosynthetic habitats:
δ13C from −26.95‰ (±0.81 s.d.) in the echinoid to −22.29‰ (±0.27 s.d.) in the ophiuroid Ophiolimna
antarctica; δ15N from 7.25‰ (±0.08 s.d.) Bathyplotes sp. to 14.99‰ in Odontaster penicillatus; and for
δ34S the minimum value observed was 16.03‰ in the Macrouridae sp. and the maximum was
18.93‰ in the octocoral Anthomastus sp.
4. Discussion
The investigation of the Kemp Caldera resulted in discoveries of a resurgent cone with hydrothermally
active venting areas and a natural whale fall (characterized by Amon et al. [78]) and of a wide range of
marine species, distributed over several biotopes with distinct communities and environmental
characteristics. The ‘dead zone’ of pelagic animal carcasses on the seafloor in the ‘PS’ biotope is similar
to that reported in island-arc vents in the Pacific [53] and Caribbean [54], and native sulfur deposits
found at Kemp Caldera are also common in sites in the Mariana and Kermadec arcs [84]. The most
abundant megafaunal taxa in hydrothermally active venting areas of the Kemp Caldera included a
large vesicomyid clam living both infaunally and epibenthically, cocculinid and lepetodrilid limpets, the
sea spiders Sericosura spp., and actinostolid anemones. The overall biomass at Kemp Caldera’s
hydrothermal active areas appeared lower when compared with that of the ESR vent fields [27,36].

The vent biotopes and assemblages at the KempCaldera differed from those of the E2 and E9 vent fields
on the nearby ESR: although seven species were shared between the Kemp Caldera and the ESR vent fields
(table 4), the stalked barnacle N. scotiaensis and sea star P. tyleriwere rare at Kemp, and several species that
are abundant at ESR vents were not observed at Kemp Caldera, including the yeti crab K. tyleri and the
gastropods G. chessoia, Bruceiella indurata [85] and Provanna cooki [86]. Although the Kemp Caldera is
geographically closest to the E9 vent field (90 km distance), the vent fauna at Kemp Caldera exhibited
only a 44% Sørensen Index of similarity with the vent fauna at E9, whereas E2 and E9 exhibit 85%
Sørensen similarity between them despite being 440 km apart (figure 6). This difference is consistent
with island-arc vent assemblages being distinct from those on seafloor spreading centres in the same
region, and here may result from differences in vent fluid geochemistry, seafloor type and depth.

Hydrothermal venting at Kemp Caldera was characterized by ‘white smoker’ chimneys releasing
fluids at temperatures between 103 and 212°C [58], with wide-ranging diffuse flow in basalt and
sedimented seafloor areas from 1375 to 1487 m depth. The vent fluid composition differed from the E9
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site, which is located 90 km away in approximately 2400 m depth, being high in hydrogen sulfide and

iron concentrations and with evidence for an input of magmatic gas [29,48]. By contrast, the E2 and
E9 vent fields, the latter around 440 km away in approximately 2600 m depth, were characterized by
pillow basalts, sheet lavas and ‘black smoker’ chimneys emitting vent fluids 351 to 383°C in
temperature [27], with a fluid composition similar to that reported from other basalt-hosted vent sites
on seafloor-spreading centres [30].

The microbial composition in the buoyant plume of the Kemp Caldera venting chimneys was different
from the microbial communities reported from the buoyant vent plumes of the black smoking chimneys
from the ESR segments E2 and E9 [27]. At the Kemp Caldera, the bacterial community was with 95%
highly dominated by Gammaproteobacteria, particularly of the SUP05 cluster which represented
57% of the total community, compared to the ESR sites E2 and E9, where proteobacteria represented
70% and 66% of the bacterial communities of which 58% and 55% were Gammaproteobacteria,
respectively, and SUP05 contributing only 9% and 19% to the Gammaproteobacteria. The
Gammaproteobacteria at the ESR sites were dominated by bacterial symbionts of vent fauna [27].
Furthermore, Alphaproteobacteria of the SAR11 clade were common at ESR (16% and 21% of the total
community), but rare (1% of total community) at the Kemp Caldera. Members of the SUP05 cluster are
known to be sulfur oxidizers [87–89]. The analysis of water samples from CTD cast collected over ‘GW’
in the Kemp Caldera showed sulfur-rich fluids (D.P. Connelly 2019, personal communication). With
regard to carbon fixation, the presence of both the cbbM gene [87] and its gene product, ribulose
1,5-bisphosphate carboxylase/oxygenase (RuBisCo) [88], has been shown in SUP05 communities at
other hydrothermal vent settings. This implies that the SUP05 bacteria may be dominant microbial
primary producers in the water column above Kemp Caldera venting sites.

Differences in substrate may also contribute to the differences in the vent faunal assemblage at Kemp
Caldera compared with the E2 and E9 vent fields on the nearby ESR. The lack of soft sediment in the
immediate vicinity of the chimneys at E2 and E9 on the ESR may preclude the presence of
the vesicomyid bivalves, and the sulfur and anhydrite composition of the brittle chimney structures at
the Kemp Caldera may limit the available surfaces for the growth of N. scotiaensis barnacles.
Differences in geochemistry between the ESR and the Kemp Caldera may also account for some of the
discrepancy in assemblages. The depth difference between the ESR and Kemp Caldera vent fields
(approx. 1700 m including the caldera rim) may also act as a dispersal filter, as discussed by
Roterman et al. [80], favouring the dispersal of Lepetodrilus spp., with their small and numerous
larvae, compared with taxa such as Kiwa tyleri that have fewer, larger and probably non-buoyant
larvae [90,91]. Additionally, the presence of Lepetodrilus concentricus at the whale carcass in the Kemp
Caldera [78], and the presence of the genus at hard and soft substrate vents, seeps and whale falls in
general [92] suggests that these limpets may have a wider selection of dispersal stepping stones
available to them than other fauna endemic to chemosynthesis-based ecosystems.

Multivariate analysis of faunal composition of vent fields at a regional scale shows that the Kemp
Caldera is most similar to the ESR vent fields that define a previously recognized ‘Southern Ocean’
province of vent biogeography [24,27,31–35], and distinct from vents in neighbouring oceans
(figure 6). One species found at the vents in Kemp Caldera, however, has also been recorded at
hydrothermal vents on the Southwest Indian Ridge the pycnogonid Sericosura bamberi at the Duanqiao
vent field [64]. The polychaetes Nicomache lokii and Sclerolinum contortum were the only two
megafauna species collected at the Kemp Caldera for which wide-ranging, bipolar distributions
have been reported [24,25], though neither have been recorded at vents in the Indian Ocean or on the
Mid-Atlantic Ridge.

Further to records from the ESR and Kemp Caldera, the predatory sea star Paulasterias tyleri has also
been collected at the South Sandwich Island, the Ross Sea and the Australian Antarctic Ridge [28,35].
Live specimens and shells of the vesicomyid Archivesica s.l. puertodeseadoi have been compared with
vesicomyid shell fragments from the Larsen B extinct seepage sites [19,20] and assigned to the same
species (E. Krylova 2019, personal communication). No live vesicomyid specimens have yet been
collected or reported from the Larsen B or other areas covered by ice shelves [18–20], but the presence
of active seepage under ice shelves has been predicted by Ingels et al. [93].

Fauna found in venting areas at Kemp Caldera exhibit some distributional overlaps with the natural
whale fall that was also found on the resurgent cone. Amon et al. [78,94] reported 11 macrofaunal species
on the nearby whale fall that probably harvest the bones directly or feed on bacterial mats growing on
them, including three species of the bone-boring Osedax polychaetes [94], two species of dorvilleid
Ophryotrocha and one capitellid polychaete, the janaerid isopod Jaera tyleri [95], one species of
lysianassid amphipod, and one species each of lepetodrilid, cocculinid and pyropeltid gastropods. Of
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these species, only the lepetodrilid and cocculinid gastropods were found in the Kemp Caldera vent

biotopes, indicating that the other species reported from the whale fall may be dependent on food
sources provided by decaying whale bones, but not by hydrothermal environments.

The majority of the seafloor in the caldera, away from the resurgent cone, was not affected by
hydrothermal activity and the fauna resembled that reported from comparable bathyal depths
elsewhere in the Southern Ocean [96,97]. Biodiversity assessments on the bathyal Southern Ocean
benthic fauna are still sparse and limited to sedimented areas suitable for trawling [98–101], restricting
direct faunal comparisons. Species characteristics of Southern Ocean deep waters, such as
Umbellula carpenteri and Sterechinus dentifer, were present in the Kemp Caldera [102,103]. The non-vent
fauna of the Kemp Caldera also included a species of hippolytid shrimp, Eualus amandae, which has
remained undescribed until recently [104].

The macrofauna associated with the hydrothermal venting areas of the Kemp Caldera showed signs of
using chemosynthetic primary production. The δ13C values of Halichondriidae sp. and the large
vesicomyid clam, Archivesica s.l. puertodeseadoi, were clearly less than those of benthic species depending
on epipelagic photosynthetic primary production in the form of sinking particulate organic matter
(POM) on the ESR (δ13C, approx. −26 to −21‰ [37]) and those reported here. The sponge
Halichondriidae sp. had particularly low δ13C values being less than −40‰. Methanotrophic bacteria
are associated with Demospongiae from hydrothermal vent and cold seep habitats [105,106] and it may
be that methanotrophic bacteria were contributing to the carbon pool of Halichondriidae sp. The δ13C
values of A. s.l. puertodeseadoi were consistent with other species of vesicomyid collected from other
hydrothermal vent settings, which range between approximately −37‰ and approximately −32‰
[107–109]. The vesicomyid endosymbionts were within the SUP05 cluster of the Gammaproteobacteria,
which fixes carbon using the RuBisCo enzyme and would indicate that chemosynthetic primary
production is via the Calvin–Benson–Bassham cycle.

The other species sampled within the hydrothermal vent biotopes (approx. −27 ‰ to approx. −21‰)
had δ13C values that overlapped with those of species from non-venting areas (approx. −26‰ to approx.
−22‰). These hydrothermal vent organisms are probably using chemosynthetic primary production
fixed by free-living Gammaproteobacteria using the RuBisCo II enzyme, which has a lower isotopic
fractionation than RuBisCo I enzyme [110], rather than using photosynthetic POM. The polychaetes,
Terebellidae spp. and Maldanidae spp., have lower δ15N values than would be expected from
consuming photosynthetic POM and are therefore likely to represent in situ production [111]. This is
clearly evidenced in the δ34S values of the cocculinid limpet and S. bamberi, which ranged between
approximately 4‰ and approximately 8‰ and are much lower than would be expected for deep-sea
fauna using photosynthetic POM as an energy source [37,112]. The only exception is the actinostolid,
which was found in the ‘BDF’ biotope, which had δ34S values of approximately 15‰ and therefore
similar to the non-vent fauna (approx. 16‰ to approx. 18‰). This indicates that photosynthetic
primary production may be contributing to the diet of this anemone. Interestingly, S. bamberi was
observed feeding on dead carrion including Notolepis annulata and Nematocarcinus lanceopes, but the
stable isotope values do not indicate that these constitute potentially high contributions to the diet.

The lowest δ13C values were found within S. bamberi (−21.89‰) and were lower than those expected
for organisms using carbon fixed via the reductive tricarboxylic acid (rTCA) cycle (−15‰ to −10‰) [113].
Carbon fixation via the rTCA cycle at hydrothermal vents is predominately carried out by
Epsilonproteobacteria. Hydrothermal vent fauna using this source of production are often found close
to the vent orifice where temperatures are high and the reducing conditions are stronger than other
areas of the vent habitat. δ13C values of hydrothermal vent fauna at arc volcano and caldera,
including the Brothers Caldera, NW Eifuku Volcano and Sumisu hydrothermal vents, indicate that
rTCA primary production can enter the food web [107,114,115]. However, none of the hydrothermal
vent fauna sampled for δ13C analysis had values that were indicative of this production source within
Kemp Caldera.

The pelagic fauna within the Kemp Caldera appeared to be high in abundance, but no pelagic
sampling was carried out to verify these subjective observations, to compare with abundance data
from adjacent areas like the South Sandwich Islands and to test if the pelagic fauna was using
chemosynthetic primary production. Studies of the potential influence of hydrothermal vent plumes
on biological communities in the water column are a neglected field [116]. Hydrothermal vent plumes
are enriched with abundant and active communities of chemosynthetic prokaryotes (e.g. [117–120]) as
well as POM [119]. This enhanced supply of POM has the potential to act as a food source for deep-
water zooplankton communities and therefore may exert an influence on pelagic food webs in the
proximity of hydrothermal vents and their plumes. Acoustic and net sampling studies over the
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Endeavour Segment of the Juan de Fuca Ridge, NE Pacific, have consistently demonstrated the

enhancement of deep-scattering layers overlying vent plumes at 1900–2100 m (e.g. [121–125]). These
scattering layers were predominantly formed by deep-living copepods (e.g. Neocalanus sp.) but also
comprised chaetognaths, other crustaceans and gelatinous zooplankton. Zooplankton in the vicinity of
vent plumes have been demonstrated to have unusual δ15N values consistent with feeding on
production from the vent plume, as well as sinking organic matter and that upwelling from the
seafloor [126]. It is likely in this locality that zooplankton migration and the release of eggs and larvae
that move upwards in the water column are enhancing production in the region from deep waters to
the epipelagic zone. Zooplankton production over the vents may be double or triple that of the
background ocean [125]. High abundances of gelatinous zooplankton have been observed in the
vicinity of vents in the southwest Pacific and in the Okinawa Trough (e.g. [127,128]). Large pelagic
predators have also been seen within hydrothermal plumes in the shallow waters of Kavachi volcano
crater in the Solomon Islands [127]. Observations from hydrophones on the Juan de Fuca Ridge also
suggest that blue and fin whale may be feeding in the vicinity of the hydrothermal plumes because of
the enhanced zooplankton production [129,130]. Incidental observations from other localities also hint
at connectivity between vent plumes and wider ocean food webs. Larvae of vent endemic megafauna
may also be enriched in vent plumes, providing another food source for pelagic organisms. However,
although larvae have been sampled from vent plumes (e.g. [131,132]), their numbers have been small
and understanding of the larval flux from vents to the pelagic ecosystem remains poorly defined
[111]. Large pelagic megafauna, like whales, dying and decaying near vent sites might also provide a
food source and stepping stone for some vent organisms [133]. The presence of the natural whale fall
in the Kemp Caldera is an example of specialized species being shared between chemosynthetic food
sources [78].
5. Conclusion
The Kemp Caldera at the southern end of the volcanic South Sandwich Arc hosts a unique hydrothermally
influenced ecosystem with different biotopes and a composition of macro- and megafaunal species not
found anywhere else to date. The chemosynthetic communities include species like the bivalve
Spinaxinus caldarium and an undescribed cocculinid limpet, which are as yet specific to this location,
while some species are shared with the ESR vent fields or even vent fields further away.
Biogeographically, the Kemp Caldera vent field belongs to the Southern Ocean vent province. This
discovery of active hydrothermal venting sites with associated chemosynthetic communities in
relatively shallow bathyal waters of the Southern Ocean suggests the presence of further hydrothermal
ecosystems on unexplored seamount, submarine caldera and crater sites of the South Sandwich Arc.
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