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ABSTRACT 
 

Sexual Biochemistry in the Deep Sea – The Link between 
Phytoplankton and Abyssal Holothurians 

 by Tania Smith 
 

Holothurians play an important role in carbon cycling. They dominate the abyssal 
oceanic megabenthos, reworking large amounts of organic matter. Holothurians 
require essential organic nutrients, such as carotenoids for their reproduction. 
Enhanced carotenoid concentration in the ovaries of echinoderms increases 
reproductive output and larval survival. Carotenoids cannot be synthesised de novo by 
holothurians, only by phytoplankton. To examine the link between diet and 
reproduction in deep-sea holothurians, the pigment biochemistry of holothurians, 
sediment and particulate organic matter from three abyssal sites as investigated.  

 

A temporal comparison at the Porcupine Abyssal Plain (PAP), NE Atlantic, has 
shown 1) the supply of organic material (OM) can affect the diet of holothurians, 
depending on their feeding adaptations and 2) holothurian reproductive biochemistry 
can be affected by compositional differences in the OM reaching the seafloor, 
although the extent of this influence appears to differ between species. Two abyssal 
sites around the Crozet Islands, Southern Ocean, were investigated to compare 
contrasting OM supply on the diet and reproductive biochemistry of holothurians. The 
sites are only 460 km apart, with no topographic boundary to separate them. However, 
they are subject to differing overlying primary productivity regimes and therefore 
biochemical differences can be ascribed to the composition and amount of organic 
matter reaching the sea floor at each site. The results showed that 1) the quantity of 
OM reaching the seafloor at each site differed, mirroring the overlying primary 
productivity regimes. This was also reflected in the diet of some holothurian species, 
depending on their ability to take advantage of the fresh material. 2) The reproductive 
biochemistry of the holothurians sampled at both sites showed quantitative differences, 
mirroring the supply of OM to each benthic site.  

 

The present study has shown that changes in the composition and quantity of the 
supply of OM to the deep-sea floor can affect holothurian diet and ovarian 
biochemistry. This may lead to large community changes as seen at the PAP in the NE 
Atlantic, which alters the reworking rate of the sediment,, ultimately affecting the 
sequestration of carbon. 
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Chapter 1 – Introduction 
 

1.1 Rationale and aim of this study 

 

Holothurians dominate the abyssal megabenthos in terms of abundance and 

biomass. They form a key part of the deep-sea benthic ecosystem  because they 

rework large amounts of organic matter (OM), playing an important role in 

carbon cycling (Billett, 1991). Recent studies have shown that abyssal and 

bathyal holothurians assimilate specific organic compounds, such as 

carotenoids, into their ovaries (Hudson et al., 2003; Wigham et al., 2003a; 

Hudson, 2004). Carotenoids are photosynthetic pigments that can only be 

synthesised de novo by plants and fungi (Goodwin, 1980). Studies on shallow-

water echinoderms have shown that carotenoids can enhance gonad production, 

fecundity and larval survival (George et al., 2001; George and Lawrence, 2002; 

Plank et al., 2002). Abyssal and bathyal holothurians show interspecific 

differences in their ovarian carotenoid profiles. Some species have identical gut 

sediment and ovarian profiles, leading to the conclusion that they selectively 

feed on specific carotenoids (Wigham et al., 2003a; Hudson, 2004). It is 

therefore possible that a change in the composition of the OM reaching the 

seafloor may influence the reproductive biology of specific species, leading to 

community change as seen at an abyssal site in the NE Atlantic (Billett et al., 

2001; Wigham et al., 2003a; Hudson, 2004). 

 

The aim of this study is to examine the link between the diet and reproductive 

carotenoid biochemistry of abyssal holothurians. Two particular questions are 

addressed. Will changes in the quantity and composition of the OM reaching 

the seafloor influence the carotenoid biochemistry of the holothurians? If there 

is an influence, are there interspecific differences? 
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1.2 Holothuroidea 

 

1.2.1 Holothurians in the deep sea 

 

The class Holothuroidea belong to the Phylum Echinodermata, which also 

includes the Classes Asteroidea, Ophiuroidea and Crinoidea. At bathyal 

(<3000m) and abyssal (>3000m) depths, holothurians dominate the abyssal 

benthic megafauna both numerically and in terms of biomass (Billett, 1991). 

They are one of the few faunal groups that have penetrated the deepest regions 

of the ocean and their dominance at hadal depths (>6000m) led Belyaev (1972) 

to describe this habitat as ‘the kingdom of the holothurian’.  

 

Deep-sea holothurians can range in size from a length of half a metre, e.g. 

Benthodytes spp., to a few millimetres, e.g. Kolga spp. and Cherbonniera 

utriculus (Sibuet, 1974; Billett and Hansen, 1982; Billett et al., 1988). The 

majority of holothurians feed on the top few millimetres of sediment, although 

some species are infaunal, e.g. Molpadia spp. (Pawson, 1982) or have 

developed the ability to swim and live in the water column above the sediment, 

e.g. Enypniastes eximia (Miller and Pawson, 1990). Photographs of the deep-

sea floor have shown holothurians to be important bioturbators of the surficial 

sediment; their characteristic tracks and faecal pellets provide evidence of this 

activity (Mauviel and Sibuet, 1985; Billett, 1991). Six Orders of holothurians 

are recognised (Dendrochirotida, Dactylochirotida, Elasipodida, 

Aspidochirotida, Molpadida and Apodida) and all are represented to a greater 

or lesser extent in the deep sea (Billett, 1991). The main diagnostic features of 

each order is summarised in Table 1.1.  
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Order Description 
Dendrochirotida Most species in this order live in shallow water. They are 

suspension-feeding holothurians, with highly branched 
tentacles. Respiratory trees are present and they have 
muscles for retracting the oral introvert.  

Dactylochirotida Species in this Order have digitiform or digitate tentacles 
and a testaceous body wall. Respiratory trees are present 
and they have muscles for retracting the oral introvert. 

Elasipodida Exclusively deep-sea species. Digitate tentacles are used 
to ‘shovel’ sediment. Some species have peltate tentacles. 
Respiratory trees are present. The calcareous ring is 
without posterior projections. With the exception of one 
family, Deimatidae, the body wall is soft to gelatinous. 

Aspidochirotida Pelto-dendritic or peltate tentacles. Respiratory trees are 
present. The calcareous ring is without posterior 
projections. The body wall is generally soft and pliant. 
Large contrast in ossicle form in comparison to 
Elasipodida. 

Molpadida Tentacles digitate to simple. Respiratory trees are present. 
The calcareous ring may have short posterior projections. 
The body wall is generally soft and pliant. Most species 
live in relatively shallow water, although one family is 
restricted to the deep sea. 

Apodida Without papillae (tube feet). Tentacles are digitate, 
pinnate, or, in some small species, simple. Respiratory 
trees are absent. The calcareous ring is low and band-like, 
without posterior projections. 

 
Table 1.1 The six holothurian Orders and their distinguishing features (compiled from 

Hyman, 1955; Hansen, 1975; Pawson, 1982; Kerr and Junhyong, 2001)  
 

 

1.2.2 Body morphology 

 

The body morphology of deep-sea holothurians is essentially the same as that 

of shallow-water species (Hyman, 1955). Generally, they have elongated 

cylindrical bodies with a mouth at one end and an anus at the other (Fig. 1.1). 

Variously-shaped tentacles encircle the mouth, the shape and morphology of 

which depends on the Order and feeding guild (Roberts et al., 2000). The 

tentacles and tube feet, or podia (if present), are controlled by the water 

vascular system. Five longitudinal muscles are attached to the body wall, 
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calcareous ossicles are embedded in the body wall in many species. The single 

gonad found only in the mid-dorsal interradius, discharges through a gonopore 

near to the oral crown. A few species are hermaphrodites. Coelomic fluid 

surrounds the gut. The gut is often long and terminates in a posterior cloaca 

(Hyman, 1955).  

 

 

 

Figure 1.1 Main internal anatomical features of a cucumariid sea cucumber 

(Dendrochirotida).  Drawing by Ivy Livingstone. Copyright © 1995 BIODIDAC 
 

Holothurians have morphological adaptations that reflect their lifestyle in the 

deep sea. Elasipodid holothurians have distinct papillae that are believed to aid 

respiration and have tube feet to ‘walk’ on the sediment allowing them to move 

between food patches. Some species, e.g. Pseudostichopus spp., have reduced 

tube feet and use their bodies to ‘plough’ though the sediment (Billett, 1991). 

Species of Pelopatides have body morphologies that allow the holothurian to 

‘swim’ through the water. Molpadiid holothurians live ‘head down’ in the 

sediment and have a modified anus that connects with the sediment surface for 

respiration and excretion (Hyman, 1955; Billett, 1991). 
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1.2.3 Holothurian feeding adaptations  

 

Holothurians feed by moving their tentacles through or across the sediment 

surface to collect food particles. Holothurian tentacles can be grouped into five 

types: dendritic, peltate, pinnate, digitate and pelto-dendritic (Massin, 1982). 

Feeding guilds have been inferred from the tentacle structure (Moore and 

Roberts, 1994). Simple forms with little or no branching are described as 

digitate and those which have complex branching are dendritic; the three other 

tentacle types are graduations between the two extremes (Roberts and Moore, 

1997). Peltate tentacles are thought to be used to ‘sweep’ the sediment into the 

mouth, whereas digitate tentacles ‘rake’ through the sediment (Roberts et al., 

2000). Adhesive secretions are thought to aid particle capture and selection 

(Roberts and Bryce, 1982).  The tentacle types of some abyssal holothurians 

are given in Table 1.2. 

 

The tubular digestive tract consists of the pharynx, oesophagus, intestine, 

rectum and cloaca (Roberts et al., 2000). Holothurian gut structure differs 

between species and has been used to define feeding guilds. Species with 

fermentor guts are characterised by expanded chambers which allow increased 

mixing of food and bacteria and extended gut residence times (Penry and 

Jumars, 1990). A model by Alexander (1991) predicts that foregut fermentors 

do better than hindgut fermentors on poorer foods. The deep-sea holothurian 

Pseudostichopus spp. is found submerged in the sediment and feeds on 

relatively poor sediment just below the sediment/water interface. This species 

moves slowly across the sediment surface and has peltate tentacles that may be 

more suited to sediment particle handling than raking up phytodetritus (Moore 

and Roberts, 1994). The feeding adaptation of this species would be favoured 

by foregut fermentation, which is supported by the presence of an enlarged 

foregut with elevated numbers of bacteria (Roberts et al., 1994). Conversely, 

Oneirophanta mutabilis has relatively rapid locomotion and rake-like digitate 

tentacles exploiting richer food sources (Moore and Roberts, 1994). Its gut 
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structure reflects this richer diet, although the elevated bacterial numbers in its 

hindgut offers the potential for microbial digestive processes (Roberts et al., 

1994).  

 

Microbes can play a role in the nutrition and digestion of holothurians. High 

bacterial abundances have been observed in the oesophageal gut contents of 

deep-sea holothurians. Abundances decline in the anterior intestine, but 

bacteria proliferate in the hindgut area of some species (Deming and Colwell, 

1982; Sibuet et al., 1982; Roberts et al., 2001). The marked decrease in 

bacterial numbers after the oesophageal region may suggest the capability of 

deep-sea holothurians to utilise ingested bacteria as a food source. However, 

the decrease in bacterial numbers may be related to sub-optimal conditions for 

bacterial survival. Experiments with 14C labelled food have shown the shallow-

water holothurian Parastichopus parvimensis to have assimilation efficiencies 

of the microbes associated with detrital material of greater than 40% (Yingst, 

1976). Some of the ingested bacterial population appears to survive the initial 

digestion and flourishes in the hindgut/cloaca.  Elevated bacterial numbers 

have been found in the enlarged gut chambers of some deep-sea species 

(Roberts et al., 1994). Subcuticular bacteria are also associated with 

holothurians. All of the bathyal and abyssal holothurians in the orders 

Elasipodida and Aspidochirotida studied by Roberts et al. (1991) had bacteria 

confined in the subcuticular space among apical folds and microvilli in their 

tentacles. These bacteria appear to be regulated by phagocytosis. It is 

postulated that bacterial metabolites provide a source of dietary material in the 

food-limiting deep sea (Roberts et al., 1991). Transmission electron 

micrographs have revealed rod-shaped gram-negative bacteria directly 

associated with the gut wall epithelial tissue of the deep-sea holothurian 

Psychropotes. These bacteria were only found in the hindgut section of the gut 

wall and it has been suggested that they are carried as resident gut flora 

(Deming and Colwell, 1982). 
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1.2.4 Holothurian reproduction 

 

The egg size and fecundity of holothurians can be used as broad indicators of 

the developmental mode of a species, but some caution in the interpretation is 

necessary because eggs of a similar size can develop in different ways (Billett 

et al., 2001). Eggs with a diameter of 100 µm are usually numerous and are 

considered to lead to planktotrophic development. Eggs greater than 1000um 

are produced in low numbers and lead to direct development of a juvenile 

without an intermediary stage. Intermediate egg sizes are usually produced in 

moderately abundances and undergo lecithotrophic development (Tyler et al., 

1982). The egg size and inferred developmental mode of some abyssal 

holothurians is given in Table 1.2. 

 

Species Tentacle 
structure 

Egg 
diameter 

(µm) 
Fecundity 

Inferred 
developmental 

mode 
Reference 

Molpadia blakei unknnown 200 100 

planktotrophic or 
lecithotrophic 
with abbreviated 
larval stage 

Tyler et al., 1987  

Peniagone 
diaphana 

simple 
peltate 300 5000 

lecithotrophic 
with abbreviated 
larval stage 

Tyler et al., 1985; 
Roberts et al., 2000 

Pseudostichopus 
aemulatus peltate 225 50,000 planktotrophic 

Roberts et al., 
1991; Watson, 

2004 

Paroriza 
Prouhoi digitate 450  lecithotrophic 

Tyler et al., 1992b; 
Roberts and 
Moore, 1997 

Oneirophanta 
mutabilis digitate 950 

500-1500 
(affected 

by 
available 

resources) 

lecithotrophic 

Tyler and Billett, 
1987; Roberts and 

Moore, 1997; 
Ramirez-Llodra et 

al., 2005 

Psychropotes 
longicauda peltate 3000 >10 direct 

development 

Tyler and Billett, 
1987; Moore and 

Roberts, 1994 

Amperima rosea peltate 200 12,800 

planktotrophic or 
lecithotrophic 
with abbreviated 
larval stage 

Roberts et al., 
2000; Wigham et 

al., 2003b  

 
Table 1.2 Tentacle structure, egg diameter, fecundity and inferred developmental mode 

of some abyssal holothurians 
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1.2.5 Change in deep-sea holothurian communities 

 

Shifts in community structure have been reported at two deep-sea benthic time-

series stations. In the NE Pacific, a major change in the dominant epibenthic 

abyssal megafauna has occurred and has been correlated to climatic 

fluctuations dominated by El Niño/La Niña (Ruhl and Smith, 2004). 

Specifically, the holothurians Elpidia minutissima and Peniagone vitrea 

decreased in abundance after 2000; prior to this they were relatively high in 

abundance. In contrast, P. diaphana, Abyssocucumis abyssorum, Scotoplanes 

globosa and Psychropotes longicauda all increased substantially in abundance 

during 2001 and 2002. 

 

At the Porcupine Abyssal Plain (PAP) in the NE Atlantic, long-term change 

has also been observed in the invertebrate megafauna over a period of 10 years 

(Billett et al., 2001). This change has been termed the ‘Amperima Event’, 

characterised by the holothurians Amperima rosea and Ellipinion molle, which 

increased in abundance by more than two orders of magnitude between 1996 

and 1999 (Billett et al., 2001). In addition, the metazoan meiofauna and 

macrofauna showed a response over this time period. Organisms living at the 

sediment surface showed an increased in abundance, and several of the 

infaunal species showed vertical movement correlating with variations in the 

burying of labile organic matter (Galeron et al., 2001). The increase in 

abundance of A. rosea was also thought to affect the reproduction of a small 

opheliid polychaete (Vanreusel et al., 2001). Temporal changes in the 

abundance of certain foraminiferal species was also observed at the PAP site 

(Gooday and Rathburn, 1999). 

 

There was no apparent long-term trend in the total OM flux that might have 

accounted for the “Amperima Event” (Billett et al., 2001; Lampitt et al., 2001). 

The change has since been related to the selective feeding of some species 

(Ginger et al., 2001; Wigham et al., 2003a) and the resources (lipids and 

carotenoids) available to the animals (Hudson et al., 2003; Neto et al., 2006). 
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This has highlighted the need to study the resource allocation between species, 

the ways in which deep-sea animals procure their food, and the subsequent 

allocation of these resources into reproductive tissue. 
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1.3 Organic material flux to deep-sea sediments 

 

Food availability is one of the most important limiting factors in deep-sea 

ecosystems. Excluding hydrothermal vents and cold seeps, all production is 

fuelled directly, or indirectly, by the input of primary production from the 

upper ocean (Gage and Tyler, 1991; Lampitt et al., 2001). The deep sea is an 

allochtonous, heterotrophic ecosystem i.e. the organic food is largely imported 

from a different environment and broken down there (Gage, 2003).  

 

 

1.3.1 Controls on the supply of organic material to the deep-sea floor 

 

Following the discovery of seasonal export flux of organic material from the 

upper ocean to bathyal and abyssal depths (Billett et al., 1983), it is now 

thought that most, if not all of the organic flux from the epipelagic environment 

to the abyss results from the sedimentation of aggregated phytoplankton 

(marine snow). This flux is tied closely to the annual cycle of primary 

production in the surface waters of the region (Deuser et al., 1981). The 

majority of organisms found in the benthic boundary layer are strongly linked 

to the sediment surface when they are adults and so are dependent on OM 

‘raining’ down from the (often spatially remote) surface waters.  

 

Organic material from the upper ocean may be repackaged and recycled during 

its descent with pelagic organisms taking advantage of the fresher material as it 

sinks through the water column (Turley et al., 1995). The vertical flux of 

marine snow depends on various factors, including the timing and make-up of 

the phytoplankton bloom, zooplankton interaction and physical dynamics of 

the water column (Turner, 2002). Large, rapidly-sinking particles are formed 

from the aggregation of small, slowly-sinking particles. This aggregation can 

occur through the biological activities of zooplankton, i.e. transformed into 

faecal pellets or trapped in the feeding webs of gelatinous zooplankton (Caron 

et al., 1989; Lampitt et al., 1993; Yoon et al., 2001). Studies have revealed that 
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salp faecal pellets play an important role in supplying labile material to the 

deep sea (Matsueda et al., 1986; Kawaguchi et al., 2004) especially as their 

fine webbed mucus nets can retain picoplankton (Silver and Bruland, 1981; 

Matsueda et al., 1986; Pfannkuche and Lochte, 1993; Kawaguchi et al., 2004). 

Intact cyanobacteria have been found in salp faeces recovered from the surface 

of a sediment sample taken at 4500 m (Pfannkuche and Lochte, 1993). Salps 

have characteristically large faecal pellets that can have fast sinking rates of 43 

to 1167 m day-1 (Yoon et al., 2001). They have a patchy distribution and can be 

limited by high phytoplankton abundance (Kawaguchi et al., 2004). However, 

their high filtering rates means they can be serious competitors for other 

herbivorous zooplankton (Kawaguchi et al., 2004). They are also efficient in 

retaining particles within a relatively large size range (Pakhomov, 2004). Some 

zooplankton species are diel vertical migrators, a process which can positively 

influence the downward flux of their faecal pellets (Andersen, 1998). 

Aggregation of OM can also occur through collisions between particles to form 

progressively larger, faster sinking aggregates (Alldredge, 2001). This is 

important in phytoplankton bloom periods, where rapid aggregation and mass 

settlement of the primary production removes carbon from the upper ocean to 

the midwater and benthos before it is consumed and recycled by the near-

surface grazers (Alldredge and Jackson, 1995). Sinking particles are of key 

importance to the global carbon cycle – the removal of carbon from the upper 

ocean to deeper parts of the ocean is referred to as the ‘carbon pump’. Most of 

the organic carbon that reaches the benthos is respired, but the refractory 

residue is buried in the sediment and removed from circulation for centuries to 

millions of years (Turley, 2000). 

 

 

Not all biological activity associated with sedimenting particles increases the 

downward flux of carbon. Attached bacteria remineralise and solubilise the 

aggregates before they reach the deep ocean. The degree of solubilisation is 

affected by processes controlling enzyme activity and production, such as 

temperature and pressure. Zooplankton can also disaggregate some particles 
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(Turley et al., 1995). Smaller zooplankton – particularly cyclopoid copepods – 

can have a detrimental effect on the downward flux of organic material 

(Gonzalez and Smetacek, 1994; Viitasalo et al., 1999; Svensen and Nejstgaard, 

2003). These copepods are coprophagus – consuming the faecal pellets of 

larger copepods. The vertical flux of faecal pellet carbon has been shown to 

have a significant negative correlation with the biomass of the cyclopoid 

copepod Oithona sp. (Svensen and Nejstgaard, 2003). 

 

Strong seasonal patterns and interannual variability in the flux of material to 

the seabed has been observed at the PAP between 1989 and 1999. This was 

evident in the material caught in sediment traps (Lampitt et al., 2001) and in 

photographic (Bathysnap) records of phytodetritus reaching the seafloor (Bett 

et al., 2001). Bathysnap recorded a maximum coverage of phytodetritus on the 

sea floor of 96% in 1994, whereas no mass deposition of phytodetritus was 

observed between 1997 and 1999, presumably because of the high feeding rate 

of the megafauna (Bett et al., 2001). Interannual variability has also been seen 

in the flux of particulate organic material (POM) during a time series study in 

the NE Pacific (Baldwin, 1998). The OM food source available to deep-sea 

organisms at this site changes dramatically over short time periods; in some 

cases in a matter of weeks (Beaulieu and Smith, 1998). This may have 

implications for the foraging and handling of food by abyssal megafauna and 

may also influence the dynamics of the deep-sea community (Billett et al., 

2001). However, the quantity of OM reaching the deep-sea floor alone cannot 

always explain community shifts; the quality of OM must therefore be 

investigated (Billett et al., 2001).  

 

 

1.3.2 Changes in the chemical composition of the organic material flux  

 

The chemical composition of sinking and sedimentary OM can reflect the 

degradation, scavenging and the source of the material. Composition of OM 

caught in sediment traps from four different depths at the PAP showed that this 
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material changed with depth, reflecting the processes of dissolution and 

remineralisation (Lampitt et al., 2001). Labile compounds such as amino acids 

and Poly Unsaturated Fatty Acids (PUFAs) are degraded or scavenged quickly 

in the upper part of the water column (Wakeham et al., 1984). Intermittent 

appearances of large amounts of wax esters, steryl esters and sterols indicate 

biological activity on OM deeper in the water column (Wakeham et al., 1984). 

De Baar et al. (1983) also found PUFAs and total lipids decreased with water 

depth; the flux gradients of fatty acids increasing with the number of double 

bonds and decreasing in the number of carbon atoms.  

 

The loss of fatty acids through the water column changes with the particle flux 

in the Arabian Sea (Reemsta et al., 1990). Degradation occurs higher up in the 

water column during low flux events; during high fluxes degradation occurs 

deeper in the water column. At the PAP, the lipid component of settling 

particles during high fluxes of OM is richer in labile compounds, specifically 

PUFAs and low molecular weight alcohols. During low flux events, other 

compounds such as sterols, steroidal ketones and trisnorhopan-21-one are more 

abundant (Kiriakoulakis et al., 2001). Neto (2006) observed similar temporal 

changes in the lipid biochemistry of the sediments at the PAP. Spatial 

variability in lipid biochemistry at the PAP has been linked to the patchiness of 

the phytodetritus (Santos et al., 1994).  

 

Photosynthetic pigments are labile compounds that can also be used to 

elucidate the degradation and the source of OM. In a study in the 

Bellingshausen Sea, Antarctica, Fileman et al. (1998) found that at least some 

undegraded material of photosynthetic origin reaches the deep ocean. 

Xanthophyll, fucoxanthin and some labile fatty acids were found at depths of 

3900m. The distribution of this labile material horizontally and vertically 

reflected the planktonic species composition and the physical environment 

(Fileman et al., 1998). Considerable diagenesis of chlorophyll with depth has 

been observed in the equatorial Pacific, with suspended particles in the 

northern hemisphere seemingly more degraded than in the southern, according 
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to the pigment signature. It is suggested that differences in the food chain could 

account for this i.e. zooplankton grazing creates chlorophyll breakdown 

products (Lee et al., 2000). Unaltered pigments have been detected at 1500 m 

in the Peru upwelling region. Approximately half of the carotenoids 

transported out of the euphotic zone by large particles in the Peru Upwelling 

region were not metabolised, but this only happened in productive areas where 

the higher trophic levels were the major consumers of phytoplankton; 

shipboard experiments indicated that zooplankton recycle carotenoids to non-

carotenoids very quickly (Repeta and Gagosian, 1984). Therefore, where 

zooplankton are major contributors to the flux of large particles to the sediment, 

transformation products may be present in high concentrations.  

 

Strong seasonal variations have been found in the fluxes of carbohydrate, 

protein and phytopigments through the water column at the PAP in the NE 

Atlantic. Pulses of labile organic material occur in spring and early summer, 

coinciding with the phytoplankton bloom (Fabiano et al., 2001). The freshness 

of OM caught in a sediment trap (as determined by its chlorophyll a: 

phaeophorbide ratio (Thiel et al., 1989)) was greater in September 1996 than 

the other sampling periods (March 1997, July 1997 and October 1997) 

(Witbaard et al., 2000; Witbaard et al., 2001). The chlorophyll a: 

phaeophorbide ratio of sediment samples taken from sediment cores also 

showed the same seasonal and interannual patterns (Witbaard et al., 2000; 

Witbaard et al., 2001).  

 

 

1.3.3 Benthic community and population response to the flux of organic 

material 

 

Organisms living close to the sediment surface have the strongest impact on the 

decomposition of phytodetritus (Aberle and Witte, 2003). Mobile megafauna 

are able to repackage and concentrate the phytodetrital material, depositing 

their faecal pellets in different locations. This material may be altered in the 
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animal’s gut, thus changing the horizontal distribution and composition of the 

settled material on the sediment surface (Lauermann et al., 1997). Movement 

patterns of mobile epibenthic deep-sea fauna may also facilitate the 

redistribution of patchy resources.  

 

Temporal changes in food quantity and quality lead to changes in potential 

food sources for benthic organisms. This may affect the way the benthic 

organisms handle and forage for their food (Beaulieu and Smith, 1998). In 

particular, organisms may have adapted to deal with seasonal variation in the 

fluxes of OM. In shallow-water ecosystems, the seasonal input of labile OM 

derived from primary production creates a burst of activity in benthic 

organisms. The response to this seasonal flux is more pronounced in species 

feeding directly on it than in species feeding on the meiofauna and sub-surface 

sediments (Graf et al., 1982).  

 

Benthic responses to organic input can differ from year to year depending on 

the quality and quantity of food available (Pfannkuche et al., 1999). The nature 

of the response to the seasonal OM flux differs depending on the trophic 

environment of the region (Gooday, 2002a). In abyssal oligotrophic areas, the 

response to seasonal OM supply is primarily seen in small organisms such as 

bacteria and protozoa (Soltwedel, 2000). Bacteria and meiofauna in a food-

limited environment have been shown to be more efficient in exploiting 

particulate organic fluxes (Danovaro et al., 1999). Food limitation may even 

influence bacteria (Turley, 2000), and such conditions are insufficient to fuel 

population or reproductive responses in larger animals (Gooday, 2002a). 

Simulated falls of detrital aggregates on deep-sea microbial populations found 

rapid colonisation, growth and decomposition rates of microbes to inputs of 

organic carbon (Turley and Lochte, 1990). The rapid bacterial response may 

result in transforming detritus into nutritious bacterial biomass that would 

otherwise be unavailable to higher consumer organisms (Turley and Lochte, 

1990).  
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Meiofauna are generally less responsive to seasonal OM fluxes than protists 

such as foraminifera, although seasonal increases in abundance and body size 

have been reported (Soltwedel, 2000). A difference in benthic response (in 

terms of biomass and density) by meiofauna has been observed in two different 

trophic environments in the Mediterranean (Danovaro et al., 1999). Meiofauna 

in oligotrophic areas showed no seasonal response to organic input, whereas 

meiofauna found in areas of high primary productivity reacted to the temporal 

pulses in organic material (Danovaro et al., 1999). Drazen et al. (1998), 

observed a significant increase in protozoan (foraminiferal) density over a short 

time scale (4 weeks) in response to phytodetrital input at an abyssal site in the 

NE Pacific. Obvious macro- and mega-faunal population responses to pulsed 

food inputs are difficult to establish because of their larger size and longer life 

histories (Gooday, 2002a). Macrofaunal responses have been observed during 

an in situ experiment at an abyssal station, using 13C as a tracer. Macrofauna 

were seen to be more important than bacteria and foraminifera in initial carbon 

degradation; after 2.5 days, 77% of the macrofauna had ingested 13C-labelled 

organic material (Witte et al., 2003). This contrasts with the results from a 

bathyal continental margin site, where foraminifera were rapid consumers of 

fresh OM, suggesting they may play a central role in the initial processing of 

fresh OM arriving at the seafloor (Moodley et al., 2002). Two holothurian 

species studied at a NE Pacific site have shown responses to food input. These 

megafaunal species had varying rates of movement across the sediment, 

depending on the seasonal organic input to the sea floor (Kaufmann and Smith, 

1997). 

 

Measurements of the supply of organic material to the benthos and sediment 

community oxygen consumption (SCOC) can be used to approximate the 

supply and demand for carbon in the deep sea (Smith and Kaufmann, 1999). 

During an in situ pulse-chase experiment, the sediment community oxygen 

consumption doubled after simulated phytodetrital input (Witte et al., 2003). 

Seasonality has been observed in the SCOC and is related to the vertical flux of 

the seasonal phytoplankton blooms in the upper ocean (Smith and Baldwin, 
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1984), although this seasonality has not always been observed (Lampitt et al., 

1995). Smith et al. (1998) showed highly variable SCOC depending on the 

quality of the aggregates arriving at the deep-sea floor. The quality of the 

material may explain the lack of a SCOC peak during the highest flux event 

(September 1996) at the PAP in a sample period (September 1996, 

March/April 1997, July 1997 and September 1998), i.e. the most labile fraction 

of the aggregates may have been lost, despite relatively enhanced chlorophyll a: 

phaeophorbide ratios (Witbaard et al., 2000). Although the flux of material was 

high compared to the other sample periods in the study, it is suggested that the 

seasonal difference in the quantity or quality of organic matter was too small to 

provoke bacterial activity and hence no difference in the SCOC was observed 

(Witbaard et al., 2000).  

 

There is some evidence for a discrepancy between supply and demand for 

carbon in the deep sea; the vertical flux of food supply does not always meet 

the energy requirements (Smith and Kaufmann, 1999; Thomsen, 1999; Smith 

et al., 2001). In particular, a deficit in food supply has been reported at an 

abyssal station in the NE Pacific. The sediment community cannot be sustained 

under these conditions without ultimately affecting the structural and 

functional characteristics of the community (Smith et al., 2001). Several 

reasons have been put forward to explain this deficit. It could be linked to 

increasing surface water temperature and reduced plankton biomass. Sediment 

traps are also likely to under-sample large sinking aggregates, and hence 

underestimate the accumulation and composition of detritus found on the sea 

floor (Beaulieu and Smith, 1998). Lateral advection of POM and dissolved 

organic carbon may also fuel the sediment community. Longer time-series and 

improved sampling methods are needed to cover cyclical events, such as El 

Niño, that may affect faunal patterns over time.  

 

Some deep-sea species show a response to the vertical flux of primary 

production by reproducing seasonally. However, the vast majority of deep sea 

animals (particularly at abyssal depths) reproduce aperiodically or continuously 
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(Young, 2003). Species found to reproduce seasonally are the ophiuroids 

Ophiura ljungmani, Ophiocten hastatum (an abyssal species) and Ophiocten 

gracilis (a bathyal species), the asteroids Plutonaster bifrons and Dytaster 

grandis (an abyssal species), and the echinoid Echinus affinis (Tyler et al., 

1982; Tyler, 1986; Tyler, 1988; Suminda et al., 2000; Gooday, 2002a; Gage et 

al., 2004). As well as other features, these species spawn in the early spring of 

each year (Gage and Tyler, 1991). It is suggested that the seasonal flux of 

primary production fuels vitellogenesis in the adults and provides food for the 

planktotrophic larvae.  

 

 

1.3.4 Benthic response to the quality of organic material 

 

Recent studies have shown a link between the quality of OM reaching the 

deep-sea floor and the effect this can have on the biochemistry of the 

organisms. However, this response can also be dependent on the feeding 

ecology and reproductive adaptations of the organisms (Ginger et al., 2001; 

Hudson et al., 2003; Wigham et al., 2003a; Hudson et al., 2004; Neto et al., 

2006). A study at the PAP in the NE Atlantic, suggested that a bloom of 

Amperima rosea, Ellipinion molle and other megafauna selectively removed 

phytosterols from the fresh flux of phytodetritus in less than four months  

(Ginger et al., 2001). This will have an impact on the food resource to other 

animals. Deep-sea megafauna rely on the supply of phyto-derived sterols for 

their metabolism; the supply of these compounds effectively controls their 

population. Phytosterols are an important resource because they cannot be 

biosynthesised de novo (Ginger et al., 2001). Amperima rosea is the only deep-

sea holothurian that clearly assimilates 4α-methylsterols (Ginger et al., 2000), 

which are diagnostic of dinoflagellates (Brassel and Eglington, 1986). 

Amperima rosea has been observed to increase rapidly in population size, and 

colonise large areas quickly, with full vitellogenetic development dependent on 

environmental stimuli such as long-term variations in food supply. Its 
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requirement for specific sterols indicates that the quality of food can have an 

affect on the population dynamics of this species (Wigham et al., 2003a).  

 

Temporal variations have been observed in the fatty acid composition of 

holothurians found at abyssal and bathyal depths (Hudson et al., 2004; Neto et 

al., 2006). Amperima rosea, Bathyplotes natans and Laemogone violacea all 

show significant fatty acid changes concurrent with the seasonal deposition of 

organic material (Hudson et al., 2004). It is suggested that these species may 

allocate PUFAs and reproduce at times when the availability of fresh organic 

material is high (Hudson et al., 2004), although A. rosea has shown no clear 

evidence of seasonal or episodic reproductive events (Wigham et al., 2003b). 

Psychropotes longicauda and Benthogone rosea have the opposite trend – their 

PUFA levels are higher before the deposition of phytodetritus (Hudson et al., 

2004). These holothurians have large eggs (Billett, 1991) that develop into a 

juvenile without a larval stage (Tyler and Young, 1992). It is proposed they 

release a greater number of eggs during the arrival of fresh phytodetritus, when 

nutritional resources for juveniles are high (Hudson et al., 2004), although no 

seasonal changes in fecundity have been recorded (Tyler and Billett, 1987). 

Other deep-sea holothurians, Oneirophanta mutabilis, and Deima validum, 

show little temporal change in PUFA proportions (Hudson et al., 2004). They 

have similar egg sizes of 950 and 800 µm (Billett, 1991). Hudson et al. (2004) 

suggest they produce a continuous supply of eggs throughout the year. Both 

species contained high levels of 18:1(n-7) monoene – a bacterial fatty acid 

marker – during the pre-bloom period, indicating they utilise bacteria as a 

source of carbon at this time (Hudson et al., 2004). Variations in body wall 

fatty acid composition have also been observed in response to a changing 

supply of lipids, dependent on the feeding guild of the species (Neto et al., 

2006). Oneirophanta mutabilis tissues show an increase in sterols concurrent 

with an increase in sterols in POM reaching the sea floor. However, O. 

mutabilis feeds on the same material as Psychropotes longicauda when rich 

organic matter is scarce (Neto et al., 2006). 
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1.4  Carotenoids 

 

1.4.1 Biochemistry of carotenoids 

 

Carotenoids represent one of the most widespread groups of natural pigments 

(Goodwin, 1980) and range in colour from yellow to red (Davis, 1991). They 

can be synthesised de novo by plants, fungi, algae and bacteria (Goodwin, 

1980). All carotenoids are based on the hydrocarbons α-carotene, β-carotene 

and ε-carotene (Goodwin, 1980). There are two types of carotenoids: the 

oxygen containing xanthophylls, e.g. diatoxanthin and zeaxanthin and the 

hydrocarbon carotenes e.g. β-carotene (Olson and Owens, 1998) (Fig. 1). They 

are accumulated in the diet by animals and are sometimes modified further. 

These modifications can be significantly different between Classes and 

Families in a Phylum, as well as at species level. Novel carotenoids can be 

found in different tissue types such as the gonads where the animal modifies 

carotenoids from its diet and accumulates the new forms where it is required 

(Tsushima et al., 1996). Specific carotenoids can play different functional roles 

in the same animal; esterified astaxanthin was found in the cuticle, whereas no 

esterified astaxanthin was found in the ovary of the crayfish Cherax 

quadricarinatus (Sagi et al., 1995). Figure 1.2 shows the structure of some 

carotenoids found in echinoids (Matsuno, 2001) and in the gut sediment and 

ovaries of deep-sea holothurians (Hudson et al., 2003; Wigham et al., 2003a). 
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Figure 1.2 The structure of the main carotenoids found in echinoids and deep-sea 

holothurians (Matsuno, 2001; Hudson, 2004 and the present study).  (Diagrams from 

(Goodwin, 1980)) 

 

Carotenoids stabilise proteins and membranes, and deactivate reactive 

chemical species that may otherwise induce harmful processes in biological 

systems (Krinsky, 1994; Britton, 1995; Matsuno, 2001). Much of the literature 

on the functions of carotenoids in marine systems discusses their 

photoprotective functions. The deep sea is a dark environment, therefore 

carotenoids must play functional roles other than photoprotection in the deep-

sea biota that accumulate and modify them. They can play a beneficial role in 

modifying cell membrane structure, properties and stability. Britton (1995) 

described how carotenoids can be found in precise orientations and locations in 

subcellular structures and that their properties can be strongly influenced by 

other molecules, particularly proteins and lipids, in their near vicinity. In a 
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review of the functions of carotenoids in Mollusca, Vershinin (1996) suggested 

their most probable function is that of stabilising the fluidity of cell membranes.  

 

Carotenoids also act as a good donor and acceptor of electrons in chemical 

reactions. Oxygen free-radicals produced during aerobic respiration can 

damage DNA, proteins and carbohydrates. Therefore carotenoids are able to 

reduce the undesirable effects of aerobic respiration (Bendich and Olson, 1989; 

Di Mascio et al., 1991; Olson, 1996). Carotenoids may also contribute to 

cellular immuno-protection at critical stages, for example oocyte differentiation, 

that pose a high potential for free radical production (Linan-Cabello et al., 

2003). Matsuno and Tsushima (1995) have suggested that novel carotenoids 

are especially abundant in the eggs of shallow-water sea cucumbers and play 

an important role in preventing oxygen toxicity.  

 

 

1.4.2 Carotenoids and reproduction 

 

Carotenoids are accumulated from the diet into the eggs of many taxa in the 

animal kingdom. Ovarian maturation is characterised by an accumulation of 

carotenoids in crustaceans (Linan-Cabello et al., 2002). Carotenoids give the 

characteristic yellow yolk of chicken eggs and the orange roe of scallops. They 

are also accumulated into the eggs of echinoderms (Matsuno and Tsushima, 

1995; Matsuno and Tsushima, 2001). It is believed maternally-derived 

carotenoids in eggs protect the developing embryo from elevated reactive 

oxygen species released by the metabolism of lipids used for nourishment 

(Blount et al., 2000; 2004; Lotocka et al., 2004). 

 

Carotenoid profiles and concentrations in the gonads of echinoderms can be 

affected by various factors. They can vary between orders (Tsushima et al., 

1993a; Matsuno and Tsushima, 1995; Tsushima et al., 1995), between species 

(Borisovets et al., 2002; Hudson et al., 2003; Wigham et al., 2003a; Pantazis, 

2006) as well as between sexes and stage of gonadal maturity, which may 
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explain variance between samples in a species (Borisovets et al., 2002; 

Lawrence et al., 2004). Diet can also have an effect on the carotenoid profiles 

and concentrations in eggs (Kawakami et al., 1998). Studies of carotenoids 

found in marine biota have focused mainly on economically important species 

because of the need to gain the greatest quantity and most viable offspring, as 

well as obtaining the desirable deep-coloured roe. Feeding sea urchins a diet 

containing no pigment results in light, beige coloured gonads (Robinson et al., 

2002). The synthesis of a feed in aquaculture that produces high quality gonads 

improves broodstock quality and quantity as well as the aesthetic quality of the 

roe. 

 

Shallow-water echinoderm feeding experiments have shown carotenoids can 

enhance the colour of the roe to increase commercial viability, but more 

importantly, increase fecundity, larval maturation and survival (George and 

Young, 1998; George et al., 2001; Mclaughlin and Kelly, 2001; George and 

Lawrence, 2002). Increased food quality (a rich, algal diet) can increase green 

sea urchins gonad size, body mass and total mass, demonstrating the 

importance of the quality of diet (Lemire and Himmelman, 1996).  However, 

Plank et al. (2002) observed that the growth of the gonad was independent of 

carotenoids in the diet of the sea urchin Lytechinus variegatus. This study also 

found that the carotenoid profile of the gut varied with diet, but was not 

identical to the composition of the diet (Plank et al., 2002).  

 

Favourable conditions for adults are translated into the production of high 

quality eggs. The bathyal echinoid Stylocidaris lineata requires fresh algal 

input to maintain the production of high quality eggs, although some ‘fresh’ 

diets were preferable to others. The quality of eggs was maintained, although 

the number of eggs decreased on a diet of Thalassia testudinium compared to a 

Sargassum spp. diet (George and Young, 1998). Larvae of the sea urchin 

Lytechinus variegatus from parents fed on xanthophylls (20-25% lutein, 60% 

zeaxanthin and the rest orange-red xanthophylls) were larger throughout 

development, developed faster, had higher survival rates and attained 
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metamorphic competence faster than those fed just β-carotene. The numbers of 

juveniles originating from parents fed xanthophylls were also significantly 

higher (George et al., 2001). Survival rates increased further for all maternal 

feeding experiments, when the larvae were then fed a mixed algal diet (George 

and Lawrence, 2002). This study shows that maternal diet is very important, 

especially for species with lecithotrophic larvae (i.e. many deep-sea species) 

where the development of the offspring relies on the maternally derived 

nutriment. The availability of certain essential carotenoids in the deep sea may 

determine the viability of offspring and thus influence population dynamics, 

especially for species that are able to take advantage of higher ‘quality’ food 

patches either by selective feeding or by increased mobility between patchy 

food sources.  

 

Evidence of carotenoid metabolism has been obtained through echinoderm 

feeding experiments. The metabolism of β-carotene to echinenone (for 

deposition into the gonad) has been observed in Lytechinus variegatus (Plank 

et al., 2002). There are several pathways of metabolising dietary carotenoids 

and some of these occur in the gut. Individuals fed zeaxanthin had the lowest 

percentage of zeaxanthin in their gonads and highest percentage in their test. It 

was postulated that zeaxanthin was either immediately metabolised or not 

deposited in the gonad. β-carotene was metabolised to echinenone (the major 

carotenoid constituent in the gonad accounting for up to 82% of the total ) and 

assimilated into the gonad (Plank et al., 2002). Echinenone is found in many 

echinoderm species, especially in their ovaries (Matsuno, 2001) and its 

metabolism from β-carotene has been shown in other studies  (Tsushima and 

Matsuno, 1990a; Tsushima et al., 1993b; Matsuno and Tsushima, 1995). The 

conversion of β-carotene to echinenone occurs in the gut wall via its precursor 

β-isocryptoxanthin (Tsushima et al., 1993b). Matsuno and Tsushima (1995) 

showed that echinenone can be converted to canthaxanthin and further to 

astaxanthin. Bandaranayake and Des Rocher (1999) found approximately 90% 

of the total carotenoids of the gut wall and gonad of the sea cucumber 

Holothuria atra to be highly oxidised (with the main carotenoids being 
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astaxanthin and canthaxanthin). They postulated this species provides specific 

carotenoids to the ovaries either by concentrating very small amounts of 

oxygenated carotenoids from the diet or by the more probable means of 

metabolising β-carotene and/or xanthophylls. The presence of β-carotene in 

significant amounts in the diet and gut contents but not in the gut tissues and 

ovaries supports the modification theory (Bandaranayake and Des Rocher, 

1999). 

 

The molecular structure of astaxanthin and canthaxanthin makes them 

significantly more efficient antioxidants than β-carotene. This may explain 

why animals modify carotenoids from their diet. Astaxanthin and 

canthaxanthin have thirteen conjugated double bonds, in contrast to eleven in 

β-carotene (see Fig. 1), giving them significantly greater antioxidant capacity. 

Superior singlet oxygen quenching ability of astaxanthin has been 

demonstrated over β-carotene, zeaxanthin and canthaxanthin (Miki, 1991; 

Shimidzu et al., 1996; Naguib, 2000). A hydroxyl group on each cyclohexane 

ring (see Fig. 1) makes astaxanthin highly polar, enhancing its membrane 

protection ability. The polar end groups allow astaxanthin to sit near the 

lipid/water interface, where free radical attack first occurs (Kurashige et al., 

1990).  

 

The decreasing quality of OM with increasing depth results in reduced 

availability of carotenoids essential for reproduction in echinoderms. The 

bathyal echinoid Stylocidaris lineata is a deposit feeder that ingests sediment, 

animal remains and pieces of macroalgae that infrequently settle from the 

euphotic zone. A feeding experiment has shown S. lineata can survive but not 

reproduce solely on a sediment diet, and that it requires macroalgae to produce 

eggs (George and Young, 1998). Food-driven environmental forcing has been 

suggested as a cause for the increase in abundance of the abyssal holothurian 

Amperima rosea on the Porcupine Abyssal Plain (Wigham et al., 2003a). The 

gut content and ovarian carotenoid profiles of this species were identical and 

dominated by the pigments zeaxanthin, chlorophyll a, echinenone and β-
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carotene. The gut pigment profiles of A. rosea lacked pigments characteristic 

of other phytoplankton groups, which were observed in the other abyssal 

species. Relatively high concentrations of the carotenoid zeaxanthin (a 

biomarker for cyanobacteria (Jeffrey et al., 1997)) were found in the gut 

sediment and ovaries of A. rosea, compared to other holothurian species. It was 

postulated that elevated levels of cyanobacteria in the organic matter flux to the 

deep sea-floor may have given A. rosea a reproductive competitive advantage, 

possibly leading to major community changes like the “Amperima Event” 

(Wigham et al., 2003a). It is postulated that resource partitioning of the 

phytodetrital flux at abyssal depths (and less pronounced at bathyal depths; 

Hudson et al., 2003), may explain the mechanism for maintaining high 

diversity of deposit feeders in the deep sea. Resource partitioning may have 

given A. rosea a reproductive advantage in utilising any change in the 

composition of the food source (Hudson et al., 2003; Wigham et al., 2003a). 

This is highlighted by a study that indicates A. rosea has an opportunistic 

reproductive pattern, with an apparent hold on vitellogenesis until resources are 

favourable (Wigham et al., 2003b). 

 

 

1.4.3 Carotenoids as biomarkers 

 

Chemotaxonomy of water column communities using phytopigments has been 

adapted in order to characterise the phytoplankton community reaching the 

benthos (Repeta and Gagosian, 1982; Riaux-Gobin et al., 1987; Bianchi et al., 

2000a). Examples of some of the main chemotaxonomic pigments are given in 

Table 1.2.  

 

Light, oxygen and temperature affects the degradation rates of carotenoids 

(Leavitt, 1988; Abele-Oeschger, 1991). Oxygen is an essential factor for light 

and metabolic diagenesis (Leavitt, 1988), suggesting pigments degrade faster 

in oxic sediments. Low oxygen concentrations in the water column and 

sediment are therefore an important factor for carotenoid preservation 
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(Sinninghe Damsté and Koopmans, 1997). An experimental approach 

introducing phytoplankton to mesocosms found the fastest pigment decay and 

build-up of chlorophyll breakdown products occurred under oxic conditions 

with deposit feeding macrofauna. Bioturbation (the biogenic mixing of 

sediment and porewater; sensu Richter, 1952) stimulates diagenesis by 

increasing oxygen availability and mechanical fragmentation through feeding 

activities (Bianchi et al., 2000b). 

 

The lability of pigments and their transformation products - resulting from 

chemical and metabolic processes - can cause problems when diagnosing 

which phytoplankton group dominates or contributes to the vertical flux of 

organic matter (Lotocka, 1998). Pigments exhibit different degrees of 

degradation, making interpretations of the phytoplankton classes contributing 

to the organic matter reaching the sea floor difficult. The ratios of  pigment 

concentrations should therefore not be used as an indicator of the relative 

biomass of certain classes of phytoplankton when investigating sediment 

samples (Rabalais et al., 2004). The transformation products resulting from 

chemical and metabolic processes have not been studied in detail. Therefore, 

there are many carotenoids in sediments that remain unidentified (Repeta and 

Gagosian, 1987). These breakdown products can also mask small 

concentrations of ‘pristine’ pigments on HPLC chromatograms (Howell et al., 

2004) 
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Phytoplankton Group/Pigment Source Pigment Biomarkers 
Cyanophyta 
(Cyanobacteria) 

Zeaxanthin, β-carotene, echinenone (in 
filamentous Cyanobacteria with gas vacuoles) 

Prochlorophyta 
(Prochlorococcus spp.) 

Zeaxanthin, Divinyl chlorophyll a and b, β-
carotene 

Cryptophyta 
(nanoplanktonic flagellates) Alloxanthin, chlorophyll c2  

Chlorophyta (green flagellates) 
 
- Chlorophyceae (naked flagellates 
Chlorella and Dunaliella spp.) 
 
- Prasinophyceae (flagella and body covered 
in organic scales) 

Chlorophyll b, β-carotene, lutein, neoxanthin, 
violaxanthin 
 
Zeaxanthin 
 
 
Prasinoxanthin 

Euglenophyta 
(fusiform flagellates, can be indicators of 
organic pollution) 

Chlorophyll b, β-carotene, diadinoxanthin, 
fucoxanthin 

Eustigamatophyta 
(yellow-green algae Nannochloropsis spp., 
often used in aquaculture) 

β-carotene, violaxanthin 

Bacillariophyta 
Diatoms 

Chlorophyll c1 and c2, fucoxanthin, 
diadinoxanthin, diatoxanthin 

Dinophyta 
Dinoflagellates 

Chlorophyll c2, peridinin, diadinoxanthin, 
diatoxanthin, dinoxanthin 

Haptophyta and Chrysophyta 
(golden-brown flagellates) 
 
- Prymnesiophyceae (coccolithophores and 
Phaeocystis) 
 
- Chrysopyceae (most freshwater) 
 
- Raphidophyceae (most freshwater, some 
coastal blooms) 

Chlorophyll c2, β-carotene, fucoxanthin 
 
Chlorophyll c1 and c3, 19-
butanoyloxyfucoxanthin, 19-
hexanoloxyfucoxanthin 
 
Chlorophyll c3, 19-butanoyloxyfucoxanthin 
 
Chlorophyll c1

Zooplankton Astaxanthin 
Grazing – digestion by herbivores 
(breakdown product of Chlorophyll a) Phaeophorbide a 

General breakdown product of 
Chlorophyll a, b and c respectively Phaeophytins a, b and c 

 
Table 1.2 Phytoplankton groups and their biomarkers (compiled from Repeta and 
Gagosian, 1987; Leavitt, 1993; Strom, 1993; Jeffrey et al., 1997; Lotocka, 1998; Jeffrey et 
al., 1999; Bianchi et al., 2002; Hansen and Josefson, 2003) 
 

 

Chlorophyll a is more labile than many of the carotenoid pigments (Hodgson et 

al., 1997; Rabalais et al., 2004). The proportion of zeaxanthin in salp faeces 

found on the sediment surface at a depth of 4500m in the Northeast Atlantic 

was higher than that in fresh salp faeces, suggesting zeaxanthin is more stable 

than chlorophyll a related pigments (Pfannkuche and Lochte, 1993). 

Zeaxanthin is generally more stable than chlorophyll a as it acts as its 
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photoprotectant in cyanobacteria (Bianchi et al., 2002). It has also been used as 

a marker to study past changes in deposition in sediments in the Baltic Sea 

(Bianchi et al., 2000a). The carotenoid fucoxanthin degrades faster than 

chlorophyll a (Klein and Riaux-Gobin, 1991). Ester hydrolysis and dehydration 

of fucoxanthin has been observed with particles collected in sediment traps, 

and it is proposed that carotenoids structurally similar to fucoxanthin (peridinin 

and diadinoxanthin) will have analogous transformations (Repeta and Gagosian, 

1982). Selective degradation occurs in the sediment of fucoxanthin, peridinin 

and diadinoxanthin over diatoxanthin, which differs from the other 3 

structurally (Repeta and Gagosian, 1987). Fucoxanthin and diadinoxanthin 

have an epoxide function and/or the presence of an ester group which makes 

them more sensitive to acidification, oxidation and hydrolysis (Britton, 1983). 

Descy et al. (1999) suggested that these processes occur in zooplankton guts. 

Fucoxanthinol, which is slightly more polar than fucoxanthin may be a 

zooplankton-derived metabolite (Repeta and Gagosian, 1982).  Descy et al. 

(1999) also proposed that alloxanthin is found regularly in copepod guts 

because it is resistant to degradation processes. However, a recent study by 

Antajan and Gasparini (2004) showed that zooplankton store alloxanthin (as a 

possible precursor to astaxanthin) in their bodies, which makes it unsuitable as 

a biomarker for cryptophytes in their diet. They proposed that this pigment 

could have been obtained from their diet or by transformations of other dietary 

carotenoids.  

 

Phytoplankton and zooplankton community structure can affect the quantity 

and quality of ‘pristine’ pigments arriving at the deep-sea floor. Astaxanthin is 

the main active carotenoid in copepod metabolism (Lotocka et al., 2004). β-

carotene, zeaxanthin, alloxanthin, diatoxanthin and lutein have been suggested 

as astaxanthin precursors (Katayama et al., 1973; Sagi et al., 1995; Ohkubo et 

al., 1999). In a mesocosm experiment, astaxanthin production in copepods was 

low when copepods were fed with low phytoplankton biomass or heavily 

silicified diatoms (the diatoms were not consumed and grazing was mainly on 

prymnesiophytes). Astaxanthin production was highest when the copepods 
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were grazing on a diverse phytoplankton community of high biomass 

dominated by chlorophytes, dinoflagellates and diatoms with thin silica 

frustules (Andersson et al., 2003).   

 

Cyanobacteria have been used to indicate benthic-pelagic coupling between 

salps and deep-sea holothurians in the Northeast Atlantic (Pfannkuche and 

Lochte, 1993). The salps concentrated the small cells and they were quickly 

removed from the water column by the fast sedimentation of their faecal pellets. 

This suggests one way of ‘pristine’ carotenoids (in this case zeaxanthin 

associated with the Cyanobacteria) reaching the deep-sea benthos. Pfannkuche 

and Lochte (1993) found no significant decrease in cyanobacteria between 

stomach and hindgut of two deep sea holothurians Oneirophanta mutabilis and 

Psychropotes longicauda. This suggests the lack of efficient degradation of 

cyanobacteria by these holothurians. However, only three specimens of each 

species were examined and no corresponding faecal pellets were examined.  
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1.5   The approach of this study 

 

Hudson et al. (2003) and Wigham et al. (2003a) suggest that the supply of 

specific carotenoids, and the selective feeding on these carotenoids, may give 

certain deep-sea holothurians a reproductive advantage. However, a 

comparison has yet to be made between the supply of carotenoids in the flux of 

OM to the seafloor and the influence this may have on the ovarian 

biochemistry of deep-sea holothurians. The principal objective of the present 

study is to examine the link between diet and the ovarian carotenoid 

biochemistry of abyssal holothurians, which potentially has implications for 

their reproductive output. This will be approached in three ways – a temporal 

study at an abyssal site in the NE Atlantic, a spatial study in the Southern 

Ocean and a comparison between all three sites. 

 

Temporal study 

The supply of phytopigments (in the phytodetritus and sediment) and 

carotenoid biochemistry (gut wall and ovaries) of abyssal holothurians from the 

PAP will be determined from two consecutive years. Shallow-water 

echinoderm studies have shown the metabolism of β-carotene through to 

echinenone occurs (Tsushima et al., 1993b; Plank et al., 2002) in the gut wall 

and that this is a site of elevated carotenoid concentration (Griffiths and Perrott, 

1976). The present study examines the carotenoid biochemistry of the gut wall 

in order to establish whether this is true for abyssal holothurians. Holothurian 

species were chosen to include differing feeding guilds and reproductive 

adaptations. Comparisons were made between years and between species 

comparisons were be made, and the possible influence of organic matter 

composition and quantity on the reproductive and feeding adaptations of each 

species assessed 

 

Spatial study 

Two deep-sea sites around the Crozet Islands, Southern Ocean, were sampled 

to determine the supply of phytopigments to the sea floor. These two sites are 
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similar in benthic topography and depth, but differ in their overlying primary 

productivity regimes; each site is thought to receive contrasting abundance and 

composition of OM. Holothurians, chosen for their abundance and co-

occurrence at each site, were sampled and analysed for their gut wall and 

ovarian carotenoid biochemistry. The supply of the phytopigments and 

holothurian biochemistry were compared between sites and related to the 

feeding guild and reproductive adaptations of the holothurians. 

 

Among-site comparison 

This project provides an opportunity to compare the influence of OM supply on 

the biochemistry of holothurians at spatially remote abyssal sites. The PAP is 

situated in the Northern hemisphere, whereas M5 and M6 are located in the 

Southern hemisphere. The PAP and M5 both exhibit a seasonal phytoplankton 

bloom. Primary productivity values are similar (~2 mgC/m2/d) between these 

two sites during their respective bloom periods  (Lampitt et al., 2001; Seeyave 

et al., 2007). While it is known that the seasonal bloom at the PAP creates a 

seasonal flux of OM to the seafloor on an annual basis (Lampitt et al., 2001), 

the flux of OM to the seafloor has only been recorded at M5 over a period of a 

year (Salter, 2007). An extended flux of phytodetritus was observed at M5 after 

the seasonal phytoplankton bloom in the Austral Summer of January 2005, the 

flux then declined until the start of the next bloom in December 2005 (Salter, 

2007). Unliike the PAP and M5, M6 by exhibits little or no seasonal 

phytoplankton bloom (SeaWIFS data) (Pollard et al., 2002). Productivity 

values at this site (taken during the bloom period at M5 – December 2004) 

were 0.4 mgC/m2/d. The flux of phytodetrital material at M6 has only been 

measured over a one-year period. A short, high flux of material was observed 

at the start of a sediment trap deployment in December 2004; after this, the flux 

was negligible (Salter, 2007).  

 

The supply of OM, the sediment biochemistry, as well as the holothurian 

feeding selectivity and carotenoid biochemistry of species common to the three 

sites, will be compared. Differences and/or similarities will be discussed with 
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regard to the biogeochemistry of each site, as well as the feeding guild and 

reproductive adaptations of the holothurians. 

 

Finally, the project also aims to refine the approach used by Wigham et al. 

(2003a), Hudson et al. (2003) and Howell (2004) for determining feeding 

selectivity using phytopigments as biomarkers. A new analytical method to 

improve the resolution and confidence of identification of pigment peaks will 

be described. 
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Chapter 2 – Methods 

 
Three abyssal sites have been chosen for this study. The first, at the Porcupine 

Abyssal Plain (PAP) in the NE Atlantic is the focus of a temporal (time-series) 

study. Two nearly adjacent sites (M5 and M6) around the Crozet Islands, 

Southern Ocean, are the focus of a spatial comparison. Data from the three 

sites will be compared to ascertain differences and similarities in the influence 

of OM supply on the carotenoid biochemistry of the holothurians. 

 

Phytodetritus, sediment and holothurians were sampled at the PAP in the NE 

Atlantic during two research cruises in June 2004 and July 2005. The sediment 

at stations, M5 and M6 around the Crozet Islands in Southern Ocean, was 

sampled during a research cruise in December 2004 and January 2005. The 

following year (December 2005 and January 2006) the phytodetritus, sediment 

and holothurians were sampled at M5 and M6. 

 

 

2.1 Porcupine Abyssal Plain, Northeast Atlantic – a Temporal Study 

 

2.1.1 The study area 

 

The Porcupine Abyssal Plain (PAP) is situated 270km southwest of Ireland 

(Fig. 2.1) at a depth of c. 4850m (Fig. 2.5). Since 1989, a number of European 

Union-funded projects have generated a time-series of benthic observations at 

this site with the aim of determining how the seabed community and 

geochemistry of the sediments change in response to a highly seasonal input of 

organic matter from the overlying waters (Billett and Rice, 2001). The site was 

chosen for its distance from the continental slope and mid-Atlantic ridge, 

making it relatively free of any downslope sediment transport. The seabed is 

very flat, facilitating the use of many types of benthic sampling equipment. 
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PAP

 
 

 Figure 2.1 Location of Porcupine Abyssal Plain (PAP) 

 

 

2.1.2 Hydrography 

 

Northeast Atlantic Deep Water (NEADW), formed by the waters from the 

Iceland/Scotland overflow and Labrador Sea, overlies the PAP. It is 

characterised by a deep salinity maximum and high oxygen levels (Tomczak 

and Godfrey, 1994; Van Aken, 2000). Over a 10 year study, currents within 

150m of the seabed at the PAP remained <15cm s-1 and there was no evidence 

of benthic storms (Lampitt et al., 2001). The winter mixed layer in the upper 

ocean over the PAP is approximately 500m (Rice et al., 1994), although there 

can be large interannual variations (Lampitt et al., 2001). According to the 

Kraus-Turner model, upper layer mixing in winter is controlled primarily by 

changes in air-sea flux and in summer by wind (Bleck et al., 1989). 
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2.1.3 Sediment composition 

 

The sediment at the PAP is a calcareous ooze, although clinker deposits from 

burnt coal and shale litter the seabed. This material, dumped overboard during 

the steamship era, is more widespread on abyssal plains than debris deposited 

by geologic agents such as icebergs (Kidd and Huggett, 1981). The soft 

sediment of this area is an ideal substratum for deposit feeding organisms, and 

the clinker deposits may provide hard surfaces for sessile organisms that would 

not otherwise be able to settle. The C:N ratio of surficial sediments at the PAP 

sampled in September 1989 ranged from 4.8 to 7.8, with total organic carbon 

(TOC) between 0.27-0.32% (Santos et al., 1994). TOC values of  PAP surficial 

sediment were ~0.35%, between March an October 1997, although this 

increased to 0.45% in September 1996 after a large deposition of phytodetritus 

(Rabouille et al., 2001). Sedimentary proteins, carbohydrates and lipids showed 

significant temporal changes (Danovaro et al., 2001). Variability in the 

distributions of lipids in the surface sediments is consistent with photographic 

evidence of the patchiness of the PAP sediments, which in turn is strongly 

influenced by the benthic fauna (Santos et al., 1994).  

 

 

2.1.4 Flux of organic matter to the PAP 
 
 
The timing and composition of the phytoplankton bloom, zooplankton 

interaction (repackaging and recycling) and the physical dynamics of the water 

column can all affect the quality and quantity of the seasonal POM flux to the 

seafloor (Hurley and Armstrong, 1990; Turner, 2002). Upper ocean phyto- and 

pico-plankton community structure changes temporally over the PAP (Gibb et 

al., 2000; Zubkov et al., 2000), which in turn will affect the quantity and 

composition of carotenoids in the flux of OM.  

 
Upper ocean surface chlorophyll concentrations over the PAP from SeaWIFS 

data show that the spring bloom occurs from mid to late May. During the 
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spring bloom in 1997 to 1999, chlorophyll a concentration (measured by 

SeaWIFS) were 1.5 to 2.5 mg/m3 and in 1997 productivity measured 1.9 

g/C/m2/d (Lampitt et al., 2001). The seasonal primary productivity bloom 

creates a strong seasonal pattern of flux to the PAP seafloor, reaching a 

maximum in mid-summer (Lampitt et al., 2001). Downward particle flux has 

been measured at the PAP at depths of 1000, 3000 and 4700m since 1989 using 

time-series sediment traps. The data have shown there is a strong seasonal 

signal, but also significant interannual variations, in both the timing and 

magnitude of the flux (Fig. 2.2) (Lampitt et al., 2001; Lampitt, 2008). The 

compositional spectrum of protein amino acids has been used to quantify the 

degradation state of settling particulate material at the PAP. Of the 

phytodetrital flux samples (3000m sediment trap) analysed between 1998 and 

2004, the least degraded material was found in association with high POC and 

lithogenic fluxes observed in 2001 (Salter, 2007).  

 

Temporal variation in the flux of OM has also been observed through time-

lapse camera footage (Bathysnap) of phytodetritus reaching the seafloor at the 

PAP. Mass deposition of phytodetritus was recorded during the summer 

months of 1991, 1993 and 1994, covering between 56% and 90% of the 

seafloor. This coverage was not seen during the summers of 1997-1999 (Bett et 

al., 2001). There was no decrease in surface productivity or export flux that 

could account for the apparent absence of observable phytodetritus between 

1997-1999 (Lampitt et al., 2001). The absence has been attributed to changes 

in the abundance of some species of megabenthos, which in turn changed rates 

of phytodetritus re-working at the seafloor (Bett et al., 2001).  
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Figure 2.2 Downward flux of the dry mass of particulate material at 3000m over the 
PAP. Each data point represents the average flux over a predetermined period of time 
which may be as short as a week. During periods of constant flux such as in the winter, 
longer sampling intervals were selected (Lampitt et al., 2001; Lampitt, 2008) 

2.1.5 Changing benthic community at the PAP 

 

Between 1989 and 1999 a radical change occurred in the megabenthic 

community composition at the PAP. Actinarians, annelids, pycnogonids, 

tunicates, ophiuroids and holothurians all increased significantly in abundance 

(Billett et al., 2001). Prior to 1996, the small holothurian Amperima rosea (Fig. 

2.3) was always a minor component of the megafauna. After this date it 

increased in abundance by more than two orders of magnitude from 4 

indv/hectare (April 1994) to 193 indv/hectare (April 1997) (Bett et al., 2001; 

Billett et al., 2001). Amperima rosea and the other species that increased in 

abundance (the holothurian Ellipinion molle and the ophiuroid Ophiocten 

hastatum) are all primary consumers of phytodetrital material, as shown by 15N 

analysis (Iken et al., 2001). The time period over which the entire sediment 
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surface was reworked by megafauna increased from two and a half years, prior 

to 1996, to six weeks following the faunal change community change. The 

change was attributed to the increase in abundance of these species (Bett et al., 

2001). The change in community could not be attributed to the quantity of OM 

reaching the PAP, rather it is postulated a change in the quality of the OM 

initiated the community change (Billett et al., 2001). 

 
 

 
 

 

Figure 2.3 Amperima rosea on the sea-floor at the PAP (photo taken with Bathysnap) 
(Bett et al., 2001) 

 

 

 43



2.2 Crozet Islands, Southern Ocean – a Spatial Study 

 

2.2.1 The study area 

 

The Crozet Islands are situated 2585km southeast of South Africa at 51.0oE, 

46.5oS (Fig. 2.4). The present study forms part of the Benthic CROZEX 

programme. This programme aims to examine how the variability in both the 

quality and quantity of primary productivity and fluxes of OM to the deep-sea 

floor influences benthic structure, dynamics and diversity. The focus is on two 

sites, M5 and M6 (Fig. 2.4). These sites were chosen because of their similar 

depth (~4200m), topography and close proximity (460km) (Fig. 2.6). The two 

sites differ by having contrasting upper ocean primary productivity regimes. 

Benthic station M5, east of the Crozet Islands, is located beneath an area with 

an enduring seasonal phytoplankton bloom, as deduced by satellite surface 

chlorophyll (SeaWIFS) data (Fig. 2.4). To the south of the islands, M6 is 

located in a High Nutrient Low Chlorophyll (HNLC) area (Fig. 2.4). Organic 

fluxes to the seafloor at these two sites reflect the productivity regimes: benthic 

station M5 receives a greater quantity of OM (Pollard et al., 2007a). There is 

no topographical boundary between the sites, so differences in benthic 

community, diversity and dynamics can be attributed to the quantity and 

quality of OM reaching the seafloor. 

 

 

Figure 2.4 Location of the Crozet Islands (black) and SeaWIFS image showing 
Chlorophyll constrained by the S-shaped Antarctic Circumpolar Current  pathway 
(Pollard and Read, 2001) 
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2.2.2 Hydrography 

 

The Crozet Islands are located in an area in the Southern Ocean called the 

Polar Frontal Zone (PFZ), which is situated between the Subantarctic Front 

(SAF) to their north and the Polar Front (PF) to the south (Park and Gamberoni, 

1997). The Crozet Basin, east of the Crozet Islands, plays a major role in the 

exchange of water masses between the Southern and Indian Oceans (Park et al., 

1993; Park and Gamberoni, 1997). The bottom waters are guided by the bottom 

topography, with the Antarctic Bottom Water (AABW) penetrating into the 

Crozet Basin through the Crozet-Kerguelan gap. In the upper ocean, a 

confluence of three fronts occurs above the Crozet Islands; Aghulus Return 

Current Front (AF), Subtropical Front (STF) and SAF, creating the Antarctic 

Circumpolar Current (ACC) (Fig. 2.4) (Pollard and Read, 2001). Satellite sea 

surface temperature data from the period 1997-1999 shows the position and 

latitudinal changes in these fronts to be strongly constrained by the bottom 

topography (Kostianoy et al., 2004).  

 

 

2.2.3 Upper ocean primary productivity and flux of OM 
 
The Southern Ocean is considered to be a HNLC region (Treguer and Jacques, 

1992). Few studies have investigated primary production in the Crozet area. In 

the austral summer of 1999, chlorophyll a concentrations (measured directly 

from seawater) across the Crozet basin were shown to increase from <0.3μg l-1 

in subantarctic waters to 0.8μg l-1 in the subtropical waters (Fiala et al., 2003). 

Highest chlorophyll a concentrations occur when meandering fronts are in 

close proximity to each other (Fiala et al., 2004). In the frontal regions (AF, 

STF and SAF), factors such as nutrient renewal in the convergence zone, iron 

availability, water stability and water temperature control variations of cell 

concentrations and distributions of major species (Kopczynska and Fiala, 2003). 

The most comprehensive study of upper ocean primary production around the 

Crozet Islands found the phytoplankton assemblage in the north to be 
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dominated by Phaeocystis sp. and microplankton (comprising 50% of the total 

chlorophyll a) and to the south a community composed of microflagellates, 

cyanobacteria and some diatoms. Productivity derived from satellite sensors 

(SeaWIFS) has measured a maximum of 1.9g C m-2 d-1 in the north of the 

Island (late October 2004), 0.6g C m-2 d-1 over the Crozet plateau (late March 

2005) and 0.4g C m-2 d-1 South of the Islands (early December 2004) (Seeyave 

et al., 2007). 

An anti-cyclonic flow around the Crozet plateau advects a small filament of 

primary production (determined though satellite chlorophyll a data) southwards 

around the western side of the plateau (Pollard et al., 2007b; Venables et al., 

2007). It has been suggested that this filament of high chlorophyll observed in 

the surface waters between October 2004 and end of November 2004 was 

received in a sediment trap at M6 (Fig. 2.4) in late December 2004 early 

January 2005 (assuming phytodetritus settles at 100-200m d-1 (Diercks and 

Asper, 1997)) (Venebles, H., pers. comm.). This hypothesis is not supported by 

the phytoplankton community found in the deep sediment trap at M5 and M6 

(Fig. 2.4). If the short, high flux of material at M6 had originated from a 

filament of chlorophyll a enhanced water from the North, both sites would 

have similar dominant phytoplankton species in their respective sediment traps. 

This was not the case. The OM flux at M6 was dominated by the diatom 

Fragilariopsis kerguelensis, and at M5 by another diatom Eucampia antarctica, 

although towards the end of the flux profile at M5, E. antarctica became less 

important and F. kerguelensis began to increase in abundance (Salter, I., pers. 

comm.). It is important to note that although Phaeocystis spp. may have 

contributed to the flux of organic matter, this genus is difficult to enumerate 

and quantify, as there is no mineralised component to the cell. It is probable 

that the short, high-mass flux event at M6 corresponded to the small 

chlorophyll a peak observed in the surface waters in the HNLC region in 

December (Pollard et al., 2002; Venables et al., 2007) 

 

Iron addition experiments have shown that primary production in most regions 

of the Southern Ocean is iron limited (Boyd, 2002; Cochlan et al., 2002; 
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Sedwick et al., 2002). The response of the phytoplankton community in this 

region to the addition of iron can be variable, depending on differences in 

diatom composition, availability of light or silicic acid (Blain et al., 2002; Fiala 

et al., 2004). SeaWIFS images show three regions in the Southern Ocean where 

regular annual phytoplankton blooms are observed downstream of an Island – 

South Georgia, Crozet and Kerguelan. The bloom around the Crozet Islands is 

constrained to the west and north by the hydrography around the Islands (Fig. 

2.4) (Pollard et al., 2002). Iron from lithogenic inputs and sediments around the 

islands initiate the blooms around the Kerguelan Islands and Crozet Islands 

(Blain et al., 2001; Bucciarelli et al., 2001; Planquette et al., 2007).  

The different ‘zones’ in the Southern Ocean have different productivity 

regimes which exert a control on the flux of phytodetritus to the sea bed 

(Jacques and Minas, 1981). The general view is that the flux rate of organic 

matter in the PFZ is high, although studies do not always agree. Wefer and 

Fischer (1991) suggested the PFZ had high annual production (83-170g C m-2) 

and flux rates when compared to the average annual primary production (26g C 

m-2) of all the areas of the Southern Ocean. Tsunogani et al. (1986) observed 

particle fluxes in the PFZ of 1g m-1 d-2. Low sedimentation rates of 1 to 5cm 

kyear-1 were reported by Raboullie et al. (1997, 2002). Contrasting flux rates 

are most likely a result of temporal variability and differences in upper ocean 

productivity. For example, annually integrated POC and PON fluxes 3000m 

below an iron fertilised region to the east of the Crozet Islands were 5 times 

higher than at an adjacent HNLC area (stations M5 and M6, as described in the 

present study) (Salter, 2007). In the Iron enriched region, POC flux at 3000 m 

peaked in late December - early January (10.8 mg C m2 d-1), and gradually 

reduced towards zero six months later.  In the –Fe region POC flux comprised 

one short peak of lower magnitude in late January and was zero at all other 

times  (Pollard et al., 2007a).  
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2.2.4 Sediment composition 

Siliceous oozes characterise the deep-sea sediments of the Southern Ocean 

(Demaster et al., 1991). Few deep-sea sediment studies have been carried out 

in the Crozet area. During the ANTARES I cruise (April-May 1993), no ‘fluff’ 

(indicating ‘freshly deposited phytodetritus/marine snow’) was found at the 

sediment-water interface in deep (~4000m) stations east of the Crozet Islands. 

It is suggested this illustrates stronger advection (deep geostrophic currents) 

and higher grazing in the PFZ region than in the Permanently Open Ocean 

Zone (POOZ) region to the South, where a consistent bioclastic ‘fluffy layer’ 

was found (Riaux-Gobin et al., 1997), although the differences may reflect 

contrasting upper ocean production and ecosystem dynamics. Intact 

phytoplankton cells made a minor contribution to the settled material in the 

PFZ area, reflecting high degradation in the water column. Sediment samples 

taken in March-May 1993, had low chlorophyll levels and absence of revivable 

cells from samples taken from the sediment/water interface (Pinturier-Geiss et 

al., 2001). Sampling stations closer to the Crozet Islands were enriched in 

pigments compared to those stations also in the PFZ further away from the 

Islands (Riaux-Gobin et al., 1997).  

 

2.2.5 Biology of the benthos 

There are very few deep-sea benthic fauna studies in the Southern Ocean, 

especially around the Crozet Islands. The Challenger expedition completed 

sample trawls close to the Crozet Islands on their journey around the world 

between 1873 and 1876. To the east of the Crozet Islands, at a depth of 2926m 

they found the holothurians Peniagone purpurea, Peniagone affinis, 

Achlyonice lactea and Laetmogone wyville-thomsoni (Théel, 1882; Théel, 

1886). A study of macrobenthic fauna on the Western Antarctic Peninsula 

collected one deep-sea (1019m) sample with an Agassiz Trawl south of the 

Crozet Islands. It revealed muddy substratum, with the most abundant fauna 
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being pycnogonids, isopods, ophiuroids, asteroids, sponges and prosobranch 

gastropods. There were a few rare occurrences of holothurians, echinoids 

(irregular), crinoids, amphipods, mysids, cephalopods and nematodes (Arnaud 

et al., 1998). 
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2.3 Carotenoids in the gut wall and ovaries of holothurians 

 

2.3.1 Holothurian collection 

 

A semi-balloon otter trawl (OTSB; Rice et al., 1990) was used to collect 

abyssal holothurians from the PAP (Table 2.1 and Fig. 2.5) and at two sites 

(M5 and M6) around the Crozet Islands (Table 2.2 and Fig. 2.6). Intact 

holothurians were chosen in order to represent differing feeding modes (i.e. 

selectivity for fresh material as shown by the studies of Iken et al. 2001 and 

Wigham et al. 2003a), morphologies, abundance and in order to compare with 

previous studies (Billett et al., 2001; Wigham et al., 2003a).  

 

 

Station  Date Lat (N) Long (W) Depth Samples Collected 

56515#1 21/06/04 48°58.30’ 16°18.50’ 4845m 
Amperima rosea (n = 4), 
Oneirophanta mutabilis (n = 5), 
Peniagone diaphana (n = 4) 

56523#1 24/06/04 48°52.90’ 16°30.20’ 4844m 

Amperima rosea (n = 10), 
Oneirophanta mutabilis (n = 4), 
Psychropotes longicauda (n = 5) , 
Paroriza prouhoi (n = 5) 

15711#1 17/07/05 48°54.00’ 16°20.00’ 4840m 

Oneirophanta mutabilis (n = 4), 
Paroriza prouhoi (n = 4), 
Psychropotes longicauda (n = 2), 
Pseudostichopus aemulatus, 
Pseudostichopus villosus (n = 3), 
Molpadia blakei (n = 1) 

15717#1 19/07/05 48°46.60’ 16°29.80’ 4842m 

Oneirophanta mutabilis (n = 1), 
Molpadia blakei (n = 4), 
Psychropotes longicauda (n = 2), 
Pseudostichopus villosus (n = 4) 

 

 

Table 2.1 Holothurian species collected during RRS Charles Darwin cruise CD158, June 
2004 and RRS Discovery cruise D296, July 2005 to the Porcupine Abyssal Plain, 
Northeast Atlantic. (Location given is the start of trawl activity (ships position)). (thick 
line separates samples taken from separate cruises) 
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Site Station  Date Lat (S) Long (E) Depth Samples Collected 

M5 15773#8 12/12/05 45o43.06’ 56o32.16’ 4290m 

Abyssocucumis abyssorum (n = 3), 
Peniagone spp. (n = 2), 
Scotoplanes globosa (n = 3), 
Oneirophanta mutabilis (n = 3), 
Psychropotes aff. longicauda (n = 
2), Amperima robustrum (n = 2) 

M5 15773#17 15/12/05 45o43.47’ 56o36.66’ 4283m 
Oneirophanta mutabilis (n = 4), 
Abyssocucumis abyssorum (n = 2), 
Pseudostichopus villosus (n = 4) 

M5 15773#23 16/12/05 45o40.05’ 56o35.27’ 4275m 
Psychropotes longicauda (n = 3), 
Pseudostichopus villosus (n = 3), 
Amperima robustrum (n = 2) 

M5 15773#32 20/12/05 45o40.45’ 56o33.70’ 4270m 

Benthodytes sp. (n = 2), 
Psychropotes aff. longicauda (n = 
1), Peniagone spp (n = 3), 
Abyssocucumis abyssorum (n = 2), 
Pelopatides sp. (n = 1) 

M6 15775#4 27/12/05 48o56.21’ 51o03.90’ 4195m 

Abyssocucumis abyssorum (n = 4), 
Peniagone spp. (n = 4), 
Psychropotes aff. longicauda (n = 
1) 

M6 15775#13 29/12/05 49o01.15’ 51o04.52’ 4191m 

Molpadia blakei (n = 2), 
Peniagone spp. (n = 4), 
Psychropotes longicauda (n = 1), 
Benthodytes sp. (n = 2) 

 

 

Table 2.2 Holothurian species collected during RRS Discovery cruise D300, December 2005 at 
two abyssal sites (M5 and M6) around the Crozet Islands. (Location given is the start of trawl 
activity (ships position)) 

Figure 2.5 Bathymetric map of the, NE Atlantic showing sampling area (ringed in white) on PAP 
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Figure 2.6 Bathymetric map of the sampling sites, M5 and M6, around the Crozet 
Isalnds, Southern Ocean. 

 

 

Immediately after trawl recovery, the selected holothurians were put in pre-

chilled seawater (4oC) and transferred to a constant temperature lab (4oC) for 

dissection. Holothurians were dissected individually. Dissection tools were 

washed between specimens to eliminate cross contamination. Holothurians 

with burst guts were rejected (this was often the case for the infaunal species 

Molpadia blakei). Specimens were dissected along the dorsal surface from the 

anus to the oral crown. Coelomic fluid was drained away and the whole gut 

tract was either dissected out or, if there was a risk of contamination during gut 

removal, sampled in situ. Ovarian and gut wall samples were also taken from 

each specimen (Fig. 2.7). The samples were transferred to separate cryovials 

and immediately frozen (-80oC).  

 

At the National Oceanographic Centre, Southampton, holothurian 

identifications were first checked. Peniagone specimens were found to include 
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different species at each site around the Crozet Islands. Peniagone affinis and P. 

willemeösi were dominant species at M6; P. challengeri and Peniagone sp. nov. 

were dominant at M5 (Ian Cross, pers comm.). Therefore, Peniagone sampled 

at both sites are collectively referred to as Peniagone spp., because species 

level identification could not be made before the specimens were dissected. 

The gut wall of Abyssocucumis abyssorum was very thin, which prohibited 

samples to be taken.  

 

 

Ovaries Foregut
Gut

Anus

 

 
Figure 2.7 Molpadia blakei dissected to show the gut, foregut, ovaries and anus. 

 

2.3.2 High performance liquid chromatography (HPLC) – method optimisation 

 

Holothurian ovarian and gut wall carotenoids were determined using high 

performance liquid chromatography (HPLC). Holothurian samples were 

analysed by using either the method of Barlow et al. (1993) (as described by 

Wigham et al. (2003a) and Hudson et al. (2003)), or the method of Barlow et al. 

(1997). The method of Barlow et al. (1993) was used for the June 2004 PAP 
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samples, before it was decided to improve the analytical procedure. Barlow et 

al. (1997) method was used for July 2005 PAP and all Crozet samples. 

Excluding divinyl chlorophyll a and lutein, for which the method of Barlow et 

al. (1997) is used, both methods can identify the same suite of pigments. The 

Barlow et al. (1997) method is preferable however, because it enhances the 

resolution of the pigment peaks of diadinoxanthin, diatoxanthin, alloxanthin, 

and zeaxanthin (Fig. 2.7), improving confidence in identification. Additional 

standards increased the number of quantifiable pigments in comparison to the 

studies of Wigham (2002) and Hudson (2004). 

 

 

 
 

 

Figure 2.7 Oneirophanta mutabilis ovarian pigment chromatograms using the Barlow 
et al. (1993) method (a) and Barlow et al. (1997) method (b). U1 = unidentified peak, 
1 = diadinoxanthin, 2 = alloxanthin, 3 = diatoxanthin, 4 = zeaxanthin, 5 = 
canthaxanthin and 6 = β-carotene. 

a) 

b) 
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2.3.3 Carotenoid determination in the gut wall and ovaries 

 

Frozen gut wall and ovarian tissue samples were lypholised (-60°C; 10-2T) and 

weighed. Pigments were extracted in 3 mL 90% HPLC grade acetone. Samples 

were ultrasonicated for 30 seconds then centrifuged for 10 mins at 3000 rpm. 

The extract was passed through a (0.2 µm) Nyalo membrane filter (Gelman) 

prior to analysis to remove any small particles. Samples were transferred to 

amber vials and loaded into the chilled (0oC) HPLC autosampler tray. Aliquots 

of sample (500 µL) were mixed with 1 M-ammonium acetate (500 µL) and 100 

µL of this mixture injected onto the HPLC column. 

 

The HPLC was controlled by the ChromQuest software system. It consisted of 

either a Perkin Elmer C18 column (Barlow et al., 1993) or Perkin Elmer C8 

column (Barlow et al., 1997), a Thermoseparation HPLC system with an online 

vacuum degasser, a dual solvent pump (P2000), autosampler (AS3000), a UV 

photodiode array detector (UV6000), and a Spectra System fluorescence 

detector (FL3000). Chlorophylls and carotenoids were detected by absorbance 

at 440 nm; phaeopigments were monitored with the fluorescence detector using 

excitation and emission wavelengths of 410 and 670 nm, respectively. 

Pigments were identified by comparison of relative retention times with 

pigment standards. Supporting identification was gained by comparison of 

spectral data with known standards as well as by reference to Jeffery et al. 

(1997). 

 

Pigment concentrations (µg g-1 dry weight sediment/tissue sample) were 

calculated as follows (Barlow et al., 1993): 

 

C = (ApV)/(WRfB100) 

 

Where Ap is the peak area detected at 440nm, V is the extract volume (mL), W 

is the dry weight of material (g), RRf is the response factor and B is the buffer 

dilution factor (0.5). Response factors for each of the pigments were calculated 
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by plotting concentrations of the standards against peak area. Reproducability 

of the analytical technique was better than ±10% and the analytical precision < 

±5%. 

 

2.3.4 Data analysis 

 

Gut wall and ovary carotenoid concentrations are analysed for between year 

and between site statistical differences. Data were tested for their distribution 

using the Ryan-Joiner test (Ryan et al., 1976). Statistical analysis of pigment 

concentrations were implemented with Minitab software (Version 12.21). The 

means of normally distributed data were compared using the t-test; the Mann-

Whitney test was applied to non-normally distributed data to compare their 

medians. 

 

Pigment concentrations in the gut wall and ovaries of the holothurians were 

transformed to their percentage contributions to the total carotenoids in each 

sample, in order to diagnose differences in pigment biochemistry between 

species. This approach removes differences that might be related to the 

pigment load in each specimen. Differences seen in the MDS plots of 

holothurian ovarian carotenoid biochemistry in previous studies (Hudson et al., 

2003; Wigham et al., 2003a) are dictated by the concentration of carotenoids in 

the ovaries as well as the contribution of specific carotenoids to the sample.  

Direct between-species, between-year and between-site comparisons are made 

using ANOSIM. The R-values are interpreted as >0.75 = well separated; R>0.5 

= overlapping, but clearly different and R<0.25 = barely separable, in 

accordance with the PRIMER-manual (Clarke and Gorley, 2001). Multivariate 

statistical analysis on square-root transformed data was performed using the 

PRIMER 6 software package (Clarke and Warwick, 1994).  

 

Clearer intra and interspecific differences will be made for some data by using 

square root transformed raw data – differences on the plot can be attributed to 

concentrations of carotenoids as well as the pigment composition of samples. 
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2.4 Quantifying feeding ecology and selectivity – the gut contamination 

problem 

 

Comparisons between gut sediment and ovarian carotenoid profiles of deep-sea 

holothurians led Hudson et al. (2003) and Wigham et al. (2003a) to infer that 

some species selectively feed on OM enriched in specific carotenoids required 

for their reproduction. Ginger et al. (2001) reported that gut sediment samples 

of Oneirophanta mutabilis collected from the PAP were contaminated with 

holothurian-derived lipids (>C20 fatty acids and ∆7sterols). They suggested this 

contamination derived from unregulated lipolysis of phospholipid within the 

digestive tissue resulting from the death of organisms on recovery (Ginger et 

al., 2001). Presumably if carotenoids are present and/or stored in gut wall cells 

(Griffiths and Perrott, 1976) reproductively important carotenoids may leach 

into the gut sediment upon recovery. This may explain why Witbaard et al. 

(2001) found canthaxanthin and high nucleic acid levels in the gut sediment of 

Oneirophanta mutabilis, but not in the surrounding sediment or sediment trap 

material. Canthaxanthin is a metabolite of β-carotene, found in many 

invertebrates (Tsushima et al., 1993b), as well as a minor pigment in some 

diatoms and prymnesiophytes (Jeffrey et al., 1997). 

 

To examine the contamination of the gut sediment by the leaching of 

compounds from the gut wall, two different holothurians - Amperima rosea and 

Psychropotes longicauda were investigated. Amperima rosea has a fragile gut, 

making it difficult to sample without contamination from the gut wall. 

Carotenoid profiles of the gut sediment and ovary of A. rosea are very similar 

(Wigham et al., 2003a). Psychropotes longicauda in contrast to A. rosea has a 

large compact gut, which facilitates easier sampling of the gut sediment away 

from the gut wall. This species has differing gut sediment and ovarian 

carotenoid profiles (Wigham et al., 2003a). Lipid analysis of the gut sediment 

and gut wall will be used to assess the contribution of holothurian derived 

lipids from the gut wall into the gut sediment.  
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2.4.1 Sample collection 

 

Holothurians were collected from the PAP during RRS Charles Darwin cruise 

158 (see Table 2.1) in June 2004 and dissected as described in section 2.3.1. 

Gut sediment samples were removed from the centre of the gut, to reduce risks 

of contamination from the gut wall and coelomic fluid (Ginger et al., 2001). 

Five A. rosea specimens were dissected for gut sediment and muscle tissue and 

five specimens of P. longicauda were dissected for gut sediment.  

 

 

2.4.1 Lipid analysis 

Sample preparation and analysis followed the methods described by Neto et al. 

(2006). Lypholised (-60°C; 10-2T) gut sediment or muscle tissue lipids were 

extracted in dichloromethane (DCM): methanol; 9:1 v/v by sonification (30 

mins, x3). Known amounts of two internal standards (5α(H)-cholestane, 2.008 

µg and 5β(H)-cholanic acid, 3.015 µg, in DCM) were added before extraction. 

The extract was transferred to a pre-weighed vial, and the solvents were 

removed under a stream of N2. The extract was re-dissolved in DCM and dried 

by passing through a column of anhydrous sodium sulphate. The sample was 

then methylated using the method of Chambaz and Horning (1969) and 

silylated by treatment with bis-trimethylsilyltrifluoroacetamide (60°C; 2 h). 

Derivatised fractions were dissolved in DCM and analysed using a 

ThermoQuest CE gas chromatograph (Trace 2000 series) coupled with 

ThermoFinnigan TSQ-7000 mass spectrometer. The GC was fitted with an on-

column injector and a capillary column (DB5-MS; 60 m x 0.25 mm i.d., 0.10 

μm film thickness, J&W). The oven was held initially at 60°C for 1 min, then 

heated from 60°C to 180°C at 12°C min-1 and from 180°C to 315°C at 2.5°C 

min-1, and held for 10 min at 315°C. Helium was used as carrier gas at a 

constant flow (1.6 mL min-1, with vacuum compensation). A stream of air was 

used to cool the injector prior to, and for 1 min after each injection. Typical 

operating conditions for the mass spectrometer were: electron energy at 70eV, 
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scanning from 50 to 600 Thomsons, scan time of 1s, ion source temperature at 

230°C, interface temperature at 320°C. Xcalibur Software (Version 1.0) was 

used to acquire and process the data. Fatty acids and sterols were identified by 

comparison of their relative retention times and mass spectra with those of 

authentic standards and/or by comparison with the literature. Concentrations of 

individual compounds were determined by comparison of their peak areas with 

those of the internal standards and were corrected after calculation of their 

relative response factors (Kiriakoulakis et al., 2004). 

 

 

2.4.2 Data analysis 

 

The contribution of holothurian derived choles-7-en-3β-ol to the gut sediment 

and muscle tissue was determined by calculating the percentage of choles-7-en-

3β-ol as a total of 24-ethylcholest-5-en-3β-ol (dietary derived) and choles-7-en-

3β-ol. Choles-7-en-3β-ol  is not found in the surrounding sediment (Santos, 

1993) or in sediment trap material (Kiriakoulakis et al., 2001). If the 

percentage contribution of choles-7-en-3β-ol in the gut sediment is the same as 

that of the muscle tissue, it indicates the gut sediment is fully contaminated 

with holothurian derived material. Statistical analysis between the percentage 

contribution of choles-7-en-3β-ol to the gut sediment and gut wall was 

implemented with Minitab software (Version 12.21). These data were tested 

for their distribution using the Ryan-Joiner test (Ryan et al., 1976). The means 

of normally distributed data were compared using the t-test; the Mann-Whitney 

test was applied to non-normally distributed data.  
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2.5 Chlorophyll a in the gut sediment of holothurians 

 

2.5.1 Gut sediment chlorophyll a analysis 

 

Holothurians were collected and dissected as in section 2.3.1. Gut sediment 

samples were taken from holothurians prior to the removal of gut wall and 

ovary tissue samples. Gut sediment was removed from the centre of the gut, to 

reduce risks of contamination from the gut wall and coelomic fluid (Ginger et 

al., 2001). These samples were transferred to separate cryovials and frozen 

immediately (-80oC). They were prepared and analysed by HPLC as for the gut 

wall and ovary samples (see section 2.3.3 for details). 

 

 

2.5.2 Data analysis 

 

Chlorophyll a concentrations (µg gDW-1) in the holothurian gut sediment were 

compared for between species, year and site differences. Statistical analysis of 

pigment concentrations were implemented with Minitab software (Version 

12.21). Data were tested for their distribution using the Ryan-Joiner test (Ryan 

et al., 1976). The means of normally distributed data were compared using the 

t-test; the Mann-Whitney test was applied to non-normally distributed data to 

compare their medians. If variables had a normal distribution and a 

homogenous variance, ANOVA was applied to find any statistical variation in 

species gut chlorophyll a concentration. 
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2.6 Quantifying the supply of carotenoids to the deep-sea benthos  

 

Holothurians display a range of feeding adaptations, that range from feeding on 

the freshly deposited phytodetritus to the deeper layers of sediment (Billett, 

1991; Roberts et al., 2000). To assess the phytopigments available to the 

holothurians in their diet, phytodetritus and sediment samples were collected 

and analysed for phytopigment analysis. To prepare sediment for analysis, 

water needs to be extracted to obtain pigment concentration per dry weight of 

sample. Freeze-drying of sediment significantly improves the extraction of 

pigments from sediment samples (Buffan-Dubau and Carman, 2000). This 

method has been used successfully by Hansen and Josefson (2003) to study the 

accumulation of algal pigments in the aphotic zone. Acetone and methanol do 

not significantly differ in their capability of extracting pigments from the 

freeze dried sediment (Buffan-Dubau and Carman, 2000). Stand alone pump 

systems (SAPS, Challenger Oceanic) were used during the Crozet study to 

quantify the phytopigments associated with POM in the upper and lower 

sections of the water column at each station.  

 

 

2.6.1 Sediment collection 

 

Sediment samples were collected with either a Barnett-Watson multiple corer 

(Barnett et al., 1984) (June 2004) or Bowers-Connelly mega-corer (Barnett, 

1998-1999) (July 2005 and Crozet). These samplers collect undisturbed cores 

of 58mm (multicore) or 100mm (megacore) diameter. Sediment samples were 

taken from the PAP in June 2004 and July 2005 (Table 4 and Fig. 2.4) and 

from M5 and M6 around the Crozet Islands in December 2004 – January 2005 

(hereafter called Crozet cruise 1) and December 2005 – January 2006 

(hereafter called Crozet cruise 2) (Table 2.4 and Fig. 2.5). On recovery, the 

cores were taken to a constant temperature laboratory (4oC) for sectioning into 

5mm horizontal sections. Phytodetritus present in the depressions at the 
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sediment surface was carefully removed by pipette and frozen (-80°C) 

separately from the top 5 mm of sediment.  

 

 

Station  Date Lat (N) Long (W) Depth Samples Collected 
56502 #1 19/06/04 48°51.20’ 16°29.20’ 4835m Sediment core and phytodetritus (n = 1) 

56508 #1 20/06/04 48°51.00’ 16°30.00’ 4838m Sediment core (n = 1) and phytodetritus 
(n = 2) 

56519 #1 22/06/04 48°51.00’ 16°29.90’ 4833m Sediment core and phytodetritus (n = 1) 
15720 #1 19/07/05 48°52.10’ 16°29.80’ 4838m Sediment cores and phytodetritus (n = 1) 
15724 #1 20/07/05 48°52.00’ 16°29.70’ 4836m Sediment cores and phytodetritus (n = 2) 

 

 
 

Site Station  Date Lat (S) Long (E) Depth Samples Collected 
M5 15582#6 28/12/04 45o59.91’ 56o08.94’ 4270m Sediment core 
M5 15582#9 28/12/04 46o00.00’ 56o09.07’ 4269m Sediment core 
M6 15587#1 04/01/05 49o00.01’ 51o20.00’ 4221m Sediment core 
M6 15599#4 05/01/05 49o00.01’ 51o20.00’ 4221m Sediment core 
M5 15773#20 15/12/05 45o53.34’ 56o24.24’ 4189m Sediment core 
M5 15773#31 20/12/05 45o53.56’ 56o25.77’ 4200m Sediment core 
M6 15775#6 28/12/05 49o03.55’ 51o15.73’ 4202m Sediment core 
M6 15775#19 31/12/05 49o04.59’ 51o13.49’ 4202m Sediment core 
M6 15775#25 03/01/06 49o04.53’ 51o13.12’ 4202m Sediment core 
M6 15775#36 05/01/06 49o01.99’ 51o14.01’ 4192m Sediment core 

 

 

Table 2.4 Sediment samples taken from sites (M5 and M6) around the Crozet Islands in 
December 2004 – January 2005, and December 2005 – January 2006 (thick line separates 
samples taken from separate cruises) 

Table 2.3 Sediment samples taken from the PAP in June 2004 and July 2005. (thick line separates 
samples taken from separate cruises) 

 

 

2.6.2 SAPS sampling – phytopigments associated with particulate organic 

matter 

 

Pre-ashed GF/F filters (22cm; 400oC; 24h) were used in each SAPS 

deployment (Table 2.5). In order to assess the potential source of the POM, 

SAPS were deployed in the upper water column at a depth that would collect 

sinking particles falling out of the biologically productive surface layers. This 
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was achieved by deploying the SAPS below the thermal mixed layer as 

determined by a preliminary CTD cast. Additionally, bottom water material 

was collected with the SAPS in order to capture the ‘phytodetritus’ which was 

evident on the seafloor (Wolff, 2006), but was not successfully sampled by 

sediment coring. After deployment, filters were wrapped in aluminium foil and 

immediately frozen (-80oC). The filter papers were divided for analysis of 

lipids (not for present study) and phytopigments. 

 

Site Station  Date Lat (S) Long (E) Depth Vol. filtered 
M5 15773#3 11/12/05 46o00.17’ 56o14.95’ 80m 55.75 L 
M5 15773#16 14/12/05 45o55.07’ 56o25.65’ 80m 285.50 L 
M5 15773#26 17/12/05 45o54.10’ 56o25.42’ 4241m 175.38 L 
M5 15773#41 24/12/05 45o56.41’ 56o25.49’ 80m 33.80 L 
M6 15775#9 28/12/05 49o04.43’ 51o14.89’ 60m 64.13 L 
M6 15775#15 30/12/05 49o11.41’ 51o09.56’ 4200m 183.63 L 
M6 15775#29 04/01/06 49o06.43’ 51o12.56’ 50m 99.75 L 

 

Table 2.6 Stand alone pump samples taken at sites M5 and M6 around the Crozet Islands in 
December 2005 – January 2006  

 

 

2.6.2 Extraction and quantification of phytopigments 

 

Abyssal sediment samples were lypholised (-60°C; 10-2T) and weighed prior to 

extraction. Acetone (90%) was added (6mL) to the lypholised sediment or 

SAPS filter, sonicated for 30 seconds and centrifuged at 3000rpm for ten 

minutes. The extract was passed through a (0.2 µm) Nyalo membrane filter 

(Gelman) prior to analysis to remove any remaining small particles. 

Phytopigments were quantified using either the method of Barlow et al. (1993) 

or Barlow et al. (1997), as described in section 2.3.2. 

 

Phytopigments in the POM from the SAPS samples were quantified (ng/l-1) 

using the following equation (Barlow et al., 1993): 

 

C = (ApVex1000)/(VfilRRfBVinj) 
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Where Ap is the peak area detected at 440nm, Vex is the extract volume (mL), 

Vfilt is the volume filtered through the SAPS (L), RRf is the response factor, B is 

the buffer dilution factor (0.5) and Vinj is the volume injected (100µL). 

 

 

2.6.3 Analysis of data 

 

Pigment concentrations (µg gDW-1) in the phytodetritus and sediment were 

compared for between years and/or between site differences. Pigment 

concentrations (µg L-1) in the SAPS samples were compared for between site 

differences. Statistical analysis of pigment concentrations were implemented 

with Minitab software (Version 12.21). Data were tested for their distribution 

using the Ryan-Joiner test (Ryan et al., 1976). The means of normally 

distributed data are compared using a two-way ANOVA; Friedmans method of 

randomised blocks was applied to data that do not meet the assumptions of 

normality or homogeneity of variance. The ratio of chlorophyll a to 

phaeophorbide is used to indicate freshness of phytodetrital material (Thiel et 

al., 1989). Sediment pigment biochemistry was finally compared to the 

holothurian gut wall and ovarian pigment profiles to examine the link between 

diet and holothurian ovarian biochemistry (which may exert a control on 

reproductive output); species gut sediment chlorophyll a concentrations were 

compared to assess their responses to a differing food supply. 
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Chapter 3 - Quantifying feeding ecology and selectivity – the 

gut contamination problem 
 

3.1 Introduction 

 

The diets of many deep-sea animals are unknown because of the difficulties of 

sampling and observing deep sea fauna (Howell et al., 2004). Stomach content 

analysis (by scanning electron microscope and light microscopy) has been used 

to determine diet and trophic interactions of deep-sea fauna (Carey, 1972; 

Khripounoff, 1979; Khripounoff and Sibuet, 1980; Jangoux, 1982; Tyler et al., 

1990; Tyler et al., 1992a; Tyler et al., 1992b; Pfannkuche and Lochte, 1993; 

Tyler et al., 1993; Campos-Creasey et al., 1994), but there are limitations in the 

method. Deep-sea animals can suffer loss of their ingesta or feed on other 

material in the trawl cod-end during capture and retrieval (Feller et al., 1985). 

Many deep-sea asteroid species feed extra-orally and so are rarely observed 

with any material in their stomachs (Carey, 1972). The identification of 

partially ingested material can also be problematic (Carey, 1972; Feller et al., 

1985; Tyler et al., 1992a; Tyler et al., 1992b) and there is variable resistance to 

degradation of different food items (Fukuda and Naganuma, 2001). 

 

New biochemical and isotopic approaches overcome the limitations associated 

with stomach content analysis and have aimed to determine diet in order to 

answer key ecological questions. For example, isotopes, such as 234Th,  13C and 
15N have been used successfully in the deep-sea to infer feeding selectivity and 

relative trophic status of organisms (Lauermann et al., 1997; Miller and Smith, 

2000; Iken et al., 2001). Lipid (fatty acids and sterols) analysis of tissue can be 

used to identify biomarkers of bacteria and phytoplankton species and their 

contribution to animal and protistan diets (Sargent et al., 1987; Ginger et al., 

2001; Gooday, 2002b; Suhr et al., 2003; Suhr and Pond, 2006). The feeding 

ecology of abyssal echinoderms has been determined using the lipid biomarker 

approach (Ginger et al., 2000; Ginger et al., 2001; Howell et al., 2003; Hudson 
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et al., 2004; Neto et al., 2006). Phytopigment biomarkers have frequently been 

used as a tracers in pelagic food webs (Kleppel and Pieper, 1984; Kleppel et al., 

1988; Breton et al., 1999; Gasparini et al., 2000; Cotonnec et al., 2001) and this 

technique has been transferred to deep-sea benthic fauna (Billett et al., 1988; 

Hudson et al., 2003; Wigham et al., 2003a; Howell et al., 2004). Chlorophyll a 

comprises a large fraction of algal photosynthetic pigments and is therefore 

widely used as a measure of marine algal biomass and productivity (Jeffrey et 

al., 1997). There is a wide range of accessory pigments (carotenoids and 

chlorophylls) found in algae, some of which are unique to specific algal taxa 

(Jeffrey et al., 1997). Carotenoids, essential for echinoderm reproduction 

(Matsuno and Tsushima, 1995; Matsuno and Tsushima, 2001) can be 

synthesised de novo only by plants, fungi, algae and bacteria (Goodwin, 1980) 

and it is thought that these essential compounds are in short supply in the deep 

sea (George and Young, 1998; Hudson et al., 2003; Wigham et al., 2003a). 

 

Comparisons between gut sediment and ovarian carotenoid profiles of deep-sea 

holothurians led Hudson et al. (2003) and Wigham et al. (2003a) to infer that 

some species feed selectively on organic matter enriched in specific 

carotenoids required for their reproduction. However, gut sediment samples of 

Oneirophanta mutabilis collected from the Porcupine Abyssal Plain (PAP) 

have been shown to be contaminated with holothurian-derived lipids (>C20 

fatty acids and ∆7sterols; Ginger et al., 2001). This contamination probably 

derived from unregulated lipolysis of phospholipid within the digestive tissue 

resulting from the death of organisms on recovery (Ginger et al., 2001). 

Presumably, if carotenoids are present and/or stored in the gut wall cells of the 

abyssal holothurians (as in the shallow water echinoid Strongylocentrotus 

dröbachiensis; Griffiths and Perrott, 1976) then they may also leach into the 

gut sediment upon recovery. This may explain why Witbaard et al. (2001) 

found canthaxanthin and high nucleic acid levels in the gut sediment of 

Oneirophanta mutabilis, but not in the surrounding sediment or sediment trap 

material. Canthaxanthin is a minor pigment in some diatoms and 

prymnesiophytes  (Jeffrey et al., 1997). It is also a metabolite of β-carotene 
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(Tsushima et al., 1995). The use of pigments as biomarkers in zooplankton diet 

has recently been questioned by Antajan and Gasparini (2004). Zooplankton 

store alloxanthin (as a possible precursor to astaxanthin) in their bodies, 

making it an unsuitable biomarker for cryptophytes in their diet (Antajan and 

Gasparini, 2004). They proposed that this pigment could have been obtained 

from their diet and/or by transformations of other dietary carotenoids.  

 

To examine the potential contamination of the gut sediment, by the leaching of 

compounds from the gut wall, two different holothurians - Amperima rosea and 

Psychropotes longicauda were investigated. Amperima rosea has a fragile gut, 

making it difficult to sample without contamination from the gut wall. 

Carotenoid profiles of the gut sediment and ovary of A. rosea are very similar 

(Wigham et al., 2003a). In contrast, P. longicauda has a large compact gut, 

which facilitates easier sampling of the gut sediment away from the gut wall. 

This species has different gut sediment and ovarian carotenoid profiles 

(Wigham et al., 2003a). Lipid analysis of the gut sediment and muscle tissue is 

used to assess if there is contamination of holothurian gut sediment. If the 

distinctive holothurian-derived compounds, C23:1 and C24:1 fatty acids (Ginger 

et al., 2000), are found in the holothurian gut sediment, contamination has 

occurred. The contribution of the holothurian-derived sterol choles-7-en-3β-ol 

relative to 24-ethylcholest-5-en-3ß-ol (ascribed to phytoplankton and is a 

dominant sterol in PAP sediments; Santos et al., 1994) is then used to assess 

the degree of contamination.  
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3.2 Lipid contamination results 

 

Amperima rosea and Psychropotes longicauda gut sediment samples were 

contaminated with holothurian-derived fatty acids, namely C23:1 and C24:1 

(Table 3.1). 

 

 C23:1 C24:1

892.99 1130.94
266.69 423.65

1331.83 4251.73
Amperima rosea gut 

sediment (n =4) 
177.41 301.92

Average 667.23 1527.06
 545.59 1852.85

107.95 42.73
320.28 53.29
263.24 105.33

Psychropotes longicauda 
gut sediment (n = 4) 

186.72 48.38
Average 219.55 62.43

 92.35 28.92
` 

 

Table 3.1.  Holothurian derived C23:1 and C24:1 lipids (µg/gDW) in the gut sediment 
of Amperima rosea and Psychropotes longicauda. Standard deviation in italics. 

 

The presence of the holothurian derived ∆7 sterol, choles-7-en-3β-ol (Ginger et 

al., 2000) (NB shorthand notation, first number = carbon number, second 

number = degree of unsaturation, ∆x = position of double bond) also suggests 

contamination from holothurian gut wall tissue.  The contribution of choles-7-

en-3β-ol relative to 24-ethylcholest-5-en-3ß-ol in A. rosea gut sediment 

samples (Table 3.2) was not statistically different to its contribution to the 

muscle tissue (t (6) = 0.3, P>0.05). Psychropotes longicauda muscle tissue 

lipid composition was taken from Neto (2002). The contribution of choles-7-

en-3β-ol to the gut sediment of P. longicauda (Table 3.2) is significantly lower 

than its contribution to the muscle tissue (t (25) = 10.13, P<0.05).  
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 24-ethylcholest-5-en-3ß-ol choles-7-en-3ß-ol % ratio choles-7-en-3ß-ol 

3033 394 11.5 
11089 1357 10.9 

304 105 25.8 
108 9 7.4 

Amperima rosea 
gut sediment  

(n = 4) 
  13.9 (8.1) 

356 57 13.9 
242 39 13.9 

6733 837 11.1 
7695 1021 11.7 

Amperima rosea 
muscle tissue 

(n = 4) 
  12.8 (1.46) 

575 22 3.66 
446 72 13.93 
594 32 5.1 
328 28 7.84 

Psychropotes 
longicauda  

gut sediment 
(n = 4) 

  7.6 (4.5) 
130 90 41.4 
110 50 29.6 
140 20 12 
130 50 29.2 

90 330 79.4 
0 90 100 

40 210 83.1 
80 90 53.6 

470 1330 74.1 
0 90 100 
0 160 100 
0 90 100 

110 350 76.4 
0 900 100 

180 360 66.2 
570 210 27.2 
250 490 66 
240 240 50.4 

0 70 100 
0 770 100 

380 1180 75.6 
150 570 78.6 
190 510 73 

Psychropotes 
longicauda 

muscle tissue 
(n = 23) 

70.2 (27.6) 
 

 

Table 3.2.  Holothurian derived choles-7-en-3ß-ol and`24-ethylcholest-5-en-3ß-ol (µg/gDW) in the 
gut sediment and muscle tissue of Amperima rosea and Psychropotes longicauda (muscle tissue 
data from Neto (2002). % ratio choles-7-en-3ß-ol = percentage contribution of choles-7-en-3ß-ol 
to the choles-7-en-3ß-ol and 24-ethylcholest-5-en-3ß-ol total. (Average in bold, standard deviation 
in italics) 
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3.3 Discussion - the use of biomarkers to determine feeding ecology and 

selectivity 

 

Similar % ratios of the holothurian derived choles-7-en-3β-ol to the gut 

sediment and muscle tissue suggests the gut sediment of Amperima rosea is 

fully contaminated by holothurian derived material from the lysis of the gut 

wall during recovery, i.e. the same proportion of holothurian derived material 

is found in the gut sediment and muscle tissue. This result is not surprising 

because of the fragile nature of the gut wall and the ‘sloppy’ gut content of A. 

rosea. It is hard to sample the gut sediment without an orange/pink mucus-like 

contamination from the gut wall (personal observation). High concentrations of 

carotenoids found in the gut sediments of A. rosea (present study, Chapter 4, 

Wigham et al., 2003a) are likely to derive from their gut walls. The 

concentration of carotenoids in the gut wall of A. rosea is the highest of all 

holothurians sampled in the present study (Chapter 2); two orders of magnitude 

greater than that of Psychropotes longicauda. If lysis of the gut wall occurs, 

leading to contamination of the gut sediment, holothurian derived high 

carotenoid concentrations will mask the phytopigment composition of the 

sediment ingested by the holothurian. Although P. longicauda had significantly 

less holothurian-derived contamination in its gut sediment than found in the 

muscle tissue, the presence of choles-7-en-3β-ol and C23:1 and C24:1 fatty acids 

in the gut sediment suggest there is nonetheless some degree of contamination.  

 

The gut sediment of A. rosea from the PAP was also analysed for 

phytopigment content (Appendix 1). Ten out of fourteen samples contained no 

chlorophyll a but they did contain high concentrations of carotenoids. Of these 

carotenoids present in the gut sediment of A. rosea, echinenone and 

canthaxanthin (known metabolites of echinoderms (Tsushima et al., 1993b), 

were not observed in the surrounding phytodetritus or sediment (Chapter 4 Fig. 

4.1) (Appendix 1). Echinenone and Ccanthaxanthin were observed in the gut 

wall of A. rosea (Chapter 4) further suggesting that the carotenoids in the gut 

sediment in this species were holothurian derived and not only ingested 
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selectively. This has been observed before; canthaxanthin was one of the 

principal pigments found in the gut sediment of Oneirophanta mutabilis, but 

the pigment was absent from the sediment and sediment trap material 

(Witbaard et al., 2001).  

 

The results of this study suggest that the use of biomarkers in the gut content of 

deep-sea organisms should be used with caution when determining feeding 

ecology. If compounds are assimilated and/or stored by gut wall cells, these 

compounds may leach back into the gut sediment through the lysis of cells 

during recovery, and can lead to a misleading conclusion of selective feeding. 

The findings of the present study may therefore invalidate the inferences of 

previous studies that have used biomarkers present in the gut sediment as 

proxies for feeding ecology.  

 

Wigham (2003a) and Hudson (2004) inferred that the high carotenoid 

concentrations, as well as similar gut sediment and ovarian biochemical 

profiles, were indicative of A. rosea selectively feeding on specific carotenoids 

that are assimilated directly into its ovaries. The present study shows A. rosea 

gut sediment is contaminated by holothurian-derived compounds from the gut 

wall. Amperima rosea is a selective feeder on fresh OM (Iken et al., 2001), but 

contamination from the carotenoid enhanced gut wall will mask the pigment 

composition of the ingested OM. Seasonal variations in the diet of bathyal 

holothurians, inferred by the pigment composition of their gut sediment 

(Hudson et al., 2003), may have reflected seasonal changes in the holothurians 

gut wall carotenoid composition rather than changes in diet. Gut sediment 

contamination from the gut wall may also invalidate the inference of the study 

by Howell et al. (2004), which suggested specific phytoplankton groups 

contributed to the diet of two deep-sea asteroids. 

 

Biomarkers for feeding ecology other than pigments will also be subject to gut 

sediment contamination, if the compounds are also present in the gut wall of 

the organism.  It is likely that the values given for the selectivity, concentration 

 71



in the gut and assimilation efficiency of lipids and proteins by the abyssal 

holothurians Deima validum and Pseudostichopus villosus (Sibuet et al., 1982) 

were affected by contamination from the gut wall. Selectivity values (i.e. 

concentration in the gut sediment compared to the surrounding sediment) may 

be exaggerated if compounds leach back into the gut sediment from the gut 

wall. Assimilation by the holothurian may therefore be underestimated. A 

separate study of total organic carbon and nitrogen in the gut contents of P. 

villosus, Oneirophanta mutabilis and Psychropotes longicauda (Moore and 

Roberts, 1994) may also be compromised.  

 

The selection of ‘fresh’ material can be inferred from biomarkers in the gut 

sediment that are not assimilated by the animals, for example, chlorophyll a. 

This method has been used successfully to infer the feeding strategies of 

abyssal holothurians through gut sediment chlorophyll a content (Moore and 

Roberts, 1994; Duineveld et al., 1997; Witbaard et al., 2001). Furthermore, 

temporal variability in biomarker distributions in tissue samples (gut wall and 

ovaries of a particular species) can be related to the selectivity of the species 

for specific compounds (Neto et al., 2006). For example, consistent biomarker 

profiles may suggest the compounds are assimilated selectively and therefore 

the species may rely on the supply of these compounds in the diet. 

 

The main implication of this gut contamination study on the remainder of the 

present project is that the selectivity of species for specific carotenoids cannot 

be established by examining the carotenoid biochemistry of the gut sediment. 

This should be taken into account when planning future deep-sea feeding 

studies. Only chlorophyll a is used to determine the selectivity of fresh OM by 

the holothurians in the present study. The intraspecific consistency of the gut 

wall and ovarian carotenoid profiles will provide evidence for the requirement 

of species for specific carotenoids. A consistent profile suggests the species 

may benefit if there is an enhanced supply in the OM reaching the seafloor of 

the specific carotenoids found in the tissue samples. 
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Chapter 4 – The link between diet and abyssal holothurian 

ovarian biochemistry; a temporal study at the Porcupine 

Abyssal Plain 
 

4.1 Introduction – aim of the Porcupine Abyssal Plain study 

 

Understanding how climate can affect Particulate Organic Carbon (POC) 

quantity and quality, and the different ways in which abyssal taxa utilise POC, 

are important areas of investigation (Ruhl, 2007). Changes in the community 

structure over time at abyssal depths, as seen at the PAP (Billett et al., 2001) 

have substantial ecological implications; for example, they affect the rates and 

intensity of bioturbation (Bett et al., 2001). Comprehending these changes and 

their effects on the processing of organic matter arriving at the sediment 

surface is critical for understanding the carbon cycle. The influence of climatic 

variation on the resources available to terrestrial, freshwater and marine flora 

and fauna has highlighted the impact such changes can have on community 

structure (Weltzin and Mcpherson, 1997; Harrington et al., 1999; Walther et al., 

2002). The dominance (abundance and biomass) of holothurians at abyssal 

depth (Billett, 1991), and their apparent response to food supply (Ruhl and 

Smith, 2004), supports their use as an indicator group for understanding the 

effects of climate variation on abyssal benthos and the long-term sequestration 

of carbon (Ruhl, 2007).  

 

Feeding selectivity has been demonstrated in holothurians from the PAP using 

various methods. Iken et al. (2001) used stable isotope analysis and gut content 

analysis to study the trophic positions of holothurians at the PAP. Seasonal 

differences in holothurian muscle lipid biochemistry has been related to the 

feeding mode of the species (Hudson et al., 2004) and changes in food supply 

(Neto et al., 2006). Witbaard et al. (2001) used chlorophyll a as a biomarker for 

the feeding selectivity of Oneirophanta mutabilis. Wigham et al. (2003a) and 
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Hudson et al. (2003) quantified the carotenoids in the gut sediment of the 

holothurians and related interspecies differences to feeding selectivity.  

 

The pigment biochemistry of the ovaries of abyssal holothurians from the PAP 

show intraspecies consistency, but interspecies differences (Wigham et al., 

2003a; Hudson, 2004). Carotenoids are reproductively important compounds 

that can only be made de novo by phytoplankton; it is believed they cannot be 

synthesised by holothurians. Comparisons between the gut sediment and 

ovarian pigment profiles led Wigham et al. (2003a) and Hudson et al. (2003) to 

suggest that Amperima rosea feeds selectively on reproductively important 

compounds. It is postulated that the supply of specific compounds to the deep-

sea floor may favour some species, initiating community change. An increase 

in the supply of zeaxanthin (a pigment associated with cyanobacteria) to the 

PAP is suggested to favour A. rosea because of the high concentration and 

percentage contribution of this carotenoid over others in its ovaries.  

 

High concentrations of nucleic acids in the gut sediment of O. mutabilis 

suggests that this species contains high numbers of actively-dividing bacteria in 

its gut, although these compounds may also have been derived from cell lysis 

of the gut epithelium (Witbaard et al., 2001). Ginger et al. (2001) and the 

present study (Chapter 3) indicates holothurian gut sediment is contaminated 

with holothurian derived lipids from the lysis of gut wall cells during recovery. 

This contamination has inhibited the reliable determination of organic matter in 

the gut sediment of abyssal holothurians (Ginger et al., 2001) and may also 

preclude the use of carotenoids as biomarkers of feeding selectivity, if they are 

found in gut wall tissue.  

 

The aim of the present PAP temporal study is to examine the influence of a 

changing food supply on the diet and ovarian biochemistry of abyssal 

holothurians at the PAP. This was approached by analysing holothurian gut 

sediment for chlorophyll a to assess selective feeding, analysing holothurian 

gut wall tissue and ovaries for their pigment biochemistry and comparing these 
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data with the phytodetritus and sediment pigment composition. Details of the 

methods and a general introduction to the study site can be found in Chapter 2. 

Within year interspecies differences and between-year differences will be 

discussed and related to the feeding mode and reproductive adaptations of the 

species. 
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4.2 Results 

 

4.2.1 Phytopigments in the phytodetritus and sediment - June 2004 and July 

2005 

 

Ten pigments were identified in the phytodetritus and sediments sampled in 

June 2004, and twelve in July 2005 (Tables 4.1 and 4.2; Fig. 4.1). Phytodetritus 

consistently had higher concentrations of phytopigments compared to the top 

5mm section of the sediment. Furthermore, the top 5mm of sediment 

consistently yielded greater concentrations of phytopigments compared to the 5 

to 10mm section of sediment. Phaeophorbide a was a dominant pigment in the 

phytodetritus in both years, although in July 2005, 19’-butanoyloxyfucoxanthin 

was present in similar concentrations to phaeophorbide (Table 4.2). In June 

2004, chlorophyll c2, diatoxanthin and β-carotene were present in the 

phytodetritus, but were absent in surficial sediment samples (0 to 5mm). 

Diatoxanthin and zeaxanthin were present in the phytodetritus but not the 

sediment in 2005 (Fig. 4.1). Chlorophyll c2, a marker for a range of algal 

groups (Cryptophyta, Bacillariophyta, Dinophyta, Chrysophyta and 

Haptophytes) (Jeffrey et al., 1997), was present in the phytodetritus in June 

2004 but not July 2005. 19’-butanoyloxyfucoxanthin and 19’-

hexanoyloxyfucoxanthin (both markers of prymnesiophytes and some 

dinoflagellates) were absent in the phytodetritus and surficial sediment in June 

2004; together they contributed a large percentage of the total in 2005 (Table 

4.2). 

 

Nine pigments co-occurred in surficial sediments from 2004 and 2005. All 

were found in higher concentrations in 2004 (Fig. 4.1). The concentration and 

percentage contribution of chlorophyll a was greater in the phytodetritus in 

2004 (0.26 µg gDW-1; 20%) than in 2005 (0.006 µg gDW-1; 1%) (Tables 4.1 

and 4.2). Concentrations of chlorophyll a, which is associated with intact 

phytoplankton cells and is an indicator of the contribution of fresh organic 

matter (Stephens et al., 1997), was 9 times greater in the phytodetritus than in 
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the surficial sediment in June 2004, but present in similar concentrations in the 

phytodetritus and surficial sediment in July 2005. The percentage contribution 

of phaeophytin was much greater in the surficial sediment than in the 

phytodetritus. Phaeophytin was the greatest contributor to the total pigment 

load in surficial sediment in 2004 and 2005 (Tables 4.1 and 4.2).  

 

 

 phytodetritus 
(n = 4) 

phytodetritus 
% total 

0 to 0.5cm 
sediment (n = 3) 

0 to 0.5cm 
sediment 
% total 

0.005 0.4% 0   Chlorophyll c2 
0.006 0.4%     

0.204 15.7% 0.024 19.24% Fucoxanthin 
0.215 16.5% 0.008 6.02% 

0.038 2.9% 0.002 1.26% Diadinoxanthin 
0.044 3.4% 0.003 2.18% 

0.126 9.7% 0.006 4.51% Alloxanthin 
0.139 10.7% 0.006 4.92% 

0.013 1.0% 0   Diatoxanthin 
0.014 1.1%     

0.153 11.8% 0.014 10.82% Zeaxanthin 
0.148 11.4% 0.004 3.38% 

0.263 20.2% 0.029 22.83% Chlorophyll a 
0.279 21.4% 0.010 7.62% 

0.056 4.3% 0   β-carotene 
0.053 4.1%     

0.345 26.5% 0.020 15.70% Phaeophorbide 
0.292 22.4% 0.015 12.01% 

0.099 7.6% 0.032 25.64% Phaeophytin 
0.069 5.3% 0.001 0.91% 

 

 
 

Table 4.1 Average concentration (µg gDW-1) of pigments and average percentage 
contribution to the total identified pigment load in the sediment and phytodetritus 
sampled in June 2004. (Standard deviation in italics)
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phytodetritus 
(n = 3) 

phytodetritus 
% total 

0 to 
0.5cm 

sediment 
(n = 3) 

0 to 
0.5cm 

sediment 
% total 

0.5 to 
1cm 

sediment 
(n = 3) 

0.5 to 
1cm 

sediment 
% total 

0.111 26.6% 0.012 13.1% 0.004 15.3% 19’-butanoyloxyfucoxanthin 
0.080 19.3% 0.016 16.9% 0.005 18.5% 

0.026 6.2% 0.003 3.5% 0.001 3.7% Fucoxanthin 
0.020 4.8% 0.004 4.1% 0.002 6.4% 

0.031 7.3% 0.014 14.9% 0.005 20.3% 19’-hexanoyloxyfucoxanthin 
0.024 5.8% 0.010 10.3% 0.005 19.2% 

0.009 2.1% 0.001 1.6% 0  Violaxanthin 
0.006 1.4% 0.002 1.7%     

0.036 8.7% 0.006 6.0% 0.001 5.5% Diadinoxanthin 
0.025 6.1% 0.006 6.0% 0.002 6.0% 

0.020 4.9% 0.010 11.3% 0  Alloxanthin 
0.018 4.2% 0.014 14.8%    
0.002 0.4% 0.0004 0.4% 0  Diatoxanthin 
0.002 0.4% 0.0007 0.7%    

0.002 0.4% 0  0  Zeaxanthin 
0.003 0.6%        

0.006 1.4% 0.005 5.7% 0  Chlorophyll a 
0.006 1.5% 0.005 5.0%    
0.010 2.4% 0.002 2.1% 0  ß-carotene 
0.009 2.2% 0.003 3.7%     

0.119 28.7% 0.015 16.1% 0.004 16.1% Phaeophorbide 
0.121 29.0% 0.014 15.4% 0.004 15.3% 

0.045 10.9% 0.023 25.2% 0.010 39.1% Phaeophytin 
0.030 7.2% 0.011 11.7% 0.009 33.0% 

 

 

Table 4.2 Average concentration (µg gDW-1) of pigments and average percentage contribution to the 
total identified pigment load in the sediment and phytodetritus sampled in July 2005. (Standard 
deviation in italics) 
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Figure 4.1 Phytopigments found in 1) the phytodetritus, 2) 0 to 0.5cm and 3) 0.5 to 1cm of sediment 
from (a) June 2004 and (b) July 2005 (mean μg gDW-1 ± SD). Fucox = fucoxanthin; Diad = 
diadinoxanthin; Allox = alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Chl a = chlorophyll 
a; β-carot = β-carotene; Phorbide = phaeophorbide; Phytin = phaeophytin; 19'but = 19'-
butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; Violax = violaxanthin; Chl 2 = 
chlorophyll c2. (note different scales on y-axis). 

 
Table 4.3 gives the ratios of chlorophyll a to phaeophorbide for each 

phytodetritus sample. The phytodetritus in 2004 had an average chlorophyll a: 

phaeophorbide ratio of 0.67 (S.D ± 0.15) compared to 0.29 (S.D. ± 0.49) in 

2005. Because of the high variability in 2005, there was no significant 

difference (t(5) = 1.84, P>0.05) in this ratio between the years. 
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  Chlorophyll a Phaeophorbide Chl:Phorb ratio Average Standard 
deviation 

0.058 0.110 0.525   
0.142 0.209 0.680   
0.176 0.292 0.604   

Phytodetritus 
June 2004 

(n = 4) 
0.674 0.768 0.878 0.672 0.151 
0.012 0.014 0.856   
0.005 0.251 0.021   

Phytodetritus 
July 2005  

(n = 3) 0 0.093 0 0.292 0.488 
 

 
 

Table 4.3 Chlorophyll a and phaeophorbide concentrations (μg gDW-1) and chlorophyll a to 
phaeophorbide ratios (Chl:Phorb ratio).  

 

4.2.2 Chlorophyll a in holothurian gut sediment 

 

All species had chlorophyll a gut sediment concentrations (µg gDW-1) higher 

than that of the sediment or phytodetritus, with the exception of Molpadia 

blakei (Tables 4.2, 4.3 and 4.4). Chlorophyll a was absent in the gut sediment 

of M. blakei sampled in 2005. Chlorophyll a was absent in ten of the fourteen 

samples of Amperima rosea gut sediment (only sampled in 2004). Average gut 

sediment chlorophyll a concentration was 1.19 µg gDW-1 when all A. rosea 

samples are included. The average concentration of the four A. rosea 

specimens containing chlorophyll a was 4.16 µg gDW-1; this is greater than the 

average chlorophyll a gut sediment concentration of the other species sampled 

(Table 4.4; Figure 4.2).  

 

Chlorophyll a concentrations in the gut sediment of Oneirophanta mutabilis 

and Psychropotes longicauda were significantly greater in 2004 than in 2005 

(t(12) = 3.58, P<0.05; t(11) = 2.19, P<0.05, respectively). Variability in O. 

mutabilis gut sediment chlorophyll a concentration was high in 2004. There 

was no significant between-year difference in chlorophyll a gut sediment 

concentration in Paroriza prouhoi (t(5) = 0, P>0.05). The gut sediment 

chlorophyll a concentration of O. mutabilis was significantly greater than that 

of P. longicauda in 2004 (t(12) = 2.24, P<0.05), but was the same in 2005 (t(11) 

= 0.71, P>0.05). Although gut chlorophyll a concentrations were similar for all 
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holothurians (with the exception of m. blakei) in 2005, statistical analysis 

suggests there were interspecific differences (F4,25 = 1.42, P>0.05), which can 

be attributed to the lower concentration of Pseudostichopus villosus and higher 

concentration of P. aemulatus (Fig. 4.2).  

 

  June 2004 July 2005 
1.19 (4.16) Nc  Amperima rosea 

(n = 14) 2.02 (1.06)   
1.88  Nc Peniagone diaphana 

(n = 5) 1.58   
2.60 0.40 Oneirophanta mutabilis 

(n = 9; 2004, 5; 2005) 1.81 0.24 
0.72 0.32 Psychropotes longicauda 

(n =  5; 2004, 8; 2005) 0.48 0.16 
0.45 0.45 Paroriza prouhoi 

(n =  4; 2004, 3; 2005) 0.45 0.33 
 Nc 0.63 Pseudostichopus aemulatus 

(n = 5)   0.64 
 Nc 0.20 Pseudostichopus villosus 

(n = 9)   0.27 
Nc 0 Molpadia blakei 

(n = 4)   
 

 

Table 4.4 Chlorophyll a (μg gDW-1) in the gut sediment of holothurians sampled in 
June 2004 and July 2005.  Average concentration of A. rosea specimens containing 
chlorophyll a in their gut sediment (i.e. excluding zero values) is given in brackets – 
see text for details.  Standard deviation in italics. (Nc = not collected) 
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Sampled in 2004 only Sampled in 2004 and 2005 Sampled in 2005 only

 
 

 
 

Figure 4.2 Chlorophyll a concentration (mean μg gDW-1 ± SD) in the gut sediment 
of different holothurian species sampled at PAP in June 2004 (light grey) and July 
2005 (dark grey). (Amperima rosea mean gut chlorophyll a concentration based on 
all samples, including samples with empty guts,  indicated by white histogram - see 
text). 

 
4.2.3 Interspecies comparisons of gut wall and ovarian carotenoid 

biochemistry – June 2004 

 

Quantitative comparisons of the gut walls and ovaries of animals sampled in 

June 2004 show that they contain carotenoids (Tables 4.5 & 4.6; Fig. 4.3). The 

total concentration of carotenoid pigments (µg gDW-1) in different species 

varied considerably. For example, A. rosea had pigment concentrations an 

order of magnitude greater than O. mutabilis and Peniagone diaphana, and two 

orders of magnitude greater than Psychropotes longicauda and Paroriza 

prouhoi (Fig. 4.3). Variability of the pigment concentrations in the gut wall and 

ovary was often high. This was particularly apparent for Psychropotes 

longicauda and Paroriza prouhoi, and the gut wall of O. mutabilis. 

Carotenoids found in the greatest concentrations in the gut wall and ovaries of 

A. rosea and O. mutabilis were zeaxanthin and β-carotene respectively; they 

contributed >24% of the total identified pigment load (Tables 4.5 and 4.6). 
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These two carotenoids are also the most variable in their concentration in these 

species. 

 
 
MDS ordinations of the square root transformed pigment percentage 

contributions of the gut wall and ovary samples show some species clustering 

(Fig. 4.4 a and b). Amperima rosea shows the tightest species-specific 

clustering in both the gut wall and ovarian tissues, indicating the specimens 

had a consistent biochemical profile. Species clustering was more defined for 

all species within the ovarian tissues. Psychropotes longicauda and Paroriza 

prouhoi gut wall samples showed the least species specific clustering. The 

outlying P. prouhoi sample to the top right of the MDS plot contained no β-

carotene and a high proportion of zeaxanthin; the outlying sample bottom right 

had relatively high proportion of canthaxanthin and low proportion of 

diadinoxanthin (Fig. 4.5 a). Psychropotes longicauda samples were spread 

from the left to the right of the plot; samples to the left contained higher 

proportions of echinenone; low proportions of alloxanthin and diadinoxanthin 

were evident in specimens placed to the right of the plot. Diadinoxanthin also 

accounted for the spread of samples of Peniagone diaphana on the MDS plot. 

The spread of O. mutabilis ovary samples from the centre to the top right 

reflected the relative contribution of β-carotene to the total pigment load; other 

carotenoids showed little variation in concentration (Fig. 4.3). Oneirophanta 

mutabilis appears to assimilate β-carotene selectively (Fig. 4.3); its 

contribution to the total pigment load in the ovarian samples ranged between 

30% and 70%. Paroriza prouhoi ovarian samples were spread from top right to 

centre of the MDS plot because of the presence or absence of alloxanthin and 

the increasing contribution of diadinoxanthin. 
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Figure 4.3. Pigment concentrations (mean μg gDW-1 ± SD) in the gut wall (light grey) and ovary 
(dark grey) of holothurians sampled at PAP in June 2004. Diad = diadinoxanthin; Allox = 
alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Canthax = canthaxanthin; Echin = 
echinenone; β-carot = β-carotene. (note different scales on y-axis) 
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2D Stress: 0.08

Gut wall

2D Stress: 0.1

Ovary

 
 
 

 
 

Figure 4.4  MDS ordination of individual holothurian gut wall (a) and ovary (b) samples from 
PAP June 2004, based on √-transformed pigment percentage contributions and Bray-Curtis 
similarities. Key: Filled triangles = Amperima rosea; open triangles = Oneirophanta mutabilis; 
filled squares = Peniagone diaphana; open squares = Psychropotes longicauda; crosses = 
Paroriza prouhoi. 

a) 

b) 
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4.2.4 Interspecies comparisons of gut wall and ovarian carotenoid biochemistry – July 

2005 

 

Oneirophanta mutabilis had the highest concentration of carotenoids in the gut wall and 

ovaries (µg gDW-1) of all holothurians sampled in July 2005; Psychropotes longicauda 

and Pseudostichopus aemulatus the least (Fig. 4.5). Pigment concentrations were very 

variable in the gut wall of all species but less so in their ovaries. 19’-

butanoyloxyfucoxanthin was present in the gut wall and ovaries of all species sampled, 

while 19’-hexanoyloxyfucoxanthin was not found in the ovaries of Molpadia blakei and 

Pseudostichopus aemulatus (Fig. 4.5). Both 19’-butanoyloxyfucoxanthin and 19’-

hexanoyloxyfucoxanthin were found in relatively lower concentrations compared to the 

other carotenoids present in the gut wall and ovary in O. mutabilis. β-carotene 

contributed to 25% and 51% of the total pigments in O. mutabilis gut wall and ovary, 

respectively (Table 4.7 and 4.8). 

 

Species-specific clustering is evident only for gut wall samples of O. mutabilis and M. 

blakei, and less so for Pseudostichopus villosus in the MDS ordination plot of 

percentage contribution (Fig. 4.6 a). Species specific clustering can be observed for O. 

mutabilis, Psychropotes longicauda and Paroriza prouhoi on the MDS ordination plot 

of ovarian samples. The clusters of these three species are also very close to each other 

(Fig. 4.6 b). Molpadia blakei shows species specific clustering with the exception of 

one sample, which contained no 19’-butanoyloxyfucoxanthin. Pseudostichopus 

aemulatus and P. villosus showed little ovarian species specific clustering. 
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Figure 4.5 Pigment concentrations (mean μg gDW-1 ± SD) in the gut wall (light grey) and ovary 
(dark grey) of holothurians sampled at PAP in July 2005. 19'-but = 19'-butanoyloxyfucoxanthin; 
19'-hex = 19'-hexanoyloxyfucoxanthin; Diad = diadinoxanthin; Allox = alloxanthin; Diatox = 
diatoxanthin; Zeax = zeaxanthin; Canthax = canthaxanthin; Echin = echinenone; β-carot = β-
carotene. (note different scales on y-axis) 
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Figure 4.6 MDS ordination of 26 individual holothurian gut wall (a) and 23 individual 
holothurian ovary (b) samples from PAP July 2005, based on √ -transformed pigment 
percentage contributions and Bray-Curtis similarities. Key: Open triangles = Oneirophanta 
mutabilis; filled circles = Molpadia blakei; open circles = Pseudostichopus aemulatus; open 
squares = Psychropotes longicauda; crosses = Paroriza prouhoi; stars = Pseudostichopus villosus. 
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4.2.5 Between-year intraspecies comparison 

 

Oneirophanta mutabilis, Psychropotes longicauda and Paroriza prouhoi were sampled 

June 2004 and in July 2005. Comparison of the mean concentrations of carotenoids in 

their gut wall samples show that all carotenoids (with the exception of 19’-

butanoyloxyfucoxanthin and 19-hexanoyloxyfucoxanthin) were present in greater 

concentrations in 2004 (Fig. 4.3 and 4.5). Diadinoxanthin, alloxanthin, diatoxanthin, 

zeaxanthin and canthaxanthin were found in significantly greater concentrations in the 

gut wall of Psychropotes longicauda in 2004 (t-test, P<0.05 – Appendix 2). Because of 

their high variability, the other carotenoids in this species and in the gut walls of O. 

mutabilis and Paroriza prouhoi did not differ significantly (t-test, P>0.05  - Appendix 2) 

between years.  

 

Average concentrations of carotenoids in the ovaries of Psychropotes longicauda and O. 

mutabilis were greater in 2004 with the exception of 19’-butanoyloxyfucoxanthin and 

19’-hexanoyloxyfucoxanthin (absent from samples taken in 2004) as well as alloxanthin 

and diadinoxanthin in O. mutabilis. There was no significant differences in the 

concentration of the carotenoids between the years (t-test, P>0.05 – Appendix 2) 

because of high variability. Paroriza prouhoi ovarian samples contained greater average 

concentrations of all carotenoids in 2005, with the exception of zeaxanthin, 

canthaxanthin and echinenone, although this was not significantly different (t-test, 

P>0.05).  

 
MDS ordination plot of gut wall pigment percentage contribution shows that O. 

mutabilis has the tightest interspecies and between year clustering (Fig. 4.7 a). 

Oneirophanta mutabilis samples taken from 2005 and 2004 cluster together because of 

the low relative contribution of 19’-butanoyloxyfucoxanthin and 19’-

hexanoyloxyfucoxanthin. These carotenoids only contribute a small amount (less than 

5%) to O. mutabilis gut wall total pigment loads, whereas for Psychropotes longicauda 

and Paroriza prouhoi they contribute to an average of 40% of the total load (Table 4.6). 

ANOSIM analysis indicates that P. prouhoi has significantly similar gut wall pigment 

composition between the years (ANOSIM R = 0.297, P<0.05; Table 4.8). This is 
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because the samples are widely spread and variable within each year – the sample 

replicates within each year are as similar to other replicates from the other year as they 

are to each other; there is no consistent biochemical pigment profile. Samples of 

Paroriza prouhoi samples from 2004 and 2005 show differences because of the 

contribution of 19’-butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin in 

samples taken in 2005. Psychropotes longicauda has similar between year pigment gut 

wall composition, but the R-statistic is not significant (ANOSIM R = 0.143, P>0.05; 

Table 4.8). Psychropotes longicauda 2005 samples are widely spread on the MDS plot 

and therefore variable in pigment percentage composition, which influences the 

probability of the ANOSIM result; the MDS ordination plot shows this species does not 

have a consistent biochemical profile in its gut wall between the years (Fig. 4.7 a). The 

P. longicauda 2005 outlying samples to the right of the plot contain only canthaxanthin, 

echinenone and β-carotene. Those to the left also contain varying proportions of 19’-

butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin, diatoxanthin, alloxanthin 

and diadinoxanthin. Oneirophanta mutabilis gut wall samples for the two years are 

found close together on the plot, but samples from the two sites are closely grouped, 

giving some degree of separation, which influences the probability of the low R-statistic 

suggesting samples from the two years are similar (ANOSIM R = 0.086, P = 0.244; 

Table 4.8).  

 

MDS ordination of the pigment percentage contributions in the ovaries show close 

clustering between years for O. mutabilis samples; the slight between year separation is 

caused by the small percentage (together less than 5%) contribution of 19’-

butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin in samples taken in 2005 

(Fig. 4.7 b). Oneirophanta mutabilis PAP 2004 samples are spread out on the plot 

because of the varying contribution of β-carotene ranging from 30% (samples in middle 

of MDS plot) to 70% (samples to top right of plot). ANOSIM analysis indicated 

Oneirophanta mutabilis samples showed no difference in composition between the 

years, but the R-statistic was not significant (ANOSIM R = 0.143, P>0.05; Table 4.9), 

because of the wide spread (variability) of the PAP 2004 samples (Fig. 4.7b). 

Psychropotes longicauda and Paroriza prouhoi samples were significantly different in 

their ovarian pigment biochemistry between years (ANOSIM R = 0.891 (Psychropotes 
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longicauda) R = 0.877 (Paroriza prouhoi), P<0.05; Table 4.9). Differences between the 

years for Psychropotes longicauda and Paroriza prouhoi can be attributed to the high 

percentage contribution of 19’-butanoyloxyfucoxanthin and 19’-

hexanoyloxyfucoxanthin and the decreased percentage contribution and concentration 

of zeaxanthin (Figs 4.3 and 4.5) in their ovaries. 
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Figure 4.7 MDS ordination of 32 individual holothurian gut wall (a) and 23 individual 
holothurian ovary (b) samples from PAP June 2004 and July 2005, based on √-transformed 
pigment percentage contributions and Bray-Curtis similarities. Key: filled triangles = 
Oneirophanta mutabilis June 2004; open triangles = Oneirophanta mutabilis July 2005; 
filled diamonds = Psychropotes longicauda June 2004; open diamonds = Psychropotes 
longicauda July 2005; filled circles = Paroriza prouhoi June 2004; open circles = Paroriza 
prouhoi July 2005 
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Group R-statistic Significance 
level 

O. mutabilis 2004 v O. mutabilis 2005 gut wall   0.086 P = 0.244  
O. mutabilis 2004 v O. mutabilis 2005 ovary -0.143 P = 0.732  
P. longicauda 2004 v P. longicauda 2005 gut wall  0.143 P = 0.123  
P. longicauda 2004 v P. longicauda 2005 ovary  0.891 P = 0.048* 
P. prouhoi 2004 v P. prouhoi 2005 gut wall  0.297 P = 0.032* 
P. prouhoi 2004 v P. prouhoi 2005 ovary  0.877 P = 0.018* 
 
 

 

Table 4.9 Results of similarity test (ANOSIM) comparing holothurian gut wall and ovarian 
pigment percentage contribution to the total load between June 2004 and July 2005. R-statistic 
= 1 only if all replicates within a sample are more similar to each other than any other 
replicates from different samples. * = significant 
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4.3 Discussion 
 

4.3.1 Supply of material to the sea-floor at the PAP 

 

The present study supports previous observations that in many oceanic areas there is no 

consistent food supply to the deep-sea benthos; compounds essential to the deep-sea 

benthic community vary temporally in their availability (Danovaro et al., 2001; 

Kiriakoulakis et al., 2001; Neto et al., 2006). For example, 19’-butanoyloxyfucoxanthin, 

19’-hexanoyloxyfucoxanthin and violaxanthin were present in the phytodetritus and 

sediment in July 2005 but were absent in June 2004, suggesting different phytoplankton 

groups contributed to the flux of OM to the seafloor. 19’-butanoyloxyfucoxanthin and 

19’-hexanoyloxyfucoxanthin are biomarkers of prymnesiophytes (e.g. Phaeocystis, a 

colony species that can form large blooms) and some dinoflagellates; violaxanthin is 

considered a biomarker for green algae: chlorophytes, prasinophytes and 

eustigmatophytes (small pico or nano-phytoplankton; Jeffrey et al., 1997).  

 

Temporal variability in the freshness of the phytodetritus and sediment was apparent. 

Chlorophyll a is associated with intact phytoplankton cells and phaeophorbide is 

apparently produced exclusively as a result digestion by herbivores (Lorenzen, 1967; 

Daley and Brown, 1973; Hendry et al., 1987). Chlorophyll a to phaeophorbide a ratios 

have been used to indicate freshness of phytodetrital material (Thiel et al., 1989). 

Greater chlorophyll a concentrations and chlorophyll a to phaeophorbide a ratios in the 

phytodetritus and sediment in June 2004 (0.26 µg gDW-1; average ratio of 0.67 in 

phytodetritus) indicate the material at the seafloor was fresher than in July 2005 (0.006 

µg gDW-1; average ratio of 0.29 in phytodetritus), at least at the time of sampling. These 

results are similar to those seen before at the PAP. A chlorophyll a to phaeophorbide a 

ratio of 0.23 was recorded at the PAP in July 1997, while a high ratio of 1.33 was 

recorded in September 1996 after a large flux of relatively fresh phytodetritus (Witbaard 

et al., 2000). The compositional spectrum of amino acids can be used to quantify 

degradation and have shown high flux events are linked to fresher OM reaching the 

seabed at the PAP (Salter, 2007). A sediment trap moored at 3000 m over the PAP site 

has showed between year differences in the mass flux of material (Lampitt et al., 2001; 
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Lampitt, 2008). The timing of the flux to the seafloor at PAP was late May/early June in 

2004 and early May in 2005 (Lampitt, 2008). Mass flux of material in June 2004 was 

between 150-200 mg m-2d-1, over double that of 20-50 mg m-2d-1 in June and July 2005. 

This contrast in the mass flux to the seafloor was mirrored in the amount of carbon in 

the flux of OM (Lampitt, 2008). Spatial variability in the freshness of the phytodetritus 

was also more pronounced in 2005 than in 2004, as indicated by the high variability 

(greater than the mean) in the chlorophyll a to phaeophorbide a ratio in 2005. The 

higher concentrations of phaeophorbide in the phytodetritus and, conversely, 

phaeophorbide in the sediment may be related to their degradation rates. Phaeophorbide 

are preferentially degraded at the sediment surface in comparison to phaeophytin (Keely 

and Brereton, 1986; Hurley and Armstrong, 1990). 

 

The chemical composition of OM is known to vary temporally and spatially at the PAP 

seafloor (Santos et al., 1994; Kiriakoulakis et al., 2001; Witbaard et al., 2001; Neto et 

al., 2006). For example, chlorophyll a concentrations in the top 1mm of sediment at the 

PAP ranged from 0.009 to 0.033 µg gDW-1 (converted from ng cm-3 by Wigham, 2002 

in samples collected between September 1996 to September 1998 (Witbaard et al., 

2001)). In the present study, chlorophyll a concentrations in the sediment and 

phytodetritus were 0.03 and 0.26 µg gDW-1, respectively in June 2004 and 0.005 and 

0.006 µg gDW-1 respectively in July 2005. Hudson (2004) measured both carotenoids 

and chloropigments in PAP sediments in October 2002 and reported a chlorophyll a 

concentration of 0.12 µg gDW-1 in the top 1mm sediment. Large differences in the 

percentage contributions of individual pigments are apparent when compared to the 

present study. β-carotene made up the highest percentage (> 18% of the total pigments) 

in October 2002 (Hudson, 2004) whereas in the present study it contributed only 4% in 

2004 and 2% in 2005 to the total pigment load in the phytodetritus, and was absent 

(2004) or a minor component (2%; 2005) of the total pigment load in the surficial 

sediment. These differences may be attributed to variability in supply, but they may also 

be a function of the thickness of the sections of sediment analysed in each study – 1mm 

(Hudson, 2004) compared to 5mm (present study). This highlights the need to 

standardise future sampling protocols. 
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Concentrations and the variety of pigments were greater in the phytodetritus than in the 

sediment in both years. This suggests that species with the capibility to locate and feed 

selectively on phytodetrital material, would have been exposed to a greater 

concentration and range of pigments. Some carotenoids (diatoxanthin and β-carotene – 

June 2004; diatoxanthin and zeaxanthin – July 2005) utilised by the holothurians were 

only available in the phytodetritus. As in previous studies of intact proteins and 

individual lipids in PAP sediments (Kiriakoulakis et al., 2001) phytopigment 

concentrations in the present study decreased with sediment depth. The increased 

percentage contribution of phaeophytin in the deeper strata of sediment result in its 

formation from the breakdown of chlorophyll a (Hendry et al., 1987) and/or its greater 

stability in comparison to the other pigments. Degradation rates of pigments in the deep 

sea are not known. Chlorophyll a to phaeophorbide ratios cannot be used to determine 

the freshness of the sediment because of the selective degradation of phaeophorbide in 

relation to chlorophyll and phaeophytin in sediments (Hendry et al., 1987). Such 

selective degradation would give misleading chlorophyll a to phaeophorbide ratios. 

 

 

4.3.2 Chlorophyll a in the gut sediments of holothurians 

 

Concentrations of chlorophyll a in the guts of holothurians differed greatly between 

species suggesting some species are more capable of utilising fresh organic matter. 

Amperima rosea had a high chlorophyll a concentration in its gut sediment. However, 

the variability of concentration was high because of the absence of chlorophyll in some 

samples. The contrast between 1) the absence and 2) high concentrations of chlorophyll 

a in A. rosea gut sediment suggests this species feeds selectively on the freshest 

material when it can find it. Between 1997-1998 at the PAP, when abundance of 

Amperima rosea was high, the species exhibited a high tracking rate of 110 cm2 d-1 m-2, 

which was 20 times greater than the other holothurians during the same period (Bett et 

al., 2001). Stable isotope and microscope analysis of A. rosea gut contents have shown 

that it selects fresh material (Iken et al., 2001). Wigham et al. (2003a) and Hudson 

(2004) reported high chlorophyll a concentrations in the gut sediment of A. rosea 

relative to the other species sampled, but did not note any specimens lacking 
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chlorophyll a. Amperima rosea gut sediment chlorophyll a concentrations were 45.94 (± 

40.41) and 30.85 (± 3.63) µg gDW-1 in October 2000 and March 2002, respectively 

(Wigham et al., 2003a). The gut sediment chlorophyll a concentrations were much 

lower in October 2002 (Hudson, 2004) and June 2004 (present study) with values of 

3.45 (± 3.23) and 1.18 (± 2.01) µg gDW-1, respectively. The lower concentrations in 

more recent samples (and the absence of chlorophyll a from some specimens in June 

2004) may be a function of the interannual variability in the amount of fresh 

phytodetritus reaching the seafloor at the PAP (Salter, 2007; Lampitt, 2008). Bathysnap 

(time-lapse camera) and sediment trap records were incomplete for the years sampled in 

the times series. However, sediment trap records in 2001 show enhanced OM flux 

producing an order of magnitude more organic carbon at the sediment surface (Lampitt 

et al., 2001; Lampitt, 2008). 

 

Peniagone diaphana and O. mutabilis also show greater selection for fresh material, 

(although greater variability is evident in O. mutabilis) compared with Psychropotes 

longicauda and Paroriza prouhoi in June 2004. These differences probably reflect their 

feeding modes. Oneirophanta mutabilis is a picker, using its digitate tentacles to 

transfer sediment into its mouth (Roberts et al., 2000). It also has high rate of 

locomotion for a holothurian (Roberts et al., 2000). Peniagone diaphana is a 

benthopelagic holothurian but feeds at the sediment surface (Billett, 1991) on fresh OM 

(Iken et al., 2001). Psychropotes longicauda also feeds on the sediment surface, but its 

peltate tentacle structure (sweeping sediment into the mouth) suggests it is less selective 

(Roberts et al., 2000). This is supported by the fact that the body tissue of P. longicauda 

is relatively enriched in the heavy isotope of nitrogen, 15N, suggesting it feeds on more 

refractory (less fresh) material (Iken et al., 2001). Paroriza prouhoi has similar heavy 

isotope 15N values to that of Molpadia blakei (a known subsurface feeder), which 

indicates both species feed on the same refractory material (Iken et al., 2001). Direct 

observations of Paroriza pallens, a closely related species found at bathyal depths, have 

shown it moves very slowly through the sediment (Paul Tyler, pers comm.) feeding on 

sub-surface sediment fractions (Roberts et al., 2000). 
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Chlorophyll a concentrations in the gut sediments of holothurians sampled in 2005 were 

similar among species, with the exception of M. blakei, an unselective subsurface feeder 

(Khripounoff and Sibuet, 1980; Roberts et al., 2000). In the present study, no 

chlorophyll a was found in the sediment below 5mm, which explains the absence of 

chlorophyll a from the gut sediment of M. blakei.  

 

Oneirophanta mutabilis and Psychropotes longicauda have a greater concentration of 

chlorophyll a gut sediments in 2004 than in 2005, which probably reflects fresher and 

less patchy phytodetritus in 2004. Gut sediment chlorophyll a concentrations in O. 

mutabilis were not significantly different to P. longicauda in 2005, suggesting they had 

similar encounter rates with fresh material, despite the greater selectivity for fresher 

material by O. mutabilis. The concentrations of chlorophyll a in the gut sediments of O. 

mutabilis have been shown to correlate with those in the top 1mm of sediment at PAP 

(Witbaard et al., 2001). The present study also supports the suggestion of Neto et al. 

(2006) that O. mutabilis feeds on the same material as P. longicauda when fresh organic 

matter is scarce. Concentrations of  chlorophyll a in the gut sediments of  Paroriza 

prouhoi were not significantly different between years, suggesting it is not a selective 

forager or feeder on fresh OM, a conclusion consistent with previous studies 

(Khripounoff and Sibuet, 1980; Billett et al., 1988). Species of the genus Paroriza leave 

‘plough tracks’ in their wake, suggesting that they move through, and ingest the top few 

millimetres of sediment (Tyler et al., 1992b).  Chlorophyll a concentrations in the top 

5mm sediment were only slightly higher in 2004 than in 2005 (0.029 µg gDW-1 ± 0.010 

and 0.005 µg gDW-1 ± 0.005 respectively), but showed high variability; this may have 

contributed to the similar between-year P. prouhoi gut sediment chlorophyll a 

concentrations. Pseudostichopus aemulatus has a slightly higher, but variable gut 

sediment chlorophyll a concentration to that of its congener P. villosus and other 

holothurian species sampled in 2005, although this is not statistically significant 

because of the variability of the samples. Pseudostichopus villosus ‘ploughs’ slowly 

through the sediment, probably ingesting sediments from 1-2cm depth (Billett, 1991; 

Moore and Roberts, 1994). Therefore, P. villosus will only be able to exploit the deeper 

carotenoid-depleted sediment (Fig. 4.1 b). Pseudostichopus aemulatus, however, is 

smaller than P. villosus and has a different foraging behaviour, feeding on the 
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superficial sediment rich in OM (Billett, 1988). The relatively low concentrations of 

chlorophyll a in the phytodetritus and sediment, would had led to a lower encounter rate 

of holothurians with fresh material in 2005. 

 

 

4.3.3 Carotenoids in holothurian gut walls and ovaries – June 2004 

 

Canthaxanthin and echinenone were present in the gut wall and ovaries of the 

holothurians studied, but were absent from the phytodetritus and sediment. This 

suggests that the holothurians have metabolised these carotenoids from those obtained 

in their diet, as has been shown in shallow-water echinoderms (Tsushima et al., 1993b).  

 

Tight species-specific clustering of A. rosea gut wall and ovary samples in the 2004 

MDS ordination plot from June 2004 reflects the similarity of the carotenoid profiles 

between samples. This suggests selectivity and/or requirement for specific carotenoids – 

particularly zeaxanthin which constitutes >28% of the total tissue pigment. No other 

holothurian has such a high percentage contribution of zeaxanthin in gut wall and ovary 

tissues. Amperima rosea also had very high carotenoid concentrations in comparison 

with the other species. To obtain the highest dietary concentration of carotenoids it 

would be beneficial to feed on the freshest organic matter – as supported by the high 

chlorophyll a concentration (indicating selectivity of fresh phytodetrital material) found 

in some A. rosea gut sediment samples. Oneirophanta mutabilis and Peniagone 

diaphana also had high carotenoid concentrations in their gut wall and ovaries in 2004, 

although the carotenoid profiles are less consistent than in A. rosea. The contribution of 

only one or two carotenoids, (β-carotene in O. mutabilis, β-carotene and echinenone in 

P. diaphana) caused the differences between the gut wall and ovary samples. 

Psychropotes longicauda and Paroriza prouhoi show less species specific clustering in 

the gut wall in 2004 because of inconsistent carotenoid profiles between samples. A 

change in the relative contributions of more than one carotenoid accounted for the 

spread of samples on the MDS ordination plot. This suggests Psychropotes longicauda 

and Paroriza prouhoi are not selective in their pigment biochemistry.  
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4.3.4 Carotenoids in holothurian gut walls and ovaries – July 2005 

 

The occurrence of 19’-butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin in the 

carotenoid profiles of the gut wall and ovaries of the abyssal holothurians sampled in 

2005 contrasts with the findings of Hudson et al. (2003), who reported that 19’-

hexanoyloxyfucoxanthin was absent in the ovaries of bathyal holothurians (Laetmogone 

violacea, Paroriza pallens, Benthogone rosea Bathyplotes natans and Benthothuria 

funebris), despite the dominance of this carotenoid in the gut sediments. It should be 

noted that two of the six species sampled in the present study in 2005 (Molpadia blakei 

and Pseudostichopus aemulatus) did not contain any 19’-hexanoyloxyfucoxanthin in 

their ovaries. Hudson et al. (2003) may have sampled species that either do not 

assimilate this carotenoid or biosynthesise it immediately to another 

carotenoid/compound. The relative contributions of 19’-butanoyloxyfucoxanthin and 

19’-hexanoyloxyfucoxanthin differ greatly among species. Concentrations of both are 

low in O. mutabilis. The occurrence and relative contribution of these carotenoids in the 

other holothurian species, drive the spread of samples in the MDS plot (Figure 6 a & b), 

suggesting they do not discriminate between carotenoids in the same way when 

assimilating these organic compounds. 

 

Molpadia blakei feeds on refractory material as seen by the absence of chlorophyll a in 

its gut and having body tissue relatively enriched in the 15N (Iken et al., 2001). 

Nevertheless, it has carotenoids in its gut wall and ovaries at concentrations higher or 

equal to those of species that feed on less refractory material - Psychropotes longicauda, 

Paroriza prouhoi and Pseudostichopus aemulatus. Molpadia spp. buries itself vertically 

in the sediment, with the anus extending above the sediment-water interface. The 

ingestion of sediment at the mouth and subsequent voiding of faeces at the surface, 

leads to depressions surrounding the mound of faecal material around the anus (Rhoads 

and Young, 1971). This mode of feeding may be a way of bringing carotenoids from the 

sediment surface to the mouth of Molpadia. Canthaxanthin was a dominant carotenoid 

in the gut wall and ovaries of the specimens, it is likely that M. blakei metabolised this 

carotenoid from carotenoids obtained in its diet, as observed in shallow-water 
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echinoderms (Tsushima et al., 1993b). This bioconversion of carotenoids increases their 

antioxidant properties (Foote et al., 1970; Lee and Min, 1990). The lack of chlorophyll 

a in the gut sediment of this species suggests that the material it ingests is not fresh and 

that the species is efficient at carotenoid assimilation and/or accumulates carotenoids 

over long time-scales.  

 

 

4.3.5 Ovarian carotenoid concentration – a reproductive adaptation? 

 

Large differences in the concentrations of carotenoids in the ovaries of the different 

species may be attributed to their reproductive adaptations. Survival of post-larvae is an 

important factor in response to the seasonal flux of phytodetritus, contributing to 

population structure and density (Wigham et al., 2003b). Amperima rosea has the 

highest carotenoid ovarian concentrations of all the species sampled. Wigham et al. 

(2003a) also found A. rosea had high carotenoid concentrations in its ovaries in 

comparison to O. mutabilis, Psychropotes longicauda, Pseudostichopus villosus and 

Paroriza prouhoi. Experiments on shallow water echinoderms have shown that the 

larvae of adults fed on a carotenoid-rich diet were larger throughout development, 

developed faster and had higher survival rates (Tsushima et al., 1997; George et al., 

2001; George and Lawrence, 2002). Assimilating a high carotenoid load into its ovaries 

may give A. rosea an additional reproductive advantage. Carotenoids reduce the 

harmful effects of reactive oxygen species given off during the rapid metabolism of 

lipids in the egg, increasing larval survival (Blount et al., 2000; 2004; Lotocka et al., 

2004). Amperima rosea reaches maturity at a small size and has a high fecundity 

(Wigham et al., 2003b). Therefore, A. rosea may produce many viable offspring during 

favourable conditions, leaving a large cohort either to exploit the remaining favourable 

OM, or to wait until the next favourable conditions occur.  

 

Concentrations of pigments in the ovaries of O. mutabilis and Peniagone diaphana, 

although not as high as A. rosea, were still an order of magnitude greater than in 

Psychropotes longicauda, Pseudostichopus spp. and Paroriza prouhoi. Enhanced 

carotenoid concentrations could be one reproductive adaptation to increase the number 

 105



of offspring into the next generation. Their ability to exploit the richer sources of OM 

means that they have access to greater concentrations and types of carotenoids, which 

are then concentrated into their ovaries. The reproductive adaptations of species with 

low ovarian carotenoid pigment concentrations may increase the number of offspring 

surviving to adulthood in other ways. Psychropotes longicauda only produce a few eggs 

at a time, but these undergo direct development in the pelagic realm, where predation is 

thought to be less (Tyler and Billett, 1987). Paroriza prouhoi is hermaphroditic and 

exhibits pairing behaviour, increasing the likelihood of external fertilisation (Tyler et al., 

1992b). Pseudostichopus aemulatus has small eggs and a high fecundity ranging from 

tens of thousands to a hundred thousand eggs per individual, suggesting it is 

opportunistic in its reproduction (Watson, 2004). Pseudostichopus aemulatus feeds on 

the superficial sediment rich in OM (Billett et al., 1988) and is able to convert the 

seasonal flux of OM arriving at the seafloor into reproductive growth rapidly. This is 

demonstrated in possible intra-annual cycles of reproduction – larger oocytes appear to 

be present after the seasonal flux of OM to the seafloor (Watson, 2004).  

 

There appears to be no clear relationship between the developmental mode of the eggs 

and larvae and the concentration of carotenoids in the ovaries. Amperima rosea and P. 

aemulatus are both thought to be opportunistic, with small egg sizes (~210µm) and high 

fecundity (Wigham et al., 2003b; Watson, 2004). Amperima rosea has ovarian 

carotenoid concentrations (µg gDW-1) two orders of magnitude greater than P. 

aemulatus. This is not surprising as A. rosea feeds selectively on the freshest OM, 

giving it access to the greatest range and concentration of carotenoids. Pseudostichopus 

aemulatus does not appear to discriminate between carotenoids when assimilating 

organic compounds allowing it to take advantage of a flux of OM regardless of its 

quality, whereas A. rosea is constrained in the carotenoids it requires – specifically 

zeaxanthin. Therefore, A. rosea can only take advantage of fluxes of OM when the 

quality of the material is favourable to its needs. O. mutabilis and Peniagone diaphana 

have relatively high ovarian carotenoid concentrations but have differing reproductive 

and developmental adaptations. Oneirophanta mutabilis has larger eggs (950µm), 

spawning all large oocytes at once, with direct development on the seabed or 

immediately above it (Tyler and Billett, 1987; Ramirez-Llodra et al., 2005). Peniagone 
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diaphana has a smaller egg size (300µm) a fecundity of 5000 and lecithotrophic larvae. 

This species is sexually mature at a small size with rapid growth up to maturity (Tyler et 

al., 1985). The reproductive adaptation of elevated concentrations of carotenoids in the 

ovaries is most likely related to the feeding guild of the species.  

 

 

4.3.6 Carotenoid supply, feeding guild and selective assimilation 

 

Between year comparisons show Psychropotes longicauda and Paroriza prouhoi appear 

not to discriminate between carotenoids during feeding and assimilation into body 

tissues. 19’-butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin were absent from 

the sediment and their gut wall and ovarian tissue in June 2004, but were present in 

sediment and tissue samples in July 2005. The feeding guild of these species may 

dictate this; selectivity for specific carotenoids does not occur, as the compounds in the 

sediment fractions on which they feed are not abundant and are temporally variable. In 

contrast, O. mutabilis shows greater temporal consistency in its gut wall and ovary 

carotenoid biochemical profiles. The pigment profiles in the gut wall and ovaries show 

some similarity, although there is a degree of similarity between samples within each 

year. β-carotene contributes a large proportion of the gut wall and ovarian pigment 

biochemistry of O. mutabilis. The ability of O. mutabilis to exploit fresher OM, 

containing greater concentrations and types of carotenoids, allows for compound 

specific selectivity. This inference is also supported by the consistent biochemical 

profile of A. rosea, which feeds on fresh OM when it can, and the inconsistent profiles 

of Pseudostichopus aemulatus and P. villosus, which feed on deeper sediments and 

presumably assimilate carotenoids with less selectivity from deeper sediments. The 

consistency of the carotenoid profiles in the tissue samples of Amperima rosea is not 

related to all the specimens from June 2004 having similar numbers of vitellogenic 

oocytes; a study of the reproductive biology of Amperima rosea found there was no 

synchrony in oogenesis between samples taken over ten sample periods between 1989 

and 1996 (Wigham et al., 2003b). 
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Wigham et al. (2003a) suggested that the supply of certain carotenoids may favour 

particular species. This was based on the occurrence of specific carotenoids in both the 

gut sediments and ovaries, which would infer selective feeding, e.g. zeaxanthin in A. 

rosea. Although the present study shows that zeaxanthin in A. rosea gut sediment may 

arise from the lysis of the gut wall (Chapter 3), the hypothesis of  Wigham et al. (2003a) 

still stands because of the  consistent biochemical profile in A. rosea gut wall and ovary 

tissue and its requirement for zeaxanthin in large concentrations. In addition, the 

enhanced supply or availability of β-carotene may favour O. mutabilis; β-carotene is 

consistently the dominant carotenoid in O. mutabilis ovarian tissue. 

 

Significant temporal intraspecies differences in the gut wall pigment concentrations of 

Psychropotes longicauda may reflect the lower quantity and composition of OM in 

2005. Carotenoids in the ovaries of O. mutabilis and P. longicauda were greater in 

concentration in 2004, but were too variable to be significant. Studies of shallow water 

echinoderms have shown that increased supply of carotenoids enhances the colour of 

the roe indicating carotenoid concentrations in the ovaries are increased.  (George and 

Young, 1998; George et al., 2001; Mclaughlin and Kelly, 2001; George and Lawrence, 

2002; Robinson et al., 2002). An increase in carotenoid concentration increases 

fecundity, larval maturation and survival  (George and Young, 1998; George et al., 2001; 

Mclaughlin and Kelly, 2001; George and Lawrence, 2002).  

 

Other controlling variables may affect the ovarian biochemistry of abyssal holothurians. 

As previously discussed, between-species competition for resources during times of 

limited supply may detrimentally affect species that are less selective and/or efficient at 

assimilating carotenoids. The ability of abyssal holothurians to modify dietary derived 

carotenoids to carotenoids other than echinenone, canthaxanthin and astaxanthin is not 

presently known. Metabolic pathways from β-carotene to echinenone and canthaxanthin 

have been demonstrated in shallow water echinoderms (Tsushima et al., 1993b; 

Tsushima et al., 1995; Plank et al., 2002). The occurrence of 19’-

butanoyloxyfucoxanthin and 19’-hexanoyloxyfucoxanthin (found in the phytodetritus 

and sediment in 2005 but not 2004) in the gut wall and ovaries of holothurians in 2005, 

but not 2004, suggests these holothurians do assimilate carotenoids directly from their 
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diet into their ovaries. Further temporal studies of intraspecies pigment biochemistry 

response to changing food supplies are needed. This may be achieved by comparing two 

contrasting sites with differing food supply (see Chapter 5), or by experimental methods. 
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4.4 Conclusions 

 

The composition and amount of the OM reaching the PAP varies both temporally and 

spatially. This can affect the diet of some abyssal holothurian species, depending on 

their feeding guild. Amperima rosea, Peniagone diaphana and Oneirophanta mutabilis 

selectively feed on high quality OM. They can exploit the freshest OM when it is 

available. When fresh OM is scarce O. mutabilis feeds on the same sediment as other 

large species (Psychropotes longicauda, Paroriza prouhoi, Pseudostichopus aemulatus 

and P. villosus) that are less selective in their diet. This response has previously been 

reported in a study of holothurian and sediment lipid biochemistry at the PAP (Neto et 

al., 2006). 

 

The ovarian carotenoid biochemistry of the abyssal holothurians sampled at the PAP is 

a complex function of the feeding guild and reproductive adaptation of each species. 

Amperima rosea, Peniagone diaphana and O. mutabilis display consistent ovarian 

carotenoid profiles and have higher concentrations of carotenoids in their gut wall and 

ovaries than do other species. Favourable conditions may give these species a 

reproductive advantage, supplying specific carotenoids required for their reproduction. 

Enhanced carotenoid concentrations in the ovaries of some species may be a 

reproductive adaptation to increase larval survival. Psychropotes longicauda, Paroriza 

prouhoi, Pseudostichopus aemulatus, P. villosus and M. blakei feed on poor (in terms of 

concentration and number of carotenoids) OM and do not appear to discriminate 

between carotenoids when assimilating organic compounds. They also have low 

concentrations of carotenoids in their gut wall and ovaries. Their reproductive 

adaptations may increase cohort survival in other ways. Temporal intraspecies variation 

in gut wall and ovary carotenoid concentration reflects the quantity of carotenoids in the 

OM reaching the seafloor. Reduced supply may result in lower fecundity and larval 

survival. 

 

The results from this PAP study suggests that diet and ovarian biochemistry in deep-sea 

holothurians are intimately linked. If shallow water echinoderms studies are true for 

deep-sea echinoderms, this study suggests that changes in the quantity and composition 
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of the diet will affect abyssal holothurian reproductive output and larval survival and 

maturation. Changes in upper ocean biogeochemistry, altering the quality and quantity 

of organic matter reaching the deep-sea floor may control holothurian reproductive 

output and favour certain species, which can have a subsequent effect on the 

surrounding biota, as seen during the ‘Amperima Event’ at the PAP.  
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Chapter 5 – The link between diet and abyssal holothurian ovarian 

biochemistry; a spatial study at two contrasting sites around the 

Crozet Islands, Southern Ocean 
 

5.1 Introduction  

 

Changes in upper ocean productivity have been proposed as important drivers for 

variation in the biodiversity of deep-sea sediments (Levin et al., 2001; Lambshead et al., 

2002; Snelgrove and Smith, 2002; Johnson et al., 2007). Fluctuations in the abundance 

and community structure of abyssal megafauna have been observed in both the deep 

northeast Atlantic and northeast Pacific since 1989 (Billett et al., 2001; Ruhl and Smith, 

2004). Community changes in the northeast Pacific have been ascribed to carbon flux 

regulated by climatic forcing by El Niňo/La Niňa (Ruhl and Smith, 2004). This 

relationship is not observed in the northeast Atlantic – carbon flux data over a long 

time-series period (1989-2001) shows no direct relationship with the North Atlantic 

Oscillation Index (Lampitt, pers. comm). It is postulated the recent dramatic changes in 

species dominance at the Porcupine Abyssal Plain (PAP) (Billett et al., 2001) are related 

to the composition of OM arriving at the seafloor (Billett and Rice, 2001; Wigham et al., 

2003a).  

 

The Benthic Crozet programme was set up with the aim “To assess how biogeochemical 

composition and flux of OM to the deep-sea floor drives benthic community structure, 

dynamics and diversity at two sites with contrasting primary productivity regimes” 

(Wolff, 2006). The benthic site to the east of the Islands (M5) underlies waters with 

high surface primary productivity and is thought to receive a greater flux of material to 

the sea floor. The benthic site to the south (M6) underlies high nutrient, low chlorophyll 

(HNLC) waters. The sites are only 460km apart with no topographical boundary to 

separate them; therefore differences in the benthic community can be ascribed to the 

composition and amount of OM reaching the sea-floor at each site (general introduction 

to the two sites can be found in Chapter 2). 
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The aim of the present Crozet study is to examine how spatial differences in the 

composition and quantity of OM may influence the diet and ovarian biochemistry of 

abyssal holothurians. This differs from the PAP study, which was a temporal 

comparison of the influence of the composition and quantity of OM on the diet and 

ovarian biochemistry of abyssal holothurians.  

 

Specific hypotheses to be tested are: 

 

1. The variability in phytopigment composition, as well as the total flux of OM reaching 

the abyssal seafloor, is dependent on the productivity of overlying surface waters. 

2. The composition and quantity of carotenoids associated with the OM supply is 

reflected in the biochemistry of abyssal holothurians  

 

The Crozet study was approached by sampling sediment (in two consecutive years) 

holothurians and particulate organic matter (POM) (only in the second year) from two 

adjacent sites around the Crozet Islands (See Chapter 2 for methods). Holothurian gut 

contents were analysed to quantify chlorophyll a (to indicate selective feeding), and gut 

wall tissue and ovaries were analysed for their pigment biochemistry. These data were 

compared with the phytopigments in the POM and sediments at each site. Between site 

differences in the composition and concentration of pigments in the POM and sediment 

are discussed and are compared to the feeding selectivity and reproductive requirements 

for carotenoids by the holothurians at each site. Interspecies comparisons in feeding 

selectivity and pigment biochemistry are made within sites, as well as intraspecies 

comparisons between sites. 
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5.2 Results 

 

5.2.1 Phytopigments in the POM of surface and deep waters 

 

POM (particulate organic matter) was sampled using a stand alone pump system in 

2005 only, beneath the chlorophyll maximum layer (80m; M5, 55m; M6) and above the 

seafloor (4241m; M5, 4200m; M6). POM below the thermal mixed layer (chlorophyll a 

maximum) had similar phytopigment concentrations and composition at sites M5 and 

M6 (Fig. 1 a).  Three pigments showed between-site differences in concentration and 

percentage contribution – fucoxanthin, 19'-hexanoylofucoxanthin and violaxanthin. 

Violaxanthin was found in the POM at M6, but not M5. Fucoxanthin was found in 

greater concentrations at M6. The carotenoid 19'-hexanoylofucoxanthin was found in 

greater, but variable concentration at M5 and its percentage contribution to the total 

identified pigment load was >60% (Fig. 1 a; Table 5.1). The freshness of the POM, as 

indicated by the chlorophyll a to phaeophorbide ratio (Thiel et al., 1989), was greater at 

M5 (15.4 ± 3.2) than at M6 (7.3 ±2.0). 

 

The difference in composition and concentrations of phytopigments in the single POM 

samples collected close to the sea floor by the deep-water SAPS above the sea bed at 

each site is large (Fig. 1 b). Only four pigments (fucoxanthin, 19'-hexanoylofucoxanthin, 

alloxanthin and phaeophorbide) were found at M6, all in low concentrations. 19’-

butanoyloxyfucoxanthin contributed 50% to the total identified pigment load at M5. 

The chlorophyll a to phaeophorbide ratio of the POM above the seabed at M5 was 0.81; 

this ratio was not calculated for the M6 sample because of the absence of chlorophyll a.  
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Pigment

M5 Upper SAPS (n = 3)

M6 Upper SAPS (n = 2) 

M5 Deep SAPS (n = 1) 
M6 Deep SAPS (n = 1)

 
 

 

Figure 5.1 Phytopigments (ng L-1) found in the POM in the upper water column (a) and above the 
seafloor (b) at M5 and M6. Fucox = fucoxanthin; 19'-but = 19'-butanoyloxyfucoxanthin; 19'-hex = 
19'-hexanoyloxyfucoxanthin; violax = violaxanthin;  Diad = diadinoxanthin; Allox = alloxanthin; 
Diatox = diatoxanthin; Zeax = zeaxanthin; Chl a = chlorophyll a; β-carot = β-carotene; Phorb = 
phaeophorbide; Phytin = phaeophytin. (note break in y-axis) 
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M5 Upper 
SAPS 
(n=3) 

M5 Upper 
SAPS % of 

total 

M6 Upper 
SAPS 
(n=2) 

M6 Upper 
SAPS % of 

total 

M5 deep 
SAPS 
(n=1) 

M5 deep 
SAPS % 
of total 

M6 deep 
SAPS 
(n=1) 

M6 deep 
SAPS % of 

total 

16.1 6.1% 24.13 11.3% 49.08 49.4% 0   19’-but 
16.3 1.9% 0.42 0.9%         

11.8 10.5% 61.07 28.4% 2.77 2.8% 0.19 26.3% Fucox 
8.63 8.3% 5.07 0.3%         

169.1 66.1% 75.12 35.0% 10.07 10.1% 0.18 25.8% 19’-hex 
181.32 8.9% 3.69 1.6%         

0   1.96 0.9% 0   0   Violax 
    0.29 0.2%         

8.11 4.6% 12.58 5.8% 4.78 4.8% 0   Diadinox 
5.71 1.8% 1.88 0.3%         

2.94 7.98 3.03 0.08 1.2% 3.7% 3.1% 11.2% Allox 
3.03 0.1% 1.06 0.1%         

0.23 0.1% 0.68 0.3% 1.22 1.2% 0   Diatox 
0.18 0.0% 0.27 0.1%         

0.65 0.3% 0.66 0.3% 0.38 0.4% 0   Zeax 
0.85 0.1% 0.14 0.1%         

22.52 9.7% 25.6 11.8% 11.69 11.8% 0   Chl a 
21.78 0.2% 8.03 2.6%         

2.13 0.9% 1.63 0.8% 1.86 1.9% 0   ß-carot 
2.18 0.1% 0.14 0.0%         

1.53 0.7% 3.5 1.6% 14.46 14.6% 0.26 36.7% Phorbide 
1.36 0.2% 0.16 0.1%         

0.08 0.0% 0.06 0.0% 0.03 0.0% 0   Phytin 
0.08 0.0% 0.01 0.0%         

 

 

Table 5.1 Pigment concentrations (ng L-1) and average percentage contribution to the total in the 
POM sampled by the Stand Alone Pump System in the upper water column and above the seabed 
at M5 and M6, sampled during cruise 2 – Dec 2005-Jan 2006. Fucox = fucoxanthin; 19'-but = 19'-
butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; violax = violaxanthin;  Diad = 
diadinoxanthin; Allox = alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Chl a = 
chlorophyll a; β-carot = β-carotene; Phorb = phaeophorbide; Phytin = phaeophytin. (Standard 
deviation in italics) 

 

5.2.2 Phytopigments in the phytodetritus and sediment 

 

No phytodetritus was observed on the sediment core surfaces from either sampling 

period (i.e. cruise 1 or cruise 2). Eight pigments were identified in the top 5mm of 

sediment during cruise 1 (Dec 2004 – Jan 2005) and twelve in the top 5 mm and 5 to 

10mm sediment during cruise 2 (Dec 2005 – Jan 2006) at both stations, M5 and M6 

(Fig. 5.2; Tables 5.2 and 5.3). Diatoxanthin, 19'-butanoylofucoxanthin, β-carotene and 
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violaxanthin were found in the sediments at M5 and M6 sampled during cruise 2, but 

not cruise 1. These pigments were found in concentrations of less than 0.013µg gDW-1, 

apart from 19'-butanoylofucoxanthin which had a mean concentration of 0.07 ± 0.015 

µg gDW-1 at M5 and 0.05 ± 0.029µg gDW-1 at M6 (Fig. 5.2).  

 

Chlorophyll a was one of the most abundant pigments in the sediment at M5 during 

both cruises (19% cruise 1; 41% cruise 2) (Tables 5.2 and 5.3). Zeaxanthin (17%), 

alloxanthin (15%) and phaeophorbide (19%) were also abundant in the top 5mm 

sediments at M5 during cruise 1, while diadinoxanthin (11%), 19'-butanoylofucoxanthin 

(10%), phaeophorbide (11%) and phaeophytin (10%) were abundant pigments in the top 

5mm of sediment from M5 during cruise 2 (Tables 5.2 and 5.3). Zeaxanthin (23%), 

alloxanthin (15%) and phaeophytin (21%) were the most abundant pigments in M6 

sediments during cruise 1, while chlorophyll a (19%) and phaeophytin (28%) were most 

abundant in the top 5mm of M6 sediments during cruise 2 (Tables 5.2 and 5.3).  

 

Six phytopigments (fucoxanthin, 19'-hexanoylofucoxanthin, diadinoxanthin, alloxanthin, 

zeaxanthin, and chlorophyll a) had higher concentrations at M5 than at M6, in 

sediments collected during cruise 1 (Fig. 5.1a); diadinoxanthin and phaeophytin were 

present in similar concentrations. The concentration of chlorophyll a was three times 

greater at M5 than at M6 in the top 5mm sediment sampled during  cruise 1 (Fig. 5.2a).  

Chlorophyll a was similar in concentration between cruise 1 and 2 (Dec 2004 – Jan 

2005 and Dec 2005 – Jan 2006) in the top 5mm sediment at M5 (0.25 µg gDW-1) and 

M6 (0.8 µg gDW-1; Fig 5.2 a and b). 

 

During cruise 2, only three pigments (chlorophyll a, diadinoxanthin and phaeophorbide) 

had greater concentrations at M5 than at M6 in the top 5mm sediment. Fucoxanthin, 

alloxanthin and phaeophytin were more abundant at M6 than at M5 (Fig 5.2b). All other 

pigments (19'-butanoylofucoxanthin, 19'-hexanoylofucoxanthin, violaxanthin, 

diatoxanthin, zeaxanthin and β-carotene) had similar concentrations at the two sites (Fig. 

5.2b). In the 5 to 10mm sediment sections sampled during cruise 2, 19'-

butanoylofucoxanthin, diadinoxanthin and chlorophyll a had greater concentrations at 
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M5, phaeophytin had a greater concentration at M6 and the other pigments were similar 

in concentration. 
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Figure 5.2 Phytopigments found in the 0 to 0.5cm and 0.5 to 1cm of sediment from (a) Cruise 1, 
December 2004 – January 2005 (b) Cruise 2 December 2005 – January 2006 (mean μg gDW-1 ± SD).  
Fucox = fucoxanthin; 19'-but = 19'-butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; 
Diad = diadinoxanthin; Allox = alloxanthin; Zeax = zeaxanthin; Chl a = chlorophyll a; Phorbide = 
phaeophorbide; Phytin = phaeophytin; violax = violaxanthin; Diatox = diatoxanthin; β-carot = β-
carotene. 

a) 
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M5        
0 to 

0.5cm 
(n=2) 

M5         
0 to 0.5cm 
% of total 

M6         
0 to 

0.5cm 
(n=2) 

M6         
0 to 

0.5cm % 
of total 

0.12 7.6% 0.03 3.4% Fucoxanthin 
0.07 2.0% 0.02 2.4% 

0.13 8.7% 0.08 10.3% 19’-hexanoyloxyfucoxanthin 
0.07 1.5% 0.04 1.7% 

0.04 2.3% 0.03 3.8% Diadinoxanthin 
0.02 0.6% 0.02 1.2% 

0.22 15.1% 0.1 14.8% Alloxanthin 
0.08 0.8% 0.05 1.7% 

0.26 17.4% 0.17 22.9% Zeaxanthin 
0.14 2.1% 0.09 1.0% 

0.28 19.1% 0.08 11.8% Chlorophyll a 
0.13 1.7% 0.05 5.1% 

0.27 18.8% 0.09 12.3% Phaeophorbide 
0.11 3.4% 0.05 2.0% 

0.14 11.0% 0.14 20.9% Phaeophytin 
0.07 6.3% 0.06 2.9% 

 

 

Table 5.2 Pigment concentrations (μg gDW-1) and average percentage contribution to 
the total in the sediment sampled during cruise 1 – Dec 2004-Jan 2005. (Standard 
deviation in italics) 
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M5          

0 to 0.5cm 
(n=2) 

M5          
0 to 0.5cm 
% of total 

M5          
0.5 to 1cm 

(n=2) 

M5          
0.5 to 1cm 
% of total 

M6          
0 to 0.5cm 

(n=4) 

M6          
0 to 0.5cm 
% of total 

M6          
0.5 to 1cm 

(n=4) 

M6         
0.5 to 1cm 
% of total 

0.022 3.3% 0.016 3.3% 0.041 7.5% 0.026 5.8% Fucox 
0.01 1.3% 0.001 1.9% 0.04 3.5% 0.03 3.5% 

0.048 7.2% 0.023 5.3% 0.037 8.5% 0.036 8.7% 19’-hex 
0.024 3.1% 0.006 4.4% 0.016 1.3% 0.04 3.4% 

0.073 11.2% 0.069 12.6% 0.04 8.2% 0.032 6.5% Diadinox 
0.014 1.2% 0.036 1.3% 0.027 1.7% 0.041 3.4% 

0.012 1.8% 0.011 2.5% 0.05 9.7% 0.017 5.2% Allox 
0.005 0.6% 0.002 1.8% 0.043 6.7% 0.016 2.3% 

0.001 0.1% 0.001 0.1% 0.001 0.1% 0.001 0.3% Zeax 
0.001 0.1% 0.001 0.1% 0.002 0.2% 0.002 0.3% 

0.268 41.5% 0.249 40.0% 0.09 17.8% 0.102 19.4% Chl a 
0.006 4.5% 0.209 12.5% 0.072 6.8% 0.14 12.5% 

0.078 12.0% 0.033 5.9% 0.038 6.8% 0.024 4.8% Phorbide 
0.006 0.1% 0.018 0.4% 0.041 4.9% 0.035 2.2% 

0.064 9.9% 0.039 8.8% 0.103 26.5% 0.088 28.2% Phytin 
0.008 0.4% 0.004 6.2% 0.03 14.9% 0.069 13.3% 

0.07 10.9% 0.117 19.1% 0.05 11.4% 0.053 19.5% 19’-but 
0.015 3.3% 0.093 4.7% 0.029 5.5% 0.051 16.7% 

0.012 1.8% 0.007 1.6% 0.001 2.4% 0.004 0.7% Violax 
0.009 1.2% 0.001 1.1% 0.012 2.0% 0.007 0.8% 

0.001 0.1% 0.002 0.3% 0.003 0.5% 0.001 0.2% Diatox 
0.001 0.1% 0.003 0.4% 0.002 0.2% 0.002 0.2% 

0.001 0.2% 0.002 0.6% 0.002 0.7% 0.003 0.9% ß-carot 
0 0.1% 0.002 0.6% 0.003 0.6% 0.004 0.6% 

 

 

Table 5.3 Pigment concentrations (μg gDW-1) and average percentage contribution to the total in 
the sediment sampled during cruise 2 – Dec 2005-Jan 2006.  Fucox = fucoxanthin; 19'-but = 19'-
butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; violax = violaxanthin;  Diad = 
diadinoxanthin; Allox = alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Chl a = chlorophyll 
a; β-carot = β-carotene; Phorb = phaeophorbide; Phytin = phaeophytin. (Standard deviation in 
italics) 

 

5.2.3 Chlorophyll a in holothurian gut sediment 

 

All species sampled at M5 had chlorophyll a gut sediment concentrations greater than 

that of the surrounding top 5mm sediment (0.27 μg gDW-1) (Figs. 5.2b and 5.3). 

Abyssocucumis abyssorum had an average gut sediment chlorophyll a concentration of 

98.11 ± 20.03 μg gDW-1, almost an order of magnitude higher than the other species 

sampled (Table 5.4; Fig. 5.3). Of the holothurians sampled at M6, only Peniagone spp. 
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and A. abyssorum had gut sediment chlorophyll a concentrations (1.40 and 3.72 μg 

gDW-1, respectively) higher than that of the surrounding top 5mm sediment (0.08 μg 

gDW-1), whereas Benthodytes sp. and Psychropotes longicauda did not (Figs. 2b and 3). 

Chlorophyll a was absent in the gut sediment of Molpadia blakei (Table 5.4).  
 

Species sampled at both sites (Benthodytes sp., Peniagone spp., Psychropotes 

longicauda and A. abyssorum) had greatest average gut sediment chlorophyll a 

concentrations at M5. Psychropotes longicauda (U(5,4) = 0.066, P>0.05), Peniagone 

spp. (t(7) = 1.66, P>0.05) and Benthodytes sp. (U(2,2,) = 7, P>0.05) gut sediment 

chlorophyll a concentrations were not found to differ significantly between sites, 

probably because of a small sample size (Benthodytes sp.) and high variability 

(Peniagone spp., Psychropotes longicauda). Abyssocucumis abyssorum gut sediment 

chlorophyll a concentration was significantly different between sites (t(4) = 6.65, 

P<0.05). 
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Figure 5.3 Chlorophyll a concentration (mean μg gDW-1 ± SD) in the gut sediment of 
holothurians sampled at M5 (light grey) and M6 (dark grey) between December 2005 and 
January 2006. (note break in y-axis to accommodate A. abyssorum data). 
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  M5 M6 
4.96  Nc Pseudostichopus villosus 

(n = 5) 7.86   
1.69  Nc Oneirophanta mutabilis 

(n = 5) 1.09   
13.88  Nc Amperima robusta 

(n = 3) 15.94   
1.90  Nc Scotoplanes globosa 

(n = 3) 1.53   
1.47 0.05 Benthodytes sp.  

(n = 2; M5, 2; M6) 1.81 0.07 
7.82 1.40 Peniagone spp. 

(n = 5; M5, 4; M6) 8.04 2.80 
5.76 0.22 Psychropotes longicauda 

(n = 3; M5, 4; M6) 4.69 0.22 
98.11 3.72 Abyssocucumis abyssorum 

(n = 2; M5, 4; M6) 20.03 1.95 
 Nc 0.00 Molpadia blakei 

(n = 2)   0.00 
 

 

Table 5.4 Chlorophyll a (μg gDW-1) in the gut sediment of holothurians sampled at M5 and M6.   
(Standard deviation in italics). Nc = Not collected

 

 

5.2.4 Interspecies comparison of gut wall and ovarian carotenoid biochemistry – M5 

 

 

The gut wall of Abyssocucumis abyssorum was very thin, which prohibited it being 

sampled. The gut walls and ovaries of the holothurians contained carotenoids (Fig. 5.4; 

Table 5.5); Amperima robusta and Peniagone spp. had the greatest gut wall and ovarian 

carotenoid concentrations and Benthodytes sp. the least. All pigments had high 

variability, although standard deviation relative to the mean was lowest in the ovaries of 

Abyssocucumis abyssorum (Fig. 5.4). β-carotene was often the most abundant or equally 

dominant carotenoid in the gut wall and ovary of all species sampled (Fig. 5.4; Table 

5.6). 19’-butanoyloxyfucoxanthin was a minor carotenoid in the gut wall of all species 

excluding Benthodytes sp. and Psychropotes longicauda where it contributed an average 

of 18% and 32% respectively to the total identified pigment load (Table 5.5). 19’-

butanoyloxyfucoxanthin contributed an average of 23% to the total ovarian pigment 
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load of A. abyssorum; this carotenoid was a minor contributer to the total ovarian load 

of all the other species sampled. β-carotene had a relatively high average percentage 

contribution (61%) to the gut wall in O. mutabilis, whereas 19’-

hexanoyloxyfucoxanthin and 19’-butanoyloxyfucoxanthin were absent. Zeaxanthin had 

a relatively high average percentage contribution to the total identified pigment load, the 

gut wall (39%) and ovary (21%) of Peniagone spp. (Fig. 5.4; Table 5.6). 
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Amperima robusta
gut wall n = 4, ovary n = 5

Pseudostichopus villosus
gut wall n = 6 ovary n = 5

Peniagone spp.
gut wall n = 6, ovary n = 5

ovary n = 5
Abyssocucmis abyssorumOneirophanta mutabilis

gut walln  = 4, ovary n = 4

Benthodytes sp.
gut wall n = 2, ovary n = 2

Scotoplanes globosa
gut wall n = 3, ovary n = 3

Psychropotes longicauda
gut wall n = 5, ovary n = 5

 
 

 

Figure 5.4. Pigment concentrations (mean μg gDW-1 ± SD) in the gut wall (light grey) and ovary 
(dark grey) of holothurians sampled at M5 during  cruise 2 (Dec 2005-Jan 2006). 19'-but = 19'-
butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; Diad = diadinoxanthin; Allox = 
alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Canthax = canthaxanthin; Echin = 
echinenone; β-carot = β-carotene. (note different scales on y-axis) 
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Figure 5.5 MDS ordination of individual holothurian gut wall (a) and ovary (b) samples 
from M5  cruise 2 (Dec 2005-Jan 2006), based on √-transformed pigment percentage 
contributions and Bray-Curtis similarities. Key: Filled triangles = Amperima robusta; 
open triangles = Oneirophanta mutabilis; filled squares = Peniagone spp.; open squares = 
Psychropotes longicauda; open circles = Abyssocucumis abyssorum; crosses = Benthodytes 
spp.; stars = Pseudostichopus villosus; filled diamonds = Scotoplanes globosa. 

b) 

a) 
Gut wall 

Ovary 
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Psychropotes longicauda showed the tightest species specific clustering on the gut 

wall MDS ordination plot of square root transformed pigment percentage 

contributions. The slight spread of Psychropotes longicauda samples is attributed 

to the variation in the contribution of 19’-butanoyloxyfucoxanthin. Peniagone spp. 

showed tight clustering apart from one sample that differed from the others in 

having relatively low zeaxanthin percentage contribution and relatively high 19’-

butanoyloxyfucoxanthin contribution. Oneirophanta mutabilis and Amperima 

robusta both had one outlying sample from their gut wall species clusters (Fig. 

5.5a), which is attributed to a relatively high contribution of echinenone. 

Pseudostichopus villosus and Benthodytes sp. showed the least species specific 

clustering, with samples spread across the middle of the MDS ordination plot (Fig. 

5.5a). 

Abyssocucumis abyssorum showed the tightest species specific clustering on the 

ovarian MDS ordination plot of square root transformed pigment percentage 

contributions (Fig 5.5b). Peniagone spp. samples also showed tight clustering. 

The slight spread of samples can be attributed to the variation in contribution of β-

carotene; the sample to the right of the plot had a relatively high percentage 

contribution of 19’-hexanoyloxyfucoxanthin. Pseudostichopus villosus samples 

were spread around the left hand side of the plot, having a high percentage 

contribution of β-carotene, with a small percentage contribution from different 

carotenoids in each sample, leading to the spread of samples (Fig 5.5b). 

Oneirophanta mutabilis samples to the bottom left of the plot had a high β-

carotene percentage contribution; the sample to the top right had low β-carotene 

and high echinenone percentage contribution (Fig. 5.5b). 

 

5.2.5 Interspecies comparison of gut wall and ovarian carotenoid biochemistry – 

M6 

Abyssocucumis abyssorum contained the greatest ovarian carotenoid 

concentrations (μg gDW-1) of the species sampled at M6, with high percentage 
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contributions from canthaxanthin, echinenone and β-carotene (Fig. 5.6 and Table 

5.7). Peniagone spp. had the second highest concentration of carotenoids in its gut 

wall and ovary (μg gDW-1), followed by Psychropotes longicauda (Fig.5.6). 

Molpadia blakei and Benthodytes sp. had the lowest concentrations (μg gDW-1) of 

carotenoids in their gut wall and ovary (Fig. 5.6). Molpadia blakei had a greater 

number of carotenoids in the ovarian samples than the gut wall. Carotenoids that 

occurred in both the gut wall and ovary of M. blakei and were found in greater 

concentration in the ovary (Fig. 5.6). Diadinoxanthin (9%), alloxanthin (25%), 

diatoxanthin (18%) and zeaxanthin (15%) had relatively high percentage 

contributions in M. blakei ovaries in comparison to the other species sampled at 

M6 (Fig. 5.6 and Table 5.8). Psychropotes longicauda had a high percentage 

contribution of diatoxanthin (Table 5.8). 
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ovary n = 3
Abyssocucumis abyssorum Benthodytes sp.

gut wall n = 2, ovary n = 2

gut n = 2 ovary n =  3
Molpadia blakei Psychropotes longicauda

gut wall n = 3, ovaryn  = 5

Peniagone spp.
gut wall n = 5, ovary n = 5

  

  

Figure 5.6. Pigment concentrations (mean μg gDW-1 ± SD) in the gut wall (light grey) and ovary 
(dark grey) of holothurians sampled at M6 during  cruise 2 (Dec 2005-Jan 2006). 19'-but = 19'-
butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; Diad = diadinoxanthin; Allox = 
alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Canthax = canthaxanthin; Echin = 
echinenone; β-carot = β-carotene.  (note different scales on y-axis) 
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  M. blakei 
(n=2) 

M. blakei 
% of total 

Benthodytes 
sp.  (n=2) 

Benthodytes 
sp. % of total 

Peniagone 
spp. (n = 5) 

Peniagone 
spp. % of 

total 

P. 
longicauda 

(n=3) 

P. 
longicauda 
% of total 

0.00 0.0% 0.00 0.0% 0.00 0.0% 0.04 0.5% 
 19'-but  

            0.08 0.9% 

0.00 0.0% 0.00 0.0% 0.13 1.3% 0.03 0.3% 
19'-hex 

        0.29 2.9% 0.05 0.6% 

0.00 0.0% 0.00 0.0% 0.09 0.8% 0.06 0.7%  Diad  
        0.12 1.2% 0.10 1.2% 

0.00 0.0% 0.00 0.0% 0.16 1.4% 0.06 0.7%  Allox  
        0.36 3.2% 0.10 1.2% 

0.11 12.1% 0.09 2.4% 0.43 12.5% 1.80 34.0%  Diatox  
0.15 17.1% 0.13 2.8% 0.50 13.7% 1.90 10.4% 

0.00 0.0% 0.13 3.5% 1.38 30.4% 0.06 0.7%  Zeax  
    0.18 4.0% 1.63 22.7% 0.10 1.2% 

0.00 0.0% 0.49 16.8% 0.10 0.9% 1.13 21.3%  Canthax  
    0.27 8.8% 0.14 1.3% 1.24 7.5% 

0.00 0.0% 1.30 45.3% 1.65 22.1% 0.88 25.0%  Echine  
    0.58 26.1% 2.01 20.2% 0.26 11.5% 

0.34 37.9% 0.84 32.1% 0.68 10.5% 0.56 16.9%  ß-carot  
0.48 53.6% 0.05 18.1% 0.78 10.5% 0.45 13.5% 

 

Table 5.7 Pigment concentrations (μg gDW-1) and percentage contribution of pigments to the total 
pigment load in the gut wall of holothurians sampled at M6. 19'-but = 19'-butanoyloxyfucoxanthin; 
19'-hex = 19'-hexanoyloxyfucoxanthin; Diad = diadinoxanthin; Allox = alloxanthin; Diatox = 
diatoxanthin; Zeax = zeaxanthin; Canthax = canthaxanthin; Echin = echinenone; β-carot = β-
carotene. (Standard  deviation in italics)
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A. 

abyssoru
m (n=3) 

A. 
abyssoru

m % of 
total 

M. blakei 
 (n=2) 

M. blakei 
 % of total 

Benthodytes sp.
(n=2) 

Benthodytes 
sp.  % of total

Peniagone 
spp.  

(n = 5) 

Peniagone 
spp.  

% of total 
P. longicauda 

(n=3) 
P. longicauda 

% of total 

0.52 1.4% 0.02 0.5% 0.00 0.0% 0.00 0.0% 0.08 3.2% 
 19'-but  

0.91 2.5% 0.04 0.8%         0.09 3.6% 

0.00 0.0% 0.04 0.8% 0.22 9.9% 0.80 8.6% 0.14 4.9% 
19'-hex 

    0.07 1.5% 0.31 14.0% 0.76 9.5% 0.09 3.0% 

0.38 2.8% 0.47 9.3% 0.00 0.0% 0.24 1.8% 0.20 6.0%  Diad  
0.06 2.7% 0.82 16.2%     0.35 2.6% 0.21 5.8% 

0.59 3.2% 0.89 25.2% 0.00 0.0% 0.23 3.4% 0.17 5.5%  Allox  
0.35 1.6% 0.16 9.3%     0.44 6.9% 0.16 4.5% 

0.99 4.4% 0.64 18.3% 0.00 0.0% 0.47 4.2% 0.06 1.8%  Diatox  
0.68 0.2% 0.12 8.1%     0.30 2.5% 0.06 1.7% 

1.01 4.8% 0.53 14.5% 0.00 0.0% 0.91 7.1% 0.04 1.1%  Zeax  
0.59 0.5% 0.17 4.9%     0.88 6.7% 0.07 2.0% 

4.87 23.4% 0.35 8.6% 0.60 27.1% 0.63 5.9% 0.62 22.3%  Canthax  
3.06 10.5% 0.31 7.9% 0.85 38.3% 0.38 3.6% 0.38 14.5% 

4.22 19.3% 0.00 0.0% 0.23 10.3% 2.64 23.9% 0.75 26.3%  Echine  
2.83 0.4%     0.32 14.6% 1.64 13.5% 0.45 15.5% 

9.28 40.8% 0.84 22.7% 0.06 2.7% 3.08 25.2% 0.28 8.8%  ß-carot  
7.83 9.9% 0.22 5.9% 0.08 3.8% 2.56 18.3% 0.24 6.5% 

 

Table 5.8 Pigment concentrations (μg gDW-1) and percentage contribution of pigments to the 
total pigment load in the ovaries of holothurians sampled at M6. 19'-but = 19'-
butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; Diad = diadinoxanthin; 
Allox = alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Canthax = canthaxanthin; 
Echin = echinenone; β-carot = β-carotene. (Standard  deviation in italics) 
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Figure 5.7  MDS ordination of individual holothurian gut wall (a) and ovary (b) samples 
from M6 cruise 2 (Dec 2005-Jan 2006), based on √-transformed pigment percentage 
contributions and Bray-Curtis similarities. Key: filled squares = Peniagone spp.; open 
squares = Psychropotes longicauda; open circles = Abyssocucumis abyssorum; crosses = 
Benthodytes typica; filled circles = Molpadia sp. 

a) 

b) 

Gut wall 

Ovary 

 

The MDS ordination plot of square root transformed pigment percentage 

contributions to the M6 holothurian gut wall samples showed loose species 
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specific clustering (Fig. 5.7a). Samples that contained no pigments were removed 

from the plot because their inclusion increased similarity between the other 

samples to form one large cluster on the MDS ordination plot. One Peniagone sp. 

and one Molpadia blakei gut wall sample contained no carotenoids and are not 

shown on the plot. The outlying Peniagone sp. gut wall sample, lower left of the 

plot contained only diatoxanthin and zeaxanthin; the outlying sample in the 

middle of the plot did not contain diadinoxanthin or canthaxanthin (Fig. 5.7a). 

The outlying Psychropotes longicauda sample to the top of the plot has small 

percentage contributions spread across all carotenoids identified, whereas the 

other two samples contained only diatoxanthin, echinenone, canthaxanthin and β-

carotene (Fig. 5.7a). 

All species were clustered separately on the MDS ordination plot of M6 

holothurian ovarian samples (Fig. 5.7b). One specimen each of Benthodytes sp., 

Peniagone spp. and Psychropotes longicauda contained no pigments and were 

excluded from the plot. Abyssocucumis abyssorum showed the tightest species 

specific clustering. The spread of the Molpadia blakei samples (from right to left) 

can be attributed to the increasing number of carotenoids contributing a small 

percentage of the total in each sample. The spread of Peniagone spp. samples is 

attributed to the varying percentage contribution of 19’-hexanoyloxyfucoxanthin. 

The outlying Psychropotes longicauda sample to the right had a relatively large 

percentage contribution of alloxanthin and diadinoxanthin and a low contribution 

of canthaxanthin (Fig. 5.7b). 

 

5.2.6 Between-site intraspecies comparison 

Benthodytes sp., Peniagone spp., Psychropotes longicauda and A. abyssorum 

(ovary only) were sampled at M5 and M6. Between-site comparison of the 

average concentration of carotenoids (μg gDW-1) in the gut wall showed the 

majority of carotenoids were found in greater concentrations in specimens 

sampled from M5 (Fig. 5.8). 19’-butanoyloxyfucoxanthin, 19’-

hexanoyloxyfucoxanthin, diadinoxanthin and alloxanthin were found in one 

 135



specimen of Benthodytes sp. at M5, but not in those collected at M6. Too few 

individuals of Benthodytes sp. from each site were sampled (n = 2) to perform 

statistical analysis of the data. Appendix 3 lists the statistical results of between 

site intra-species gut wall carotenoid concentration comparisons. All carotenoids 

in the gut wall of Peniagone spp., with the exception of 19’-

hexanoyloxyfucoxanthin and β-carotene, were found to be in significantly greater 

concentrations at M5 than at M6 (Mann-Whitney; t-test, P<0.05; Appendix 3). 

One M6 gut wall sample of Peniagone spp. did not contain any pigment. Only 

19’-butanoyloxyfucoxanthin was found in significantly greater concentration in 

the M5 gut wall samples of Psychropotes longicauda (Mann-Whitney, P<0.05, 

Appendix 3) than at M6. Greater concentrations of echinenone and β-carotene 

occurred in P. longicauda but they were very variable and so no significant 

differences between M5 and M6 could be detected. Diatoxanthin occurred in 

greater concentrations in specimens of P. longicauda at M6 (Fig. 8), although this 

was not significantly different from M5 (Mann-Whitney, P>0.05, Appendix 3).  

In the ovaries of species collected at M5 and M6, the average concentrations of 

carotenoids were often higher in the M5 specimens (Fig. 5.9). There were too few 

ovarian samples of Benthodytes sp. to perform statistical analysis (n = 2). 

However one sample from M6 contained no pigment and the M5 samples 

contained a greater number of carotenoids. 19’-butanoyloxyfucoxanthin, 19’-

hexanoyloxyfucoxanthin and diadinoxanthin were found in significantly greater 

concentrations in M5 samples of A. abyssorum than in M6 samples (t-test; Mann-

Whitney, P<0.05, Appendix 3). All other carotenoids in A. abyssorum were found 

in similar concentrations between sites. Only 19’-butanoyloxyfucoxanthin was the 

found in significantly greater concentrations (Mann-Whitney, P<0.05, Appendix 3) 

in the M5 ovaries of Peniagone spp.. Differences in average concentrations of the 

pigments zeaxanthin, echinenone and β-carotene were also apparent between sites 

(Fig 5.9), but they were not statistically significant because of the high variability 

and small sample size affected the statistical outcome. One M6 Peniagone spp. 

ovary sample contained no pigment. Canthaxanthin, echinenone and β-carotene 

had higher average concentrations in the ovaries of Psychropotes longicauda from 
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M5 than at M6 (one P. longicauda specimen collected at M6 contained no 

pigment). High variability and low sample size affected the statistical outcome so 

that concentrations from the two sample sites were not significantly different (t-

test, P>0.05, Appendix 3).  
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Figure 5.8 Pigment concentrations (mean μg gDW-1 ± SD) in the gut wall of holothurians sampled at 
M5 (dark grey) and M6 (light grey) during cruise 2 (Dec 2005-Jan 2006). 19'-but = 19'-
butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; Diadinox = diadinoxanthin; Allox = 
alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Canthax = canthaxanthin; Echin = 
echinenone; β-carot = β-carotene.  (note different scales on y-axis) 
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Figure 5.9 Pigment concentrations (mean μg gDW-1 ± SD) in the ovaries of holothurians 
sampled at M5 (dark grey) and M6 (light grey) during cruise 2 (Dec 2005-Jan 2006). 19'-
but = 19'-butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; Diad = 
diadinoxanthin; Allox = alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Canthax = 
canthaxanthin; Echin = echinenone; β-carot = β-carotene.  (note different scales on y-axis) 

 

MDS ordination plot of gut wall pigment percentage contribution showed loose 

species clustering with some separation between M5 and M6 samples (Fig. 5.10a). 

M5 and M6 Peniagone spp. and Psychropotes longicauda sample clusters were 

separated by the occurrence of alloxanthin and 19’-butanoyloxyfucoxanthin in the 

M5 samples (one M6 P. longicauda sample contained these carotenoids and was 

found near to the M5 samples). ANOSIM analysis showed Psychropotes 

longicauda gut wall samples were significantly different in percentage 

composition between sites (ANOSIM R = 1, P<0.05; Table 5.9). Benthodytes sp. 

gut wall samples were not found to be significantly different between sites 

(ANOSIM R = 0, P>0.05; Table 5.9) because of the small number of samples. 
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Peniagone spp. gut wall samples were found to be significantly similar in pigment 

composition between sites despite the separation on the MDS plot (ANOSIM R = 

0.251, P<0.05). Outlying samples from both sites and the closeness of the two 

groups led to a small R-statistic, which suggests samples from one site are as 

similar to the other site as they are to each other. 

The occurrence of 19’-hexanoyloxyfucoxanthin and increased percentage 

contribution of 19’-butanoyloxyfucoxanthin in A. abyssorum M5 ovarian samples 

separated them from M6 samples and made them significantly different 

(ANOSIM R = 0.959, P<0.05) (Fig. 5.10b; Table 5.9). Peniagone spp. ovarian 

samples from M5 and M6 were similar, but some between-site separation on the 

ovarian MDS ordination plot suggests why the R-statistic was not significant 

(ANOSIM R = 0.269, P>0.05; Table 5.9). 19’-butanoyloxyfucoxanthin was absent 

and zeaxanthin contributed a relatively low proportion in the M6 Peniagone spp. 

samples. ANOSIM analysis suggests Psychropotes longicauda ovarian samples 

were similar between sites, however the higher percentage contribution of β-

carotene in the samples from M5 and the variable composition of all samples led 

to the R-statistic being not significant (ANOSIM R = 0.325, P>0.05; Table 5.9). 

Figure 5.11a shows the MDS ordination plot of the square root transformed raw 

pigment concentration data (differences on the plot can be attributed to 

concentrations of carotenoids as well as the pigment composition of samples) of 

gut wall samples. There is a clear divide between M5 and M6 samples attributed 

to the higher concentrations and between site differences in pigment composition 

of the samples. The gut wall samples of Psychropotes longicauda were 

significantly different between sites (ANOSIM R = 0.6, P<0.05; Table 5.10). 

Benthodytes sp. gut wall samples were very variable, this coupled with low 

sample size meant the samples were not different in composition between sites as 

indicated by the low, non-significant R-statistic (ANOSIM R = -0.250, P>0.05; 

Table 5.10). Although separation can be seen on the MDS plot between M5 and 

M6 Peniagone spp. gut wall samples (Fig 5.11a), ANOSIM analysis suggests they 

are similar because of the high variability of the samples (ANOSIM R = 0.445, 
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P<0.05; Table 5.10). The MDS ordination plot of ovarian square root transformed 

raw pigment concentration data also gives a clearer intraspecies separation 

between sites (Fig. 5.11b), although only because A. abyssorum ovarian samples 

are significantly different between sites (ANOSIM R = 0.621, P<0.05; Table 5.10). 

Low sample size (Benthodytes sp.), high variability within each site (Psychropotes 

longicauda and Peniagone spp.), and an outlying sample (Peniagone spp. – M5 

sample to the left middle of the plot), gave an ANOSIM result that suggests the 

samples are as similar between sites as they are within (Table 5.10). This was only 

significant for Peniagone spp. samples (ANOSIM R = 0.272, P<0.05). 
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Figure 5.10 MDS ordination of individual holothurian gut wall (a) and ovary (b) samples 
from species sampled at M6 and M5 during  cruise 2 (Dec 2005-Jan 2006), based on √-
transformed pigment percentage contributions and Bray-Curtis similarities. Key: filled 
squares = Peniagone spp. M5; open squares = Peniagone spp. M6; crosses = Benthodytes 
typica M5; plus signs = Benthodytes typica M6; filled triangles = Psychropotes longicauda M5; 
open triangles = Psychropotes longicauda M6; filled circles = Abyssocucumis abyssorum M5; 
open circles = Abyssocucumis abyssorum M6.
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Gut wall 

Ovary 

 142



2D Stress: 0.1

2D Stress: 0.1

 
 

 
 

Figure 5.11 MDS ordination of individual holothurian gut wall (a) and ovary (b) samples 
from species sampled at M6 and M5 during  cruise 2 (Dec 2005-Jan 2006), based on √-
transformed pigment concentrations and Bray-Curtis similarities. Key: filled squares = 
Peniagone sp. M5; open squares = Peniagone sp. M6; crosses = Benthodytes typica M5; plus 
signs = Benthodytes typica M6; filled triangles = Psychropotes longicauda M5; open triangles 
= Psychropotes longicauda M6; filled circles = Abyssocucumis abyssorum M5; open circles = 
Abyssocucumis abyssorum M6. (note overlapping plus sign and cross on gut wall plot)
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Group (% contribution data) R-statistic Significance 
level 

Benthodytes sp.  M5 v Benthodytes sp.  M6 gut wall  0 P = 0.667 
Benthodytes sp.  M5 v Benthodytes sp.  M6 ovary 0.25 P = 0.333 
P. longicauda M5 v P. longicauda M6 gut wall 1 P = 0.018* 
P. longicauda M5 v P. longicauda M6 ovary 0.325 P = 0.087 
Peniagone spp. M5 v Peniagone spp. M6 gut wall 0.251 P = 0.011* 
Peniagone spp. M5 v Peniagone spp. M6 ovary 0.269 P = 0.071 
A. abyssorum M5 v A. abyssorum M6 ovary 0.959 P = 0.018* 
 

 
 
 
 

Group (raw data) R-statistic Significance 
level 

Benthodytes sp.  M5 v Benthodytes sp.  M6 gut wall  -0.250 P = 1 
Benthodytes sp.  M5 v Benthodytes sp.  M6 ovary 0.250 P = 0.333 
P. longicauda M5 v P. longicauda M6 gut wall 0.600 P = 0.018* 
P. longicauda M5 v P. longicauda M6 ovary 0.200 P = 0.063 
Peniagone spp. M5 v Peniagone spp. M6 gut wall 0.445 P = 0.002* 
Peniagone spp. M5 v Peniagone spp. M6 ovary 0.272 P = 0.040* 
A. abyssorum M5 v A. abyssorum M6 ovary 0.621 P = 0.018* 
 

Table 5.10 Results of similarity test (ANOSIM) comparing holothurian gut wall and ovarian 
pigment square root transformed data between M5 and M6. R-statistic = 1 only if all replicates 
within a sample are more similar to each other than any other replicates from different 
samples. * = significant (analysis includes samples with no pigments) 

Table 5.9 Results of similarity test (ANOSIM) comparing holothurian gut wall and ovarian 
pigment percentage contribution to the total load between M5 and M6. R-statistic = 1 only if all 
replicates within a sample are more similar to each other than any other replicates from 
different samples. * = significant (analysis includes samples with no pigments) 
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5.3 Discussion 

 

5.2.1 Supply of material to the sea floor at M5 and M6 

 

Similar chlorophyll a levels in the particulate organic matter (POM) sampled 

below the chlorophyll a maximum may reflect the composition of material 

exporting from the upper ocean at stations M5 and M6 at the time of sampling 

(December 2005 to January 2006). The phytoplankton bloom to the north of the 

Crozet Isles was declining at the time of sampling (December to January). The 

bloom in this region starts mid-late September, peaks late October and declines 

throughout November to early January (Pollard et al., 2002; Venables et al., 2007). 

The waters to the north of the Islands have a eastward flow and so pass over 

benthic station M5 to the east (Pollard and Read, 2001). A small chlorophyll a 

peak was observed in the surface waters at M6, located in the HNLC region, in 

December 2004 (Pollard et al., 2002; Venables et al., 2007), suggesting there is 

some productivity in the upper water column at that station. 

 

Chlorophyll a to phaeophorbide ratios, indicating freshness (Thiel et al., 1989), 

suggest the POM below the chlorophyll a maximum was fresher at M5 (15.4 ± 3.2) 

than at M6 (7.3 ±2.0). Low variability in the percentage contribution of the 

pigments found in the POM below the chlorophyll a maximum suggests POM 

composition was consistent within sites (Fig. 5.1). Differences in the 

phytopigment composition of this POM between M5 and M6 are attributed to 

differences in 19'-hexanoylofucoxanthin and fucoxanthin concentrations; the latter 

was found in a higher concentration in the POM sampled at M6 below the 

chlorophyll a maximum, while the former was found in higher, but variable 

concentrations at M5. Fucoxanthin is a marker for diatoms while 19'-

hexanoylofucoxanthin is typical of Phaeocystis spp. (Jeffrey et al., 1997). There 

are significant correlations between diatom biomass and fucoxanthin, and between 

Phaeocystis biomass and 19'-hexanoylofucoxanthin, in the Crozet region (Poulton 

et al., 2007). The upper water POM biochemical compositional data from the 

present study concur with data on the phytoplankton community in the region. 
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Hence, north of the Crozet Plateau, the phytoplankton community is dominated by 

Phaeocystis antarctica, while to the south, although there was a mixed 

community, the large diatoms Corethron pinnatum and Fragilariopsis 

kerguelensis dominate biomass (Poulton et al., 2007). Pigment analysis of the 

upper water column in December 2004 suggested the cyanobacterium genus 

Prochlorococcus was present at M6, based on the incidence of its signature 

pigment divinyl chlorophyll a (Seeyave et al., 2007); this was also supported by 

flow cytometry data (Zubkov et al., unpublished data). Pigment markers of 

cyanobacteria (zeaxanthin and divinyl chlorophyll a; Jeffrey et al., 1997) were not 

observed in the POM sampled beneath the chlorophyll maximum at M6 in 

December 2005. This may be because they were either not present, or were not 

being exported from the upper ocean. Violaxanthin was found in low 

concentrations at M6 but not at M5. Violaxanthin is a marker of chlorophytes, 

prasinophytes and eustigmatophytes (small pico-nano phytoplankton) (Jeffrey et 

al., 1997).  

 

The lipid composition of the POM collected by the SAPS in the present study was 

also analysed (Fisher E.H., pers. comm.). Below the chlorophyll a maximum, the 

lipid composition was similar between sites, although there were two main 

differences.  

1) Higher concentrations of alkenones at M6 in comparison to M5 suggest there 

were more haptophytes (Volkman et al., 1998) at this station than at M5. The 

carotenoids 19'-hexanoylofucoxanthin and 19'-butanoylofucoxanthin are found in 

two Classes of haptophytes – Prymnesiophytes and Coccolithophores. An 

exception in the Prymnesiophytes are the species in the Family Isochrysidaceae; 

they also contain fucoxanthin, but not 19'-hexanoylofucoxanthin and 19'-

butanoylofucoxanthin (Jeffrey and Wright, 1994). The lower concentrations of 

19'-hexanoylofucoxanthin and 19'-butanoylofucoxanthin at M6 than at M5 may 

suggest the enhanced concentrations of alkenones found at M6 were derived from 

Isochrysidaecean haptophytes and therefore they may also have contributed to the 

higher fucoxanthin concentrations found at M6.  
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2) A higher concentration of the sterol C28Δ5,22 was found at M5. This sterol is a 

marker of haptophytes and diatoms (Volkman et al., 1998) and is consistent with 

the enhanced 19'-hexanoylofucoxanthin (biomarker of prymnesiophytes and 

coccolithophores) concentrations found at M5.  

 

A prominent difference in pigment concentration and composition of the POM 

sampled in the deep waters above the seabed at each site is consistent with the 

lack of observable phytodetritus at M6 (Wolff, 2006) (Fig. 5.12). The absence of 

chlorophyll a in the deep SAPS sample from M6 suggests there was no fresh 

material in suspended POM above the sea floor. Only two carotenoids previously 

shown to be important to holothurian reproduction (present study, Chapter 2), 19'-

hexanoylofucoxanthin and alloxanthin, were found in the POM above the seafloor 

at benthic station M6. The lipid composition of this POM also shows a large 

contrast between sites. Higher concentrations of all fatty acids and sterols were 

found at M5 than at M6 (Fisher E.H., pers. comm.). β-hydroxy acids are derived 

mainly from bacterial sources (Volkman et al., 1998) and were found at M5, but 

were absent at M6. 

 

The phytopigments arriving at the seafloor at M5 are derived from the flux of 

material from a wide area to the north and northeast of the Crozet Islands; the 

eastward flow of water from the north of the islands deposits the export flux of the 

bloom to the east. This is supported by the higher amount of material found in the 

deep (3000m) sediment trap in comparison to the relatively shallower sediment 

trap (2000m) at M5 (Wolff, 2006; Salter, 2007). The benthic station M6 to the 

south in the HNLC region is thought to receive little flux, with differing 

phytoplankton community composition (Wolff, 2006). The sediment trap data 

showed there was a sustained large flux of material from January 2005 through to 

May 2005 at M5 and a very short (two week), but large flux at M6 in January 

2005 (Wolff, 2006). The flux period at M6 may have been longer – the sediment 

trap record does not precede January 2005. The short period of high mass flux at 

M6 was also observed at a shallower station M2, also located in the HNLC region 

to the South of the Islands (Wolff, 2006). That M6 and M2 received a short, high 
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flux of material suggests the HNLC region to the south of the Crozet Islands is not 

permanently oligotrophic. It is not known if this short, large flux event is typical 

of the region on an annual or regular basis. 

 

An anti-cyclonic flow around the Crozet plateau advects a small filament of 

primary production (determined though satellite chlorophyll a data) southwards 

around the western side of the plateau (Pollard et al., 2007b; Venables et al., 

2007). It has been suggested that this filament of high chlorophyll observed in the 

surface waters between October and end of November was received in the 

sediment trap at M6 late December early January (assuming phytodetritus settles 

at 100-200m d-1 (Diercks and Asper, 1997)) (Venebles, H., pers. comm.). This 

hypothesis is not supported by the phytoplankton community found in the deep 

sediment trap at M5 and M6. If the short high flux of material at M6 had 

originated from a filament of chlorophyll a enhanced water from the North, both 

sites would have similar dominant phytoplankton species in their respective 

sediment traps. This was not the case. The OM flux at M6 was dominated by the 

diatom Fragilariopsis kerguelensis, and at M5 by another diatom Eucampia 

antarctica, although towards the end of the flux profile at M5, E. antarctica 

became less important and F. kerguelensis began to increase in abundance 

(sediment trap composition; Salter, 2007). It is important to note that although 

Phaeocystis spp. may have contributed to the flux of organic matter, this genus is 

difficult to enumerate and quantify in the OM collected by sediment traps, as there 

is no mineralised component to the cell. It is probable the short high mass flux 

event at M6 derived from the small chlorophyll a peak observed in the surface 

waters in the HNLC region in December (Pollard et al., 2002; Venables et al., 

2007) 

 

The similarity of sediment pigment biochemistry at the two benthic sites around 

the Crozet Islands, and the significant differences in samples taken in the austral 

summers of 2004/05 and 2005/06, suggests there were temporal, but not spatial 

differences in the sediment pigment composition. Zeaxanthin and alloxanthin 

were the most abundant carotenoids in the top 5mm sediment during cruise 1 
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(December 2004 to January 2005). These are biomarkers of  cyanobacteria and 

cryptophytes (nanoplanktonic flagellates that may be found in endosymbiotic 

association with organisms such as the red ciliate Mesodinium rubrum; (Jeffrey et 

al., 1997, respectively. In contrast, cruise 2 (December 2005-January 2006) had 

low concentrations alloxanthin and very low levels of zeaxanthin. In addition, 

four extra pigments were observed in the austral summer of 2005/04, which were 

absent in the summer of 2005/06. These pigments and their associated 

phytoplankton were 19'-hexanoylofucoxanthin (Phaeocystis sp. and other 

Prymnesiophytes), violaxanthin (chlorophytes, prasinophytes and 

eustigmatophytes), diatoxanthin (diatoms and dinoflagellates) and β-carotene 

(universal phytoplankton indicator). Although these sediment samples were taken 

at a comparable time of year, differences in sediment pigment biochemistry 

between sites may have been more apparent if the sediments were sampled at 

other times. For example, following the short high mass flux event at M6 in 

January 2005, or during the extended large flux of OM to M5 between January 

and May 2005 (3000m sediment trap data, Wolff, 2006). 

 

Chlorophyll a concentrations in the sediment were similar between cruises, but 3 

times greater at M5 than at M6. This corresponds with the findings of the 

ANTARES 1 programme, which recorded higher chlorophyll a concentrations at 

Station 10 (directly comparable to M5) than at Station 8 (northeast of M6 in the 

HNLC region) (Riaux-Gobin et al., 1997). The chlorophyll a concentrations 

determined in the present study were notably higher than those reported from the 

ANTARES samples, which were taken in April-May 1993, well after the 

phytoplankton bloom period (Riaux-Gobin et al., 1997). Total organic carbon 

(TOC) in the surficial sediments (top 1cm) of M5 were marginally higher than at 

M6, while values for total nitrogen were similar between sites (Hughes et al., 

2007). TOC and TN values did not reflect the higher fluxes of organic material at 

M5 than at M6, which is surprising since chlorophyll a concentrations were three 

times greater at M5. Similar invariant TOC values have been recorded at the PAP 

over the period 1996-1998, despite significant differences in the concentrations of 

labile organic compounds (Ginger et al., 2001). 
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Pigment concentrations in the sediment at M5 during cruise 1 were higher than at 

M6 (with the exception of diadinoxanthin and phaeophytin, which were similar), 

suggesting that M5 received a higher flux of fresh OM than M6. During cruise 2, 

a clear between-site difference in individual pigment concentrations was only 

apparent for chlorophyll a (greater at M5) and phaeophytin (greater at M6). 

Concentrations of other pigments (excluding chlorophyll a) were similar at M5 

and M6, which at first glance may suggest the supply of these pigments at each 

site was similar. However, this is not supported by the pigment composition and 

concentration of the POM sampled above the seafloor and the sediment 

chlorophyll a concentrations. Lipids found in the sediment during cruise 2 showed 

similar trends to the phytopigments; these had similar or even greater 

concentrations at M6 compared to M5 (Fisher E.H., pers. comm.).  

 

The similarity in the concentrations of pigments (excluding chlorophyll a, which 

was three times greater at M5 than at M6) and lipids found in the sediment may be 

attributed to the fauna associated with the sediment. Holothurian abundance, 

biomass and dominant species differed considerably between M5 and M6, 

according to trawl data and photographic evidence (Wolff, 2006). Holothurian 

biomass alone was more than three times greater at M5 than at M6 – an average 

value of 14068 g(WW) per hectare of holothurians was found at M5, compared to 

3687 g(WW) per hectare at M6 (Wolff, 2006). Dominant holothurian species at 

M5 were Pseudostichopus villosus, Abyssocucumis abyssorum, Peniagone spp. 

and Psychropotes longicauda; at M6 Peniagone spp., Benthodytes spp. and 

Psychropotes longicauda were dominant (Peniagone species were different at 

each site – Ian Cross pers. comm.). The rate of sediment re-working has been 

shown to be affected by the benthic community (Bett et al., 2001). It is probable 

the enhanced biomass and abundance of the benthic community at M5 controlled 

pigment and lipid concentrations in the sediment by assimilation and re-working 

of the sediment, potentially creating transformation products not identified by the 

methods used in the present study. For example, metabolites of fucoxanthin 

include Fucoxanthinol, Isofucoxanthinol and loliolide (Repeta and Gagosian, 
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1982; Repeta and Gagosian, 1984; Sinninghe Damsté and Koopmans, 1997). 

Spectral information and standards for such derivatives are not readily available to 

enable their quantification using the method of the present study. The 

determination of such compounds would require the use of an HPLC-MS (High 

Performance Liquid Chromatography – Mass Spectrometer). 

 

A decrease of phytopigment concentration with sediment depth was not observed 

at either M5 or M6 during cruise 2, although average concentrations for the 0.5 to 

1cm section of sediment were more variable. Chlorophyll a specifically was 

highly variable in the lower section of sediment at both stations. This is in 

agreement with some studies of phytopigment concentrations through sediment 

depth (Witbaard et al., 2000) but contrasts with previous studies (present study - 

chapter 4, Riaux-Gobin et al., 1997). A study of depth-related changes of protein 

and lipid concentrations through the sediment show high variability between cores 

and may relate to the distribution and activity of the benthic community (Santos et 

al., 1994). The high variability of the pigments in the 5-10mm section of sediment 

at M5 and M6 may reflect the spatial variability in concentrations at depth. This in 

turn may be related to low rates of vertical mixing as observed at the PAP in 2000 

using 13C as a tracer (Witte et al., 2003). 

 

 

5.3.2 Chlorophyll a in the gut sediments of holothurians 

 

Abyssocucumis abyssorum gut sediment chlorophyll a concentration was an order 

of magnitude greater than in any other species sampled at M5. Abyssocucumis 

abyssorum leaves distinct traces on the seafloor and exhibits a run and mill 

(foraging) behaviour (Kaufmann and Smith, 1997). This species may also be a 

suspension feeder in addition to deposit feeding (pers obs., Lauermann et al., 

1997). During a high flux period at a site in the NE Pacific, the concentration of 

excess 210Pb in the gut sediment of  A. abyssorum indicated that approximately 

91% derived their nutrition from material similar to that in the overlying sediment 

traps (Lauermann et al., 1997). At M5,  flocculent green aggregates were observed 
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on the sediment surface on the images taken with the Robust BIOdiversity lander 

(ROBIO) and the Wide-Angle Seabed Photography system (WASP, Wolff, 2006, 

Fig. 5.12). During periods of increased tidal flow (tidal-driven currents of up to 31 

cm s-1) the phytodetritus was re-suspended. During one WASP deployment at M5, 

no phytodetrital patches were observed on the seabed but there were large 

amounts of suspended particles above the sea floor (Wolff, 2006). Presumably, 

this flocculate green material was the same as that sampled with the deep SAPS at 

M5. This material had high chlorophyll a concentration (11.6 ng L-1). Suspension 

feeding by A. abyssorum allowed the species to feed on chlorophyll a-rich POM 

as shown by the elevated chlorophyll a concentration in its gut. Detailed 

examination of the WASP footage from M5 (Fig. 5.13) shows a specimen of A. 

abyssorum (identification confirmed by Henry Ruhl, pers. comm.) exhibiting 

suspension feeding behaviour (photo from Owen, 2007). 

 

The large, but variable chlorophyll a concentrations in the gut sediments of 

Amperima robusta and Peniagone spp. at M5 suggest these species feed on fresh 

material when they can find it. The chlorophyll a concentrations were variable as 

one (Peniagone spp.) or two (A. robusta) samples out of a total of four and three 

respectively contained very high chlorophyll a values. Peniagone diaphana, P. 

affinis and Amperima rosea have been shown to be selective feeders through δ15N 

analyses (Iken et al., 2001) and their gut sediment chlorophyll a concentrations (P. 

diaphana and A. rosea, present study, Chapter 4; Wigham et al., 2003). Peniagone 

vitrea can swim, which may facilitate the location of food. This ‘searching 

behaviour’ decreases when food availability is high (Kaufmann and Smith, 1997). 

Amperima rosea exhibits a high tracking rate of 110 cm2 d/m2, which was 20 

times greater than other holothurians during the same period at the Porcupine 

Abyssal Plain (Bett et al., 2001). Both Peniagone and Amperima spp. have a 

velum that is often positioned into the current, which may enable them to be 

transported by currents to search for fresh material (Gebruk, 1995; Bluhm and 

Gebruk, 1999). 
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Figure 5.12 WASP photographic footage of the seafloor at M5 (A) clearly showing phytodetrital 
patches (area shown = 5.4 m2) and M6 (B) with no phytodetrital material (area shown = 5.22 m2)  
during Crozet cruise 2 (January 2005 to December 2006).  (Photo from Owen, 2007) 
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Figure 5.12 WASP photographic footage of Abyssocucumis abyssorum exhibiting filter 
feeding behaviour at benthic station M5  during Crozet cruise 2 (January 2005 to 
December 2006).  (Photo from Owen, 2007) 

 

 

Oneirophanta mutabilis and Scotoplanes globosa have low chlorophyll a gut 

sediment concentrations in comparison to other species sampled at M5 (excluding 

Benthodytes sp., which had similarly low chlorophyll a gut sediment 

concentrations). Oneirophanta mutabilis and S. globosa can feed selectively on 

fresh material (Lauermann et al., 1997; Miller and Smith, 2000; Iken et al., 2001). 

Phytodetritus occurs at benthic station M5 and so species should have enhanced 

chlorophyll a concentrations in their gut contents. Scotoplanes globosa exhibits 

run and mill (foraging) behaviour and aggregates around patches of phytodetritus 

(Smith and Hamilton, 1983; Gutt and Piepenburg, 1991; Kaufmann and Smith, 

1997). Oneirophanta mutabilis has papillae that allow it to ‘walk’ on the sediment 

in search of food. It can take advantage of increased food supply over 

Pseudostichopus villosus and Psychropotes longicauda (present study, Chapter 4; 

Neto et al., 2006). It is difficult to explain why these two species, which have 

been shown to be selective feeders, have similar or lower gut sediment 

chlorophyll a concentrations to species that feed on poorer quality food (i.e. 

Psychropotes longicauda (less selective) and Pseudostichopus villosus (sub 

surface feeder) (present study, Chapter 4; Iken et al., 2001)). A higher gut 

sediment chlorophyll a concentration has previously been recorded for O. 
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mutabilis (2.60 μg gDW-1, present study), suggesting this species sampled at M5 

was not at capacity (i.e. the species can only forage and handle a certain amount 

of fresh material at one time). However, it is more likely that the observed 

flocculent ‘fresh’ material at M5 (Wolff, 2006), which is easily fed upon by 

suspension feeding Abyssocucumis abyssorum and more easily located by 

Peniagone spp. and Amperima robusta, may not have settled completely on the 

sea floor in the M5 area (as demonstrated by the lack of visible phytodetritus on 

the cores). The flocculent material may be transported by the currents, so that a 

portion settles, but not in large enough patches, or for long enough for O. 

mutabilis and S. globosa to locate and have time to process. The observation of re-

suspended phytodetritus (Wolff, 2006) supports this idea.  

 

All species sampled at both sites (Abyssocucumis abyssorum, Peniagone spp., 

Benthodytes sp. and Psychropotes longicauda) had greater chlorophyll a gut 

sediment concentrations at M5 than at M6. This was particularly obvious at M5 

for A. abyssorum and may be explained by the lower chlorophyll a sediment 

concentration at M6, the lack of chlorophyll a in the deep M6 SAPS sample and 

by the absence of visible phytodetritus (Wolff, 2006). Molpadia blakei had no 

chlorophyll a in its gut sediment, as observed at the PAP (present study, Chapter 4; 

Wigham et al., 2003). This species is a subsurface indiscriminate feeder (Miller 

and Smith, 2000; Iken et al., 2001).  

 

 

5.3.3 Carotenoids in holothurian gut wall and ovaries – M5 

 

Carotenoids were found in the gut wall and ovaries of all species sampled, with 

the exception of Abyssocucumis abyssorum. This species has a very thin gut wall, 

which was difficult to sample. Echinenone and β-carotene were often found in the 

greatest concentrations in the gut wall and ovaries of all the holothurians sampled 

at M5. Echinenone is found in many echinoderm species, especially in their 

ovaries. It can be metabolised from β-carotene (Tsushima and Matsuno, 1990b; 

Tsushima et al., 1993b; Matsuno and Tsushima, 1995) and occurs in the gut 
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epithelium via its precursor β-isocryptoxanthin (Tsushima et al., 1993b; Plank et 

al., 2002). Echinenone can then be converted to canthaxanthin (Matsuno and 

Tsushima, 1995). The metabolism of these carotenoids is supported by their 

occurrence in the gut wall of A. abyssorum, but not the sediment or POM. 

Converting β-carotene through to echinenone and canthaxanthin increases the 

anti-oxidant activity of the carotenoid, by increasing the number of conjugated 

double bonds (Chapter 1, Figure 1.1) (Di Mascio et al., 1991). This is beneficial 

for the developing larvae, since it quenches oxygen free radicals released by rapid 

metabolism that may otherwise cause mutagenesis (Bendich and Olson, 1989; Di 

Mascio et al., 1991; Olson, 1996; Linan-Cabello et al., 2003). It should be noted 

that the concentrations of echinenone, canthaxanthin and β-carotene were most 

variable in the gut walls and ovaries of A. abyssorum. Variability in carotenoid 

concentrations has been related to the stage of sexual maturity (Funk and Hobson, 

1991). Therefore, the variability of these carotenoids in holothurians may be 

attributed to the asynchronous reproduction. Continuous reproduction is the 

dominant pattern in deep-sea echinoderms (Gage and Tyler, 1991) and has been 

reported for the species analysed in the present study (Tyler et al., 1984; Tyler et 

al., 1985; Tyler and Billett, 1987; Tyler et al., 1987), with the exception of 

Scotoplanes globosa, Benthodytes typica, Pseudostichopus villosus and 

Abyssocucumis abyssorum, whose reproductive biology is unknown. 

 

The gut wall MDS ordination plot shows some species clustering together, 

reflecting the high percentage contributions of either zeaxanthin (Peniagone spp.), 

or alloxanthin and β-carotene (Oneirophanta mutabilis). The absence of 

echinenone in Scotoplanes globosa gut wall samples led to the clustering of these 

samples. It is possible that the conversion of β-carotene does not occur in the gut 

wall of S. globosa, but in its ovaries, since echinenone is present in the ovaries. 

Psychropotes longicauda also showed species specific clustering because of the 

enhanced contribution of 19'-butanoylofucoxanthin. This suggests P. longicauda 

does not discriminate between carotenoids when assimilating organic compounds, 

because the concentration of 19'-butanoylofucoxanthin in the sediment and the 

POM above the seabed was high.  
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Enhanced concentrations of 19'-butanoylofucoxanthin in the ovaries of A. 

abyssorum may also indicate a lack of discrimination in its assimilation of the 

carotenoids found in the diet. 19'-butanoylofucoxanthin concentration was high in 

the POM above the seabed at M5 and this species may feed directly on this 

material (see 5.3.2). Peniagone spp. ovarian samples were tightly clustered 

because of the high percentage contribution of zeaxanthin in the samples. 

Zeaxanthin was found in the sediment in 2004, but in a much lower concentration 

in 2005 (this may be related to the supply or to the assimilation by the fauna). 

Zeaxanthin does not contribute to such a high percentage (>20% in Peniagone 

spp.) of the total in ovaries of the other species sampled, which suggests that 

Peniagone spp. selectively assimilates this carotenoid. Oneirophanta mutabilis 

may have shown selective assimilation as indicated by the high (>60%) 

percentage contribution of β-carotene and absence of 19'-butanoylofucoxanthin 

and 19'-hexanoylofucoxanthin in its ovaries. 

 

 

5.3.4 Carotenoids in holothurian gut wall and ovaries –M6 

 

Diatoxanthin concentration was high, but variable in the gut walls of M. blakei 

and Psychropotes longicauda. This carotenoid was found in low concentrations in 

the sediment and was absent in the POM above the seabed, suggesting these 

species selected diatoxanthin, although the high variability of this carotenoid in 

the gut wall samples indicates otherwise. Canthaxanthin, echinenone and β-

carotene, were found in the gut wall and ovaries of Peniagone spp., Benthodytes 

sp., Abyssocucumis abyssorum (ovaries only) and Psychropotes longicauda. As 

discussed previously, these carotenoids occur in the ovaries of shallow water 

echinoderms and it is thought canthaxanthin and echinenone are converted from 

β-carotene to increase their anti-oxidant capabilities (Bendich and Olson, 1989; 

Tsushima and Matsuno, 1990b; Di Mascio et al., 1991; Tsushima et al., 1993b; 

Matsuno and Tsushima, 1995; Olson, 1996; Linan-Cabello et al., 2003). Molpadia 

blakei contains canthaxanthin and β-carotene in its ovaries, with other carotenoids 
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also contributing similar concentrations to the total. This may be attributed to M. 

blakei feeding on poorer food and not discriminating in its assimilation of the 

carotenoids in the sub-surface sediment. Sediment pigment concentrations were 

similar down to 1cm sediment depth in the present study. Another study in the 

region has shown a decrease in chlorophyll a, b, and c with sediment depth (down 

to 8cm), suggesting deeper sediment is pigment depleted (Riaux-Gobin et al., 

1997).  

 

 

5.3.5 Food supply affecting reproductive fitness? 

 

As discussed in section 5.2.1, the supply of OM available to the benthic fauna was 

more limited at M6 than at M5 and this may explain the between site differences 

in the pigment biochemistry of individual holothurian species. Of the tissue 

samples of holothurians from M6, one gut wall sample from Molpadia blakei and 

Peniagone spp., and one ovarian sample of Peniagone spp., Benthodytes sp. and 

Psychropotes longicauda contained no carotenoids. All tissue samples from M5 

contained carotenoids. Significant between-site differences in pigment 

concentrations of the gut wall and ovaries in holothurian conspecifics between 

sites were apparent. Most prominently, carotenoids important to echinoderm 

reproduction (canthaxanthin, echinenone and β-carotene; (Tsushima and Matsuno, 

1990b; Matsuno and Tsushima, 1995) were found in greater concentrations in the 

ovaries of conspecifics from M5 than M6. This difference was most pronounced 

in Peniagone spp. and may by attributed to the collection of different species at 

each site. Peniagone affinis and P. willemeösi were dominant species at M6; P. 

challengeri and Peniagone sp. nov. were dominant at M5 (Ian Cross, pers comm.). 

Different food regimes appear to favour different species of the genus Peniagone. 

At an abyssal site in the northeast Pacific, changes in the dominant species of 

Peniagone have been correlated to climate fluctuations and OM supply to the 

seabed (Ruhl and Smith, 2004). These changes in Peniagone sp. may not have 

occurred directly through food supply. Other megafaunal species also changed in 

dominance, which may have forced a change in Peniagone spp. by competition 
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for resources. Abyssocucumis abyssorum ovarian pigment biochemistry reflected 

the increased supply of 19'-butanoylofucoxanthin, 19'-hexanoylofucoxanthin and 

diadinoxanthin at M5 (as seen in the POM above the seabed), by having a 

significantly greater concentration of these carotenoids in ovarian samples taken 

from M5. This suggests the ovarian carotenoid biochemistry of A. abyssorum can 

be influenced by changes in the composition of the OM supply to the seafloor. 

 

Shallow-water studies have shown that the quantity as well as the quality of the 

carotenoids available to echinoderms can affect reproductive output. Increased 

supply of carotenoids enhances the colour of the roe in shallow water 

echinoderms, suggesting carotenoid concentrations in the ovaries are increased 

(George and Young, 1998; George et al., 2001; Mclaughlin and Kelly, 2001; 

George and Lawrence, 2002; Robinson et al., 2002). An increase in ovarian 

carotenoid concentration increases fecundity, larval maturation and survival in 

echinoderms (George and Young, 1998; George et al., 2001; Mclaughlin and 

Kelly, 2001; George and Lawrence, 2002). Greater carotenoid concentrations in 

the ovaries of species at M5 are a result of enhanced supply of the carotenoids at 

this station. If the same reproductive advantages are conferred on abyssal 

holothurians, those species found at M5 will have a higher reproductive output 

than those of their conspecifics at M6.  

 

The carotenoid composition of the diet can also affect reproductive output in 

echinoderms. The oxygen free-radical quenching ability of carotenoids can vary 

greatly, depending on the structures of the carotenoids (Hirayama et al., 1994). 

Larvae of the sea urchin Lytechinus variegatus from parents fed on xanthophylls 

(oxygen containing carotenoids) were larger throughout development, developed 

faster, had higher survival rates and attained metamorphic competence faster than 

those fed just β-carotene. The numbers of juveniles originating from parents fed 

xanthophylls were also significantly higher (George et al., 2001). Changes in the 

carotenoid composition of the OM may therefore also have an affect on the 

reproductive output of the species at both sites. The selectivity or requirement for 

specific carotenoids by some holothurians (i.e. zeaxanthin by Peniagone spp. and 
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β-carotene by Oneirophanta mutabilis) may give them a reproductive advantage 

or disadvantage, depending on the specific carotenoids supplied in the OM. 

Species that can metabolise specific carotenoids to carotenoids with greater anti-

oxidant properties may also gain a a reproductive advantage. However, apart from 

the conversion of β-carotene to echinenone and canthaxanthin (Tsushima and 

Matsuno, 1990b; Tsushima et al., 1993b; Matsuno and Tsushima, 1995), the 

metabolic pathways of carotenoid in echinoderms are unknown. Changes in the 

carotenoid composition in the supply of OM may also affect the reproductive 

output of holothurians that do not discriminate in their assimilation of carotenoids. 

Reproductive output in these species will depend on the oxygen free radial 

quenching ability of the carotenoids in the supply of OM to the seabed.  
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5.4 Conclusion 

 

The quantity of organic matter reaching the seafloor differs between stations M5 

and M6 (to the east and south of the Crozet Isles respectively), mirroring 

differences in the productivity of the overlying upper water column at each site. 

M5 receives a greater flux of material, as indicated by the sediment trap record 

and suspended phytodetritus found above the seabed, in comparison to M6 (Wolff, 

2006). The POM above the seabed was fresher and contained more phytopigments 

at M5 than at M6 and this was reflected in the diet of some abyssal holothurian 

species, depending on their ability to take advantage of the often resuspended 

phytodetrital material. Abyssocucumis abyssorum fed directly on this phytodetrital 

material. Peniagone spp. and Amperima robusta were able to exploit this material 

when they could find it because of their feeding and foraging modes. 

Oneirophanta mutabilis and Scotoplanes globosa fed on the same material as 

other species that have previously been shown to be less selective in their feeding 

(present study - chapter 4, Neto et al., 2006). The resuspension of the 

phytodetritus at M5 (Wolff, 2006) did not allow Oneirophanta mutabilis and 

Scotoplanes globosa to find fresh phytodetrital patches. That M6 receives a lower 

flux of fresh material is highlighted by the diet of holothurians sampled at M6 in 

comparison to conspecifics specimens at M5. Similar between-site sediment 

pigment concentrations in December 2005 to January 2006 are attributed to the 

higher abundance and biomass of megafauna at M5. Phytopigment composition 

between the sites was also similar, although temporal differences were observed.  

 

The relatively high concentrations of canthaxanthin, β-carotene and echinenone in 

the ovaries of the abyssal holothurians studied suggest that they may be important 

in reproduction. These carotenoids also showed the highest variability in 

concentrations, possibly related to the reproductive state of the specimens. The 

ovarian biochemistry of the holothurians is determined by the selectivity of the 

species and the supply of carotenoids to the sea floor. Greater carotenoid supply at 

M5 than at M6 is mirrored in the concentrations of carotenoids assimilated into 

the ovaries of species sampled at both stations (Abyssocucumis abyssorum, 
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Peniagone spp. and Psychropotes longicauda). Enhanced carotenoid 

concentration in the ovaries of echinoderms increases reproductive output and 

survival  (George and Young, 1998; George et al., 2001; Mclaughlin and Kelly, 

2001; George and Lawrence, 2002). Some holothurian species showed selectivity 

for specific compounds – Peniagone spp. for zeaxanthin and Oneirophanta 

mutabilis (and possibly Pseudostichopus villosus) for β-carotene. Other species, 

Abyssocucumis abyssorum, Psychropotes longicauda and Molpadia blakei, do not 

discriminate so highly between carotenoids and assimilate carotenoids available to 

them in their diet. Changes in the composition of the organic material supplied to 

the abyssal sea floor may affect holothurian reproductive output by 1) supplying 

specific carotenoids essential to specific holothurian species thus giving them a 

reproductive advantage, or 2) enhancing or decreasing reproductive output of the 

non-selective species by supplying carotenoids with contrasting oxygen free 

radical quenching abilities.  

 

The timing and make-up of the phytoplankton bloom, planktonic interactions, and 

recycling and repackaging of organic matter can be affected by climate warming 

and increasing atmospheric CO2 (Turner, 2002; Richardson and Schoeman, 2004; 

Orr et al., 2005). The present study suggests that the material arriving at the sea 

floor is dependent on the biogeochemistry of the overlying surface waters. The 

quantity and composition of this material could potentially exert a control on 

holothurian reproductive output. If this is true then global changes in upper ocean 

ecosystems will ultimately affect abyssal sediment community structure and 

diversity, initiating large community shifts as observed at the Porcupine Abyssal 

Plain in the northeast Atlantic (Billett et al., 2001) and at Station M, an abyssal 

time-series station in the northeast Pacific (Ruhl and Smith, 2004). 
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Chapter 6 – The link between diet and abyssal holothurian 
ovarian biochemistry – a synthesis of PAP and Crozet data 

 

6.1 Introduction  

 

The deep-sea benthos is a key component of the carbon cycle, affecting long-term 

bioturbation, remineralisation and sequestration rates of carbon over large areas of 

the Earth’s surface (Ruhl, 2007). Deep-sea benthic megafauna affect the 

sequestration of carbon by re-distributing and reworking organic material (OM), 

as well as oxidising sediments through bioturbation. The rates of these processes 

can be affected by the community composition (Bett et al., 2001), which in turn 

reflect the supply of food (Smith et al., 1993; Kaufmann and Smith, 1997). 

Variability in the supply of food is also a major controlling factor in the 

population dynamics of benthic animals (Carney, 1989). Therefore, it is important 

to examine feeding adaptations and variations in the utilisation of OM, the 

quantity and composition of organic matter supplied to the seafloor, and the affect 

changing supply has on the biochemistry of the fauna dependent on it, in order to 

fully understand deep-sea ecosystem functioning.  

 

The present study has so far examined the link between diet and ovarian 

biochemistry in abyssal holothurians at three sites; the Porcupine Abyssal Plain 

(PAP) and two benthic sites around the Crozet Islands (M5 and M6). A temporal 

comparison at the PAP, NE Atlantic, has shown 1) the supply of organic material 

can affect the diet of holothurians, depending on their feeding adaptations and 2) 

holothurian ovarian biochemistry can be affected by compositional differences in 

the OM reaching the seafloor, although the extent of this influence appears to 

differ between species. The two abyssal sites around the Crozet Islands, Southern 

Ocean, were investigated to compare contrasting OM supply on the diet and 

ovarian biochemistry of holothurians. The sites are only 460km apart, with no 

topographic boundary to separate them; however, they are subject to differing 

overlying primary productivity regimes. Therefore, differences can be ascribed to 

the composition and amount of organic matter reaching the sea-floor at each site. 
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The results showed that 1) the quantity of OM reaching the seafloor at each site 

differed, mirroring the overlying primary productivity regimes. This was reflected 

in the diet of some holothurian species, depending on their ability to take 

advantage of the fresh material. 2) The ovarian biochemistry of the holothurians 

sampled at both sites showed quantitative differences, mirroring the supply of OM 

to each benthic site. 

 

The present chapter synthesises the data from all three sites, comparing the supply 

and composition of the OM and relating this to the diet and ovarian biochemistry 

of the holothurians. Holothurians that are common to the different sites are 

examined for their feeding selectivity (based on gut sediment chlorophyll a 

concentrations) and their ovarian biochemistry, in terms of quantitative 

comparisons and biochemical consistency between and within sites. Intra- and 

interspecies differences are discussed in relation to feeding modes, reproductive 

requirement and OM supply. Details on the methods of sample collection and 

analysis are given in Chapter 2. 
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6.2 Results 
 
 
6.2.1 Comparison of phytopigments in the sediment 
 
 
Only the sediment sampled during the second Crozet cruise (Dec. 2005 to Jan. 

2006) will be examined here for comparison with the holothurian biochemistry – 

holothurians were not sampled during the first Crozet cruise. Concentrations of 

chlorophyll a in the top 5mm sediment for each sample site/period differed, with 

M5 containing the greatest concentration and the PAP in July 2005 the least (Fig. 

6.1). The top 5mm sediment at M6 contained greater but variable chlorophyll a 

concentration than the same sediment fraction during either year at the PAP. 

Phaeophytin and diadinoxanthin were also found in greater concentrations at M5 

and M6 than during either year at the PAP (Fig. 6.1). 

 

All identified pigments were found at all four sample sites/periods with the 

exception of β-carotene, violaxanthin, 19’-butanoloxyfucoxanthin and 19’-

hexanoloxyfucoxanthin, which were absent in the top 5mm sediment sampled at 

the PAP June 2004 (Fig. 6.1). With the exception of β-carotene, these carotenoids 

were found in greater concentrations at M5 and M6 than in July 2005 at the PAP. 

Zeaxanthin is the only pigment that was found in greater concentration in the top 

5mm sediment at the PAP (in June 2004) than either M5 or M6 (Fig. 6.1). 

 

Average concentrations of pigments in the 5 to 10mm section sediment at the PAP 

in 2005 were always lower than that recorded for the same section of sediment at 

M5 and M6 (Fig. 6.2). Alloxanthin, diatoxanthin, chlorophyll a, β-carotene, 

zeaxanthin and violaxanthin were observed in the 5 to 10mm sediment sampled at 

M5 and M6, but were absent from this section of sediment at the PAP in 2005 

(Fig. 6.2). 
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Figure 6.2 Average concentration (µg gDW-1 ± SD) of phytopigments found in the 5 to 10mm sediment 
at M5 (dark grey), M6 (white) (both sampled in Dec 2005 to Jan 2006) and PAP July 2005 (stripe). 19'-
but = 19'-butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; Fucox = fucoxanthin;  Diad = 
diadinoxanthin; Allox = alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Chl a = chlorophyll a; 
β-carot = β-carotene; Phorb = phaeophorbide; Phytin = phaeophytin; violax = violaxanthin. 

Figure 6.1 Average concentration (µg gDW-1 ± SD) of phytopigments found in the top 5mm sediment at 
M5 (dark grey), M6 (white) (both sampled in Dec 2005 to Jan 2006), PAP June 2004 (light grey) and PAP 
July 2005 (stripe). 19'-but = 19'-butanoyloxyfucoxanthin; 19'-hex = 19'-hexanoyloxyfucoxanthin; Fucox = 
fucoxanthin;  Diad = diadinoxanthin; Allox = alloxanthin; Diatox = diatoxanthin; Zeax = zeaxanthin; Chl 
a = chlorophyll a; β-carot = β-carotene; Phorb = phaeophorbide; Phytin = phaeophytin; violax = 
violaxanthin. 
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6.2.2 Comparison of holothurian feeding selectivity 

 

No chlorophyll a was found in the gut sediment of Molpadia blakei sampled at the 

PAP in 2005, or at stations M5 and M6 around the Crozet Islands (Figure 6.3). 

Average gut sediment chlorophyll a concentrations were higher in species 

sampled at M5 in comparison to the gut sediment of the same species sampled at 

M6 and the PAP in both years (Figure 6.3). Oneirophanta mutabilis was an 

exception to this; M5 average gut sediment chlorophyll a concentration was 

greater than the average recorded for the PAP 2005 samples (t(8) = 2.58, P<0.05), 

but similar to the average concentration recorded in the PAP 2004 samples (t(12) 

= 1.18 P>0.05). A significant difference was seen between M5 and PAP 2005 gut 

sediment chlorophyll a concentration in Pseudostichopus villosus (W(9,5) = 50.5, 

P<0.05). The high variability of P. villosus chlorophyll a concentration at M5 is 

attributed to a single sample containing a relatively high concentration (18.88 µg 

gDW-1). Without this sample the average gut sediment chlorophyll a 

concentration would be 1.47 (±1.28) µg gDW-1. Gut sediment samples of  

Amperima spp. and Peniagone spp., at M5 had higher average chlorophyll a 

concentrations than those recorded in the PAP 2004/2005 samples, but they were 

not significantly different because of high variability (t(4) = 1.83, P>0.05 and 

W(4,5) = 15, P>0.05 respectively). Psychropotes longicauda gut sediment 

chlorophyll a concentration at the PAP in 2004 and 2005, M5 and M6 were 

significantly different (F(3,16) = 8.66, P<0.05) – with M5 having the highest 

concentration. 

 

Peniagone spp. and Psychropotes longicauda gut sediment chlorophyll a 

concentrations at M6 were not significantly different from those recorded in 

samples from the PAP collected in 2004 (W(4,5) = 16.5, P>0.05; t(7) 2.09, 

P>0.05, respectively). Three out of four M6 Peniagone spp. gut sediment samples 

contained no chlorophyll a, the last sample contained high chlorophyll a 

concentration leading to the high variability seen in Figure 6.3. Psychropotes 

longicauda gut sediment concentration recorded at M6 was not significantly 

different to that at the PAP in 2005 (W(4,8) = 21, P>0.05). 
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Figure 6.3 Chlorophyll a concentration (mean µg gDW-1 ± SD) in the gut sediment of holothurians 
sampled at M5 (dark grey), M6 (white), PAP June 2004 (light grey) and PAP July 2005 (stripe). 
Average Amperima rosea gut sediment chlorophyll a values excluding samples with no chlorophyll a   
shown with dotted line. (note break in y-axis to accommodate Amperima robusta data) 

 
 
6.2.3 Comparison of holothurian pigment biochemistry 

 

6.2.3.1 Quantitative intraspecies between-site differences 

 

Concentrations of individual carotenoids found in the gut wall and ovaries of 

holothurian genera/species from the PAP and the two Crozet sites (M5 and M6) 

are plotted to show between-site comparisons (Figs. 6.4, 6.5, 6.6, 6.7, 6.8 and 6.9). 

Average concentrations of diadinoxanthin, alloxanthin, zeaxanthin and 

diatoxanthin were statistically greater (W(14,4) = 161, P<0.05) in the gut wall of 

Amperima rosea sampled at the PAP in 2004 than in Amperima robusta sampled 

at M5 (Fig. 6.4); concentrations of canthaxanthin, echinenone and β-carotene 
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were not significantly different between sites (t(16) = 0.91, 0.37, 0.71 

(respectively), P>0.05). Diadinoxanthin (W(16,5) = 216, P<0.05), alloxanthin 

(W(16,5) = 216, P<0.05), diatoxanthin (t(19) = 6.97, P<0.05), zeaxanthin (t(19) = 

6.16, P<0.05) canthaxanthin (W(16,5) = 216, P<0.05) and echinenone (W(16,5) = 

214, P<0.05) were all found in significantly greater concentrations in the ovaries 

of Amperima rosea in comparison to Amperima robusta (t-test, P>0.05). The 

concentration of β-carotene was not significantly different in the ovaries of the 

two Amperima species (t(19) = 0.3, P>0.05).  

 

Diatoxanthin, zeaxanthin, echinenone and β-carotene were found in higher 

concentrations in the gut wall of Peniagone spp. at M5 than those at M6 or in 

Peniagone diaphana at the PAP in 2004 (Fig. 6.5). Only diatoxanthin was found 

in significantly different concentrations (W(4,6) = 12, P<0.05). In the ovaries, 

zeaxanthin, echinenone and β-carotene were found in higher concentrations in the 

M5 Peniagone spp. (Fig. 6.5), but this was not statistically significant (t(7) = 1.96, 

P>0.05; W(5,4) = 29, P>0.05; W(5,4) = 31, P>0.05 respectively) because of the 

high variability of the samples. 

 

The carotenoid biochemistry of the gut wall of Molpadia blakei sampled at Crozet 

site M6 and the PAP 2005 show large differences in pigment composition (Fig. 

6.6). Four carotenoids, 19’-butanoloxyfucoxanthin, alloxanthin, zeaxanthin and 

canthaxanthin were found in the gut wall of the species sampled at the PAP in 

2005, but not in the samples from M6. Conversely, diatoxanthin was found in the 

M6 gut wall samples, but not the PAP 2005 specimens. β-carotene was found in 

the gut wall of specimens from both sites; the average concentration was higher in 

the M6 samples, but not significantly so (W(2,6) = 10.5, P>0.05). An increased 

number of carotenoids was observed in the ovaries of specimens from both sites 

in comparison to the gut wall. 19’-hexanoloxyfucoxanthin was observed in the 

ovaries of specimens from M6, but not the PAP in 2005 (Fig. 6.6). Alloxanthin, 

diatoxanthin and β-carotene were found in significantly greater concentrations in 

the M6 ovaries of M. blakei (t(6) = 4.67; t(6) = 8.30; t(6) = 4.30 (respectively), 

P<0.05); zeaxanthin and 19-butanoloxyfucoxanthin were found in significantly 
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greater concentration in the ovaries of M. blakei sampled at the PAP in 2005 (t(6) 

= 2.92; t(6) = 3.28, P>0.05).  

 

Alloxanthin, diatoxanthin, zeaxanthin, echinenone and β-carotene were all found 

in greater average concentrations in the gut wall of Oneirophanta mutabilis of 

specimens from M5 than in those taken at the PAP in either June 2004 or July 

2005 (Fig. 6.7). Of these however, only β-carotene was found in significantly 

greater concentration (W(8,4) 37, P>0.05). In the ovaries of O. mutabilis, β-

carotene was found in concentrations that were not significantly different in 

specimens from M6, or the PAP in June 2004 and in July 2005 (F(2,13) = 0.29, 

P>0.05). The average concentrations of the carotenoids diadinoxanthin, 

alloxanthin, diatoxanthin, zeaxanthin, canthaxanthin and echinenone were all 

higher in the O. mutabilis ovarian samples taken at the PAP in June 2004. Of 

these, diadinoxanthin, alloxanthin and canthaxanthin were found in significantly 

greater concentrations (t(11) = 3.12; t(11) = 3.78; W(9,4) = 80 (respectively), 

P<0.05).   

 

Echinenone and β-carotene were found in significantly greater concentrations in 

the gut walls of Pseudostichopus villosus sampled at M5, compared to the average 

concentrations in specimens from the PAP in 2005 (t(10) = 2.52; (10) = 3.80 

(respectively, P<0.05). β-carotene occurred in greater concentration in the ovaries 

of this species sampled at M5, but was not significantly so (t(10) = 1.83, P>0.05). 

Despite the higher concentrations of 19’-hexanaloxyfucoxanthin, alloxanthin and 

canthaxanthin in PAP 2005 gut wall samples in comparison to those from M5 (Fig. 

6.8), they were not significantly different (W(6,6) = 46; W(6,6) = 40; W(6,6) 50 

(respectively), P>0.05).  

 

Psychropotes longicauda is the only holothurian that was sampled at M5, M6 and 

the PAP in June 2004 and July 2005. Most carotenoids are found in similar 

concentrations in its gut walls at the different sites (Fig. 6.9). The exception to this 

is 19’-hexanoloxyfucoxanthin, which was found in significantly greater 

concentration (W(6,5) = 23, P>0.05) at M5 in comparison to the PAP in 2005 
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(19’-hexanoloxyfucoxanthin was absent from June 2004 samples). Echinenone 

was found in greater (but not significantly; W(5,5) = 25, P>0.05) concentrations 

from samples taken at M5 in comparison to the next greatest concentration of this 

carotenoid in PAP 2004 samples. Canthaxanthin, echinenone and β-carotene were 

found in the greatest concentrations in P. longicauda ovarian samples taken from 

M5, (F(3,17) = 4.65; F(3,17) = 3.85; F(3,17) = 6.18 (respectively, P<0.05). 

Ovarian samples of P. longicauda taken at the PAP in 2005 contained the lowest 

average concentrations of canthaxanthin, echinenone and β-carotene (Fig. 6.9). 

 
 
 

Gut wall

Ovary

 
 

 

Figure 6.4 Carotenoid concentrations (mean µg gDW-1 ± SD) in the gut wall and ovary of 
Amperima rosea (PAP) and Amperima robustrum (Crozet) sampled at M5 (dark grey) and the 
PAP June 2004 (light grey).  (note different scales on y-axis) 
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Figure 6.5 Carotenoid concentrations (mean µg gDW-1 ± SD) in the gut wall and ovary of 
Peniagone diaphana (PAP) and Peniagone spp. (Crozet) sampled at M5 (dark grey), M6 
(white) and PAP June 2004 (light grey).  
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Figure 6.6 Carotenoid concentrations (mean µg gDW-1 ± SD) in the gut wall and ovary of 
Molpadia blakei sampled at M6 (white) and PAP July 2005 (stripes).  
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Figure 6.7 Carotenoid concentrations (mean µg gDW-1 ± SD) in the gut wall and ovary of 
Oneirophanta mutabilis sampled at M5 (dark grey), PAP June 2004 (light grey) and PAP July 
2005 (stripes).  (note different scales on y-axis) 
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Figure 6.8 Carotenoid concentrations (mean µg gDW-1 ± SD) in the gut wall and ovary of 
Pseudostichopus villosus sampled at M5 (dark grey) and PAP July 2005 (stripes).  (note 
different scales on y-axis) 
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Figure 6.9 Carotenoid concentrations (mean µg gDW-1 ± SD) in the gut wall and ovary of 
Psychropotes longicauda sampled at M5 (dark grey) M6 (white), PAP June 2004 (light grey) 
and PAP July 2005 (stripes).  (note different scales on y-axis) 

 
 
6.2.3.2 Compositional differences and intra-specific consistency between years 

 

Pigment percentage contributions in the gut wall and ovaries of each specimen of 

species common to the different sites were plotted on an MDS ordination plot to 

show differences between sites in pigment composition (Figs. 6.10 and 6.11). The 

gut wall MDS ordination plot shows Molpadia blakei samples had the least 

between-site clustering – samples from M6 were located on the opposite side to 

the plot to the one sample taken at the PAP in 2005 (the other sample from the 
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PAP in 2005 contained no pigment and was excluded from the plot). The pigment 

composition of M. blakei samples was different between sites. This is highlighted 

by ANOSIM analysis (ANOSIM R = 1, P>0.05; Table 6.1), which suggested the 

samples taken at M6 are more similar to each other than any other samples from 

the PAP in July 2005. The R-statistic was not significant, however, because of the 

small sample number.  

 

Oneirophanta mutabilis gut wall samples showed the tightest intra-specific 

clustering between and within each site on the MDS ordination plot (Fig. 6.10). 

ANOSIM analysis indicated samples taken at M5 and the PAP in 2005 were 

similar to each other (ANOSIM R = 0.250, P<0.05; Table 6.1) but those of M5 

and the PAP in 2004 were more similar within-site than they were between sites 

(ANOSIM R = 0.684, P<0.05; Table 6.1).  

 

Pseudostichopus villosus gut wall samples showed between-site separation on the 

MDS ordination plot (Fig. 6.10) and ANOSIM analysis indicated the samples 

within M5 and the PAP in 2005 were more similar to each other than to samples 

from the other site (ANOSIM R = 0.8, P<0.05; Table 6.1). Samples of P. villosus 

from the PAP in 2005 had higher percentage contributions from canthaxanthin, 

alloxanthin and 19’-hexanoloxyfucoxanthin. 

 

Psychropotes longicauda gut wall samples from the PAP in 2004 were grouped 

separately from M5 and M6 samples on the MDS plot (Fig. 6.10). Samples of P. 

longicauda from the PAP in 2004 had no 19’hexanoloxyfucoxanthin or 19’-

butanoloxyfucoxanthin, and had higher percentage contribution from 

diadinoxanthin and alloxanthin. ANOSIM analysis indicated the samples from the 

PAP in 2004 are more similar to each other than they are to either M5 or M6 

samples (ANOSIM R = 0.723 (M6), R = 0.88 (M5), P<0.05; Table 6.1). 

Psychropotes longicauda gut wall percentage pigment composition samples from 

the PAP in 2005 were similar to the samples from M5 and M6 because of the high 

variability of the PAP 2005 samples, as seen on the MDS ordination plot. The 

negative R-statistic generated for the PAP 2005 vs. M6 samples (ANOSIM R = -
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0.080, P>0.05; Table 6.1) indicated greater dissimilarity among samples from one 

site than occurred between samples from both sites (Chapman and Underwood, 

1999). This dissimilarity was highlighted on the MDS plot where samples of P. 

longicauda from the PAP 2005 had been sampled from differnt ‘states’ i.e. two 

samples together above the M6 samples on the plot and the three samples located 

at the bottom of the plot and one outlying sample to the left of the plot (6.10). The 

two P. longicauda samples above the M6 samples contained a greater number of 

carotenoids than the three samples to the bottom of the plot. 

 
 
 
 
 

 
 

 

 
 

Figure 6.10 MDS ordination of 50 individual holothurian gut wall samples from M5, M6, the 
PAP in June 2004 and the PAP July 2005, based on √ -transformed pigment percentage 
contributions and Bray-Curtis similarities. Key: Onm = Oneirophanta mutabilis; Mol = 
Molpadia blakei; Psl = Psychropotes longicauda; Pvil = Pseudostichopus villosus. 
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Group R-statistic Significance 
level 

O. mutabilis M5 vs O. mutabilis PAP 2005  0.250 P = 0.029* 
O. mutabilis M5 vs O. mutabilis PAP 2004  0.684 P = 0.020* 
P. villosus M5 vs P. villosus PAP 2005  0.800 P = 0.020* 
P. longicauda M6 vs P. longicauda PAP 2005 -0.080 P = 0.548 
P. longicauda M6 vs P. longicauda PAP 2004  0.723 P = 0.018* 
P. longicauda M5 vs P. longicauda PAP 2005  0.192 P = 0.067 
P. longicauda M5 vs P. longicauda PAP 2004  0.880 P = 0.080 
M. blakei M6 vs M. blakei PAP 2005  1 P = 0.250 
 

 
 

Table 6.1 Results of similarity test (ANOSIM) comparing holothurian gut wall sample 
pigment percentage contribution to the total load between M5 and the PAP in June 2004, 
M5 and the PAP in July 2005, M6 and the PAP in June 2004, and M6 and the PAP in 
July 2005 (where samples were taken from the sites).  R-statistic = 1 only if all replicates 
within a sample are more similar to each other than any other replicates from different 
samples. * = significant 

 

Oneirophanta mutabilis ovarian samples from the PAP in 2005 and 2004 showed 

some degree of within-site and between-site clustering on the MDS ordination 

plot based on pigment percentage contributions (Fig. 6.11). All O. mutabilis 

samples had a high percentage contribution from β-carotene. Oneirophanta 

mutabilis M5 samples show the least within-site specific sampling; the outlying 

sample to the bottom of the MDS plot contains a relatively high percentage 

contribution from echinenone and a relatively lower percentage contribution (27%) 

of β-carotene in comparison to other O. mutabilis samples (>50%). ANOSIM 

analysis indicates the samples are similar between sites M5 and the PAP in 2004 

(ANOSIM R = 0.266, P>0.05; Table 6.2) and M5 and the PAP in 2005 (ANOSIM 

R = 0.352, P>0.05; Table 6.2), although this is not significant; the high variability 

of the M5 samples producing a low R-statistic, but also reducing the probability it 

is true. 

 

Molpadia blakei ovarian samples taken at the PAP in 2005 show a high degree of 

clustering on the MDS ordination plot, with the exception of one sample that 

contained no 19’-butanoloxyfucoxanthin in comparison to the other samples (Fig. 

6.11). ANOSIM analysis gives a significant R-value of 0.487 (P<0.05; Table 6.2) 

indicating that samples between each site are overlapping, but are more similar 
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within-site than to those from the other site. Samples of Pseudostichopus villosus 

from M5 show variability in their pigment composition, as seen on the MDS 

ordination plot, despite β-carotene dominating the pigment load in terms of 

percentage composition (>60%). The spread of these samples arise from the 

presence or absence of some carotenoids contributing a small percentage to the 

total. Samples from the PAP in 2005 are split across the plot (Fig. 6.10). 

Pseudostichopus villosus PAP 2005 samples to the left of the plot have high 

percentage contribution from β-carotene, the outlying sample at the top contains 

only canthaxanthin and the group to the middle right are very similar in their 

pigment composition, containing ~25% each of canthaxanthin and β-carotene. The 

R-statistic given by ANOSIM analysis (Table 6.2) indicates there is no difference 

in pigment composition between sites, although this is not significant (ANOSIM 

R = 0.148, P>0.05; Table 6.2) because of the high variability of the PAP 2005 

samples. 

 

The pigment percentage contribution of ovarian samples of Psychropotes 

longicauda show distinct clustering within-sites when plotted on an MDS 

ordination plot (Fig. 6.11). ANOSIM analysis indicates that samples taken at the 

PAP in 2004 are more similar in their pigment percentage contribution to each 

other than they are to M5 or M6 samples (ANOSIM, R = 1, P<0.05; Table 6.2). 

PAP 2004 samples of P. longicauda are clustered away from M5 and M6 samples 

on the MDS plot (Fig. 6.11). Samples of P. longicauda from the PAP in 2004 do 

not contain 19’hexanoloxyfucoxanthin or 19’-butanoloxyfucoxanthin, and have 

relatively high pigment percentage contributions from diadinoxanthin and 

zeaxanthin. M5 and M6 P. longicauda samples differ through the higher 

percentage contribution of β-carotene in ovaries taken from M5. Psychropotes 

longicauda PAP 2005 samples are also clustered away from M5 and M6 on the 

ordination plot (Fig. 6.11), having a comparitively lower percentage contribution 

from β-carotene and echinenone. ANOSIM analysis shows PAP 2005 to be 

significantly different from M5 (ANOSIM R = 0.873, P<0.05; Table 6.2) and 

different from M6, although this is not significant (ANOSIM R = 0.75, P>0.05; 

Table 6.2). 
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Group R-statistic Significance 
level 

O. mutabilis M5 vs O. mutabilis PAP 2005 0.352 P = 0.086 
O. mutabilis M5 vs O. mutabilis PAP 2004 0.266 P = 0.078 
P. villosus M5 vs P. villosus PAP 2005 0.148 P = 0.114 
P. longicauda M6 vs P. longicauda PAP 2005 0.75 P = 0.067 
P. longicauda M6 vs P. longicauda PAP 2004 1 P = 0.008* 
P. longicauda M5 vs P. longicauda PAP 2005 0.873 P = 0.048* 
P. longicauda M5, vs P. longicauda PAP 2004 1 P = 0.008* 
M. blakei M6 vs M. blakei PAP 2005 0.487 P = 0.036* 
 

Table 6.2 Results of similarity test (ANOSIM) comparing holothurian ovary sample pigment 
percentage contribution to the total load between M5 and the PAP in June 2004, M5 and the PAP 
in July 2005, M6 and the PAP in June 2004, and M6 and the PAP in July 2005 (where samples 
were taken from the sites).  R-statistic = 1 only if all replicates within a sample are more similar to 
each other than any other replicates from different samples. * = significant 

Figure 6.11 MDS ordination of 52 individual holothurian ovary samples from M5, M6, the PAP 
in June 2004 and the PAP July 2005, based on √-transformed pigment percentage contributions 
and Bray-Curtis similarities. Key: Onm = Oneirophanta mutabilis; Mol = Molpadia blakei; Psl = 
Psychropotes longicauda; Pvil = Pseudostichopus villosus. 

 181



6.3 Discussion 

 

6.3.1 Comparison of organic matter supply at each site  

 

Determining the differences in the supply, freshness and composition of organic 

matter at the three sites, and during the two sampling periods at the PAP, will 

facilitate the understanding of how diet affected the ovarian biochemistry of the 

holothurians. Phytodetritus was observed on the sediment from recovered cores at 

the PAP in 2004 and 2004, and in the photos of the seafloor at M5 in December 

2005/January 2006 (Chapters 4; Wolff, 2006). The phytodetritus at M5 was often 

resuspended during periods of increased tidal flow (Wolff, 2006), which may 

have contributed to the lack of observable phytodetritus on the surface of the 

sediment cores retrieved at this station. No phytodetritus was observed at M6 in 

December 2005/January 2006 (Wolff, 2006), which is consistent with the absence 

of chlorophyll a in the POM above the seabed at this site (Chapter 5, present 

study). The phytodetritus (or Particulate Organic Matter (POM)) was sampled 

using different methods at each site; gently removed by pipette from the top of the 

cores sampled at the PAP in both years, and by SAPS at M5 and M6. Therefore, 

concentrations of pigments in the POM/phytodetritus cannot be compared because 

of the methodological artefacts associated with the two methods (Turnewitsch et 

al., 2007) and differing unit measurements.  

 

The ratio of chlorophyll a to phaeophorbide in the phytodetritus (PAP) and POM 

(M5) may be used to indicate the degree of freshness of the phytodetrital material 

analysed (Thiel et al., 1989). Chlorophyll a to phaeophorbide ratio of the POM 

above the seabed at M5 was 0.81 and the phytodetritus on the sediment at PAP 

0.67 ±0.15 (June 2004) and 0.29 ±0.49 (July 2005) (Chapters 4 and 5, present 

study). This suggests the POM at M5 was fresher than the phytodetritus sampled 

from the sediment surface at the PAP.  

 

Differences in the concentrations of pigments in the top 5mm sediment at each 

site/sampling period is a function of the supply of OM as well as the effect of the 
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benthic fauna on the reworking and assimilation of organic compounds. A 

relatively high concentration of chlorophyll a at M5, in comparison to M6 and 

PAP (June 2004 and July 2005), suggests fresher material was available to the 

benthos at M5 at the time of sampling. Despite the presence of fresh phytodetrital 

material at the PAP in both years, M6 had higher concentrations of most pigments 

(with the exception of diatoxanthin, β-carotene and zeaxanthin) than did the PAP 

surface sediments in either June 2004 or July 2005. M6 received a short, high flux 

of organic material in January 2005, but little else for the rest of the year (Wolff, 

2006; Salter, 2007). Organic compounds may have persisted in the sediments at 

M6 after this flux event, (degradation rates of pigments are unknown in the deep 

sea) because of the comparatively low faunal biomass at M6. At the PAP and M5 

on the other hand, the relatively higher biomass of benthic fauna (Wolff, 2006) 

may have assimilated essential compounds and created transformation products 

through the reworking of OM and oxygenation through bioturbation. This is 

supported by the phaeophorbide and phaeophytin concentrations at M6. The 

concentration of phaeophytin, a general breakdown product of chlorophyll a, is 

greatest at M6, suggesting that chlorophyll a has been broken down by non-

grazing processes at this site. 

 

Mass flux, determined by sediment trap data may give extra clues about the 

quantitative differences between site/sample periods. At M6 a single large flux 

event occurred in January 2005, generating particle fluxes of 500mg m-2d-1 

(3000m sediment trap; Salter, 2007). This flux occurred in the initial two weeks 

after the sediment trap was deployed. It is not known if the single, large flux event 

in January is typical (on an annual or regular basis) in the HNLC region to the 

South of the Crozet Islands. At M5, an initial large two week flux of 450 mg m-2d-

1 (January 2005), followed by a lower magnitude flux (~150 mg m-2 -1d ) sustained 

for a longer time period of 173 days was observed (3000m sediment trap; Salter, 

2007). At the end of this period, late June 2005, no flux of material was recorded 

until a one week flux of 100 mg m-2d-1 was recorded in December 2005. This was 

just before the sediment and benthic fauna were sampled at both sites. Mass flux 

of OM to the seafloor at the PAP in June 2004 was between 150-200 mg m-2d-1, 
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over double that of 20-50mg m-2d-1 in June/July 2005. The mass flux of material 

in the month leading up to the time of sampling was also twice as large in 2004 

than in 2005 (3000m sediment trap; Lampitt, 2008). The organic carbon flux 

(3000m sediment trap) just before the time of sampling was also greatest at the 

PAP in June 2004 (11mg C m-2 d-1), followed by M5 (6mg C m-2 d-1) and M6 (no 

flux). No organic carbon flux data is available for the PAP in July 2005 (Salter, 

2007; Lampitt, 2008). These flux data suggest that in terms of quantity during the 

month before the sampling of sediment and holothurians, the PAP in June 2004 

received the greatest flux of material, followed by M5, the PAP in July 2005 and 

M6.  

 

The chlorophyll a to phaeophorbide ratio of the POM/phytodetritus and the 

chlorophyll a concentration in the top 5mm sediment suggests M5 received 

fresher material in comparison to the PAP in June 2004. Differences in the 

biogeochemical processes in the water column (phytoplankton and zooplankton 

community structure, remineralisation) may have led to the larger flux of material 

reaching the seafloor at the PAP in June 2004 being less fresh than that at M5. 

This highlights the importance of understanding the influence of the 

biogeochemistry of the water column on the supply and reworking on OM 

reaching the sea-floor. It is difficult to ascertain the influence the supply of OM 

has on the benthos, if the knowledge of the quality as well as quantity of OM 

supply is patchy or uncertain. Necessary  

 

The data show that in terms of composition, the supply at the PAP in June 2004 

was the most different to the other sampling period/sites. β-carotene, violaxanthin, 

19’-butanoloxyfucoxanthin and 19’-hexanoloxyfucoxanthin were not found in the 

top 5mm sediment in June 2004, although β-carotene was present in the 

phytodetritus on the sediment at this site. These four pigments were present in the 

top 5mm sediment at M5, M6 and the PAP in 2005. The presence of 19’-

butanoloxyfucoxanthin and 19’-hexanoloxyfucoxanthin at the PAP in July 2005, 

M5 and M6 suggests some of the detrital input was derived from prymnesiophytes 

(Coccolithophores, Phaeocystis sp.; Jeffery et al., 1997). Zeaxanthin was found in 
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greater concentration in the sediment at the PAP in June 2004 in comparison to 

the PAP in 2005, M5 and M6, suggesting cyanobacteria (Jeffrey et al., 1997) 

contributed to the flux of OM.  

 

Chlorophyll a shows the highest contrast in concentration between M5/M6 and 

the PAP in 2005, suggesting fresher material was found in the 5 to 10mm 

sediment section at M5 and M6. It is surprising the chlorophyll a concentrations at 

M6 are higher than that in the 2005 PAP 5 to 10mm sediment, because of the 

relatively low (or non-existent!) flux of fresh OM at M6. The phytopigments may 

have been introduced to the deeper sediments at the Crozet sites by bioturbation 

and reworking of the sediment by the benthic fauna; resh phytodetrital particles 

have been shown to be rapidly subducted into the burrows of animals (Bett and 

Rice, 1993). However, bioturbation also introduces oxygen into the sediment, 

which in turn enhances pigment degradation (Leavitt, 1988; Abele-Oeschger, 

1991). Subduction of chlorophyll a rich particles by bioturbation is unlikely to 

have occurred at M6 as no POM was observed at the site and no flux of material 

was recorded in the deep sediment trap eleven months before sampling. Also, if 

the abundance and biomass of the infaunal macrofauna mirrors that of the 

megafauna at the two sites, M6 would not have been subjected to as much 

bioturbation. It is possible the pigments found in the deeper sediment at M6 had 

persisted from the high flux eleven months before sampling and that the low 

benthic biomass aided the preservation of the compounds. Unfortunately there is 

no quantitative information on the infaunal macrofauna at the Crozet sites.  

 

The results from the study of the three sites indicate that it is important to know 

the quality and quantity of the OM flux, as well as the consistency/longevity of 

supply. Sediment chlorophyll a concentration alone cannot be used to quantify the 

OM reaching the seafloor. Although mass flux to the PAP in 2004 was greatest 

out of the three sites/sample periods before the sampling of the holothurians and 

sediment, the data suggest the OM available to the benthos was freshest at M5. 

M6 received a relatively high, but short flux of OM eleven months before the 

sampling period; the low benthic biomass at this site is thought to have 
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contributed to the preservation of chlorophyll a at this site. Pigment degradation 

rates in the deep sea are currently unknown. Further studies are required to 

determine degradation rates and to ascertain how long labile compounds like 

chlorophyll a can persist. 

  

 

6.3.2 Between-site comparison of holothurian feeding selectivity 

 

The present study gives an opportunity to compare holothurian diet under 

differing OM supply regimes. Molpadia blakei consistently showed no evidence 

of feeding on fresh material, as demonstrated by the lack of chlorophyll a in the 

samples of gut sediment taken at both the PAP (present study; Wigham et al., 

2003) and at the M6 site. Molpadiid holothurians burrow head-down into the 

sediment, feeding on refractory material (Khripounoff and Sibuet, 1980; Roberts 

et al., 2000). This is supported by isotopic analysis of the species. Its body wall is 

enriched in the heavy isotope of 15N; the naturally occurring stable isotope of 

nitrogen shows a stepwise enrichment between prey and consumer during 

assimilation processes (Deniro and Epstein, 1978; Iken et al., 2001). The gut 

sediment of M. blakei sampled previously at Station M in the NE Pacific also had 

relatively low levels of 234Th in comparison to that of superficial sediment feeders 

(Lauermann et al., 1997).  

 

The average gut sediment chlorophyll a concentration of Pseudostichopus villosus, 

Psychropotes longicauda, Amperima spp. and Peniagone spp. suggests specimens 

sampled at M5 were feeding on fresher material in comparison to their congeners 

at the PAP in 2004 or 2005. This supports the inference that the organic material 

available to the fauna was fresher at station M5 than at the PAP in 2004 at the 

time of sampling. Amperima spp. and Peniagone spp. are surficial sediment 

feeders, feeding on the freshest material when they can find it (Billett, 1991; Iken 

et al., 2001; Wigham et al., 2003a). This may account for the high, but variable 

gut sediment chlorophyll a concentrations of these species at M5. The feeding 

adaptations of Amperima and Peniagone allow them to take advantage of the 

 186



chlorophyll-rich POM at M5, despite it often being resuspended at times of 

increased tidal flow (Wolff, 2006). Higher chlorophyll a concentrations than that 

recorded for Amperima robusta at M5 13.88  µg gDW-1 (± S.D. 15.94) have 

previously been measured in A. rosea at the PAP 45.94  µg gDW-1 (± 40.41) and 

30.85  µg gDW-1 (± 3.63) µg gDW-1 (October 2000 and March 2002 respectively; 

Wigham et al., 2003). This suggests that members of this genus can process and 

ingest fresher material when it is available or when they locate it.  

 

Psychropotes longicauda feeds on the sediment surface and has a peltate tentacle 

structure (sweeping sediment into the mouth), suggesting it is less selective than 

holothurians with a digitate tentacle structure (that are able to select particles) 

(Roberts et al., 2000). This may explain why that although the chlorophyll a 

concentration in the top 5mm sediment at M6 was higher than that at the PAP in 

2004 or 2005, it was not reflected in the gut sediment chlorophyll a concentration 

of P. longicauda. The high variability of the chlorophyll a in the top 5mm 

sediment at M6 may reflect high spatial variability. The low gut sediment 

chlorophyll a concentration in P. longicauda at M6 may also be as a consequence 

of the high spatial variability of fresh OM at this site. 

 

Pseudostichopus villosus is a sub-surface deposit feeder, ingesting sediments from 

0 to 2cm depth (Billett, 1991; Moore and Roberts, 1994). The feeding modes of P. 

villosus and Psychropotes longicauda suggest they would have lower chlorophyll 

a concentrations in their gut sediment in comparison to Oneirophanta mutabilis, 

which is a surficial feeder, using digitate tentacles to select particles (Roberts et 

al., 2000). That O. mutabilis feeds on fresher material to P. longicauda and 

Pseudostichopus villosus is supported by isotopic analysis (Iken et al., 2001). In 

samples taken at the PAP in June 2004, O. mutabilis did have higher gut sediment 

chlorophyll a concentrations than Psychropotes longicauda and Pseudostichopus 

villosus. Gut sediment samples of these three species taken at the PAP in July 

2005 have similar chlorophyll a concentrations, which is attributed to the low 

availability of fresh OM leading up to and during the time of sampling (Chapter 4). 

However, Psychropotes longicauda and Pseudostichopus villosus gut sediment 
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samples taken at M5, had higher chlorophyll a concentrations than O. mutabilis. 

This has been attributed to O. mutabilis not being able to take advantage of the 

often resuspended phytodetritus (Chapter 5; Wolff, 2006; Owen, 2007), and also 

to the number of samples taken. For example, one specimen of  Pseudostichopus 

villosus at M5 had a relatively high chlorophyll a concentration, suggesting it had 

ingested a ‘fresh’ patch, increasing the average chlorophyll a concentration to 

above that of O. mutabilis. This highlights the need for collecting as many 

replicates as possible and should be considered when planning future deep-sea 

specimen collection for analysis. Gut sediment samples of Amperima rosea taken 

at the PAP in June 2004 (chlorophyll a was absent in ten out of fourteen samples). 

 

Results from the present study suggest that chlorophyll a is a good indicator of 

feeding selectivity, but only when used in temporal comparisons and when the 

quality and quantity of OM available to the fauna is known. For example, if only 

the PAP 2005 gut sediment chlorophyll a data had been used to ascertain the 

feeding selectivity of abyssal holothurians, then an erroneous conclusion that O. 

mutabilis, Psychropotes longicauda and Pseudostichopus villosus have similar 

feeding selectivity might have been made. Therefore, sound conclusions on 

feeding selectivity using chlorophyll a gut sediment data taken at a single period 

cannot be made with confidence. The concentration of chlorophyll a in the gut 

sediment of abyssal holothurians is a complex function of their feeding modes and 

supply of organic material – in terms of quantity, quality and the way it is 

supplied (i.e. if the phytodetritus settles on the sediment surface or is often 

resuspended). Gut sediment chlorophyll a concentration can be used to establish 

inter-specific trophic relationships under specific food regimes. For example, O. 

mutabilis is a selective feeder, but when fresh OM is scarce the species feeds on 

the same sediment as other large species that show little or no temporal variation 

in their diet (Neto et al., 2006; Chapter 4, present study). Elucidation of such 

trophic relationships is facilitated if the supply of OM to the seafloor is quantified 

prior to sample collection. It yields vital information on the food regime prior to 

the sampling event and may also be used to provide information on the influence 

of OM supply on the biochemistry of the animal. 
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6.3.3 Between-site comparison of holothurian pigment biochemistry 

 

6.3.3.1 Quantitative intraspecies among-site comparisons 

 

Amperima and Peniagone spp. 

In comparison to A. robusta (Crozet, M5), A. rosea (PAP, 2004) had significantly 

greater concentrations of the carotenoids diadinoxanthin, alloxanthin, zeaxanthin 

and diatoxanthin in the gut wall and diadinoxanthin, alloxanthin, zeaxanthin, 

diatoxanthin canthaxanthin and echinenone in the ovaries. This may be assigned 

to differences in supply, but is more likely to be a result of differing pigment 

biochemistry between the species. Zeaxanthin appears to be an important 

carotenoid in the ovaries of A. rosea, as seen in the present and previous studies 

(Chapter 4; Wigham et al., 2003; Hudson, 2004), but zeaxanthin does not feature 

as a dominant carotenoid in the gut wall or ovaries of A. robusta. Comparative 

biochemical studies of shallow-water echinoderms have shown that species from 

the same genera can have different carotenoid biochemistry in terms of 

concentration (Tsushima et al., 1995; Borisovets et al., 2002). Therefore, 

comparing species from the same genera to ascertain the influence of supply on 

their pigment biochemistry is not valid. The between-site comparison has shown, 

however, that both species of Amperima contained high concentrations of 

carotenoids in their ovaries (µg gDW-1) in comparison to other species studied 

(Chapter 4, present study), suggesting this genus may assimilate a high carotenoid 

load into its ovaries to gain a reproductive advantage.  

 

A similar result was observed for the Peniagone spp. sampled at all sites. 

Although between-species comparisons cannot be made to ascertain the affect of 

supply on the carotenoid biochemistry of the gut wall and ovaries, the Peniagone 

species studied had relatively large carotenoid concentrations (µg gDW-1), when 

compared to other species sampled, with the exception of A. rosea. Both 

Amperima and Peniagone are selective feeders, feeding on the freshest material 

(that has the greatest pigment concentrations) when they can find it. This 

facilitates the assimilation of carotenoids to yield enhanced ovarian pigment loads, 
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which in turn increases reproductive output and larval survival (George et al., 

2001). Studies have shown that Amperima and Peniagone are sexually mature at a 

small size (Tyler et al., 1985; Wigham et al., 2003b), this would suggest that these 

genera respond to fresh inputs of OM, by reproducing quickly and giving their 

eggs and larvae a greater chance of survival. 

 

Molpadia blakei 

Average concentrations of carotenoids in the gut wall of M. blakei are subject to 

high variability because of the total absence of pigments from the gut wall of 

some specimens. The carotenoids that were present in the gut walls of specimens 

taken at the PAP in 2005 that were absent in specimens from M6, were not found 

in greater concentrations in the sediment at the time of sampling at the PAP 2005. 

It is possible the carotenoids found in tissue samples of M. blakei at one site but 

not the other were provided in the supply of OM prior to the time of sampling. 

The biochemistry of M. blakei may reflect historic compositional supply of 

essential compounds because of the feeding mode of the species (head burrowed 

in deeper sediment). The low number of replicates may also explain between-site 

differences; only two samples of M. blakei gut wall were obtained from M6, one 

of which was depleted in carotenoids. Again, this highlights the need for a high 

number of replicates to be able to give conjectures about the feeding and 

reproductive ecology of the species with confidence. The ovarian pigment 

biochemistry of M. blakei from both sites indicates specimens sampled from M6 

have higher and more consistent concentrations of the carotenoids alloxanthin, 

diadinoxanthin, zeaxanthin and β-carotene. Ovarian samples taken at the PAP in 

2005 have a higher average concentration of 19’-butanoloxyfucoxanthin. The 

concentrations of pigments in the deeper section of sediment were greater at 

M6/M5 than at the PAP in 2005. Some pigments found at M5/M6 were absent in 

the lower section of sediment at the PAP 2005. These differences may have given 

M. blakei access to enhanced carotenoid concentrations at M6 in comparison to its 

congener at the PAP in 2005 and may have led to the higher concentrations of 

alloxanthin, diatoxanthin, zeaxanthin and β-carotene in the samples taken at M6. 

However, a higher concentration of 19’-hexanoloxyfucoxanthin was found in the 
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5 to 10mm sediment at the PAP in 2005 than at M6, but was not mirrored in the 

ovarian biochemistry. Further studies to include a higher number of replicates of 

M. blakei and the surrounding sediment it feeds upon are needed to confirm that 

enhanced pigment concentrations in deeper sediment are conferred into the 

biochemistry of the animal. 

  

Oneirophanta mutabilis 

Between-site differences in pigment concentrations in O. mutabilis gut wall 

samples may be related to the fresher material arriving at M5 at the time of 

sampling. However, gut sediment chlorophyll a concentration suggests the species 

was not able to take advantage of the often resuspended fresh POM. It is possible 

the number of specimens sampled at M5 for their gut sediment chlorophyll a 

concentration was not enough to sample a specimen that had found a ‘fresh’ food 

patch. Oneirophanta mutabilis may have ingested fresh POM infrequently at this 

site, assimilating the pigments into its gut wall. The absence of OM, followed by a 

large flux just before sampling at M5, means that O. mutabilis may not have had 

time to transfer the relatively higher carotenoid concentration (in relation to its 

congener at the PAP) from the gut wall into the ovaries. Assimilation rates in 

abyssal holothurians are unknown. The lack of evidence that O. mutabilis was 

able to process the fresh POM at M5 means that this explanation for the enhanced 

gut wall pigment concentration at M5 remains speculative. 

 

Differences in the ovarian pigment concentration of O. mutabilis ovarian samples 

between sites may be related to the supply of fresh material in the period before 

each sample collection. This would suggest the species builds up the carotenoid 

load in its ovaries over a long time-scale. Average concentrations of the 

carotenoids diadinoxanthin, alloxanthin, diatoxanthin, zeaxanthin, canthaxanthin 

and echinenone were all higher in the O. mutabilis ovarian samples taken at the 

PAP in June 2004, with diadinoxanthin, alloxanthin and canthaxanthin being 

significantly greater. Sample collection at M5 in December 2005/January 2006 

coincided with the start of the seasonal flux of material to the seafloor. The 

sediment trap record shows that the mass flux of material in December 2005 
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measuring 100 mg m-2d-1, before this, no flux had been recorded since late June 

2005 (3000m sediment trap, Salter, 2007). Conversely, megafauna at the PAP 

sampled in 2004 and 2005 had been subject to a prolonged enhanced flux since 

March (June 2004 samples) and early May (July 2005 samples) (Lampitt, 2008), 

enabling specimens to assimilate higher concentrations of carotenoids into their 

ovaries in comparison to their congeners at M5. No periods of zero flux were 

recorded at the PAP between July 2003 to July; the lowest mass flux observed 

was that of 10.98 m-2d-1, averaged over a January 2005 and  10.49 m-2d-1 averaged 

over a two week period in June 2005 (Lampitt, 2008). This suggests the 

concentrations of carotenoids in the ovaries of O. mutabilis are controlled by the 

supply of OM to the sea-floor. If supply is seasonal and shows high contrast in 

flux between periods (high flux to zero flux), the data from this study suggests the 

concentration of carotenoids in the ovaries of O. mutabilis would show a seasonal 

pattern. The reproductive biology of O. mutabilis sampled at the PAP shows no 

seasonality, although oozyte-size frequency and fecundity can be affected by 

changes in the benthic community limiting available resources (Tyler and Billett, 

1987; Ramirez-Llodra et al., 2005). It would have been interesting to investigate if 

this competition for resources affected the concentrations of carotenoids in the 

ovaries of the species; competition for resources may have the same affect as the 

variation in the flux of material does on ovarian biochemistry. If the pattern of the 

flux of material observed during the present study at M5 is typical of the region 

on an annual and regular basis, it is likely that the seasonal absence following a 

presence of high flux at this site would force seasonality upon the fauna that feed 

selectively on the fresh material. Whether this seasonality is reflected only in the 

biochemistry of the animals, or whether it is transferred to periodic (seasonal) 

increases in reproductive output, remains to be investigated. 

 

Psychropotes longicauda and Pseudostichopus villosus 

The gut wall and ovarian pigment concentrations of Psychropotes longicauda and 

Pseudostichopus villosus show between-site intraspecific similarities, with the 

exception of the carotenoids that appear to be most abundant; β-carotene in P. 

villosus and echinenone and β-carotene in Psychropotes longicauda. These 
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dominant carotenoids are found in higher concentration in the specimens taken at 

M5 than at any other site/sampling period at the PAP. Both species contain low 

carotenoid concentrations (µg gDW-1) in their ovaries, suggesting they do not 

assimilate enhanced carotenoid loads as a means to increase reproductive output. 

Psychropotes longicauda is an epibenthic feeder, but is less selective than genera 

like Peniagone and Amperima (Chapter 4, present study; Iken et al., 2001). 

Pseudostichopus villosus has a feeding mode that ‘ploughs’ slowly through the 

sediment, probably ingesting sediments from 0 to 2cm depth (Billett, 1991; Moore 

and Roberts, 1994). Therefore, the greater average concentration of the 

carotenoids dominating their gut wall and ovarian biochemistry may be attributed 

to the following factors. 

 

1) The existence of fresher material in the sediment at M5, as seen in the 

enhanced levels of chlorophyll a in the top 5mm and 5 to 10mm sediment at the 

time of sampling. If this is the case, the ovarian biochemistry of these species does 

not reflect the historic enhanced, consistent supply at the PAP. This may be 

because Psychropotes longicauda and Pseudostichopus villosus do not 

accumulate large concentrations of carotenoids into their ovaries or gut walls (as 

does, for example, O. mutabilis).  

 

2) Reduced competition for resources at M5. The significance of this is presently 

difficult to ascertain. Isotopic analysis of the species would have elucidated their 

trophic positions, in terms of the freshness of OM they were ingesting in 

comparison with other species at the site. This data could have then been 

compared to isotopic information of the same species at the PAP (Iken et al., 2001) 

to see how trophic positioning may vary at different sites. Future studies could 

include isotopic studies of the sediment fauna to make comparisons on the trophic 

positioning of species between abyssal sites. Temporal comparison of such data 

may also elucidate if changes in the supply of OM affects the trophic position of a 

species at a site. 
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6.2.3.2 Compositional differences and intra-specific consistency between years 

 

Comparisons of the consistency of the pigment biochemical profiles of species 

sampled at the PAP, M5 and M6 are made only with holothurians identified to 

species level; Oneirophanta mutabilis, Psychropotes longicauda, Pseudostichopus 

villosus and Molpadia blakei. Comparative biochemical studies of shallow-water 

echinoderms have shown that species from the same genera can have different 

carotenoid biochemistry in terms composition (Matsuno and Tsushima, 2001; 

Lawrence et al., 2004). Therefore, combining species from the same genera to 

ascertain the influence of supply on their pigment biochemistry may not yield 

valid conclusions. Comparison of the pigments found in the two Amperima 

species sampled at the PAP in 2004 and at M5 show that that they have very 

different profiles, with Amperima rosea (PAP) assimilating a high concentration 

(contributing to a high pigment percentage of the total) of zeaxanthin in 

comparison to its congener Amperima robusta (M5). 

 

Molpadia blakei 

The MDS ordination plot based on the pigment percentage contributions 

highlights the inconsistent biochemical profile of Molpadia blakei gut wall 

samples taken at M6 and the PAP in 2005. The dissimilarity of the samples 

between sites can be attributed to different pigments contributing to the 

biochemistry of the gut wall at each site, suggesting the species passively 

assimilates carotenoids that are available in its diet. However, the ovarian pigment 

biochemistry of the specimens from that PAP in 2005 shows some degree of 

clustering on the MDS ordination plot. The refractory diet of Molpadia blakei 

(present study; (Khripounoff and Sibuet, 1980; Roberts et al., 2000; Iken et al., 

2001) would presumably dictate a non-selective adaptation in the species; 

selectivity would seem futile if the supply of essential organic compounds are in 

short supply in the deeper sediment. It is possible that the four biochemically 

similar specimens from the PAP in 2005 had been subjected to a similar (in terms 

of pigment composition) diet. In future, specimens of M. blakei should be 

 194



analysed to see if its ovarian biochemical profile of the species at the PAP is truly 

consistent.  

 

Oneirophanta mutabilis 

The gut wall and ovarian pigment biochemistry of O. mutabilis is dominated by 

the carotenoid β-carotene, which is found in percentage contributions >30% up to 

~70%. This dominance of β-carotene drives the similarity in biochemical profiles 

of samples of this species between each site. However, the biochemical profile of 

the species can be influenced by differences in the composition of the OM supply, 

as demonstrated by the within-site clustering of the gut wall and ovarian samples 

on the MDS ordination plot (Fig 6.10 and 6.11). This is driven by the presence of 

19’-hexanoloxyfucoxanthin and 19’-butanoloxyfucoxanthin in the gut wall and 

ovaries of O. mutabilis sampled at the PAP in 2005 and M5, but not at the PAP in 

2004. These carotenoids were present in the phytodetritus/POM and the sediment 

at the PAP in 2005 and M5, but not at the PAP in 2004. Oneirophanta mutabilis 

samples taken at M5 show the least species specific clustering. This may be 

related to the supply of POM at this site being difficult for the species to process 

and/or because of timing of sampling just after high flux event following a period 

of zero flux (Salter, 2007).  

 

Psychropotes longicauda 

P. longicauda shows the most consistent within-site gut wall and ovarian 

biochemical pigment profile on the MDS ordination plot of the pigment 

percentage contributions. This is seen most clearly in the ovarian samples. That 

the POM/phytodetritus and sediment sampled at the PAP in 2004 showed the 

greatest difference in composition to that sampled at the PAP in 2005, M5 and M6, 

is mirrored in the ovarian biochemistry of P. longicauda.  This suggests this 

species assimilates carotenoids present in its diet. 19’-hexanoloxyfucoxanthin and 

19’-butanoloxyfucoxanthin are not found in the ovaries of P. longicauda sampled 

at the PAP in 2004, but is found in specimens from the PAP in 2005, M5 and M6. 

Zeaxanthin contributes a higher percentage to the pigment load in the ovaries of P. 

longicauda at the PAP in 2004 in comparison to the other sites/sampling period. 
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This may be related to the higher concentration of zeaxanthin in the top 5mm 

sediment at the PAP in 2004 in comparison to the PAP in 2005, M5 and M6.  

 

Pseudostichopus villosus 

The gut wall biochemical profile of P. villosus appears to be very variable within 

each site, although samples from the two sites are more similar to each other than 

they are to samples from the other site. This may be related to the feeding mode of 

the species – moving slowly and feeding on deeper sediments of 0 to 2cm depth 

(Billett, 1991; Moore and Roberts, 1994). Therefore, P. villosus will only be able 

to exploit the deeper carotenoid-depleted (PAP 2005) or variable (in terms of 

carotenoid concentration) sediment (M5). These differences in pigment 

composition and concentrations in the 5 to 10mm sediment between the two sites 

may account for the between-site differences in the gut wall pigment biochemistry 

of the species. The within site variability may be a result of the variable pigment 

concentration in the 5 to 10mm sediment section at M5 and the low 

concentrations of pigments in the 5 to 10mm sediment section at the PAP in 2005.   

 

The ovarian biochemical profile of four specimens of P. villosus taken at the PAP 

in 2005 show some consistency, while three others are completely different and 

contain a limited number of carotenoids. The biochemical profile of the ovaries of 

P. villosus from M5 are inconsistent, which can be observed on the MDS 

ordination plot, although β-carotene dominates the pigment load in terms of 

percentage composition (>60%). The spread of these samples are slightly 

misleading as it is driven by the presence or absence of carotenoids contributing a 

small percentage (<5%) to the total load. The contribution of β-carotene to the 

ovarian pigment load is very variable from samples taken at the PAP in 2005. 

Pseudostichopus villosus may therefore be selective for β-carotene when 

carotenoid concentrations in the sediment are enhanced (5 to 10mm sediment M5), 

and less selective when sediment concentrations are depleted. This may be 

supported by the dominance of β-carotene in the ovaries of P. villosus sampled at 

the PAP in October 2003 (Hudson, 2004). Although only seven carotenoids were 

identified, β-carotene was found in the highest concentration (Hudson, 2004). The 

 196



concentrations of pigments measured in the present study are not comparable with 

values given for sediment analysed in October 2003 (top 5mm and 5 to 10 

sediment, present study; top 1mm Hudson, 2004). However, mass flux prior to 

and at the time of sampling was similar to that recorded in June 2004 i.e. greater 

than at the PAP in July 2005 (3000m sediment trap; Lampitt, 2008).  
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6.4 Conclusion - How do changes in the supply of organic material affect 

holothurian ovarian biochemistry? 

 

The three abyssal sites studied have shown differences in the supply of OM to the 

seafloor in terms of quantity, quality, composition and duration of the flux events. 

This has enabled a comparison of the effects these variables have on the diet and 

ovarian biochemistry of abyssal holothurians that are common to the different 

sites.  

 

The influence of OM supply on the diet of the holothurians was dependant on the 

quantity and quality of the OM and the feeding adaptations of each species. Some 

selective species (Amperima robusta and Peniagone spp.) can take advantage of 

the fresher OM arriving at the seafloor at M5. However, the often resuspended 

POM at this site was not exploited by the normally selective Oneirophanta 

mutabilis (Hudson, 2004; Wigham et al., 2004; Chapter 4, present study). 

Psychropotes longicauda and Pseudostichopus villosus benefited from enhanced 

chlorophyll a concentrations in the top 5mm and deeper 5 to 10mm sediment at 

M5 by having enhanced chlorophyll a concentrations in their gut sediment. 

Molpadia blakei consistently showed no evidence of feeding on fresh material. 

 

The ovarian biochemistry of the abyssal holothurians is a complex function of the 

composition, magnitude and duration of the flux of organic material, as well as 

the feeding adaptations and selectivity of the holothurians. The effect each of 

these variables had on the ovarian pigment biochemistry appears to differ between 

species. Deep-sea holothurians can also exhibit contrasting rates of feeding and 

digestion (Hudson et al., 2005); more variables that could have affected the 

ovarian biochemistry of the animals by enhancing food processing rates. None of 

the holothurians analysed for the present study exhibited the same feeding 

adaptation, reproductive biology and ovarian biochemistry, suggesting ecological 

niche separation. This allows species to partition resources so that one species 

does not out-compete the other. Changes in the magnitude, composition and 

duration of the OM flux to the seafloor affected the ovarian biochemistry of each 
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holothurian species in different ways. This may give species a reproductive 

advantage or disadvantage, leading to community change.  

 

Quantitative differences in supply affected the carotenoid concentrations in the 

ovaries of all the holothurians species studied. This was observed in species that 

were common between the sites M5 and M6 (A. abyssorum and Psychropotes 

longicauda) where greater carotenoid supply at M5 than at M6 was mirrored in 

the concentrations of pigments in the ovaries. This was also observed in species 

that were common to the M5/M6 sites and the PAP, although differences in the 

way the flux arrived at the seafloor, in conjunction with the duration of the POM 

flux, appears to add another dimension to how far the ovarian biochemistry of the 

species were affected. For example, the ovarian carotenoid loads of Psychropotes 

longicauda and Pseudostichopus villosus reflected the fresher material found at 

M5 than at the PAP in 2004 or 2005, whereas the relatively enhanced carotenoid 

load of O. mutabilis ovarian samples at the PAP in 2004 reflected the prolonged, 

steady flux of OM prior to the sampling period at the PAP. The subsurface 

indiscriminate feeder Molpadia blakei also showed a positive response in its 

ovaries to increased carotenoid concentration in the surrounding deeper section 

sediment at M6 in comparison to that at the PAP in 2005. This suggests that if 

pigments persist in deeper sediments, or are subducted through bioturbation, 

Molpadia blakei may gain a reproductive advantage. Experiments on shallow 

water echinoderms have shown that the larvae of adults fed on a carotenoid-rich 

diet were larger throughout development, developed faster and had higher 

survival rates (Tsushima et al., 1997; George et al., 2001; George and Lawrence, 

2002). This suggests that enhanced carotenoid concentrations in the ovaries of the 

abyssal holothurians would confer to a higher reproductive output. 

 

In terms of the consistency of ovarian biochemical profiles, O. mutabilis showed 

the greatest consistency between sites and years. Amperima rosea showed the 

tightest within-sample period consistency (Chapter 4), but this consistency was 

not tested temporally. However, previous studies have shown that zeaxanthin is 

assimilated in large concentrations in the ovaries of the species (Wigham et al., 
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2003a; Hudson, 2004), which corresponds with the findings of the present study 

(Chapter 4). If a species is selective in the carotenoids it requires for its 

reproduction, its reproductive output may be enhanced or inhibited by changes in 

the composition of the OM reaching the deep-sea floor. It has been suggested the 

increased supply of zeaxanthin (associated with cyanobacteria) can give 

Amperima rosea a competitive advantage by increasing its reproductive output 

(Wigham et al., 2003a). This may have driven the increase in abundance of the 

holothurian by more than two orders of magnitude between 1996 and 1999 (Billett 

et al., 2001; Wigham et al., 2003a). The present study still supports this, but 

further samples of Amperima rosea are needed to confirm the very consistent 

nature of its ovarian pigment biochemistry, which is dominated by zeaxanthin. 

Following this hypothesis, an increase in the availability of the carotenoid β-

carotene to O. mutabilis may be beneficial to this holothurian species. 

 

For those holothurians that show little consistency in their pigment biochemistry, 

the composition of the OM may also affect their reproductive output by supplying 

carotenoids of varying biochemical value. Depending on the structures of 

carotenoids, the compounds can show differences in their free radical quenching 

ability (Hirayama et al., 1994). An increase in the number of conjugated double 

bonds (carbon atoms covalently bonded with alternating single and double bonds) 

increases the quenching ability of the carotenoid (Foote et al., 1970; Lee and Min, 

1990). Larvae of the sea urchin Lytechinus variegatus from parents fed on 

xanthophylls (oxygen containing carotenoids) were larger throughout 

development, developed faster, had higher survival rates and attained 

metamorphic competence faster than those fed just β-carotene. The numbers of 

juveniles originating from parents fed xanthophylls were also significantly greater 

(George et al., 2001). The compositional ovarian biochemistry of Psychropotes 

longicauda differed between sites. Pseudostichopus villosus showed some 

selectivity for β-carotene, but this only occurred when enhanced carotenoid 

concentrations were found in the sediment. Molpadia blakei showed no 

consistency in its biochemical pigment profile.  
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Species that can metabolise specific carotenoids for their needs may give 

themselves a reproductive advantage, by increasing the quenching ability of the 

carotenoids found in their diet. However, apart from the conversion of β-carotene 

to echinenone and canthaxanthin (Tsushima and Matsuno, 1990b; Tsushima et al., 

1993b; Matsuno and Tsushima, 1995), the metabolic pathways of carotenoids in 

echinoderms are unknown.  

 

Holothurians that have been shown to feed selectively on fresh material 

(Amperima spp. Peniagone spp. and Oneirophanta mutabilis) assimilate high 

concentrations of carotenoids into their ovaries, presumably as an adaptation to 

increase reproductive output. Carotenoids reduce the harmful effects of reactive 

oxygen species given off during the rapid metabolism of lipids in the egg, 

increasing larval survival (Blount et al., 2000; 2004; Lotocka et al., 2004). 

Survival of post-larvae is an important factor in response to the seasonal flux of 

phytodetritus, contributing to population structure and density (Wigham et al., 

2003b). However, if a holothurian species is a selective feeder, it does not 

predispose the species to assimilate high concentrations of carotenoids into its 

ovaries. The species Abyssocucumis abyssorum (sampled at M5 and M6) is an 

example of this. This species feeds on the freshest material at M5 and M6 in 

comparison to the other species studied, but had carotenoid concentrations in its 

gut wall and ovaries of the same order of magnitude as those of less selective 

feeders such as Pseudostichopus villosus and Psychropotes longicauda (Chapter 5, 

present study).  

 

The timing and make-up of the phytoplankton bloom, planktonic interactions, and 

recycling and repackaging of organic matter can be affected by climate warming 

and increasing atmospheric CO2 (Turner, 2002; Richardson and Schoeman, 2004; 

Orr et al., 2005). Such changes will affect the biogeochemistry of the upper ocean 

and ultimately influence the magnitude and composition of the organic material 

arriving at the deep-sea floor. The present study clearly shows that a change in the 

quantity and composition of OM flux exerts a control on holothurian ovarian 

biochemistry. The extent and impact this influence has is dependant on the species 
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and how the OM supply has changed. Global changes in upper ocean ecosystems 

will ultimately affect abyssal sediment community structure and diversity and has 

the potential to change deep-sea community structure as observed at the 

Porcupine Abyssal Plain in the northeast Atlantic and at Station M, an abyssal 

time-series station in the northeast Pacific (Billett et al., 2001; Ruhl and Smith, 

2004). Such community structure and biodiversity changes will affect ecosystem 

functioning; a change in the dominant species can affect sediment re-working 

rates (Bett et al., 2001) and a loss of biodiversity reduces bioturbation (Solan et al., 

2004). In turn, this will dramatically impact the functioning of our biosphere if 

such changes occur on global scales.  
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6.5 Summary of the major findings of this study 
 
1. There was a contrast in the quantity, quality (in terms of freshness) and 

composition of the OM reaching the seafloor at each of the abyssal sites 
studied. 

 
2. The quantity and quality of the OM supply affected the diet holothurians. 

However, the extent of this influence differed between species. 
 
 
3. The ovarian biochemistry of the holothurians studied was a complex function 

of the feeding adaptations and selectivity of each species for specific 
carotenoids, as well as the composition and magnitude of the flux of OM.  

 
a) Some holothurian species assimilate relatively high concentrations of 

carotenoids into their ovaries, presumably to increase reproductive output 
and larval survival. 

b) Enhanced carotenoid supply in the flux of OM was mirrored in the 
concentration of carotenoids in the holothurian ovaries and in turn may 
increase reproductive output. However, differences in the way the OM 
flux arrived at the seafloor, in conjunction with the duration of the flux, 
influenced to what extent enhanced carotenoid supply was translated to 
enhanced ovarian carotenoid concentrations in each species because of 
their feeding adaptations. 

c) Some holothurians showed very consistent carotenoid profiles, which 
suggests these species require specific carotenoids. Enhanced supply of 
these carotenoids may give such species a reproductive advantage. 

d) Some holothurian species showed less consistency in their ovarian 
biochemistry, suggesting less selectivity for specific compounds. These 
species assimilated carotenoids supplied in the flux of OM. The 
reproductive output of these species may be affected by the varying 
biochemical value of carotenoids in the flux of OM. 

 
4. No consistent relationship can be made between the feeding adaptation of the 

species, the ovarian carotenoid concentration and the intraspecific requirement 
of for specific carotenoids. 

 
5. This study proposes that changes in phytoplankton composition, the timing 

and extent of the bloom, as well as the recycling and repackaging of OM in 
the upper water column will influence the ovarian biochemistry of abyssal 
holothurians. This in turn may affect the reproductive output of the 
holothurians and lead to community change. 
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6.6 Limitations of the study and ideas for future work 

 

One of the main problems encountered during the present study was the high 

variability of pigment concentrations in the samples. This highlights the need for 

more than 5 replicates of each sample type and this should be taken into 

consideration when designing future sampling programmes. Variability in gut 

samples chlorophyll a concentrations may be attributed to the patchy nature of the 

phytodetritus and sediment (through supply and bioturbation) and the encounter 

rate of the species. Carotenoid concentrations in the ovaries can differ between 

stages of gonadal maturity – which may explain variance between samples in a 

species (Borisovets et al., 2002; Lawrence et al., 2004). Future work should assess 

the reproductive biology and biochemistry of a species at the time of sampling to 

see if the two are linked. Detailed inspection of the eggs in the ovary of O. 

mutabilis shows that some eggs are more orange (indicating higher carotenoid 

loads; Mclaughlin and Kelly, 2001) than others (Ramirez-Llodra et al., 2005; pers. 

obs.). This may be related to the developmental stage of the egg. Time constraints 

and the small egg size of some species did not allow for the analysis of individual 

eggs. Further work could quantify the variation of carotenoid concentration (and 

possibly composition) in the eggs of the ovaries of one specimen. A few eggs of 

similar colour from the same specimen would need to be pooled into one sample 

so that the carotenoid concentration is above the detection limit of the analytical 

procedure. 

 

The analytical method used for the present study enabled the correct identification 

and quantification of more pigments than previous studies (Hudson et al., 2003; 

Wigham et al., 2003a). This was especially the case for carotenoids that eluted in 

the diadinoxanthin to zeaxanthin region (see Chapter 2 for details). The 

methodology used to analyse the 2004 samples was not responsible for the non-

detection of 19’-butanoloxyfucoxanthin and 19’-hexanoloxyfucoxanthin in 

samples from these years as the method has successfully been used to detect these 

pigments (Barlow et al., 1993). Hudson (2004) experienced difficulty in 

distinguishing between chlorophyll a and echinenone because they elute closely 
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together. Correct identification was made during the present study because the 

spectral property of each carotenoid is quite different, which facilitated 

identification. Some carotenoids in the gut wall and ovarian samples were not 

identified. These pigments are probably transformation products. The 

biotransformation pathways of some carotenoids in echinoderms are known. β-

carotene was shown to be metabolised to echinenone (the major carotenoid 

constituent in the gonad accounting for up to 82%of the total) and sequestered in 

the gonad of the shallow water echinoid Lytechinus variegates (Plank et al., 2002). 

This has also been shown in other echinoderms by Tsushima and Matsuno 

(1990b); Tsushima et al (1993b) and Matsuno and Tsushima (1995). The 

metabolism of β-carotene to echinenone occurs in the gut wall of the echinoid 

Pseudocentrotus depressus via its precursor β-isocryptoxanthin (Tsushima et al., 

1993b). In sea cucumbers, Matsuno and Tsushima (1995) have elucidated the 

metabolic pathways that convert β-carotene to astaxanthin and canthaxanthin to 

cucumariaxanthin (a novel marine carotenoid). It is possible that astaxanthin, 

isozeaxanthin, isocryptoxanthin and cucumariaxanthin account for some of the 

unknown pigment peaks. LC-MS of the holothurian samples, in comparison with 

known standards of astaxanthin, isocryptoxanthin, isozeaxanthin and 

cucumariaxanthin would confirm this.  

 

Carotenoid 'metabolic pathways' in animals are largely speculative, with little 

direct evidence. The rates of conversion are generally slow and various alternative 

sequences are possible (George Britton – pers comm.). Pathways may differ 

between orders and at species level – especially in nutritionally poor 

environments like the deep sea where resource partitioning is observed (Hudson et 

al., 2003). The metabolic pathway of carotenoids in echinoderms other than that 

of β-carotene to canthaxanthin and echinenone through precursors of 

isocryptoxanthin and isozeaxanthin (respectively) (Goodwin, 1980; Tsushima et 

al., 1993b; Matsuno and Tsushima, 2001) are unknown. It is assumed in the 

present and previous studies (Hudson et al., 2003; Wigham et al., 2003a) that the 

zeaxanthin in the gut wall and ovaries of Amperima rosea has been assimilated 

though its diet. However, there is the possibility that this species may be able to 
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convert other carotenoids into zeaxanthin. This would need to be assessed using 

an experimental approach. The biochemical pathways detailed by Tsushima and 

Matsuno (1990b); Tsushima et al (1993b), Matsuno and Tsushima (1995) and 

Plank et al. (2002) were determined by providing specimens with an experimental 

diet over a long time scale. Such feeding experiments would be unrealistic in the 

deep sea because of sampling and time constraints.  

 
13Recent deep-sea in situ experiments have used C to help elucidate the response 

and affect a pulse of phytodetritus has on deep-sea deposit feeders (Witte et al., 

2003; Nomaki et al., 2005; Nomaki et al., 2006). The application of 13C labelled 

phytoplankton makes it possible to follow directly the pathway and transfer of 

carbon and individual compounds into animals. This is in contrast to previous 

studies involving controlled diets, where only the changes in compositions were 

taken as evidence for these processes (Graeve et al., 2005). Such isotopic studies 

could be used to study the uptake of carbon by deep-sea megafauna such as 

holothurians. Labelled carbon could be used to assess the assimilation rates of 

carbon into different body parts (gut walls/ovaries) and compared between species. 

For example, the present study suggests that Psychropotes longicauda and 

Pseudostichopus villosus respond quickly to an enhanced pulse of phytodetritus at 

M5, as shown by the enhanced ovarian carotenoid load. However, the ovarian 

biochemistry of Oneirophanta mutabilis reflected the historic supply of enhanced 

prolonged flux at the PAP. This contrast may reflect different assimilation rates 

and responses to the flux of OM. Carbon uptake rates of foraminifera have been 

shown to vary depending on the trophic niche of the species (Nomaki et al., 2005). 

An extension to isotopic holothurian feeding studies could be applied by 

introducing different labelled algal/bacteria (representative of phytodetritus/OM 

in the sediments) to examine selectivity further in holothurians. This approach 

may determine if holothurians 1) ingest fresh phytodetritus selectively, 2) ingest 

fresh phytodetritus selectively, but can take advantage of sedimentary OM when 

phytodetritus is absent, or 3) ingest sedimentary organic matter at random. Such a 

study may be better than using gut sediment chlorophyll a concentrations as an 

indicator of selectivity because of the erroneous conclusions that may be derived 
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if chlorophyll a concentrations are not compared temporally under different OM 

supply regimes.  

 

The isotopic labelling method can also be used to trace different fatty acids 

produced by different algal groups into the body walls and ovaries of the 

holothurians. This would help to determine the selective assimilation and 

differences between holothurians in their response to a pulse of phytodetritus. 

Temporal comparisons of the lipid biochemistry of deep-sea holothurians and 

sediment have previously been used as evidence of these processes (Ginger et al., 

2000; Hudson et al., 2004; Neto et al., 2006). Although individual lipids can be 

traced and analysed using GC/IRMS (Gas Chromatography - Isotope Ratio Mass 

Spectroscopy), the labelling, and subsequent analysis of individual pigments and 

their biotransformation products is more difficult. Either the algae would need to 

be uniformly labelled to produce meaningful results on the LC-MS (George Wolff 

– pers comm.) or liquid chromatography isotope ratio mass spectrometry 

(LC/IRMS) would need to be used, but few of these machines are in existence. 

Labelling algae also presents problems in tracing pigment pathways as 

phytoplankton often have more than one type of associated pigment, therefore it 

would not be clear which carotenoid was involved in the biosynthesis of new 

carotenoids. Producing a feed containing one pure 13C labelled pigment would be 

required for this kind of study.  

 

The present study also highlighted differences in deeper sediment sections that 

could not be easily explained by OM supply. Further work could examine and 

compare bioturbation rates at deep-sea sites with contrasting environmental 

regimes. Shallow water studies have shown that bioturbation profiles differ 

between communities with different dominant species (Biles et al., 2002). Such 

studies may elucidate if the enhanced pigment concentration (or other labile 

compounds) at sediment depth is attributed to the subduction of labile material by 

infauna, or through the persistence of the compounds into the deeper sediment. 
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Experimental techniques are the future where the understanding of ecosystem 

functioning in the deep sea is concerned. Environmental conditions can be 

controlled and manipulated to measure individual or community response to 

different variables. Traditional sampling methods only give a snap-shot view of 

what is occurring at the time of sampling. Resources, in terms of experimental 

equipment and the means to deploy it (Remotely Operated Vehicles) need to be 

developed and/or made available for such experimental work to progress. 
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8. Appendices 
8.1 Appendix 1 
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8.2 Appendix 2 
a) Oneirophanta mutabilis gut wall b) Oneirophanta mutabilis ovary  
       

Year of 
highest 

concentration 
(if sig. 

different) 

Year of 
highest 

concentration 
(if sig. 

different) 

Statistical outcome Statistical outcome 

     

Diad - t(10)=0.64, P>0.05 Diad - t(10)=0.68, P>0.05  
Allox - t(10)=0.53, P>0.05 Allox - t(10)=1.23, P>0.05  
Diatox - t(10)=0.44, P>0.05 Diatox - t(10)=0.51, P>0.05  
Zeax - t(10)=1.02, P>0.05 Zeax - t(10)=1.09, P>0.05  
Canthax - t(10)=0.01, P>0.05 Canthax - t(10)=1.49, P>0.05  
Echine - t(10)=1.38, P>0.05 Echine - t(10)=1.80, P>0.05  
B-carot - t(10)=0.61, P>0.05 B-carot - t(10)=1.56, P>0.05  
       
c) Psychropotes longicauda gut wall d) Psychropotes longicauda ovary  
       

Year of 
highest 

concentration 
(if sig. 

different) 

Year of 
highest 

concentration 
(if sig. 

different) 

Statistical outcome Statistical outcome 

     
Diad 2004 t(9)=2.75, P<0.05 Diad - t(5)=1.21, P>0.05  
Allox 2004 t(9)=2.91, P<0.05 Allox - t(5)=1.09, P>0.05  
Diatox 2004 t(9)=3.63, P<0.05 Diatox - t(5)=1.27, P>0.05  
Zeax 2004 t(9)=2.81, P<0.05 Zeax - t(5)=1.69, P>0.05  
Canthax 2004 t(9)=2.42, P<0.05 Canthax - t(5)=0.72, P>0.05  
Echine - t(9)=1.32, P>0.05 Echine - t(5)=0.14, P>0.05  
B-carot - t(9)=1.87, P>0.05 B-carot - t(5)=1.76, P>0.05  
       
e) Paroriza prouhoi gut wall f) Paroriza prouhoi ovary   
       

Year of 
highest 

concentration 
(if sig. 

different) 

Year of 
highest 

concentration 
(if sig. 

different) 

Statistical outcome Statistical outcome 

     
Diad - t(7)=1.44, P>0.05 Diad - t(6)=1.05, P>0.05  
Allox - t(7)=0.51, P>0.05 Allox - t(6)=1.75, P>0.05  
Diatox - t(7)=0.87, P>0.05 Diatox - t(6)=1.28, P>0.05  
Zeax - t(7)=1.73, P>0.05 Zeax - t(6)=1.13, P>0.05  
Canthax - t(7)=1.03, P>0.05 Canthax - t(6)=1.04, P>0.05  

No echinenone in 
2004 samples Echine 

- Echine - t(6)=1.62, P>0.05  
B-carot - t(7)=1.11, P>0.05 B-carot - t(6)=2.44, P>0.05  

 

 

Appendix 2. Between-year statistical analysis of the average concentrations of carotenoids 
found in the gut wall and ovaries of holothurians sampled at the PAP in June 2004 and July 
2005 (statistical package used: minitab) 
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8.3 Appendix 3 
a) Peniagone spp. gut wall b) Peniagone spp. ovary    
       

Year/site of highest 
concentration (if 

sig. different) 

Year/site of highest 
concentration (if 

sig. different) 
Statistical outcome Statistical outcome

     
W(6,5)=51, P<0.05 M5 19 but M5 19 but W(5,5)=37.5, P<0.05 
W(6,5)=44, P>0.05 - 19 hex - 19 hex t(8)=0.42, P>0.05  

Diad M5 t(9)=2.6, P<0.05 Diad - t(8)=0.16, P>0.05  
Allox M5 W(6,5)=50, P<0.05 Allox - t(8)=2, P>0.05  
Diatox M5 W(6,5)=50, P<0.05 Diatox - t(8)=1.94, P>0.05  
Zeax M5 U(6,5)=49, P<0.05 Zeax - t(8)=2.28, P>0.05  

W(6,5)=47.5, P<0.05Canthax M5 Canthax - t(8)=1.65, P>0.05  
Echine M5 W(6,5)=49, P<0.05 Echine - t(8)=2.04, P>0.05  

t(9)=2.45, P>0.05 B-carot - B-carot - t(8)=2.36, P>0.05  
       
c) Psychropotes longicauada gut wall d) Psychropotes longicauada ovary  
       

Year/site of highest 
concentration (if 

sig. different) 

Year/site of highest 
concentration (if 

sig. different) 
Statistical outcome Statistical outcome

     
W(5,3)=30, P>0.0519 but - 19 but - t(8)=1.46, P>0.05  
W(5,3)=29, P>0.0519 hex - 19 hex - t(8)=0.38, P>0.05  

Diad - W(5,3)=27, P>0.05 Diad - t(8)=0.48, P>0.05  
Allox - W(5,3)=29, P>0.05 Allox - t(8)=1.49, P>0.05  
Diatox - W(5,3)=17, P>0.05 Diatox - t(8)=1.41, P>0.05  
Zeax - W(5,3)=26, P>0.05 Zeax - t(8)=2, P>0.05  

W(5,3)=18, P>0.05Canthax - Canthax - t(8)=2.2, P>0.05  
Echine - W(5,3)=24, P>0.05 Echine - t(8)=2.15, P>0.05  

W(5,3)=24, P>0.05B-carot - B-carot - t(8)=2.51, P>0.05  
       
e) Abyssocucumis abyssorum ovary     
       

  

Year/site of highest 
concentration (if 

sig. different) 
Statistical outcome 

 

   
19 but M5 t(6)=6.61, P<0.05     
19 hex M5 W(5,3)=30, P<0.05     
Diad M5 t(6)=3.24, P<0.05     
Allox - t(6)=0.26, P>0.05     
Diatox - t(6)=0.75, P>0.05     
Zeax - t(6)=0.53, P>0.05     
Canthax - t(6)=0.73, P>0.05     
Echine - t(6)=0.21, P>0.05     
B-carot - t(6)=0.46, P>0.05     

Appendix 2. Between-site statistical 
analysis of the average concentrations of 
carotenoids found in the gut wall and 
ovaries of holothurians sampled at M5 and 
M6 (statistical package used: minitab) 
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8.4 Appendix 4 
 
Published paper:  
 
Hughes JA, Smith T, Chaillan F, Bett BJ, Billett DSM, Boorman B, Frenz M, 
Wolff GA (2007). Two abyssal sites in the Southern Ocean influenced by 
different organic matter inputs: environmental characterization and preliminary 
observations on the benthic foraminifera. Deep-Sea Research II 54: 2275-2290 
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