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Semiclassics in a system without classical limit:
The few-body spectrum of two interacting bosons in one dimension

Benjamin Geiger,* Juan-Diego Urbina, Quirin Hummel, and Klaus Richter
Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany

(Received 29 May 2017; published 3 August 2017)

We present a semiclassical study of the spectrum of a few-body system consisting of two short-range interacting
bosonic particles in one dimension, a particular case of a general class of integrable many-body systems where
the energy spectrum is given by the solution of algebraic transcendental equations. By an exact mapping between
δ-potentials and boundary conditions on the few-body wave functions, we are able to extend previous semiclassical
results for single-particle systems with mixed boundary conditions to the two-body problem. The semiclassical
approach allows us to derive explicit analytical results for the smooth part of the two-body density of states
that are in excellent agreement with numerical calculations. It further enables us to include the effect of bound
states in the attractive case. Remarkably, for the particular case of two particles in one dimension, the discrete
energy levels obtained through a requantization condition of the smooth density of states are essentially in perfect
agreement with the exact ones.
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I. INTRODUCTION

The discovery by Bethe of quantum many-body sys-
tems admitting analytical expressions for eigenstates and
eigenenergies in terms of the implicit solutions of alge-
braic transcendental equations [1–3] marked the birth of a
whole branch of mathematical physics, namely, the theory
of quantum integrable models (for an introduction see [4]).
Since then, these models have served as the playground to
study the role of symmetries and conservation laws for the
stationary and dynamical properties of many-body systems
[5–8].

Solvable models had been mainly restricted to the area
of mathematical physics because they involve apparently
unphysical δ-type interparticle interactions and are commonly
restricted to one-dimensional (1D) motion. This situation
has drastically changed with the successful preparation of
quantum states of interacting cold atoms [9,10], especially
in regimes where the system can be considered essentially
1D, as in elongated optical traps [11–13]. As it turned out
that interactions between neutral cold atoms are described
with astonishing precision by δ-type potentials [14–17], the
knowledge accumulated during almost one century of work
on solvable models found its way into cold-atom physics
during the last decade. Hence, the experimental study of
solvable many-body systems has become a very active field
that provides hints for other hitherto inaccessible regimes
where external potentials destroy integrability.

There are, however, at least two situations where the
detailed level-by-level calculation of the many-body spectrum
using methods of integrable quantum systems overshoots in
the problem of calculating macroscopic properties like the
microcanonical partition function. One example is the ther-
modynamic limit, where quantum fluctuations are suppressed
and the spectrum behaves effectively smooth. In this regime
the appropriate tool is the so-called thermodynamic Bethe
ansatz [3]. The second situation appears when studying inter-
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acting bosonic systems in the mesoscopic short-wavelength
regime, where a separation of scales between the smooth
and oscillatory part of the level density allows for the
approximation of the spectrum as a smooth function. This is a
well-known procedure often referred to as the Thomas-Fermi
approximation [18].

The Thomas-Fermi density of states is of paramount
importance as it fixes the energy-dependence of the mean-
level spacing, the fundamental energy scale that heralds the
appearance of quantum effects and determines the relative
importance of external perturbations. In this context, cold atom
systems pose an interesting problem: since the Thomas-Fermi
approximation explicitly requires a classical limit for the
quantum mechanical Hamiltonian, it is not well defined for
systems with δ-like interactions where the classical limit only
exists away from the collisions.

All in all, in systems with few particles interacting through
short-range interactions, the semiclassical limit appears to be
difficult to handle already when we ask for a very fundamental
quantity as the mean level spacing. Our objective in this
paper is to show how, by using techniques imported from
the calculation of Thomas-Fermi approximations in single-
particle systems with mixed boundary conditions, one can
obtain a rigorous definition of the smooth density of states in
systems of few particles interacting through δ-potentials, even
when the latter do not have a classical limit.

II. ONE PARTICLE IN A δ-POTENTIAL

In this section we present the general formalism for the
calculation of the smooth part of the density of states (DOS)
for d-dimensional billiards with either (d − 1)-dimensional
δ-barriers [i.e., a δ-function potential along a (d − 1)-
dimensional manifold] inside the volume or with Robin (or
mixed) boundary conditions on the surface. The latter case
was already discussed by Balian and Bloch [19,20] and by
Sieber [21], but in all three cases the derivations were done
via the energy dependent Greens function whereas we use
a formalism based on 1D propagators [22,23]. For this we
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need the propagator for a δ-potential in 1D, which is known
exactly from a path integral calculation [24] (see also [25] for
higher dimensions). Notably, quantum mechanical properties,
like the appearance of a bound state for attractive interaction,
are well hidden inside the results (see, e.g., [26]). Therefore
we take an alternative approach which is more instructive for
our purposes.

A. Propagator for a particle in a δ-potential

The 1D-propagator for the δ-barrier is derived in a straight-
forward way by first calculating the exact propagator for
a particle on a line with Dirichlet boundary conditions at
x = ±L and a δ-potential V (x) = (h̄2κ/m) δ(x) with κ ∈ R
and then taking the limit L → ∞. The solutions of the
stationary Schrödinger equation

(
− h̄2

2m

∂2

∂x2
+ h̄2κ

m
δ(x)

)
ψ(x) = Eψ(x) (1)

for the confined system are well known (see, e.g., [27]) and can
be separated into symmetric and antisymmetric solutions due
to the symmetry of the problem. The latter are not affected by
the δ-potential and coincide with the antisymmetric solutions
of a particle in a box:

ψ (a)
n (x) = 1√

L
sin

(
k(a)
n x

)
, k(a)

n = nπ

L
, n ∈ N. (2)

The symmetric solutions are given by

ψ (s)
n (x) = An√

L
sin

(
k(s)
n (|x| − L)

)
,

(3)

k(s)
n L = nπ − arctan

(
k(s)
n

κ

)
,

where An is a normalization constant that depends on k(s)
n . The

transcendental equation in Eq. (3) has exactly one solution for
every n ∈ N and another nontrivial solution for n = 0 if κ is
negative. In the case κL ∈ (−1,0) this solution is real whereas
the case κL < −1 yields a purely imaginary wave number
which corresponds to a negative energy, referred to as a bound
state in the following. The two types of states are continuously
connected by the zero energy solution

ψ
(s)
0 (x) =

√
3

2L3
(|x| − L) (4)

valid for κL = −1. In the limit L → ∞ the state ψ
(s)
0 will

always be bound irrespective of the value of κ .
The exact propagator for the confined system can now be

written as

K�δ�(x ′,x,t) =
∞∑

n=1

e− ih̄t
2m

(k(a)
n )2

ψ (a)
n (x ′)ψ (a)

n (x)

+
∞∑

n=0

e− ih̄t
2m

(k(s)
n )2

ψ (s)
n (x ′)ψ (s)

n (x). (5)

In the case κ � 0 both summations start with n = 1. In the
limit L → ∞ this yields (see Appendix A)

Kδ(x ′,x,t) = 1

2π

∫ ∞

−∞
dk e− ih̄t

2m
k2

cos(k(x ′ − x))

− 1

2π

∫ ∞

−∞
dk e− ih̄t

2m
k2

Re
eik(|x ′ |+|x|)

1 + i k
κ

−�(−κ)κe
ih̄t
2m

κ2
eκ(|x ′ |+|x|), (6)

where the last term originates from the separate treatment of
the (bound) state ψ

(s)
0 (� is the Heaviside step function). The

first integral in Eq. (6) can be evaluated directly by means
of a Gaussian (or Fresnel) integral and yields the well-known
expression for the free propagator

K0(x ′,x,t) =
√

m

2πih̄t
e− m

2ih̄t
(x ′−x)2

. (7)

The second integral in Eq. (6) can be evaluated in the same
way after replacing

1

1 + i k
κ

=
∫ ∞

0
dε e−(1+i k

κ
)ε . (8)

Finally, the propagator for the Hamiltonian in Eq. (1) reads

Kδ(x ′,x,t) = K0(x ′,x,t) + Kκ (x ′,x,t) (9)

with the deviation from free propagation given by

Kκ (x ′,x,t) = 1 ∓ 1

2
κe

ih̄t
2m

κ2
e−κ(|x ′ |+|x|)

− κ

√
m

2πih̄t

∫ ∞

0
dε e−κεe− m

2ih̄t
(|x ′ |+|x|±ε)2

. (10)

Here, we identified κ = |κ| and the upper (lower) signs stand
for a repulsive (attractive) potential. This result generalizes
the propagator found in [28,29], which is restricted to the
repulsive case, and is equivalent to the result from path integral
approaches [24]. Note that the second term in Eq. (10) can be
written as

−
∫ ∞

0
dε κe−κεK0(−|x ′|,|x| ± ε,t), (11)

which is closely related to the correction −K0(−x ′,x,t)
obtained for a Dirichlet boundary condition (κ → ∞) at x = 0
[22]. It thus can be interpreted as the propagation from x to
x ′ via the δ-potential, taking a detour or shortcut of length ε

weighted with the density κe−κε .

B. The DOS for a billiard with a δ-barrier

The DOS of a d-dimensional system can be written as the
inverse Laplace transform of the trace of the propagator [23]:

ρ(E) = L−1
β

[∫
ddx K(x,x,t = −ih̄β)

]
(E). (12)

Let � be the configuration space of a d-dimensional billiard
with a classically impenetrable thin barrier inside the volume
which can be approximated by a δ-potential along a (d − 1)-
dimensional smooth manifold. By only taking into account
short-time propagation inside the billiard we can locally
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approximate the barrier by (d − 1)-dimensional planes and
thus treat the coordinate perpendicular to the barrier as
independent from the remaining d − 1 tangential coordinates.
In this case the local approximation for the propagator can be
written as

K (d)(x′,x,t) = K
(d−1)
0 (x′

‖,x‖,t)Kδ(x ′
⊥,x⊥,t)

= K
(d)
0 (x′,x,t)

+K
(d−1)
0 (x′

‖,x‖,t)Kκ (x ′
⊥,x⊥,t). (13)

Here, K
(d)
0 (x′,x,t) is the d-dimensional free propagator and

x⊥ and x‖ are the coordinates perpendicular and tangential
to the barrier. The trace is now calculated assuming that the
integration of the perpendicular direction converges rapidly
and is thus independent of the position at the barrier. By
introducing the interaction strength in units of energy,

μ = h̄2κ2

2m
, (14)

this yields

∫
�

ddx K(x,x,t = −ih̄β) = V�

(
m

2πh̄2β

) d
2

+ Sδ

2

(
m

2πh̄2β

) d−1
2

(−1 ± eμβ erfc(
√

μβ) + (1 ∓ 1)eμβ) (15)

with the d-dimensional volume V� of the configuration space � and the surface Sδ of the barrier. The DOS is then given by the
inverse Laplace transform of Eq. (15). For d = 1 we have to set Sδ = 1 and the DOS is given by

ρ(E) = V�

(
m

2πh̄2

) 1
2 �(E)√

πE
− 1

2
δ(E)

± 1

2π

√
μ

E

�(E)

E + μ
+ 1 ∓ 1

2
δ(E + μ). (16)

In all other cases the result is

ρ(E) = V�

(
m

2πh̄2

) d
2 E

d−2
2

�( d
2 )

�(E) − Sδ

2

(
m

2πh̄2

) d−1
2 E

d−3
2

�( d−1
2 )

�(E)

± Sδ

2

(
m

2πh̄2

) d−1
2

{
L−1

β

[
1

β
d−1

2

eμβ erfc(
√

μβ)

]
(E) + (1 ∓ 1)

(E + μ)
d−3

2

�( d−1
2 )

�(E + μ)

}
. (17)

A closed formula for the inverse Laplace transform

L−1
β

[
1

β
d−1

2

eμβ erfc(
√

μβ)

]
(E) (18)

for arbitrary dimensions d > 1 is given in Appendix B.
For varying strength of the δ-potential along the surface of

the barrier, i.e., κ = κ(x), the surface Sδ has to be replaced
by the integral operator

∫
Sδ

dd−1x . Note that the boundary
conditions at the boundary ∂� of the billiard are not yet
included and the approximation of a flat barrier may fail near
the boundary. Furthermore, the above approximation does not
include curvature corrections and contains only information
on the smooth part of the DOS. The result could, in principle,
be improved by using periodic orbit theory following [21], but
this would be at the expense of generality.

Now consider a different setup without a δ-barrier inside
the billiard but with Robin (or mixed) boundary conditions

∂

∂x⊥
ψ(x)

∣∣∣∣
xs

= κψ(xs), xs ∈ ∂�. (19)

In 1D this is equivalent to a δ-potential (h̄2κ/m) δ(xs) at
the surface (i.e., the end points of the line segment) while
only allowing for solutions symmetric to the endpoints in a
coordinate space extended beyond the latter. This means that in
the approximation of a locally flat surface of the boundary we
only have to replace the propagator Kδ in the above derivation

by its symmetry-projected equivalent

K+
δ (x ′,x,t) = Kδ(x ′,x,t) + Kδ(−x ′,x,t)

= K0(x ′,x,t) + K0(−x ′,x,t) + 2Kκ (x ′,x,t)

(20)

while taking the trace perpendicular to the boundary to one
side only. One can easily see that this only adds an additional
surface term

Sδ

4

(
m

2πh̄2

) d−1
2 E

d−3
2

�
(

d−1
2

)�(E) (21)

to Eq. (17), which corresponds to a Neumann boundary
condition, while the other terms remain unchanged. This is
due to the fact that the Robin boundary condition is equivalent
to a δ-potential on the surface combined with a Neumann
boundary condition in the sense of reflection symmetry in the
extended space. The above result reproduces the first term in
the expansion derived in [20]. Note that our approach also
comprises the two-dimensional (2D) case, which was treated
separately in [20]. This will be essential in the next section,
where we will use the results to derive the Weyl expansion for
an interacting system.
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F
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(c)

FIG. 1. Equivalence of a (a) 1D two-particle system to a (b) 2D
one-particle system with fundamental domain F ; (c): fundamental
domain after a rotation of the coordinates.

III. TWO PARTICLES ON A LINE SEGMENT

A. Configuration space

In this section we consider two identical particles on a
line with Dirichlet boundary conditions at q = 0 and q = L

[two particles in a box, see Fig. 1(a)] as an idealized model
for confined particles. The particles shall interact only when
they are at the same point, which is realized by a δ-potential.
Furthermore we restrict ourselves to either bosons with zero
spin or fermions with spin 1/2. In order to shorten notation,
we use imaginary time and choose scaled units, i.e.,

β = it

h̄
and

h̄2

2m
= 1. (22)

Inside the configuration space � = {q ∈ R2 | 0 < qi < L} the
Hamiltonian is given by

Ĥ(q1,q2) = − ∂2

∂q2
1

− ∂2

∂q2
2

+
√

8κ̃ δ(q1 − q2). (23)

After introducing relative and center of mass coordinates

x1 = 1√
2
(q1 − q2), x2 = 1√

2
(q1 + q2), (24)

the Hamiltonian reads

Ĥ(x1,x2) = − ∂2

∂x2
1

− ∂2

∂x2
2

+ 2κ̃ δ(x1). (25)

For bosons, the wave functions must be symmetric with respect
to particle exchange and, in the case of fermions, an interaction
can only occur if the particles have different spin, i.e., the
wave functions must be symmetric, too. We can therefore
restrict ourselves to bosons. For κ̃ = 0 the system of two
indistinguishable particles is equivalent to a system of one
quasi-particle of the same mass in the fundamental domain
F = {q ∈ � | q1 � q2} while requiring a Neumann boundary
condition on the line q1 = q2 [23]. In the interacting case the
same arguments yield the very same equivalence but with a
Robin boundary condition

∂

∂x1
ψ(x1,x2)

∣∣∣∣
x1=0

= κ̃ψ(0,x2) (26)

on the symmetry line instead, as illustrated in Figs. 1(b)
and 1(c).

B. Smooth part of the DOS

Using the above equivalence of two particles on a line to
one quasi-particle in the fundamental domain we can calculate
the DOS directly from Eqs. (17) and (21):

ρ(E) = L2

8π
�(E) − (2 + √

2)L

8π

�(E)√
E

±
√

2L

4π

�(E)√
E + μ̃

+ θ0
1

√
2L

2π

�(E + μ̃)√
E + μ̃

+ ρc(E) (27)

with μ̃ = κ̃2 in scaled units (22). We introduced the abbrevi-
ation θ0

1 = (1 ∓ 1)/2 here in order to shorten notation. The
last term ρc(E) represents the contributions coming from
the corners in the fundamental domain. Here we need the
contribution from a π/4 corner with Dirichlet and Robin
boundary conditions along the rays. The exact propagator for
such a corner can be derived from the propagator for a π/2
corner with Robin boundary conditions on the axes,

Kπ
2
(x′,x,t) = K+

δ (x ′
1,x1,t)K

+
δ (x ′

2,x2,t). (28)

The Dirichlet boundary condition at x1 = x2 can be satisfied
by antisymmetrizing Kπ

2
with respect to this line. This yields

the expression

Kπ
4
(x′,x,t) = 1

2 [Kπ
2
((x ′

1,x
′
2),(x1,x2),t)

−Kπ
2
((x ′

2,x
′
1),(x1,x2),t)]. (29)

The factor 1/2 was chosen such that the trace can be taken in
the first quadrant instead of only integrating the inside of the
corner. This is possible due to the symmetry of Kπ

2
. It is now

convenient to write the symmetric propagator (20) as

K+
δ (x ′,x,t) = K0(x ′,x,t) + KR(x ′,x,t) (30)

with

KR(x ′,x,t) = K0(−x ′,x,t) + 2Kκ (x ′,x,t). (31)

Here, KR(x ′,x,t) can be interpreted as the correction to the
free propagator representing the propagation from x to the
point x ′ via the boundary with mixed boundary condition.
The propagator Kπ

4
now takes the form

Kπ
4
(x′,x,t) = 1

2 [K0(x ′
1,x1,t)K0(x ′

2,x2,t)

+KR(x ′
1,x1,t)KR(x ′

2,x2,t)

+K0(x ′
1,x1,t)KR(x ′

2,x2,t)

+KR(x ′
1,x1,t)K0(x ′

2,x2,t)

−K0(x ′
2,x1,t)K0(x ′

1,x2,t)

−KR(x ′
2,x1,t)KR(x ′

1,x2,t)

−K0(x ′
2,x1,t)KR(x ′

1,x2,t)

−KR(x ′
2,x1,t)K0(x ′

1,x2,t)]. (32)

The interpretation of the different terms for x′ = x is shown
in Figs. 2 and 3. Tracing the above propagator will lead to
different contributions to the DOS. The first term can be
identified as a volume term, and the third and fourth can be
combined to a surface term corresponding to mixed boundary
conditions. The surface terms for the Dirichlet boundary are
given by the fifth and part of the sixth terms. All these
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1
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5

6

7

8

FIG. 2. Interpretation of the different terms in the propagator (32)
for x′ = x numbered in order of appearance.

contributions have to be dropped to get the parts that arise
only from the corner:

K π
4
(x′,x,t) = 1

2 [KR(x ′
1,x1,t)KR(x ′

2,x2,t)

−KR(x ′
2,x1,t)KR(x ′

1,x2,t)

+K0(−x ′
2,x1,t)K0(−x ′

1,x2,t)

−K0(x ′
2,x1,t)KR(x ′

1,x2,t)

−KR(x ′
2,x1,t)K0(x ′

1,x2,t)]. (33)

The inverse Laplace transform (12) of the trace of this
propagator yields the corner contribution. For the first term
in Eq. (33) the trace can be calculated separately for each
coordinate and the inverse Laplace transform can be calculated
as a convolution of the density

L−1
β

[∫ ∞

0
dx KR(x,x,t)

]
(E)

= L−1
β

[(
−1

4
± 1

2
eμ̃β erfc(

√
μ̃β) + θ0

1 eμ̃β

)]
(E)

= −1

4
δ(E) ± 1

2π

√
μ̃

E

�(E)

E + μ̃
+ θ0

1 δ(E + μ̃) (34)

with itself. The remaining four terms of the propagator (33)
are traced as a whole because most of the integrals do not have
to be evaluated as they cancel mutually after some elementary
manipulations. Altogether, the π/4 corner contribution is

ρπ
4
(E) = 5

32
δ(E) + 1

4π

√
μ̃

E + μ̃

�(E)

E + 2μ̃

∓ 1

8π

√
μ̃

E

�(E)

E + μ̃
∓ 1

4π

√
2μ̃

E

�(E)

E + 2μ̃

− θ0
1

[
1

4
δ(E + μ̃) + 1

2π

√
μ̃

E + μ̃

�(E+μ̃)

E+2μ̃

]
.

(35)

0

4

3
2

1

0

5

6
7 8

FIG. 3. Interpretation of the terms 1–8 in the propagator (32)
associated with the corner as multiple reflections. The trajectories in
the right figure include a single reflection at the ray with Dirichlet
boundary condition, which results in a minus sign in Eq. (32).

Note that all the μ̃-dependent expressions give multiples
of δ(E) in the limit μ̃ → 0 (Neumann case), as expected.
Combining this result with the contribution from a π/2
Dirichlet-Dirichlet corner (see, e.g., [30]) we finally obtain
the entire DOS for the system

ρ(E) = L2

8π
�(E) − (2 + √

2)L

8π

�(E)√
E

±
√

2L

4π

�(E)√
E + μ̃

+ θ0
1

√
2L

2π

�(E + μ̃)√
E + μ̃

+ 3

8
δ(E) ∓ 1

4π

√
μ̃

E

�(E)

E + μ̃

∓ 1

2π

√
2μ̃

E

�(E)

E + 2μ̃
+ 1

2π

√
μ̃

E + μ̃

�(E)

E + 2μ̃

− θ0
1

[
1

2
δ(E + μ̃) + 1

π

√
μ̃

E + μ̃

�(E + μ̃)

E + 2μ̃

]
. (36)

The above result can be represented in a shorter form if we
consider positive energies only. Then the cases of an attractive
and a repulsive interaction only differ in the overall sign of the
μ̃-dependent corner corrections:

ρ+(E) = L2

8π
− (2 + √

2)L

8π

1√
E

+
√

2L

4π

1√
E + μ̃

∓
[

1

4π

√
μ̃

E

1

E + μ̃
+ 1

2π

√
2μ̃

E

1

E + 2μ̃

− 1

2π

√
μ̃

E + μ̃

1

E + 2μ̃

]
+ 3

8
δ(E). (37)

Note that the corner corrections are monotonous and nonzero
for E > 0 but vanish for E → ∞. This means that the corner
corrections are most important for energies near the ground
state or, in the case of an attractive interaction, close to E = 0.

In the regime −μ̃ < E < 0 the DOS is conveniently
expressed in terms of the excitation energy E∗ = E + μ̃:

ρ−(E∗) =
√

2L

2π

�(E∗)√
E∗ − 1

2
δ(E∗) − 1

π

√
μ̃

E∗
�(E∗)

E∗ + μ̃
. (38)

The first two terms correspond exactly to the DOS for
one particle of mass 2m on a line with Dirichlet boundary
conditions at the end points: for very strong interaction
the two particles behave as one single particle. The third
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FIG. 4. Semiclassical level counting function for L = 1 and
values of κ̃ from −25 (left) to 25 (right) in steps of �κ̃ = 10.

term represents the interplay of boundary reflections and the
interaction. If integrated from −μ to 0 it reduces the level
counting function by exactly 1/2 bound state.

C. Comparison with numerical calculations

The comparison with the exact quantum mechanical DOS
will be done using the level counting function

N (E) =
∫ E

−∞
dE′ ρ(E′). (39)

In all plots E and μ̃ will be given in units of 1/L2 (κ̃ in
units of 1/L) which is equivalent to setting L = 1 in N .
In Fig. 4 the semiclassical level counting function is plotted
for −25 � κ̃ � 25 in steps of �κ̃ = 10. For E < 0 the three
curves representing the attractive cases κ = −25, − 15, − 5
resemble 1D single-particle counting functions.

The exact solutions of the Schrödinger equation for the
Hamiltonian (25) can be found by using that the system is
symmetric with respect to the line x2 = L/

√
2. This means

that we can determine a full set of energy eigenstates that are
either symmetric or antisymmetric to that line [see Fig. 5(a)].
Except for normalization, this is equivalent to considering only
the lower part of the fundamental domain while requiring either
Neumann or Dirichlet boundary conditions at the symmetry
line [see Fig. 5(b)]. The Dirichlet boundary condition at the
line x1 = x2 corresponds to the antisymmetric solutions of the
extended system shown in Fig. 5(c). Moreover, the normal-
ization constants for the original and the extended system are
the same. The solutions can be written straightforwardly as
antisymmetrized products of 1D wave functions:

ψD
mn = 1

2

[
ψD

m(x1)ψD
n (x2) − ψD

m(x2)ψD
n (x1)

]
,

km,kn ∈ SpecD, 0 � m < n,

ψN
mn = 1

2

[
ψN

m(x1)ψN
n (x2) − ψN

m(x2)ψN
n (x1)

]
,

km,kn ∈ SpecN, 0 � m < n. (40)

D

0 0 0

(a) (b) (c)

FIG. 5. Fundamental domain and equivalent systems. The letters
stand for mixed (m), Neumann (N), and Dirichlet (D) boundary
conditions.

Here, the 1D wave functions and the sets SpecN/D are defined
by

ψD
n (x) = AD

n sin (kn(x − d)),

SpecD =
{
kn | knd = nπ − arctan

(
kn

κ̃

)
,n ∈ N0

}

∪{k0 = ik̃0 | k̃0 = −κ̃ tanh(k̃0d),k̃0 > 0},
ψN

n (x) = AN
n cos(kn(x − d)),

SpecN =
{
kn | knd = nπ − π

2
− arctan

(
kn

κ̃

)
,n ∈ N

}

∪{k0 = ik̃0 | k̃0 = −κ̃ coth(k̃0d),k̃0 > 0},

where k0 ∈ SpecD is chosen either positive or purely imaginary
with positive imaginary part depending on the value of κd with
d = L/

√
2. The energy eigenvalues of the system are now

given as Emn = k2
m + k2

n with km,kn either both in SpecD or
both in SpecN. The energies have been calculated numerically
and the comparison to the smooth level counting function is
shown in Fig. 6 for the repulsive case (κ̃ = 10) and in Fig. 7
for the attractive case (κ̃ = −25).

The value κ̃ = 10 for the repulsive case has been chosen
such that the resulting level counting function lies well in
between the two limits κ̃ = 0 and κ̃ → ∞ corresponding to
non-interacting bosons and fermions (denoted as NN and ND

in Fig. 6). For κ̃ � 0 numerical calculations show that the
ratio of corner corrections in the DOS to the full semiclassical
DOS at the ground state has a maximum of about 8% for
κ̃ ≈ 5.814 which is very close to the value at which the
equation E0 = κ̃2 for the ground state energy holds (E0 varies
smoothly from E0 = 2π2 for κ̃ = 0 to E0 = 5π2 for κ̃ = ∞).
As this ratio decreases with the energy the corner corrections
can be neglected in the DOS for high energies. This holds
also true for the level counting function, where they decrease
rapidly from 3/8 to −1/8 as the energy increases.

Figure 7 (attractive case) shows that the corner corrections
are very important for negative energies and result in a shift
by one level in the level counting function at E = 0. In fact
the corner corrections give a contribution that nearly exactly
reproduces the quantum mechanical energy eigenstates. By
integrating Eq. (38) to get N−(E∗) and substituting k∗ = √

E∗
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FIG. 6. The quantum mechanical (staircase) and semiclassical
level counting functions for κ̃ = 10 (repulsive case) and L = 1.
The functions NN and ND represent the limits κ̃ → 0 and κ̃ → ∞,
respectively.

the equation N−(k∗
n) + 1/2 = n for n ∈ N yields

k∗
nd = nπ

2
− arctan

(
k∗
n

κ̃

)
(41)

which gives exactly the allowed real wave numbers in SpecD

and SpecN. Since the negative quantum-mechanical energy
levels are always given as E = k2

0 + k2
n with k0 purely

imaginary and kn real we can see that the error in the
approximation (41) of the eigenenergies lies only in the
assumption that the imaginary wave numbers k0 in both SpecD

and SpecN are equal to −iκ̃ . This approximation is very
good for large absolute values of κ̃ and is still reasonable
as long as the requantization with ρ− makes sense, i.e., the
ground state energy is negative. The error �E = |k2

0 − κ̃2| of
the semiclassically requantized energies is plotted in Fig. 8
for −20 < κ̃ < −2. The ground state energy changes sign at
κ̃ = −(3π )/(2

√
2) ≈ −3.332 (semiclassical prediction, while

the quantum mechanical result yields κ̃ ≈ −3.286). At this
point the error is less than 0.45/L2 which is small compared
to the mean level spacing [ρ−(μ̃)]−1 ≈ 19/L2. This shows that
the corner corrections are essential for E < 0 and can be used
to requantize the system in this regime. Moreover one can
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FIG. 7. The quantum mechanical (staircase) and semiclassical
level counting functions N (E) for κ̃ = −25 (attractive case).
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FIG. 8. The absolute error �En = |k2
0 − κ̃2| in the semiclassical

approximations for k0 in each set SpecD/N.

use the level counting function directly to find the number of
bound states in the system.

IV. CONCLUSION

We presented an alternative derivation for the propagator
for a δ-potential in Sec. II A. The resulting expression has
a natural interpretation by means of free propagation and
hard-wall reflection, taking exponentially weighted detours
or shortcuts in the cases of repulsive or attractive interaction,
respectively. The propagator can be used to calculate the
single-particle DOS for arbitrary shaped billiards of any
dimension with mixed boundary conditions and/or δ-barriers
inside the volume. Although the calculations do not include
curvature terms the formalism is straightforward and allowed
us to calculate the contributions from a Dirichlet-Robin (π/4)-
corner to the DOS which, to our knowledge, have not been
calculated before. The corrections given by these corners are,
as expected, of lowest order in the energy but give very accurate
corrections at low positive energies, where the repulsive and
the attractive case differ only in an overall sign. In the attractive
case the corner corrections allow for the requantization of the
system for negative energies, which shows the accuracy of the
approximations used in the formalism.

By using the equivalence of the 1D two-particle problem
with δ-interactions to the 2D problem in the fundamental
domain with mixed boundary conditions we presented a
powerful tool for the treatment of few-body systems. Its
natural application lies in the approximation of the DOS for
an arbitrary number of δ-interacting particles. It is important
to note that the scattering and bound states of such a system
with infinite volume are known exactly [31]. This means that
the short-time propagators required for the treatment of higher
particle numbers can, in principle, be calculated directly from
them. Our approach presented here can be extended to include
smooth external potentials, which allowed us to examine the
thermodynamics of a system of δ-interacting bosons in a
harmonic confinement [32].
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APPENDIX A: CONTINUUM LIMIT
OF THE PROPAGATOR

The antisymmetric solutions of the confined system have
equidistant k’s, i.e., �k = kn+1 − kn = π/L for arbitrary n. So
the first line of Eq. (5) is easily verified to have the continuum
limit

1

2π

∫ ∞

−∞
dk e− ih̄t

2m
k2

[cos (k(x ′ − x)) − cos (k(x ′ + x))],

whereas the second line needs a more careful treatment.
Omitting the indices we can write

2L

A2
ψ(x ′)ψ(x) = cos (k(|x ′| − |x|))

− cos (k(|x ′| + |x| − 2L)).

Using trigonometric identities and identifying

sin(2kL) = 2 tan(kL)

1 + tan2(kL)
= −2 k

κ

1 + (
k
κ

)2 ,

cos(2kL) = 1 − tan2(kL)

1 + tan2(kL)
= 1 − (

k
κ

)2

1 + (
k
κ

)2 ,

this yields

2L

A2
ψ(x ′)ψ(x) = cos (k(|x ′| + |x|)) + cos (k(|x ′| − |x|))

− 2 Re
eik(|x ′ |+|x|)

1 + i k
κ

,

where the absolute values in the first two arguments can
be dropped due to symmetry. Now, observing that A2 =
1 + O(L−1) and �kn = kn+1 − kn = π/L + O(L−2) for all
n as L goes to infinity, the continuum limit can be performed
exactly in the same way as for the antisymmetric solutions.
The bound state solution of the confined system has an
exact limit for the free space, i.e., an exponentially decaying
wave function localized at the potential. Summing up all the
contributions we get Eq. (6).

APPENDIX B: INVERSE LAPLACE TRANSFORMATION

In Eq. (36) we need the inverse Laplace transform fn(E) of
functions of the form

Fn(β) = β−neμβ erfc(
√

μβ) (B1)

with 2n ∈ N0. To this end one can use the property of the
two-sided Laplace transformation

LE

[∫ E

−∞
dE′ f (E′)

]
(β) = 1

β
LE[f (E)](β) (B2)

to get fn recursively from f0 or f 1
2
. We will take a different

approach that yields the full expression. It is straightforward
to show

nFn+1(β) =
(

μ − ∂

∂β

)
Fn(β) −

√
μ

π
β−(n+ 1

2 ). (B3)

This can be used to verify by induction the formula

Fn(β) = �(γ )

�(n)

(
μ − ∂

∂β

)n−γ

Fγ (β)

−
√

μ

π

n−γ∑
k=1

�(n − k)

�(n)

(
μ − ∂

∂β

)k−1

β−(n−k+ 1
2 ),

(B4)

where

γ :=
{

1 n ∈ N,
1
2 n + 1

2 ∈ N.
(B5)

Now one can use the linearity of the Laplace transformation
and the identity

LE[−Ef (E)](β) = ∂

∂β
LE[f (E)](β) (B6)

to get

fn(E) = �(γ )

�(n)
(E + μ)n−γ fγ (E)

−
√

μ

π

n−γ∑
k=1

�(n − k)

�(n)�(n − k + 1
2 )

(E + μ)k−1En−k− 1
2 .

(B7)

The functions fγ are given by [33]

fγ (E) =
{

2
π

arctan
(√

E
μ

)
�(E) γ = 1,

1√
π

�(E)√
E+μ

γ = 1
2 .

(B8)
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