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Abstract

The Nerve Excitability Test (NET) is an electrodiagnostic test capable of non-

invasive characterization of peripheral nerves in humans. It has utility in dif-

ferentiating between healthy controls and subjects with peripheral nerve disor-

ders. Full realization of the diagnostic potential of NET requires a substantial

database of normative values. This thesis describes the process of combining

NET data from multiple centers around the world (Canada, n=120, 57 male,

ages 18-70; Japan n=85, 50 male, ages 19-86; Portugal n=42, 14 male, ages

22-84) to create the first international normative NET dataset for the human

median nerve.

Since NET data often has missing values, we compared a number of ap-

proaches for filling missing values. An iterating cascading autoencoder per-

formed the best. A simpler method, iterating linear regression, has similar

performance while executing faster. The iterating cascading autoencoder was

used to fill the missing values in the normative dataset.

Data collected from multiple locations can suffer from “batch effects”: site-

specific technical differences that reduce the homogeneity of the data. We

developed a novel method for the detection of site-specific differences and found

the homogeneity of the data from the three countries to be 95%, suggesting

it is appropriate to combine the data into a single dataset. Comparison of

the means of Canadian and Japanese NET data suggested that the remaining

heterogeneity is due to technical differences in the stimulus-response curve,

and that these differences have little or no impact on biological measures of
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nerve health.

After establishing the normative dataset, we created a website which can

be used as a clinical decision support system: NerveNorms.Bellstone.ca. The

website also presents a nerve health score, interpretable as a p-value, to provide

a quick and intuitive measure of the health of individual NET results relative

to the normative dataset.
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Chapter 1

Introduction

Every day, millions of Canadians ask an artificial intelligence for help with ev-

eryday tasks like fetching the weather forecast or sending text messages. Every

day, significantly fewer Canadians go to clinics to be tested for peripheral nerve

disorders. The goal of this thesis is to begin the process of bringing those two

things together, applying artificial intelligence techniques to improve periph-

eral nerve health. Eventually, artificial intelligence will aid in the automated

diagnosis of peripheral nerve disorders.

In order to begin progress toward that goal, it was necessary to collect

normative data in an adequate quantity to train machine learning algorithms,

to fill missing values in that data, to test for the presence of site-specific dif-

ferences in test results, and to develop a score for measuring the health of

an individual’s nerve. This thesis describes the progress made toward those

goals. Further work will be necessary before differential diagnosis is possi-

ble, including collection of larger quantities of data from additional nerves,

collection of data from participants with peripheral nerve disorders, and de-

velopment of algorithms for differential diagnosis. Those aspects are not part

of the present work; in this thesis, all data comes from healthy humans. Af-

ter data collection via solicitation from international collaborators, the thesis

project consisted of three phases: dealing with missing values in some nerve

excitability measurements, determining whether it is statistically appropriate

to combine international data, and development of the nerve health score.

Chapter 2 provides background information about the neuroscience and
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computing science concepts used in this project. Later chapters describe the

three phases of the project. The first phase, missing data, is discussed in

Chapter 3. Phase two, site-specific differences, is the topic of Chapter 4. The

third phase, creation of a clinical diagnostic support system, is the topic of

Chapter 5. Chapter 5 considers the clinical implications of the normative

dataset and introduces a website for browsing the data, which was designed

as part of this project. The final chapter, Chapter 6, provides an overview of

the work, its implications, and future directions.
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Chapter 2

Background

This chapter provides background information about the neurophysiology of

motor axons (Section 2.1) and the Nerve Excitability Test (Section 2.2) and

basic concepts of machine learning (Section 2.3) and information theory (Sec-

tion 2.4).

2.1 Motor Axon Physiology

Axons propagate neuronal signals. These signals are in the form of action

potentials: brief voltage spikes which propagate down the axon. Ion channels

in the neuronal membrane open or close in response to the voltage across

the membrane, selectively allowing specific ions, like Na+ or K+, to travel

across the cell membrane. The mass transit of these ions changes the voltage,

causing further changes in the ion channels. It is this movement of ions which

causes voltage changes that propagate as action potentials. A neuron may

fire repeatedly with some delay between action potentials; this firing encodes

the signal being transmitted by the neuron. The firing of a neuron can be

purposefully initiated by applying a current to the axon, either via needles or

through the surface of the skin. When sufficient current charges the axonal

membrane, an action potential propagates down the axon.

Motor axons propagate signals from motor neurons to muscle fibers. Specif-

ically, action potentials in motor neurons effect the contraction of muscle fibers.

Each motor neuron innervates hundreds of different muscle fibers, but each

muscle fiber is innervated by a single motor neuron. When only a few mo-

3



tor neurons are excited, a weak contraction is produced. When many motor

neurons are excited, a large contraction is produced. The fraction of the

muscle activated by an applied stimulus to the axons can be measured using

electromyography (EMG) and is called the compound muscle action potential

(CMAP).

Understanding motor axons requires insight into their behavior in a vari-

ety of conditions. Traditional analysis of axonal behavior has been in vitro

studies done on the nerve after dissection from the animal and placement in

an artificial environment. These studies allow for unprecedented control of

the solutions bathing the nerve, the introduction of drugs, and the use of

small-scale electronic and optical devices for measurements. That is obviously

problematic when studying living humans. Some methods allow for in vivo

measurement, such as nerve conduction tests, which are conducted in clinics

across Canada, but these noninvasive methods provide limited insight into

the biophysics of nerves, i.e. the behavior of the underlying voltage-gated ion

channels. The development of the Nerve Excitability Test (NET), described in

the next section, has allowed for detailed, noninvasive study of in vivo axonal

behavior.

One example of the utility of this test is our recent study of fast and slow

axons in rats. Muscle fibers can be separated into two general categories:

fast- and slow-twitch. Slow-twitch muscle fibers are involved in weaker, longer

duration contractions, such as those used for postural control. They do not

fatigue easily, but are unable to produce large force. Fast-twitch muscle fibers

produce short, strong contractions for bursts of activity in movements like

sprinting or jumping. Neurophysiologists had shown that the conduction ve-

locity of motor axons to fast-twitch muscle fibers tends to be quicker than

the velocity to slow-twitch, but this difference was explained by anatomical

differences. There was little known about differences in the biophysical prop-

erties of fast and slow motor axons. We found that the axons leading to these

muscles have functionally relevant differences in their biophysical properties.

In particular, we found that hyperpolarization-activated, inwardly rectifying

cation current (Ih) is stronger in slow axons, possibly due to their need to
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Fast Axon Slow Axon

(a) Strength Duration (b) Recovery Cycle

(c) Threshold Electrotonus (TE) (d) Long-Term Hyperpolarizing TE

(e) Threshold I/V (f) Relative Stimulus Response

Figure 2.1: Differences between fast (tibialis anterior) and slow (soleus) motor
axons in rat. The impact of Ih is especially notable in (d) Long-Term Hy-
perpolarizing Threshold Electrotonus. Mean values are plotted with standard
error bars. Overlays show the distribution of individual rats for some notable
excitability variables. This figure was reproduced from Bell et al. [4].
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resist hyperpolarization over long periods of conducting impulses [4]. Figure

2.1 shows these differences between fast and slow axons, as measured by NET.

2.2 The Nerve Excitability Test (NET)

The Nerve Excitability Test was first established by Hugh Bostock and has

been popularized with his QTRAC software. The protocol has gone through

a number of revisions since the original TROND protocol, which was estab-

lished in Trondheim, Norway in 1999 [31]. The physical setup of the test

involves transcutaneous electrical stimulation using two electrodes placed over

the nerve of interest. The normative data under consideration in this project

was collected from the median nerve, so the stimulating cathode was placed

over the wrist with the return anode on the forearm, intentionally placed away

from the nerve. Two recording electrodes, which are placed over the muscle

of interest, are used to collect electromyography (EMG) data. For the me-

dian nerve stimulation, this was the abductor pollicis brevis (APB, the largest

thumb muscle). A fifth electrode is a ground. For the normative data, it was

placed on the back of the hand. When the median nerve is stimulated, the

motor axons innervating the APB muscle are activated causing a contraction.

A larger stimulation activates more of the axons in the nerve, in turn recruit-

ing more muscle fibers, which leads to a larger CMAP, which is observed as a

large voltage at the recording electrodes. Before the test begins, the experi-

menter establishes the maximum CMAP by increasing the stimulating current

until the CMAP stops increasing. With knowledge of the maximum CMAP,

the QTRAC software begins an automated test consisting of five phases, or

subtests. The data are then typically visualized in six characteristic plots.

Stimulus Response (SR)

Since most NET measurements consider the change in stimulus required to

produce a target CMAP, it is necessary to first characterize the relationship

between stimulus and CMAP. The amplitude of a 1-ms stimulating current is

adjusted until it produces a CMAP with 2% of the magnitude of the maximum;
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(a) Stimulus Response (SR) (b) Relative Stimulus Response

(c) Charge Duration (QT) (d) Recovery Cycle (RC)

(e) Threshold Electrotonus (TE) (f) Threshold I/V (IV)

Figure 2.2: The six Nerve Excitability Test plots produced by QTRAC soft-
ware. The data points are the mean of Canadian data. Shaded regions show
99% confidence interval for healthy controls (assuming a normal or log-normal
distribution). Plots were generated by the NerveNorms website, which is dis-
cussed in more detail in Chapter 5.
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this current and voltage are recorded. This process is repeated with ampli-

tudes increasing to 100% of the current required to produce the maximum

CMAP. This produces the Stimulus Response plot, as shown in Figure 2.2a.

Unsurprisingly, this shows that a more activated nerve produces a stronger

muscle contraction, but once the muscle is maximally stimulated, its response

saturates.

Since SR has a lot of inter-individual variability, it is difficult to compare

across individuals. To overcome this problem, the voltages are normalized to

produce a Relative Stimulus Response plot. CMAP voltage is plotted relative

to the maximum CMAP (i.e. 2% to 100%) while current is plotted relative to

the current required to produce 50% of maximum CMAP. This plot, shaped

like a tilted hourglass, is shown in Figure 2.2b. Since SR is less useful for

comparison between individuals, it is often omitted (as it was in Figure 2.1).

The following tests are not as straightforward to measure as SR. Instead

of merely sending a specific stimulus and measuring the response, these tests

adjust a stimulus parameter (e.g. stimulus duration or amplitude) until a

desired response is measured, and this stimulus parameter is the resulting

dependent variable. In all cases, the target response is a CMAP equal to 40% of

maximum. As can be observed in the relative SR plot (Figure 2.2b), the slope

of the stimulus-response relationship is largest around 40%, so targeting 40%

of maximum CMAP provides the most sensitivity to change. For example, if

the stimulus results in a CMAP of 30% of maximum, the test will be repeated

with a larger-amplitude stimulus current. If this results in 50% maximum

CMAP, the stimulus will again be repeated, but with an amplitude between

the previous attempts. This process is repeated until 40% maximum CMAP is

achieved; the corresponding stimulating amplitude is recorded. This process

of iteratively adjusting the stimulus amplitude in real-time to achieve a target

response has been called threshold tracking in the NET literature. If the

threshold of the motor axons increases, this is indicative of a decrease in their

electrical excitability. It is the change in threshold from the control condition

that is key dependent measure plotted in three of the NET graphs.
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Charge-Duration (CD, or sometimes QT)

The charge amplitude and duration of a stimulus are inversely proportional;

if the stimulus amplitude is decreased, a longer duration is required to pro-

duce the same CMAP. This relationship was first described by Weiss in 1901

as the “fundamental law of electrostimulation” [22]. This is measured by the

Charge-Duration plot. The stimulus current required to produce 40% maxi-

mum CMAP is measured for five pulse widths ranging from 0.2ms to 1.0ms.

These pulse widths are plotted against the threshold charge (i.e. current multi-

plied by pulse width). As shown in Figure 2.2c, this relationship is almost per-

fectly linear. The slope of this line is the rheobase in mA, which is the amount

of current theoretically required for a pulse of infinite duration. The absolute

value of the x-intercept of the line (not shown) is the strength-duration time

constant (SDTC), which describes the behavior of the axonal cell membrane.

Rheobase and SDTC are both excitability variables used to characterize the

relative health of the nerve.

The remaining tests follow a condition-test paradigm, in which the nerve

is conditioned in some way and then tested. The conditioning pulse puts the

nerve into some state of interest, and the test pulse measures the excitability

of the nerve in that state. As described above, the test stimulus is adjusted

until a CMAP of 40% is observed, so multiple condition-test pairs are usually

necessary. When measuring a single dependent variable value, the conditioning

pulse is repeated with the same parameters, but the current of the test pulse

is adjusted until it produces the required 40% maximum CMAP.

Recovery Cycle (RC)

For the Recovery Cycle, the conditioning pulse is a 1-ms stimulus with an

amplitude greater than that needed for 100% maximum CMAP, i.e. a supra-

maximal stimulus amplitude. The 1-ms test stimulus is then sent at a variable

delay, ranging from 2.5ms to 200ms after the conditioning pulse. This plot,

shown in Figure 2.2d, demonstrates the response of the nerve to repeated

stimuli. The y-axis shows the relative change in test stimulus amplitude re-
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quired to produce a 40% maximum CMAP. The x-axis is time from 2.5ms to

200ms. Note that the data is not all observed in a single 200ms recording;

each data point is measured as the result of a series of condition-test pairs

which converge on the target CMAP. Each measurement takes time greater

than the x-value of the point being observed because the conditioning and test

pulses are separated by a time equal to the x-value, but an additional delay

is required between each measurement to ensure the nerve has returned to its

resting state.

This plot shows that most nerves are completely insensitive to repeated

stimulation within the first couple of milliseconds; this is known as the abso-

lute refractory period. During this time, the ion channels are still recovering

from the first action potential; most notably, transient sodium channels are

still inactivated and must be de-inactivated. There is then a period of in-

creased threshold, the relative refractory period, which lasts for a few more

milliseconds. In unmyelinated nerves (not shown), this relative refractory pe-

riod is the only notable feature of the plot, which resembles a decaying ex-

ponential. However, in myelinated nerves, the complex interactions of the

myelin capacitance and changing ion channel conductances gives rise to su-

perexcitable and subexcitable periods. During the superexcitable period, the

nerve is more responsive to stimulus; a smaller-amplitude stimulus results in

an equal-magnitude response. This is followed by a late subexcitable period,

during which, like the relative refractory period, the nerve is not excited as

easily. Since these phenomena occur at exponentially increasing delays, the

x-axis is plotted logarithmically.

In most tests, the electrical interactions between the stimulating and record-

ing electrodes are unimportant. Though the current from the stimulating elec-

trodes induces a large voltage at the recording electrodes, it is only observable

in the first few milliseconds after the stimulus, and tests other than RC occur

much later. However, in RC, this stimulus artifact can obscure recordings in

the first 2–3ms after the stimulus, resulting in missing data at the beginning

of some RC plots.
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Threshold Electrotonus (TE)

In hyperpolarizing Threshold Electrotonus (see the lower half of Figure 2.2e),

the conditioning pulse is a 100ms long hyperpolarizing stimulus. The ampli-

tude of this hyperpolarizing pulse is equal to 40% of the amplitude required

for a 1-ms stimulus to evoke the target CMAP, i.e.40% maximum CMAP. Like

RC, the y-axis shows the relative change in the required stimulus amplitude

and the x-axis is time. However, TE shows threshold reduction, so increases

and decreases in excitability are in the opposite direction of RC, and TE time

is linear, not logarithmic. The x-axis of TE indicates the delay between the

onset of the conditioning pulse and the onset of the test pulse. The condition-

ing pulse always begins at the 10ms mark, so there is no change in threshold

prior to 10ms. The presence of the hyperpolarizing pulse immediately causes a

decrease in excitability; since the first measurement occurs as the 40% hyper-

polarizing current is beginning, the increased current required to activate the

nerve is 40%. A data point at an x-value of 20ms corresponds to the change in

amplitude required to evoke 40% maximum CMAP after the nerve has been

conditioned by a 10-ms, 40% hyperpolarizing current. As the duration of the

hyperpolarizing current increases up to a duration of 100ms (at 110ms on the

x-axis), the excitability of the nerve slowly returns to baseline. Data points

after 110ms show the response of the nerve with the hyperpolarizing current

turned off. For example, at 130ms, the nerve has been subject to a 100-ms

conditioning pulse (from 10ms until 110ms), followed by 20ms of recovery. In

this region, the nerve may exhibit a rebound increase in excitability which

slowly decays toward zero.

The data collection process is repeated with a 40% depolarizing condition-

ing pulse (see the upper half of Figure 2.2e). It is usually also repeated with

20% hyperpolarizing and depolarizing pulse. These measurements provide an

understanding of the dynamics of the nerve after hyperpolarization or depolar-

ization, i.e., after long-term activity has changed the nerve’s threshold. Most

importantly, these tests reveal biophysical properties of ion channels that are

located beneath the myelin sheath of the motor axons, i.e. the internode
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region.

An optional extension to the test protocol uses 70% and 100% hyperpo-

larizing currents which last for up to 200ms and 300ms instead of 100ms (not

shown in Figure 2.2, but see Figure 2.1d) [34]. This long-term TE is especially

effective for observing Ih: the hyperpolarization-activated current. Since this

current is activated by long-term hyperpolarization, it only begins to be evi-

dent near the end of the 100ms conditioning current, so long-term TE is more

effective at showing its effect. It is an inwardly-rectifying current which coun-

teracts the hyperpolarization, so the long-term TE in a nerve with large Ih

will be attenuated.

Current-Voltage (IV)

The Current-Voltage relationship is similar to TE, but all of the measurements

are made at the end of the hyperpolarizing/depolarizing conditioning pulse,

and the conditioning pulse width is 200ms instead of 100ms. The independent

variable is the strength of the conditioning pulse; instead of being fixed at

40% of the stimulus current required to produce 40% maximum CMAP, it

ranges from -100% to +50% in increments of 10%. Contrary to standard

plotting convention, the dependent variable is plotted on the x-axis, as shown

in Figure 2.2f.

Excitability Variables

The excitability variables, also referred to as excitability indices, are generated

by QTRAC to provide a summary of the results of the plots. These variables

are measures taken from the plots, such as a particular y-value, an x-intercept,

or the slope or maximum in a specified region. The participant’s age, sex,

and temperature are also included in the QTRAC list of derived excitability

variables, though it is not usually appropriate to treat them in the same way.

There are approximately 30 standard excitability variables, but the exact count

depends upon which tests are included. Quantitative analysis in NET studies

usually focuses on these variables. In keeping with that practice, this study
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primarily considers those derived values extracted from the continuous data

plots. Potential weaknesses of this approach will be discussed in Chapter 6.

For a more detailed overview of the biophysical underpinnings of this test

and its application in clinical settings, refer to Kiernan and Lin [30].

2.3 Machine Learning (ML)

This introduction to machine learning forgoes detail in favor of presenting

the minimum conceptual foundation that will be necessary to understand the

work in later chapters. This is in contrast with those later chapters, which

will provide more detailed descriptions of the methods used. The aim of this

section is to provide a reader without an ML background with the necessary

foundations to grasp the relevant concepts. For a more detailed introduction

to ML, consider Goodfellow et al. [18].

The most basic ML method is linear regression, which, like most of the

field of ML, is firmly rooted in statistics. Consider a basic x-y scatter plot: if

the goal is to predict Y based on X, a line of best fit can be drawn and used

to make predictions. This line is described by the standard equation

Y = mX + b, (2.1)

where m is the slope of the line and b is its y-intercept. If we ignore b, we

can roughly calculate the slope of the line as m = Y/X, where Y and X

are vectors of all of the dependent and independent variables. (In fact, the

correct equation is m = (X⊤X)−1X⊤Y, where m could be a matrix if there

are multiple dependent or independent variables, but the concept is similar

to a simple division.) This method of calculating a line of best fit (likely

in multiple dimensions) in order to predict a variable of interest is the most

basic machine learning method: linear regression. Various techniques add

complexity: data can be transformed before being input to the algorithm,

making logarithmic features linear; regularization, such as forcing the multi-

dimensional slopes to have similar magnitudes, can aid in generalization to new

situations; multiple layers of learning can be used, resulting in “deep learning”;

13



the predicted variable could be a single category, like “good” vs “bad”, or a list

of non-exclusive labels, like “delicious”, “nutritious”, “nut-free”, and “vegan”.

However, the basic goal of supervised machine learning remains the same: we

want to make predictions based on observed data.

Unsupervised learning is a variation of supervised machine learning: in-

stead of providing known values with the goal of prediction, the entire dataset

is thrown at an algorithm which attempts to create order out of chaos. The

algorithm does its best to sort the data into groups (or “clusters”) based on fea-

tures it considers to be prominent. For example, consider a dataset of pictures

of the digits 0 through 9, with a single digit in each picture. An unsupervised

algorithm might sort the data into 10 clusters perfectly corresponding to the

ten digits. Or it might instead sort into three clusters: handwritten in pen,

handwritten in pencil, and typed. A poor algorithm might instead sort the

data into clusters that make no sense to a human interpreter. Unsupervised

learning is very effective at clustering data based on features that are promi-

nent in the view of the algorithm, but it is not always clear how the algorithm

arrived at its conclusions.

A few specific ML techniques are especially relevant to this project. For

missing data, linear regression, neural networks (including autoencoders), and

principle component analysis are important, so they are described below.

To detect site-specific differences, unsupervised clustering is important, so k-

means clustering and hierarchical clusters are described below.

Neural Networks

Neural networks are used for deep supervised learning (among other things)

[18]. A neural network is similar to multi-layered linear regression: X is used

to predict H, which is used to predict Y. When building a neural network,

we often do not care about the intermediate predictions (H). While multiple

layers like this do not improve predictions for a simple linear relationship,

when the data is transformed by a non-linear function between layers, neural

networks become very powerful prediction engines. (For example, we use the

hyperbolic tangent of H as the input to the final layer.) Known samples of
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X and Y are provided to the neural network and the weights in the network

(which are conceptually similar to the slope of a line of best fit) are modified

until the network accurately predicts the known Y based on X. It can then

be used to predict Y when X is unknown.

Autoencoders

An autoencoder is a type of neural network which aims to reproduce its input

[18]. (Chapter 3 includes a block diagram of an autoencoder in Figure 3.2.)

Given some values X, it attempts to build a network which can reproduce

X as closely as possible, even after each layer transforms the data in some

fashion. One strength of an autoencoder lies in the intermediate layers which

are otherwise often ignored (e.g. H, as described above). If the input X for

each sample includes a lot of data (e.g. a long list of all of the movies you have

ever watched and the rating you gave each one), the hidden layer H could be

much smaller (e.g. the hidden layer might learn to store a short list of genres

and your rating for each, which can be used to approximately predict your

movie ratings). This can be useful for data compression (storing H instead of

X), dealing with noise (which might be filtered out by the autoencoder), or

predicting missing values (as in this project).

Principle Component Analysis

Principle Component Analysis (PCA) can be viewed as an unsupervised learn-

ing method which transforms some input data into a different representation

without losing any information, though it is usually used in a way that re-

sults in some information loss [26]. One example of transforming data without

losing information is to record height and BMI instead of height and weight;

either pair of data can be calculated from the other. Another example is trans-

forming from Cartesian (i.e. x-y-z) coordinates to a cylindrical or spherical

coordinate system. PCA transforms data into a representation which often

has no real-world meaning, but it is useful because the new representation

maximizes variance in each dimension; that is, it transforms the input vari-

ables into new variables which are ranked in order of how much they vary
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Figure 2.3: The clusters found by k-means are centered around the mean of
the points assigned to the cluster. As demonstrated in this figure, this may
not be ideal for clusters with different spacial distributions. There are obvi-
ously three clusters in this data, but k-means incorrectly labels some points
as blue even though they belong to the bottom cluster. This figure by Chire
(https://commons.wikimedia.org/wiki/File:KMeans-Gaussian-data.svg) is li-
censed under CC BY-SA 3.0.

between samples. The low-variance variables can often be discarded without

losing much information. This means PCA is capable of data compression and

predicting missing values.

k-Means Clustering

Unsupervised learning aims to organize data without using any prior knowl-

edge about the data. In k-means clustering, the samples are sorted into k

clusters. As shown in Figure 2.3, each cluster is centered around the mean of

the samples that belong to that cluster; each sample is assigned to the cluster

with the mean closest to the sample. The means and assignments of samples

to clusters are updated iteratively until convergence. The final clusters have

some dependence on the initial random choices for the cluster means, so k-

means clustering may produce different results for the same inputs. Due to

this non-deterministic behavior, the methods for detecting site-specific differ-

ences in Chapter 4 use a hierarchical cluster tree instead of k-means, but the
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Figure 2.4: A dendrogram, or tree diagram, can be used to cluster sam-
ples. In this dendrogram, species are organized by their relationships to
one another. When two species are closely related, they are connected by
a shorter distance. In this example, different clusters of related species
are colored red, green, blue, and purple based on the branches they de-
scend from. Nerve health data can similarly be clustered in a tree dia-
gram according to the similarity between samples. This figure by Jakub al13
(https://commons.wikimedia.org/wiki/File:Dendrogram4.png) is licensed un-
der CC BY-SA 4.0.

simplicity and ubiquity of k-means makes it a reasonable alternative choice.

Agglomerative Hierarchical Cluster Tree

A common way of organizing data is in a dendrogram: a tree diagram (see

Figure 2.4). For example, animal species are sorted in a large tree that splits

according to kingdom, phylum, class, order, family, genus, and species. Clus-

ters of species can be formed by splitting at any of those levels. Hierarchical

tree clustering has two steps. First, the data must be organized into a tree

based on a linkage. The linkage, which is a measure of the distance between

pairs of samples, will determine the structure of the tree. It is used to assign

each sample to a location in the tree. Second, the tree must be split into the

desired number of clusters by traveling down the dendrogram to find appropri-

ate places to split the tree. Splitting data into a dendrogram in order to find

clusters will be important for detecting site-specific differences in Chapter 4.
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2.4 Information Theory

Information theory is a field concerned with understanding how much informa-

tion is contained in a given event or dataset [53]. For example, it takes one bit

of information to communicate the result of each flip of a fair coin: it is either

heads or tails. It takes zero bits of information to communicate the result of

a flip of an unfair coin that always lands on heads: the result can be assumed

without the need to communicate anything. A dataset of 100 independent

fair coin flips contains 100 bits of information. It is possible to calculate the

amount of information, or entropy, in any dataset with the equation

H(X) = −
∑
i

p(xi)log2[p(xi)], (2.2)

where H(X), the entropy of the dataset X, is a sum across all elements xi of

X. p(xi) is the probability of observing event xi. A fair coin has two states,

each with probability 0.5, resulting in the expected entropy of 1 bit.

The joint entropy of two events measures how much information is con-

tained in the two events together:

H(X,Y) = −
∑
i

∑
j

p(xi, yj)log2[p(xi, yj)]. (2.3)

For two datasets, it is a measure of the total information they contain. Condi-

tional entropy is the additional amount of information in Y given knowledge

of X:

I(Y|X) = −
∑
i

∑
j

p(xi, yj)log2
p(xi, yj)

p(xi)
. (2.4)

Mutual information is a measure of the information shared between two datasets:

I(X;Y) = H(X,Y)−H(X|Y)−H(Y|X). (2.5)

The mutual information I of X and Y is equal to the entropy of both datasets

minus the entropy of each dataset given the other dataset. Two independent

datasets have no mutual information; the combined entropy is equal to the sum

of the individual entropies. Two datasets with some shared information (e.g. a

dataset of heights compared to a dataset of corresponding weights) have large
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mutual information. When the two datasets contain identical information

content (e.g. a dataset of height and BMI compared to a dataset of height and

weight), the mutual information is maximized and is equal to the entropy of

either dataset.

Mutual information is an important foundation for considering whether

multi-site data can be considered to come from the same distribution. If the

multi-site data is shown to share a common distribution, it is appropriate to

combine the data into a single dataset. This topic will be considered in more

detail in Chapter 4.
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Chapter 3

Missing Data

This chapter describes the first phase of the project: filling missing values in

the normative data.

3.1 Introduction

The issue of missing data, and lack of a systematic approach, is pervasive in

many scientific fields. A common ad hoc method for missing data is listwise

deletion, also known as complete case analysis, which involves deleting any

cases (or samples) in which data is missing. A more modern approach is to

infer missing values with statistical techniques, such as multiple imputation.

Reviews of missing data practices in educational psychology in the early 2000s

[45, 46] and then a decade later [12, 14] showed improvements in handling

missing data, with a trend moving away from more ad hoc methods like list-

wise deletion to those using statistical techniques. The most recent survey,

however, still found that only 63% of papers handled missing data at all, and

almost 30% still used listwise deletion [14]. Similar issues in how missing data

is treated have been discussed more generally in psychology [7], for behavioral

neuroscience [48], and for medical research with clinical trials [15, 35]. Repeat-

edly, it has been found that simplistic approaches underperform compared to

more modern missing data techniques [12, 14, 20, 47, 48]. In spite of major

advances in the handling of missing data [20, 36], uptake is not pervasive.

The standard method of analyzing NET results with missing values is adap-

tive n: for each feature, researchers use the mean value of the n samples
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which are not missing for that feature, potentially resulting in a different n

for each feature. This method of analysis is the default behavior of QTRAC,

the primary software package for conducting these tests. While this method of

missing data analysis has been adequate for studies thus far, more complex an-

alytical algorithms often rely on matrices of data without missing values. For

example, calculations of variation of information (described below) perform

very poorly with missing values. Future diagnostic algorithms are also likely

to require these values to be present. Therefore, a more systematic approach

to missing data is required.

In some cases, it is important to fill the missing values in the original data

matrices, but often only means and the covariances of the features are impor-

tant. For example, confirmatory factor analysis only relies on the covariances,

so it is not necessary to fill the missing values [9], though effective missing data

techniques are still important to ensure the resulting covariance matrix is ac-

curate. On the other hand, if a researcher’s goal is to compare a patient’s data

to normative controls, it may be important to be able to fill missing values

in that individual’s test results. Therefore, this study considers both prob-

lems: we optimize the reconstruction of missing values in a matrix of test data

and we optimize the reconstruction of the covariances of the features in the

same test data. This is more likely to preserve the validity of both individual

features and the relationships between them.

A common, well-performing, theoretically justified approach to imputation

of missing values is multiple imputation (MI). Any process which imputes a

single value into a missing field is a single imputation method. While single

imputation is simple, it under-reports the variance because the best imputa-

tion for any value is the expectation of that value, which removes noise. If

single imputation instead uses a model of variance to impute values with a

stochastic method, the variance is more likely to be correct at the cost of in-

creased error in the imputed values. MI instead uses a stochastic process to

generate the missing values, but repeats the process to impute multiple differ-

ent copies of the dataset (often 10), each with the missing values imputed by

the same stochastic process. The average of these imputed values provides a
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Table 3.1: Recent studies with nerve excitability results measured from the
median nerve in healthy human participants.

Country n n male Ages Source

Canada 150 73 18–70 previously unpublished
Japan 84 49 19–86 Bae et al. [1]
Portugal 42 14 22–84 Casanova et al. [11]
Australia 60 28 22–79 Jankelowitz et al. [24]
Ireland 105 54 19–82 McHugh et al. [38]

good measure of the expected value, while the variance between the datasets

can be combined with the variance within the averaged dataset to produce a

good measure of the expected variance. While MI performs well in practice,

it is best used as part of a complete analytical process. Rather than using a

MI method to create a dataset with good imputed values and then analyzing

that dataset as a second step, the best multiple imputation involves generat-

ing multiple datasets, analyzing each one separately, and then combining the

results of the analysis using MI techniques so the final results consider the

effect of missing data.

There are some scenarios in which MI is not appropriate. First, if data is

being imputed into a single sample (e.g. to fill data in a single NET result for

comparison to a normative dataset), it does not make sense to calculate the

single-sample variance, so a MI approach is not helpful. Second, MI is part of a

complete analysis process. If the analysis steps are unknown, it is not possible

to carry out MI. Since the NET data is being prepared as a normative dataset

for use by other researchers, it is most appropriate to do single imputation.

If the downstream analysis is going to take advantage of MI, the normative

dataset can be used without pre-filled missing values, but for those researchers

who prefer a complete dataset, a version with values filled by single imputation

will also be provided.
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3.2 Methods

The nerve excitability data came from three geographic locations as described

in Table 3.1. All four locations with previously published data were invited to

participate, but Australia and Ireland declined. Tests used the standard pro-

tocol for NET results: QTRAC software with a TROND protocol [31]. How-

ever, the Japanese dataset did not contain threshold electrotonus 20% (TE20)

data, so all TE20 data was removed from the other datasets. Two samples

from Japan and one from Portugal were missing participant sex. Since future

analysis is likely to segregate data based on sex, it would be inappropriate to

impute it, so those values were removed from analysis and are not included in

the total count of samples in Table 3.1. One of the Japanese samples did not

include any TE and I/V slope data, so it was also removed.

While a NET dataset consists of numerous continuous waveforms, as de-

scribed previously, this analysis focuses on the standard excitability indices

which QTRAC automatically calculates from the plots. (These indices may

include the y-value at a specified x-value, the maximum in a specific region,

or the slope of a segment.) This reduces the amount of data to analyze while

focusing on values known to be of interest. After removal of TE20 data, 31

excitability indices remained, consisting of 30 continuous measures (age, tem-

perature, and 28 other variables) and one categorical measure (male/female).

Due to biological variations or technical difficulties, NET data is sometimes

missing. In particular, nine of the 31 features are missing at rates listed in

Table 3.2.

Of the 276 samples, 37 of those samples were missing data. Their true

values are unknown, but must be filled to allow detection of site-specific dif-

ferences (and potentially other analysis) on the entire dataset. In order to

determine which missing-data algorithm is most effective at filling values in

this dataset, the 244 samples without missing data were used to create a com-

plete matrix of NET samples. For analysis of the missing data, all of the

normative data was combined into a single dataset to increase the number of

samples.
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Table 3.2: Percent of observations that are missing for the features that have
missing data in Canada (CA), Japan (JP), and Portugal (PT). Rates are
reported as count (percent of dataset).

Feature Name Count Missing (Percent)
CA JP PT All

Refractoriness at 2 ms (%) 14 (9.3%) 7 (8.3%) 4 (9.5%) 25 (9.1%)
Refractoriness at 2.5ms (%) 6 (4.0%) 1 (1.2%) 1 (2.4%) 8 (2.9%)
TEh(overshoot) 2 (1.3%) 1 (1.2%) — 3 (1.1%)
Hyperpol. I/V slope 3 (2.0%) — — 3 (1.1%)
Resting I/V slope 1 (0.7%) — — 1 (0.4%)
Minimum I/V slope 1 (0.7%) — — 1 (0.4%)
RRP (ms) 1 (0.7%) — 1 (2.4%) 2 (0.7%)
TEh(slope 101-140ms) 1 (0.7%) — — 1 (0.4%)
Temperature (C) — 1 (1.2%) — 1 (0.4%)

To determine which missing data algorithm performed the best, the dataset

was resampled 100 different times, using the following methodology. First, a

test set with missing data was created by randomly deleting from features in

proportions according to Table 3.2 1. This resulted in a test set containing

approximately 199 samples with complete data and 45 samples with missing

data. (The exact numbers of missing and complete samples varied each time

the test set was generated, since the distribution was random.) Each algo-

rithm was then executed on the test set to produce a matrix of filled values.

The mean squared error (MSE) for the data was calculated for each algorithm

by comparing its output to the reference data. Since the missing features are

of unequal magnitude and variance, the MSE for each feature was normalized

by its variance. This process was repeated to measure each algorithm’s per-

formance on 100 different subsets of deleted data. Paired t-tests across the

100 resamples were used to determine significance for each pair of algorithms.

This process is diagrammed in Figure 3.1.

When testing for site-specific differences in Chapter 4.1, it will also be

necessary to impute missing values in small datasets with around 40 samples.

While it is normally appropriate to impute missing data across the combined

1To match the observed missing data, “Refractoriness at 2.5ms (%)” was only deleted if
“Refractoriness at 2ms (%)” was also deleted.
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Figure 3.1: The missing data algorithms were tested by randomly resampling
complete rows and deleting features in proportion to the observed missing
data rates. The mean squared error (MSE) of each algorithm was measured
to compare performance.

dataset, it will be necessary to impute smaller datasets (e.g. PO, n = 42)

when testing for site-specific differences. To consider imputation performance

in those datasets, the above process was repeated with smaller sample sizes.

Instead of using all 244 samples, a random 40-sample subset was used. Other

steps were followed as described above, but note that only temperature was

not in this smaller sample because it occurred at rates too infrequent to be

deleted.

All code was implemented in Matlab R2018a (9.4.0.813654) and is available

online [2]. Actual p-values are reported unless lower than 0.0001.

Methods To Reconstruct Missing Data

The following methods were used to reconstruct missing data. In the following

descriptions, m is the number of missing features (up to nine, but sometimes

as low as eight since the features with missing rates below 1% are often not

missing in smaller samples). In all cases, hyperparameters2 (if any) were opti-

mized on the test data, so the demonstrated performance represents an upper

bound on performance (i.e. it was not validated using separate training and

test data). For all algorithms except mean imputation and regression, val-

2The number of iterations in the iterating algorithms was one important hyperparameter.
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ues were converted to zero mean and unit variance before being input to the

algorithm. Block diagrams for these algorithms are in Figure 3.2.

Mean imputation (Mean) In mean substitution, missing values were filled

with the corresponding feature’s mean value.

Data augmentation (DA) This is a multiple imputation method with code

from Folch-Fortuny et al. [16], but it is used here in a single-imputation con-

text. It estimates the parameters describing a feature’s distribution and uses

them to impute the missing values. This process is iterated for some number

of steps or until convergence. Alternating between imputation of missing val-

ues and estimation of parameters like this forms a Markov chain. In practice,

a chain with length of two was found to converge for the NET data. DA is

not recommended for datasets when the number of features approaches the

number of samples [16].

Principal components analysis with alternating least squares (PCA)

Matrix completion decomposes a data matrix into two lower-dimensional ma-

trices. When the inner dimension of the two lower-dimensional matrices is

reduced, the product of those matrices results in a filled approximation of the

original data. The specific method of matrix decomposition used in this case

was principal component analysis (PCA), since it is a common method for

factorizing or decomposing a matrix. PCA on its own cannot handle missing

values, but when the PCA solution is found using alternating least squares

(ALS), it can fill missing data. Since the resulting matrix is an approximation

of the original matrix, all values (not just missing values) will be modified, but

only the predicted values for the missing data were used; the final matrix used

the original values when available and filled missing values using the output

of the ALS PCA solution.

Iterating PCA (iPCA) First, PCA was performed as described above to

update the missing values. The matrix with filled values was used for another
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Figure 3.2: Block diagrams for algorithms to fill missing data. (A) Complete case analysis
deletes any row which contains a missing value. (B) Mean imputation uses the feature
mean. In this example, Refractoriness at 2ms is sometimes missing (red dots), so the
mean is imputed. Sometimes this gives points which are clearly outside the distribution
of observed points. (C) DA is a multiple imputation algorithm, which allows for better
statistical performance on downstream analysis (e.g. calculating a covariance matrix), but
the present work only uses it for single imputation (i.e. the mean of the imputed data). (D)
Principle Components Analysis identifies orthogonal directions of the largest variance. In
this example, values would be imputed as close as possible to the large arrow, which is the
direction of the largest variance. (E) Linear regression imputes values based on regression
across other variables. In this example, the strongly correlated features would result in
accurate imputation. (F) The autoencoder takes the 28 features as inputs and does its best
to recreate those same 28 features. (G) The cascading autoencoder takes the known features
as its input to predict the unknown features. (H) The iterating algorithms (cascading
autoencoder shown here) perform imputation repeatedly to improve their accuracy.
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round of PCA, which provided updated predictions. This process was repeated

20 times.

Linear regression predictor (Regr) First, missing values were filled with

the feature mean. Then a linear regression model was trained, and that model

was used to predict the missing values. The model was not regularized.

Iterating linear regression predictor (iRegr) First, a linear regression

predictor was used as described above to update the missing values. The

matrix with filled values was used to create a new linear regression model,

which provided updated predictions. This process was repeated 20 times.

Autoencoder (AE) An autoencoder is a neural network in which the inputs

are the same as the outputs. The missing inputs were replaced with their

feature mean. The autoencoder was optimized with ADADELTA [66].

Iterating Autoencoder (iAE) First an autoencoder was used as described

above to update the missing values. The matrix with filled values was used to

train a new autoencoder, which provided updated predictions. This process

was repeated 5 times.

Cascading Autoencoder (Casc) This started with a true autoencoder

with the 31 − m inputs and outputs: the complete features. The missing

features were sorted from least missing values to most. The first missing feature

was then predicted from the k hidden nodes. Then, the next missing feature

was predicted from the k hidden notes plus the first missing feature. If the true

value of the first feature was known, it was used; otherwise, the prediction was

used. This continued for all four missing features, so the final missing feature

had k + m − 1 weights from the outputs of the hidden layer and the m − 1

previous predicted features. Backpropagation from the m missing features

was applied to the input weights when the missing features were present, but

backpropagation was not carried through the cascading connections between

the m filled features. (A version of the cascading autoencoder without any
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backpropagation from the missing values was also tested, but it did not perform

as well, so it has not been included.)

Iterating Cascading Autoencoder (iCasc) First a cascading autoen-

coder was used as described above to update the missing values. The ma-

trix with filled values was used to train a new cascading autoencoder, which

provided updated predictions. This process was repeated 5 times.

3.3 Results

The performance of missing data algorithms was dependent on the number of

samples available for training. When the full dataset (244 samples) was used

(Figure 3.3a), DA performed the best, with iRegr nearly as good. Casc, iCasc,

and iAE had good performance as well. Mean filling was worse than all others.

When a small dataset (40 samples) was used (Figure 3.3b), DA became the

worst, as expected, while iPCA, AE, iAE, Casc, and iCasc performed equally

well. When a medium-sized dataset was used (100 samples; results not shown),

DA, iAE, iRegr, Casc, and iCasc all performed well.

As shown in Figure 3.4, iRegr and DA runtimes were much faster than

Casc and iCasc. Runtimes were relatively similar across sample sizes.

Casc, iCasc, AE, and iAE performance was relatively insensitive to the

number of hidden nodes, but was best with 6. PCA performance was approx-

imately constant for 4<k<20, so it was also set to 6. ADADELTA converged

fastest with ρ = 0.99; ϵ was set to 10−7.

Since iAE, Casc, and iCasc perform quite well across all sample sizes, and

since iCasc outperformed the other algorithms in some tests, it was chosen to

fill missing data for all further analysis in spite of its long runtime.

3.4 Discussion

Mean substitution, while common in the literature, did not perform as well

as the machine learning methods DA and iCasc. Since simpler methods, like

mean substitution and CCA, are easy to understand and to implement in
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(a) Full Dataset (b) Small Dataset

Figure 3.3: Error rates for each method when filling the missing values in a
(a) full-sized (n=244) and (b) small (n=40) dataset. In (b), one data point
each from Mean, DA, and iRegr is outside the bounds of the plot.

Figure 3.4: Runtimes for each method when filling the missing values in a
full-sized (n=244) dataset.
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common software packages, it is unsurprising that they are frequently used in

spite of their poor performance. While linear regression was performant and is

available in Matlab and other software packages, it is more difficult to configure

than mean substitution. Additionally, its performance might be worse on other

datasets with more missing features, since relatively few values were missing

in this dataset. The novel cascading autoencoder performed better than the

other techniques across a variety of sample sizes. Future work could consider

its application to other datasets, especially those with more missing features

or a higher proportion of missing data. The goal in this work was to optimize

a method for this specific application, the NET dataset, not necessarily to

generalize results to other datasets, so further work would be necessary to

determine if these methods, especially the novel cascading autoencoder, are

effective with different types of data or rates of missing values.

This experimental setup simulated data missing completely at random

(MCAR), since samples were deleted without consideration for their corre-

lation. Many missing data techniques perform well on data that is missing at

random (MAR) rather than MCAR [14], so our results are likely to generalize

to MAR data, but additional experimentation could verify that assumption.

Since the true NET data is likely missing not at random (MNAR), it is possible

that the imputation is not estimating the unknown values effectively. Some

measures, such as temperature, are almost certainly MCAR (due to experi-

menter or clinician forgetfulness), but other measures, like refractoriness, are

likely due to biological differences which may or may not be captured in other

measured values (therefore resulting in MAR or MNAR data). Further work

could consider follow-up experimentation to attempt to measure values that

were initially missing in order to gauge the effectiveness of these missing data

techniques.

Future work could consider optimizations to these algorithms. Since the

thirty-five features in this dataset were derived from waveforms with dozens of

samples, accuracy could be improved by including that auxiliary data in the

missing-data analysis. (For more information on the use of auxiliary variables,

see Dong and Peng [14].) Since these features are measurements of waveforms,
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polynomial or spline fits of those waveforms could also provide a method of

filling this missing data. Since the thirty-five features were originally selected

by experts, it could also be effective to get input from those experts regarding

which other features or which regions of the original waveforms would be most

useful for reconstructing the missing values.

3.5 Conclusions

Since the best performance was achieved by the iterating cascading autoen-

coder, missing data in the remaining chapters will be filled with the iterating

cascading autoencoder.
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Chapter 4

Site-Specific Differences

This chapter describes the second phase of the project: determining if site-

specific effects preclude the combination of international data. Full realization

of the diagnostic potential of the Nerve Excitability Test (NET) requires a

substantial database of normative values. The objective of this study was

to determine if it is statistically permissible to combine data from multiple

sites given the inherent site-specific technical heterogeneity and potential for

biological differences associated with race.

Secondary analysis of data collected in previous studies (Japan n=85, 50

male, ages 19-86; Portugal n=42, 14 male, ages 22-84) was used together

with new normative data (Canada, n=150, 73 male, ages 18-70). An algo-

rithm to detect site-specific differences, based upon machine-learning cluster-

ing and variation of information, was developed to detect site-specific differ-

ences that would preclude simple amalgamation of multi-site data into a single

dataset. Regression analysis on the pooled dataset was compared to previous

site-specific analysis that identified age and sex as covariates for NET results.

The pooled dataset showed low levels of site-specific heterogeneity (94%

homogeneity, p < 0.0001), indicating pooling is appropriate. Pooling data did

not obscure the previously reported relationships between age and NET re-

sults (specifically superexcitability and hyperpolarizing I/V slope). There were

differences in some NET results between countries that were likely method-

ological in origin, rather than biological, but these differences were minor. We

conclude that it is statistically permissible to combine multi-site data into an
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international normative database to improve the diagnostic potential of the

NET.

4.1 Introduction

When measurements are gathered by different experimenters, from different

locations, or with different types of equipment, there may be errors specific

to the experimenter, location, or equipment. For example, if one technician

takes blood pressure readings at a location that is, on average, slightly farther

down the arm than another technician, her readings will be slightly higher

than her colleague’s [60]. If she and her colleague both measure 100 different

people, they will find they have a similar variance, and her average reading

might even be lower than his, but the minor difference between their mea-

surement methodology has introduced a minor error between their sets of 100

measurements. If that difference can be determined quantitatively, it can be

subtracted from all of her values (or added to all of his) to make the measure-

ments more comparable. Since both of the technicians still have some variance

in the location they place the blood pressure cuff, this correction won’t remove

all error—and it might even increase the error in an individual case if the cor-

rection decreases the blood pressure of a reading that was already measured

too low—but overall it will reduce the dataset’s error and allow the two sets

of data to be more accurately combined. This situation gets more compli-

cated if the first technician is measuring people in Japan while the other is

measuring in Portugal. If we observe the means of the two sets of measure-

ments are different, we cannot know if the difference is due to technical or

biological differences. In a more realistic test protocol, there may be dozens of

measurements, each subtly impacted by differences in equipment or technique.

The Nerve Excitability Test measurements have been collected from differ-

ent labs around the world. As a result, it is possible that there are site-specific

differences in the data. For example, there may be differences due to bi-

ology (i.e. race), equipment, or methodology (which may be lab-specific or

experimenter-specific). In order to assert that it is appropriate to combine
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these measurements into a single dataset, it is necessary to determine if there

are any outstanding differences between datasets from different locations. The

problem of errors specific to experimenter, location, or equipment has been the

subject of considerable research interest in the field of proteomics. In gene mi-

croarray datasets, the errors can be much larger than the effects of interest

[58, 61]. These effects are called “batch effects” because the error is associated

with a batch of measurements. Batch effects are undesired non-biological ef-

fects which obscure the desired signal, which is usually biological. Microarray

experiments attempt to separate these signals by spreading biological differ-

ences between different batches. Here, biological differences are separated into

different batches. As a result, if any site-specific differences are present, it

might not be possible to determine whether they are true batch effects (i.e.

due to non-biological differences such as different equipment, electrode place-

ment, filter settings, etc.) or biological differences. For the purpose of this

paper, we are considering any site-specific differences — including biological

— to be “batch effects.”

Since batch effects are an important problem for gene microarrays, many

techniques have been developed to detect and correct for these errors. Many of

those methods rely on particular knowledge about the type of data. However,

adjusted rand index (ARI) and variation of information (VI) can effectively

detect batch effects without making any assumptions about the underlying

data [40]. ARI measures the similarity between two partitionings of the same

n samples. If the n samples are sorted into k clusters by some clustering al-

gorithm (e.g. k-means), those clusters can be compared to the known labels

to measure how effectively the unsupervised clustering was able to predict the

batches. However, ARI may take negative values, which complicates inter-

pretation [63], and it has a weak dependence on n [40]. An alternative is a

technique based on VI, which is based on the mutual information between two

random variables [40].

If batch effects have been detected, they can be corrected with a variety of

techniques. Many common batch effect correction techniques are specific to

gene microarrays. They use knowledge about the microarrays to understand

35



and correct the problems, so they are not relevant to NET data. There are

techniques that are not specific to gene microarrays (e.g. Vaisipour [61]), but

they are not considered in detail here since no batch effect correction will be

applied (as described in Methods and Results).

4.2 Methods

Variation of Information (VI) is based on the mutual information between two

random variables (i.e. how knowledge about one clustering provides knowledge

about the other). Applied to batch effects, VI is a measure of how much

information a clustering algorithm provides about the labeled clusters, which

suggests the degree to which obvious batches are present. VI is defined as

V I(L,C) = H(L) +H(C)− 2I(L,C), (4.1)

where H(L) is the entropy of L and I(X,C) is the mutual information between

L and C. In the case of batch effects, L is the vector of true labels and C is

the corresponding vector of cluster labels.

While VI is an effective measure for detecting batch effects in a fixed num-

ber of clusters (i.e. batches), it does not allow comparison when the number

of clusters is different. For example, the VI for three batches is of a different

magnitude than for four batches, so they cannot be compared. In clustering

applications where the number of clusters is not constrained, the maximum

value of VI is dependent on the number of data points (V Imax = log2(n))

because the number of clusters, K, can increase up to n. However, when K is

fixed,

V Imax(L,C|K) = 2log2(K), (4.2)

where L is the true labels (i.e. the country of origin) and C is the cluster

labels. This is clearly dependent on the number of clusters.

While maximum VI is described in Equation 4.2, the maximum for a spe-

cific set of cluster labels may be smaller if the clusters are of unequal sizes. If

there are no batch effects, an algorithm which evenly distributes the clustered

data into K groups is expected to assign a sample to label k with probability
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p(k) = 1/K, which has an expected entropy of 2log(K), as expected. How-

ever, if the labels are not neatly divided into equal-sized groups, their entropy

will be less than log(K) while I(L,C) remains equal to zero. The resulting

VI (by Equation 4.1) will be less than the maximum. In other words, since

the individual datasets might not be equal sizes and the clustering algorithm

is not constrained to find equal-sized clusters, the expected maximum VI is

less than Equation 4.2. In those cases, the expected maximum, E[V Imax],

is determined empirically by shuffling the labels produced by the clustering

algorithm 100 times and calculating the mean VI of those 100 shuffles.

E[V Imax(L,C|K)] =
1

100

100∑
j=1

V I(L,Cj|K), (4.3)

where Cj is the jth shuffle of the cluster labels C. Since shuffled cluster la-

bels by definition exhibit no batch effects, the maximum VI for shuffled cluster

labels is the maximum possible VI score, and the expected VI after many differ-

ent random arrangements is the expected VI for un-batched data. Therefore,

V I(L,C) can be compared against E[V Imax(L,C)] to determine the magni-

tude of the batch effects.

VI compares the labels of clustered data to the true labels. To generate

cluster labels, an agglomerative hierarchical cluster tree was used (Matlab

linkage function, default ward linkage method). Results were similar when k-

means was used (not shown), but results from the linkage cluster are preferred

because they are deterministic. (Since k-means clusters are dependent on the

initial seed, k-means increases the variance.) VI calculations were based upon

methods in Bishop [6] as implemented in Matlab by Chen [13].

Before calculating VI, the missing values were filled with the missing data

method that performed the best (a cascading autoencoder; see Section 3.3).

The data was imputed separately for each dataset (e.g. each country) be-

fore calculating VI to ensure that the imputation method did not increase

homogeneity between the datasets by sharing imputation knowledge between

datasets.

When calculating VI for a given combined dataset, the data from each

individual dataset (e.g. country) was first normalized and randomly sampled
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30 times. Normalization consisted of converting each feature to zero mean,

unit variance. Each random sample included 80% of the combined dataset. A

pre-calculated series of 30 random seeds was used for the 30 trials each time

a dataset was tested for batch effects. For each of the 30 trials, the expected

maximum VI was calculated as described above (Equation 4.3), giving 30

pairs of results. Comparing these allows two measures to be calculated: a p-

value and the dataset homogeneity. A paired t-test gives a p-value indicating

whether batching effects are not present:

p = ttest(V I(L,C|K), E[V Imax(L,C|K)]), (4.4)

where C is a matrix of 30 cluster label vectors, so V I(L,C) is a vector of

length 30. Note that large p-values indicate that no batching is present; the

VI of the data is drawn from the same distribution as a random VI. If instead

the p-value is small, some amount of batching is present, but the p-value does

not indicate the amount of batching. The homogeneity of the data sources

(i.e. the effect size of the batching) is calculated from the ratio of the means:

Homogeneity =
V I(L,C|K)

E[V Imax(L,C|K)]
. (4.5)

Most of the following figures are ladder plots of the 30 homogeneity scores with

mean homogeneity and the p-value displayed below each ladder. The entire

analytics process is diagrammed in Figure 4.1.

As an additional test to confirm behavior of the VI homogeneity measure, a

dataset of common peroneal (CP) nerve measurements (N=120, 57 male, ages

18–70) were used in some experiments (with missing data methods the same as

those used for the normative data). Since CP measurements are different from

median nerve measurements, VI for that dataset was expected to be higher.

A rat dataset (n=49) was also used for comparisons. Since the rat data was

from (1) a different species (2) measured in different locations (3) under the

effect of anaesthetics, it was also expected to show significant differences. The

rat dataset and the confounding effects of the ketamine-xylazine anaesthetic

are described in more detail by Lorenz and Jones [37] and Bell et al. [4], but

those details are not relevant to this comparison. Table 4.1 describes these

datasets.
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Figure 4.1: This block diagram shows how dataset homogeneity is calculated for the
normative dataset. Data from Canada (CA), Japan (JA), and Portugal (PO) is preprocessed
separately (not shown) before being resampled (80% of samples) 30 times to calculate mean
VI homogeneity. The resampled data is automatically clustered without the use of the
country labels. The variance of information (VI) between these clusters and the known
country labels gives a measure of the difference in their information content; high values
indicate they contain different information and therefore do not demonstrate batch effects.
Since the maximum VI depends upon the relative number of samples in each cluster and
the number of clusters, the contents of the clusters are shuffled randomly 30 times while
preserving the number of samples in each clusters. The VI between these random clusters
and the true labels gives the expected VI for truly random clusters. The homogeneity score
is the VI of the automatic clusters scaled by the expected random VI, giving a value with
a minimum of 0 (when the clusters exactly match the known labels) and approximately 1
(when the clusters are random relative to the known labels). The maximum is not exactly
1 because the scaling factor is the expected random VI rather than the absolute maximum.
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Table 4.1: NET data used for comparison with normative median data. Both
of these are not the same as normative median data.

Name n n male Ages Description

Legs 121 57 19–70 common peroneal (leg) nerve
Rats 49 — — various nerves in anaesthetized rats

In order to provide intuition about the algorithm’s ability to detect batch

effects, Figure 4.2 shows six plots demonstrating various amounts of homo-

geneity. In panel A, data from two independent sources is obviously batched;

the blue circles and the green crosses do not overlap, so the algorithm deter-

mines that they are 0% homogeneous. In panel B, the two datasets are drawn

from the same distribution, and the algorithm correctly determines the data

is 100% homogeneous. In both of these cases, the algorithm easily measures

homogeneity, just as a human observer would. Panel C is similar to A, but

some of the green crosses are drawn from the same distribution as the blue

circles, making the data less homogeneous (35%). The green and blue points

are still obviously from different sources, but not as obviously. Panel D is

similar, but with an unequal number of points in each group. Panel E shows a

situation that a human observer would find difficult to differentiate. The two

groups are drawn from similar distributions that are difficult to separate. In

spite of this challenge, the algorithm is very confident (p < 0.00001) that the

data is not completely homogeneous (95%). Even with fewer samples (panel

F), the algorithm still suggests there are some batch effects. These plots show

that VI is able to detect when two independent distributions are overlapping

with different variances, suggesting that VI homogeneity is sensitive to batch

effects.

All code was implemented in Matlab R2018a (9.4.0.813654) and is available

online [2]. Actual p-values are reported unless lower than 0.0001.
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Figure 4.2: Homogeneity of synthetic data. In each example, data is generated from three
Gaussian sources. Source 1 has mean [2, 3] and sigma [11.5; 1.54]. Source 2 is not overlapping
with source 1 and has larger variance, with mean [−1026] and sigma [2015; 1516.5]. Source
3 has the same large variance as source 2, but with a mean nearly identical to source 1:
[3, 4]. In each panel, two datasets, generated from a combination of the Gaussian sources,
are plotted on the left. On the right is a ladder plot of the homogeneity. (A) Data is
generated by two different processes. Blue (circles) is 500 data points generated from source
1. Green (crosses) is 500 data points generated from source 2. The VI measure suggests
this data is 0% homogeneous, i.e. that the data is fully batched from two different sources.
(B) All 500 data points for each dataset have been generated from source 2, resulting in
100% homogeneity. The large p-value indicates the data is not from different distributions,
as expected. (C) This test is similar to example A, except 100 of the points that were blue
are now green. This increases the homogeneity of the data, as expected. (D) Blue data
consists of 50 data points from source 1 and 450 from source 2, while green consists of the
same 500 points in example A. Since most of the combined dataset comes from source 2,
it appears quite homogeneous, but the outliers generated from source 1 are enough to drop
the homogeneity score to 92%. (E) The blue data is generated from source 1, as in example
A, but the green data is now from source 3. The complete overlap between these sources
makes it difficult to distinguish between these datasets, yet the VI method is able to detect
the difference, giving a small (5%) batch effect. (F) Even with a much smaller sample size,
batch effects are detectable. (63 blue data points from source 1 were compared to 63 green
data points from source 1 and 126 green data points from source 3.)
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4.3 Results

Figure 4.3 shows the homogeneity of the normative data. The homogeneity

score of 95% indicates that the data has a small dependence on its country

of origin. When each pair of countries is compared (Figure 4.3b), the homo-

geneity ranges from 97–98%, indicating no one country is disproportionately

responsible for heterogeneity. When the data within each country is randomly

split into three separate groups (Figure 4.3c), Canada and Japan show very

little heterogeneity (99% Homogeneity), while Portugal’s Homogeneity of 92%

is much lower than the 100% that is expected for these completely random

splits of data. This may be due to the smaller sample size from Portugal.

(However, note that the small p-value for PO splits indicates the algorithm

found significant differences between PO groups.) These results suggest that

the normative data is mostly homogeneous, with minor site-specific differences.

Normative human median nerve data is next compared to other data to

determine if the algorithm can detect non-normative data (Figure 4.4). In

aggregate, human CP nerve (leg) data is distinguishable from median nerve

(arm) data, though individual samples are indistinguishable. As a result, a

dataset of leg data is identifiable as different from arm data. Rat data is

also dissimilar to human data, especially when rats are under the effect of the

anaesthetic ketamine-xylazine, so combining rat and human data also results

in low homogeneity. The results from comparing human and rat leg data

to human arm data provide strong empirical evidence that the homogeneity

measure is effective at identifying biologically plausible differences between

NET results.

The homogeneity scores were not sensitive to the method of filling missing

data. These results used an iterating cascading autoencoder to fill missing

data because it performed best (Chapter 3, but the results are similar when

using a combination of iterating linear regression for larger datasets and mean

imputation for smaller datasets (results not shown).
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(a) (b) (c)

Figure 4.3: The homogeneity of the normative data is 95%. This high ho-
mogeneity is confirmed by various splits and recombinations of the normative
data.
(a) The homogeneity of the Normative Data (i.e. combined CA, JA, and PO
data) is compared to the expected VI (assuming no site-specific differences).
The data is mostly homogeneous, but has some effects that depend upon the
country of origin.
(b) Homogeneity for only two of the three countries in the normative dataset
shows that none of the countries is disproportionately responsible for the site-
specific differences. (Results only shown for one of three possible combina-
tions.)
(c) The absence of site-specific differences within a country’s dataset shows
that the datasets are internally homogeneous. Each country’s data is ran-
domly split into three equal sub-groups and compared to random data of the
same size, with the normative data for comparison. Since this test is splitting
data from within a single country into three groups, it should have a high ho-
mogeneity score. The scores for CA (99%) and JA (99%, not shown) indicate
that their data is homogeneous. The PO homogeneity score (92%) is quite a
bit lower, but note PO has a much smaller sample size.
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Figure 4.4: Adding non-normative data to normative data results in a decrease
in homogeneity. When the leg or rat data is added to the normative dataset
(simulating an attempt to use data which is significantly different from norma-
tive), homogeneity increases. This is in spite of heterogeneity of the rat data,
which consists of measurements from three different muscles (tibialis anterior,
soleus, and tail) under the effects of two different anaesthetics (sodium pen-
tobarbital and ketamine xylazine) in two different clinical conditions (healthy
and spinal cord injury).
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4.4 Discussion

International normative nerve excitability data can be safely combined, allow-

ing larger datasets to be collected and shared across testing locations. While

site-specific effects are present, they account for a small proportion of the vari-

ance in the data. This is contrary to our initial expectations that site-specific

differences would necessitate batch correction measures.

Since Homogeneity for the normative data is close to 100%, we conclude

there are not meaningful site-specific differences present in the data. This was

contrary to our initial expectation that we would observe differences between

the groups. If site-specific differences had been present, it would be necessary

to consider whether they are due to experimental differences (e.g. equipment

or technique) or due to site-specific biological differences. Since the data was

collected without information about participants’ race, it would not have been

possible to conclusively determine whether the differences were technical in

nature, which would allow them to be corrected, or biological in nature, in

which case it would be inappropriate to combine the international datasets.

However, as will be discussed in more detail in Chapter 5, these effects might be

due to differences in SR curves, since they show notable differences between

countries. Differences in SR curves can be attributed to experimental data

collection differences rather than biological differences, and these differences

do not impact the other measures, so they are of lesser clinical importance.

As a result, we can conclude that biological differences are not a large factor

in the variation in NET results.

To be confident in the homogeneity score for the normative data, it is

necessary for the score to be near 100%, but that is not sufficient. The Ho-

mogeneity must also change significantly when non-normative data is added.

The results when adding leg and rat data show that the homogeneity score is

sufficiently sensitive to differences between batches.

The 92% Homogeneity with p < 0.0001 when Portuguese data is split

into three random sub-groups is likely due to the high heterogeneity of the

Portuguese data (e.g. more females than males and a broad temperature
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range) and its small sample size. Even though randomly splitting a dataset

into three sub-groups should result in homogeneous groups, that expectation

is less likely to hold in smaller samples. Future work with this homogeneity

measure should provide guidelines for appropriate minimum sample sizes.

4.5 Conclusions

The NET dataset was tested for site-specific differences using machine learn-

ing techniques: a linkage cluster and variation of information. These tests

indicated that meaningful site-specific differences are not present in the data.

Since site-specific testing difference are not a major factor in the Canadian,

Japanese, and Portuguese data, it is appropriate to combine them into an in-

ternational normative database for NET results. This method of combining

the datasets can easily be applied to datasets from other countries, allowing

international collaboration on an even larger normative database. These anal-

ysis methods are also extensible to non-normative datasets and can be used to

consider how different non-normative datasets are from the normative dataset,

providing diagnostic utility in clinical applications.
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Chapter 5

Nerve Health Score

This chapter describes the third phase of the project: development of a nerve

health score. The objective of this portion of the project was to combine inter-

national nerve excitability test results into a normative dataset of healthy hu-

mans and provide a computerized clinical decision support system (CDSS) to

identify unhealthy peripheral nerves. This CDSS is the NerveNorms website,

which uses international norms as a standard dataset for comparison against

healthy human controls [3]. NerveNorms also calculates a nerve health score

to determine if new patient measurements are healthy.

5.1 Introduction

Several previous studies have addressed the clinical neurophysiology of nerve

excitability tests in normative human controls to provide insight into the effects

of age and sex on ionic properties of peripheral motor nerve axons [1, 11, 24,

38]. These results were combined into an international normative dataset of

nerve excitability test results in healthy humans (Chapter 4).

Temperature, age, and sex can impact the biophysical properties of periph-

eral nerves. The effects of temperature on some measures of axonal excitability

are large [32, 33, 55]. To mitigate temperature effects, standard recording prac-

tice is to maintain temperature above 32°C or to apply temperature correction.

Effects of age and sex have also been studied, but with mixed results. The

effects reported in four previous studies from Australia (AU), Japan (JP), Ire-

land (IE), and Portugal (PO) have not been consistent, with some speculation
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that racial differences may be responsible [1]. The studies all followed similar

designs. Table 5.1 shows the age effects found in previous studies (along with

our hypotheses based upon the consensus). These previous studies agreed upon

age effects in hyperpolarizing I/V slope, stimulus-response slope, and maxi-

mum CMAP. There were mixed results for many other measures, but none of

them were diametrically opposing. Table 5.2 similarly shows the effects of sex

(along with our hypotheses). There was no agreement on any sex dependence,

since two of the four studies did not find any sex-dependent effects.

Variable AU JP IE PO Hypothesis
Max CMAP ns — ↓∗∗∗∗ ↓∗∗ ↓
Stim at 50% ↑∗∗∗ ns ns ns mixed, ns
SR slope ↓ (?) — ↓∗ ↓∗∗ ↓
Rheobase ↑∗∗ ns ns ns mixed, ns
SDTC ns ↑∗ ns ns ns
TEd (90–100ms) ns ↓∗ ↓∗ ns mixed, ↓
TEh (90–100ms) ns ns ns ns ns
TEd peak1 ns ns ns ns ns
TEd20 (peak) — — ns ns ns
TEd undershoot — — ns ns ns
Accom half-time — — ns3 ↓∗∗ mixed, ↓
Hyper. I/V slope2 ↑∗∗∗ ↑∗∗∗ ↑∗ — ↑
Min. I/V slope2 ↑∗∗∗ ↑∗∗∗ ↑∗ ns mixed, ↑
Resting I/V slope2 ns ↑∗ ns ns mixed, ns
Superexcitable ↓∗∗∗ ↓∗ ↓∗∗ ns mixed, ↓
Late subexcitable ns ns ns ns ns
Refractoriness 2.5 ↓∗∗ — ns ns mixed, ns
RRP ns ns ns ns ns

Table 5.1: Age effects observed in previous nerve excitability tests in nor-
mative human median nerve. An upward arrow means the absolute value of
the measure increased with age. “ns” indicates relationships which were not
significant, and a dash was unreported.
1JP reported depolarizing TE at 10–30ms instead of the peak value.
2Rather than the standard I/V measures, AU reported I/V slope in the hyper-
polarizing and depolarizing directions. Japan reported I/V threshold at 50%
depolarizing and 100% hyperpolarizing instead of slopes. The numbers in this
table are an attempt to translate those non-standard measures.
3For IE, after temperature correction, this became significant.
AU: Australia; JP: Japan; IE: Ireland; PO: Portugal.
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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Variable AU JP IE PO Hypothesis
Max CMAP ns — ns ns ns
Stim at 50% ns — ↓∗∗4 ns mixed, ns
SR slope ns — ns ns ns
Rheobase ns ↓∗ ↓∗∗4 ns mixed, ↓
SDTC ns ns ns ns ns
TEd (90–100ms) ns ns ns ns ns
TEh (90–100ms) ns ns ns ns ns
TEd peak1 ns ↑∗∗ ↑∗4 ns mixed, ns
TEd20 (peak) — — ↑∗∗4 ns mixed, ↑
TEd undershoot — — ↑∗∗∗ ns mixed, ↑
Accom half-time — — ↓∗∗3 ns mixed, ↓
Hyper. I/V slope2 ns ↑∗∗∗ ns — mixed, ns
Min. I/V slope2 ns ↑∗∗∗ ns ns mixed, ns
Resting I/V slope2 ns ns ns ns ns
Superexcitable ns ↑∗ ↑∗∗ ns mixed, ↑
Late subexcitable ns ↑∗∗ ↑∗∗ ns mixed, ↑
Refractoriness 2.5 ns ns ↓3 ns ns
RRP ns ns ↓3 ns ns
Refractoriness 2 — ns — — ns

Table 5.2: Sex effects observed in previous nerve excitability tests in normative
human media nerve. An upward arrow means the absolute value of the measure
tends to be higher in females. “ns” indicates relationships which were not
significant, and a dash was unreported. All PO measures were p > 0.2.
1JP reported depolarizing TE at 10–30ms instead of the peak value.
2Rather than these standard measures, AU reported I/V slope in the hyper-
polarizing and depolarizing directions. Japan reported I/V threshold at 50%
depolarizing and 100% hyperpolarizing instead of slopes. The numbers in this
table are an attempt to translate those non-standard measures.
3Results are shown after temperature correction; these were not significant
before correction.
4Results are shown before temperature correction; these were not significant
after correction.
AU: Australia; JP: Japan; IE: Ireland; PO: Portugal. * p < 0.05; ** p < 0.01;
*** p < 0.001.
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Figure 5.1: Age and Temperature distributions between the three countries
are not the same. The left side of each violin plot shows the distribution of
males; the right side, females. The area of the plot corresponds to the relative
proportion of samples. The plots show the distribution across two different
densities.

We have chosen not to repeat the regression analysis of previous studies

due to the unequal distribution of covariates (age and sex) and a confounding

variable (temperature). As shown in Figure 5.1, age, sex, and temperature are

not the same between countries. As a result, would not be clear whether dif-

ferences in regression coefficients are due to these covariates and confounders.

While NET contains a lot of clinically useful information, its uptake is

limited by the complexity of that information. Clinical tests benefit from

ease of interpretability. For example, iScore is a recent tool which accurately

predicts poor functional outcomes and risk of death for acute ischaemic stroke

[49–51]. When presented with five example stroke cases, half of physicians

had a 0% accuracy in predicting the probability of the primary outcome, while

iScore was correct 90% of the time [52]. Computerized clinical decision support

systems often improve clinician practice, especially when study authors are

involved in the development of such systems [17]. We aim to provide such a

tool for busy clinicians to aid in answering an essential diagnostic question:

“Is this nerve healthy?”
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5.2 Methods

Data collection for each country’s dataset is described in their respective pa-

pers. As described in those publications, informed consent was obtained from

all participants and relevant ethics guidelines were followed. When necessary,

missing data was filled with an iterating cascading autoencoder, since it has

been shown to be the most effective for this data (Chapter 3). All code was

implemented in Matlab R2018a (9.4.0.813654). Actual p-values are reported

unless lower than 0.0001.

In order to increase the diagnostic utility of the normative dataset, a nerve

health score was used to measure the health of individual NET results. This

nerve health score ranges from 0 to 1 and can be interpreted as the probability

that the NET results were drawn from a healthy human, so a score below

0.01 indicates the result is outside of the 99% confidence interval for healthy

humans. It was calculated as follows.

1. For a given plot (e.g. RC), for each data point the Gaussian probability

was calculated. (Note for absolute SR, this was calculated in both x and

y directions.)

2. The geometric mean of those probabilities gave the probability that

each specific plot (e.g. RC) was healthy. The geometric mean pre-

served the range between 0 and 1. For threshold electrotonus, since

there were both depolarizing and hyperpolarizing measurements, poten-

tially at more than one current, the overall score was the geometric mean

of the means of each of the plots.

3. A probability was also calculated for the excitability variables (excluding

age, temperature, sex, and latency) by taking the geometric mean of each

of their individual probabilities.

4. Finally, the geometric mean of the scores for the six plots along with

the one excitability variable score gave the final probability. If any plots

were missing (e.g. charge-duration data from JP), they were excluded

from the mean.
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To demonstrate the output of this nerve health score, it was calculated for

two participants from each country in the normative dataset, along with the

mean for each country and two different rats. The participants were selected

arbitrarily to demonstrate a range of ages, sexes, and scores. The rats, “Rat

Fast Axon” and “Rat Slow Axon”, were the means of the two primary groups

from a publication demonstrating differences between fast and slow axons in

rats [4]; they were chosen to demonstrate the nerve health score on samples

that are obviously not healthy humans.

5.3 Results

To demonstrate the output of the nerve health score, which does not correct for

age, temperature, or sex, Table 5.3 shows the nerve health scores of normative

humans alongside rats. The human scores appear healthy (0.28–0.46), while

the rats are not (0.059 and 0.020). Figure 5.2 shows example nerve health

scores for 5 plots each for an example human and rat.

Name Nerve Health Score Age (years) Sex
CA-WI20S 0.41 29 Male
CA-AL27H 0.29 44 Female
JP-20-1 0.28 25 Male
JP-70-1 0.46 72 Female
PO-00d97e84 0.41 78 Male
PO-017182a5 0.37 58 Female
CA Mean 0.87 34.622 —
JP Mean 0.73 45.322 —
PO Mean 0.80 46.289 —
Rat Fast Axon 0.059 0.25 Female
Rat Slow Axon 0.020 0.25 Female

Table 5.3: Nerve health scores for arbitrary participants from each country,
demonstrating a range of ages and sexes. The country means show a high
probability of being drawn from the healthy distribution, while rat data has a
low probability of being drawn from a healthy human population.

Figure 5.3 compares two of the normative datasets, JP and CA. Note the

large difference in Stimulus Response, but overlapping means in all other plots.

The nerve health score for the JP mean relative to CA norms is 0.46. This
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Figure 5.2: Nerve health scores for five plots for an example human (CA-
WI20S, left column) and rat (Slow Axon, right column). These images come
from the NerveNorms website. Darker red shading in the title bar indicates
a smaller (less probable) nerve health score, while green indicates the plot
is consistent with a healthy human media nerve. Shaded regions are 99%
Gaussian confidence intervals.
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Figure 5.3: The difference between Japanese (JP) and Canadian (CA) norma-
tive data, as presented at the NerveNorms website. CA data is in grey (mean
and 99% range for healthy data). JP data is black dots and blue lines. Note the
large difference in Stimulus Response, but overlapping means in all other plots.
(JP data does not include 20% threshold electrotonus and charge-duration.)
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comparison was not corrected for age, temperature, or sex.

5.4 Discussion

Skin preparation (technical), skin impedance (biological), and electrode place-

ment (technical) impact NET data, as could distance to nerve (technical due to

electrode placement or biological due to wrist circumference). Skin preparation

methods were not described in adequate detail in previous studies to deter-

mine whether skin preparation could overcome potential biological differences.

Different sites may have different methods for placing electrodes. Consider two

sites. One site (e.g. JP) places the stimulating electrodes based on anatomical

markers, but carefully adjusts the recording electrodes to maximize CMAP.

The other site (e.g. CA) carefully places the stimulating electrodes based on

the maximally evoked response, but places the recording electrodes based on

anatomical markers. The resulting CMAP will be much larger at the first site,

but other measures will be unaffected, as shown in Figure 5.3. This shows that

the absolute stimulus response is not very important, and site-specific differ-

ences in electrode placement are not important for plotting the mean data. It

is unclear whether electrode placement could still be a factor in the different

variances.

The impact of temperature control is an especially important considera-

tion. Most work to date on human axonal excitability has not maintained

temperature precisely. Most data was collected with the aim to keep skin

temperature above 32°C, without more precise temperature control. However,

Kiernan et al. [32] showed that the effect of temperature is not merely depen-

dent on the present value of the temperature; the rate of change of temperature

can also impact axonal excitability. It takes approximately 30 minutes to ade-

quately warm a nerve for excitability testing [33], a restriction which was not

followed in previous studies. Instead of controlling temperature, it could be

effective to monitor temperature continuously and apply post-hoc correction.

However, work thus far has also not monitored temperature precisely. Meth-

ods in previous studies ranged from a single temperature measurement at the
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beginning or end of the test to PO’s temperature measurement before, after,

and between each test. However, in all cases, only a single temperature was

recorded. Since temperature can vary throughout the test, it would not be

reasonable to attempt small-magnitude temperature corrections with only a

single temperature recording.

Latency is strongly influenced by temperature, and can serve as a proxy for

temperature changes. Future QTRAC versions could monitor latency through-

out the test, halting testing if it diverges from its initial value. This would

allow clinicians to test at the subject’s natural temperature, without the effect

of temperature adjustment, unless the subject’s temperature changed during

the test. Temperature changes could be corrected by external heating or cool-

ing before the test continued. This ongoing monitoring of latency would be

similar to the current ongoing monitoring of maximal CMAP, which accounts

for changing threshold. Post-hoc analysis could adjust the subject’s results

based on the single temperature recording. An alternative method would not

monitor latency, but could record temperature continuously throughout the

test, allowing precise moment-by-moment corrections. However, if the sub-

ject’s temperature changes rapidly, hysteresis could make this ineffective. In

any case, QTRAC recordings would benefit from an increased culture of con-

sideration for temperature effects, while keeping in mind the importance of a

solution that is feasible for the high-throughput needs of widespread clinical

adoption.

The establishment of this international normative dataset has also allowed

for the development of a new computerized clinical decision support system:

NerveNorms.Bellstone.ca [3]. NerveNorms allows clinicians to upload test re-

sults from a single patient for comparison against the international norms,

with automated diagnostics. The system identifies the new data as “Healthy,”

“Atypical,” or “Extremely Atypical” based upon the patient’s nerve health

score. The website also scores each individual plot, allowing clinicians to

quickly and easily investigate atypical NET results.

Future work on NerveNorms could provide additional diagnostic utility,

using structural equation analysis or machine learning to identify problems in
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Box 1: NerveNorms Examples

The following examples demonstrate some of the ways that nerve ex-
citability tests can be browsed with the NerveNorms.Bellstone.ca web-
site.

• Set the filter to only Canadian data and plot “CA Mean”. What
is the nerve health score?

• Consider the nerve health score for CA-WI20S. Is this the same as
saying he is at the 59th percentile?

• Try filtering by Male, 41–50, Portugal. What problem do you
encounter?

• “Rat on Drugs” is a rat anaesthetized by ketamine-xylazine [4].
How does the shape of its Recovery Cycle and Threshold Elec-
trotonus compare to healthy humans? Consider its nerve health
score.

• Try uploading a MEM and comparing it to the international
norms.

underlying biological factors, such as sodium channel function or myelination.

The models can be improved with new data encompassing larger temperature

and age ranges. The current version filters norms based on age and sex, but

future work could apply automatic temperature correction.

Kawamoto et al. [28] suggest certain factors are important for the success

of clinical decision support systems. They found that automated computer-

ized systems are much more effective than those that require referencing charts

and tables. Systems that insert recommendations directly into the clinician’s

workflow are more effective than those that require a separate step. Systems

are also more effective when they provide recommendations instead of assess-

ments. NerveNorms.Bellstone.ca automates analysis, but it is not integrated

into clinicians’ workflow and does not yet provide recommendations. Future

work could provide recommendations, directing clinicians to further tests or

suggesting diagnoses. Integration into the clinician’s workflow would be most

effective if QTRAC, the standard recording software, included automated up-

loads to NerveNorms, allowing in-place calculation of a patient’s nerve health
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score.

5.5 Conclusions

This study has presented new international norms for the Nerve Excitability

Test. Examples of the norms have been presented, showing the similarity

between different countries’ norms in all plots except the stimulus-response

curve, which does not impact other measures. In fact, this difference suggests

that the 5% heterogeneity found in Chapter 4 may be due to unimportant

technical differences. The release of the combined norms is accompanied by

the launch of a clinical decision support system, NerveNorms.Bellstone.ca.

NerveNorms allows the upload of a single patient for comparison against the

international norms, with the calculation of a nerve health score for automated

determination of the patient’s nerve health.
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Chapter 6

Discussion

In spite of growing interest in the Nerve Excitability Test (NET), there exists

no international database of healthy human controls. In part, this was due

to prior speculation that racial effects would preclude combination of interna-

tional data [1]. In order to measure potential site-specific racial or technical

differences between datasets, we have developed novel methods for filling miss-

ing data and measuring site-specific differences. Both of these methods could

also have utility for filling missing values and measuring the homogeneity of

other datasets, but that has not yet been tested. The homogeneity measure

has shown that international data is 95% homogeneous, supporting the cre-

ation of international data. Furthermore, the 5% heterogeneity is likely due to

technical differences (specifically skin preparation and placement of recording

and stimulating electrodes) rather than true biological differences.

Based on our confidence that it is appropriate to combine the data, we have

launched a website, NerveNorms.Bellstone.ca, with the international norms.

We have also created an initial nerve health score to provide clinicians with an

easy way to determine whether a patient’s NET results are healthy. Beyond

the potential utility of the novel methods for filling missing data and measuring

site-specific differences, this work has implications in the areas of biophysical

insight and health services.
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6.1 Biophysical Insight

Natural Sciences and Engineering Research Council of Canada (NSERC) sup-

ports research that furthers understanding of natural sciences and engineering,

including fundamental research related to healthy humans, but not disease-

related research [19]. NSERC’s focus on biophysical insight was also a major

focus for this thesis. The majority of the biophysical insight gleaned from

NET comes from the derived excitability variables. In spite of some shortcom-

ings, the current list of excitability variables has been useful in constructing

biologically plausible models. Further work could involve the construction of

models which can predict underlying biological properties without any plau-

sible mechanism. Such models could provide additional insight into the bio-

physical changes that occur in peripheral neuropathies. Regardless of the type

of model, the derived excitability variables are likely to play a key role.

Most of the past NET studies have primarily focused on the derived ex-

citability variables (a limited selection includes [1, 11, 24, 30, 38]). Some

variables are well-established neurophysiological measures (e.g. rheobase [23],

SDTC [44], refractory period [5]), but most were developed by Hugh Bostock

during the development of the QTRAC software because his formulation of

this test protocol was unique. Many of them provide valuable neurobiological

insight. For example, TEh(90–100ms) is a proxy measure for Ih (though ex-

tended TE provides 70% and 100% S3, which are even better measures of Ih

[34]); superexcitability is an indirect measure of myelination, specifically, the

capacitance of the internode [29]; and accommodation half-time is sensitive to

the activation of slow potassium channels [32]. The strong link between biol-

ogy and the excitability variables has made them an important part of NET

studies.

However, these derived excitability variables could potentially be improved.

Many of them are highly correlated (e.g. Rheobase (mA) and Stimulus for 50%

max, ρ = 0.979; TEd(peak) and TEd(10-20ms), ρ = 0.960; Superexcitability

at 5 ms and Superexcitability, ρ = 0.971), so they could be removed. Others

could potentially be added. The ratio of TEh at 109ms and 10ms, or the
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ratio of TEh at 109ms to minimum TEh, might be a more effective measure

of Ih than TEh(90–100ms). None of the RC measures are sensitive to time

delays past 7ms. This reliance on excitability variables is a potential weakness

of this thesis and past works. This weakness is evident when the underlying

waveforms show something that the variables do not express. For example, in

our recent study of fast and slow axons, increased Ih was visually evident in TE

(Figure 2.1c), but none of the standard measures were adequate to demonstrate

it, so we were forced to use long-term TE (Figure 2.1d). In the case of the

detection of site-specific differences in Chapter 4, if site-specific differences

are present in ways not measured by the excitability variables, they would be

missed by the homogeneity measure. Improvements to these measures could

developed by expert users of NET, by machine learning feature selection and

dimensionality reduction [42], or some combination of these approaches.

Even though the excitability variables are often correlated with underlying

biophysical properties like myelination and potassium channel gating, those

relationships are not direct. One approach to this problem is to develop a bi-

ologically realistic model of axons, like the Bostock [8], Bostock-Howells [21],

and MRG [39] models. These models create a circuit equivalent of the axonal

membrane. They have capacitances and conductances which are directly re-

lated to biological properties, such as the membrane conductance or the fast

potassium conductance. These model parameters can be tweaked to match the

model output to a desired NET result, giving putative biological properties

for the subject. While these models have the advantage of an understandable

and useful equivalent circuit, they are difficult to tune. The Bostock-Howells

model is a better qualitative match for the average human, but it cannot ex-

press the variation of healthy humans as well as the Bostock model [25, 65].

Future work on these models has the potential to provide incredible insight

into the mechanisms of dysfunction in peripheral neuropathies, but at present

they do not effectively tie individual NET measurements to the underlying

cellular biology.

An alternative to biologically plausible models is structural equation mod-

eling (SEM) or machine learning. SEM is especially suited to the causal analy-
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sis of the linear relationships between latent variables (in this case, underlying

biophysical properties) and measured variables (in this case, the derived ex-

citability variables). It does not explain why the latent and measured variables

are correlated, but it can give good estimates of the how much the observed

variables linearly depend upon the latent variables along with estimated errors

[9]. It also allows the model builder to define certain properties of the model,

such as indicating which latent and measured variables are expected to be

correlated. Its disadvantage is that it assumes linear relationships. Machine

learning approaches can be much more powerful and flexible than SEM be-

cause they can be non-linear. In particular, generative models could be useful.

At present, the biologically plausible models are generative models in the sense

that they can generate samples, but they are not classifiers. Furthermore, as

discussed above, they are not effective at generating data encompassing the

large variation of human norms.

Future work could build generative models based on p(X,Y), where X is

the excitability variables (or the underlying waveforms, potentially after fea-

ture extraction). Y could be a binary healthy/unhealthy class, a disease diag-

nosis vector, or the target latent biological properties. Since these generative

models are explicitly based upon probabilities, they make missing data much

easier to handle: the missing variables can simply be integrated out. However,

the training of a generative model depends upon some samples which contain

both X and Y. If the goal is to represent the latent biological properties, this

Y is unknown. Future studies could measure some of these biological proper-

ties in order to train a generative model (e.g. extracellular K+), but many of

these properties can only be measured invasively and destructively, and others

cannot be directly measured at all, making it difficult or impossible to gather

this training data. These approaches can be bridged with non-linear SEM

[41, 64]. A model between latent and observed variables would allow clinicians

to use NET to determine deficiencies in underlying biological properties, even

if the exact nature of the relationship is unknown. This could be useful for

the development of future nerve health scores and especially clinical decision

support system recommendations, as clinicians could be directed toward tests
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and treatments directly relevant to the impacted properties.

6.2 Health Services

Canadian Institutes of Health Research (CIHR) defines four pillars of health

research: biomedical, clinical, health services, and population health [19]. This

project provides normative data which has demonstrable efficacy, but effective-

ness has yet to be tested. The normative data has been used in a health service

with a simple, yet clinically useful nerve health score. This nerve health score

could be further improved with a one-class classifier to support better accuracy

and eventually multi-class classification for differential diagnosis.

Normative data is essential for clinical practice. International norms, when

possible, are also important because they allow research to be generalized to

countries that do not have adequate health care funding. For example, the

World Health Organization child growth curves provide valuable guidance to

health professionals all around the world [43]. Normative data for NET would

save researchers from needing to collect their own independent data from

healthy controls. It would also allow clinicians to compare patients’ results

with known healthy individuals. The normative data collected for this study

is not yet adequate (n = 276). The addition of the Irish and Australian data

would help (resulting in n = 441), but further data would allow continued con-

sideration of the effects of age, temperature, sex, race, and technical factors.

The effect of biological factors could be further studied by recording partic-

ipants’ race as part of the collection process; this would allow confirmation

that biological race is not a differentiating factor. As discussed in Chapter

5, temperature control is still an open question (e.g. is it better to control

temperature or to correct it afterward?), so quality control processes should

be established prior to further data acquisition. Skin preparation and elec-

trode placement could also result in site specific-differences, so they should be

considered in the quality control process. Past human studies have primarily

focused on the median nerve, but normative data for other nerves (e.g. com-

mon peroneal, as collected locally in Canada) would also be valuable. Once
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quality control standards have been resolved, the continued collection of me-

dian and other NET normative data will allow for the development of more

effective clinical tools.

Clinical decision support systems (CDSS) are most effective when key fac-

tors are realized: automatic integration at the time of decision making, involve-

ment of study authors in development, providing recommendations instead of

assessments, computer-aided decision making, periodic feedback to clinicians,

sharing system recommendations with patients, and documenting deviations

from system recommendations [17, 28]. NerveNorms succeeds at some of these

factors, but others have yet to be implemented. First of all, the system cur-

rently provides automated assessments, but does not have recommendations.

Future updates could suggest further tests, especially once differential diag-

nosis is included. These recommendations could then be provided directly to

clinicians and patients. A holistic system could track patient results over time,

allowing clinicians to view feedback about outcomes and to enter their reasons

for ignoring the recommendations. At present, NerveNorms is a starting point

for a health service that could become an effective clinical decision support

system.

Clinically relevant work must demonstrate both efficacy (performance in

controlled trials) and effectiveness (real-world utility) [54]. Many previous

NET studies have demonstrated efficacy (e.g. the many examples in Kiernan

and Lin [30]). The goal of this project was to show the potential effectiveness of

NET in a real-world clinical setting by determining whether international data

can be used across sites. This work has shown that the expected location-based

biological differences cannot be large. In fact, the small differences between

sites are more likely technical in nature. The question of the potential im-

pact of site-specific differences in testing methodology has also been answered:

such differences are small and relatively inconsequential (e.g. absolute SR).

Together, this analysis of biological and technical differences has shown that

international data can be combined, demonstrating the potential effectiveness

of NET.

The nerve health score is one portion of this work that has focused on
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efficacy rather than effectiveness. The nerve health score described in Chap-

ter 5 is capable of differentiating healthy human median nerves from healthy

common peroneal nerves and drugged rats, but its effectiveness in a clinical

setting has not been demonstrated. The Canadian ALS Neuroimaging Con-

sortium (CALSNIC) has been comparing imaging biomarkers across sites in

order to measure the effectiveness of those biomarkers for diagnosis [27]. Thus

far, their work has exclusively focused on imaging, so neurophysiologists have

not been included. Given the expertise required to interpret NET results, its

impact in clinical settings has been limited, but the simplicity of the Ner-

veNorms nerve health score could allow neurophysiologists to participate in

CALSNIC’s multi-site effectiveness testing.

The current version of the nerve health score is a simple Gaussian model.

While this model has the advantage of simplicity, which helps in driving buy-

in from clinicians [10, 62], a more advanced model could provide significant

advantages. The nerve health score similar to one-class classification: the

field of classification in which only a single, known class is available for train-

ing, from which the algorithm must learn to differentiate between members

of that known class of “inliers” and a potentially infinite number of unknown

classes comprising the “outliers” [57]. In this case, of course, the inliers are

healthy nerves and all types of peripheral nerve diseases and disorders are out-

liers. Since it is impossible to identify all types of outliers in advance—some

diseases might not have even been identified yet—much less measure a signif-

icant number of samples for classification, one-class classification is preferred

over multi-class. Multi-class classification could have its place in the future,

enabling differential diagnosis once enough diseased samples have been gath-

ered, but one-class classification can provide an effective diagnostic tool with

only healthy samples.

Many one-class classification (also known as anomaly detection) algorithms

are available [57]. Some of them are sensitive to hyperparameters, which means

they would require some example outliers for training. Since that data is not

available, it will be important to pick algorithms which are insensitive to hyper-

parameters, such as k-nearest neighbors Data Description (kNNDD) and Gaus-
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sian Data Description (GaussianDD) [56]. Preliminary (unpublished) work on

these algorithms suggests they perform well on NET data, but a rigorous study

of their efficacy has not been undertaken. Example code comparing one-class

classification algorithms, using implementations from Tax [59], is available in

the repository for this thesis [2].

6.3 Concluding Remarks

The NET can be part of an effective and efficacious clinical decision support

system. The creation of an international normative dataset, the development

of a nerve health score, and their deployment in the NerveNorms website are

the start of such a system. The development of methods for filling missing data

in NET and for detecting site-specific differences have provided the necessary

foundation to ensure that data from sites around the world can continue to

be added to the NerveNorms dataset. Future work can add additonal nerves,

species, and disorders, along with advances in modeling, nerve health scores,

and clinical recommendations, with the eventual outcome of differential diag-

nosis of peripheral nerve disorders.
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[40] Marina Meilă. Comparing clusterings—an information based distance.
Journal of Multivariate Analysis, 98(5):873 – 895, 2007.

[41] Helfried Moosbrugger, Karin Schermelleh-Engel, Augustin Kelava, and
Andreas G. Klein. Testing multiple nonlinear effects in structural equation
modeling: A comparison of alternative estimation approaches. In Timothy
Theo and Myint Swe Khine, editors, Structural Equation Modelling in
Educational Research: Concepts and Applications, chapter 6, pages 103–
136. Sense Publishers, Rotterdam, 01 2008. ISBN 978-90-8790-787-7.

[42] Lan Huong Nguyen and Susan Holmes. Ten quick tips for effective dimen-
sionality reduction. PLOS Computational Biology, 15(6):1–19, 06 2019.
doi: 10.1371/journal.pcbi.1006907.

[43] Chizuru Nishida. Development of a WHO growth reference for school-aged
children and adolescents. Technical report, World Health Organisation,
09 2007.

[44] D Noble and RB Stein. The threshold conditions for initiation of action
potentials by excitable cells. The Journal of physiology, 187(1):129–162,
1966.

[45] Chao-Ying Joanne Peng, Michael Harwell, Show-Mann Liou, Lee H
Ehman, et al. Advances in missing data methods and implications for
educational research. Real Data Analysis, 3178, 2006.

[46] James L Peugh and Craig K Enders. Missing data in educational research:
A review of reporting practices and suggestions for improvement. Review
of Educational Research, 74(4):525–556, 2004.

70



[47] Philip L Roth. Missing data: A conceptual review for applied psycholo-
gists. Personnel Psychology, 47(3):537–560, 1994.

[48] Leah H Rubin, Katie Witkiewitz, Justin St Andre, and Steve Reilly. Meth-
ods for handling missing data in the behavioral neurosciences: Don?t
throw the baby rat out with the bath water. Journal of Undergraduate
Neuroscience Education, 5(2):A71, 2007.

[49] Gustavo Saposnik, Moira K Kapral, Ying Liu, Ruth Hall, Martin
O’Donnell, Stavroula Raptis, Jack V Tu, Muhammad Mamdani, and
Peter C Austin. IScore: a risk score to predict death early after hos-
pitalization for an acute ischemic stroke. Circulation, 123(7):739–749,
Feb 2011. ISSN 1524-4539 (Electronic); 0009-7322 (Linking). doi:
10.1161/CIRCULATIONAHA.110.983353.

[50] Gustavo Saposnik, Stavroula Raptis, Moira K Kapral, Ying Liu, Jack V
Tu, Muhammad Mamdani, and Peter C Austin. The iScore predicts
poor functional outcomes early after hospitalization for an acute ischemic
stroke. Stroke, 42(12):3421–3428, Dec 2011. ISSN 1524-4628 (Electronic);
0039-2499 (Linking). doi: 10.1161/STROKEAHA.111.623116.

[51] Gustavo Saposnik, Jiming Fang, Moira K Kapral, Jack V Tu, Muhammad
Mamdani, Peter Austin, and S Claiborne Johnston. The iScore predicts
effectiveness of thrombolytic therapy for acute ischemic stroke. Stroke, 43
(5):1315–1322, May 2012. ISSN 1524-4628 (Electronic); 0039-2499 (Link-
ing). doi: 10.1161/STROKEAHA.111.646265.

[52] Gustavo Saposnik, Robert Cote, Muhammad Mamdani, Stavroula Raptis,
Kevin E Thorpe, Jiming Fang, Donald A Redelmeier, and Larry B Gold-
stein. JURaSSiC: accuracy of clinician vs risk score prediction of ischemic
stroke outcomes. Neurology, 81(5):448–455, Jul 2013. ISSN 1526-632X
(Electronic); 0028-3878 (Linking). doi: 10.1212/WNL.0b013e31829d874e.

[53] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, 1948. doi: 10.1002/j.1538-7305.1948.
tb01338.x.

[54] Amit G Singal, Peter D R Higgins, and Akbar K Waljee. A primer on ef-
fectiveness and efficacy trials. Clinical and translational gastroenterology,
5(1):e45–e45, 01 2014. doi: 10.1038/ctg.2013.13.

[55] Tomlinson Susan, Burke David, Hanna Mike, Koltzenburg Martin, and
Bostock Hugh. In vivo assessment of HCN channel current (Ih) in human
motor axons. Muscle & Nerve, 41(2):247–256, 2010. doi: 10.1002/mus.
21482.

[56] Lorne Swersky. A study of unsupervised outlier detection for one-class
classification. Master’s thesis, University of Alberta, 2018.

[57] Lorne Swersky, Henrique O. Marques, Jörg Sander, Ricardo J. G. B.
Campello, and Arthur Zimek. On the evaluation of outlier detection and
one-class classification methods. In 2016 IEEE International Conference
on Data Science and Advanced Analytics (DSAA), pages 1–10, Oct 2016.
doi: 10.1109/DSAA.2016.8.

71



[58] W Fraser Symmans, Christos Hatzis, Christos Sotiriou, Fabrice Andre,
Florentia Peintinger, Peter Regitnig, Guenter Daxenbichler, Christine
Desmedt, Julien Domont, Christian Marth, Suzette Delaloge, Thomas
Bauernhofer, Vicente Valero, Daniel J Booser, Gabriel N Hortobagyi,
and Lajos Pusztai. Genomic index of sensitivity to endocrine therapy
for breast cancer. J Clin Oncol, 28(27):4111–4119, Sep 2010. ISSN
1527-7755 (Electronic); 0732-183X (Print); 0732-183X (Linking). doi:
10.1200/JCO.2010.28.4273.

[59] D.M.J. Tax. Data description toolbox dd tools 2.0.0: A Matlab toolbox for
data description, outlier and novelty detection for PRTools 5.0, 2013.

[60] Laurie A Tomlinson and Ian B Wilkinson. Does it matter where we
measure blood pressure? British journal of clinical pharmacology, 74(2):
241–245, 08 2012. doi: 10.1111/j.1365-2125.2012.04203.x.

[61] Saman Vaisipour. Detecting, correcting, and preventing the batch effects
in multi-site data, with a focus on gene expression Microarrays. PhD
thesis, University of Alberta, 01 2007.
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