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Abstract: 

Ecological diversity in fungi is largely defined by metabolic traits, including the ability to 

produce secondary or "specialized" metabolites (SMs) that mediate interactions with other 

organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters (BGCs), 

which facilitate the identification and characterization of metabolic pathways. Variation in BGC 

composition reflects the diversity of their SM products. Recent studies have documented 

surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is 

known about how this population-level variation is inherited across macroevolutionary 

timescales. Here, we applied a novel linkage-based algorithm to reveal previously unexplored 

dimensions of diversity in BGC composition, distribution, and repertoire across 101 species of 

Dothideomycetes, which are considered the most phylogenetically diverse class of fungi and 

known to produce many SMs. We predicted both complementary and overlapping sets of 

clustered genes compared with existing methods and identified novel gene pairs that associate 

with known secondary metabolite genes. We found that variation among sets of BGCs in 

individual genomes is due to non-overlapping BGC combinations and that several BGCs have 

biased ecological distributions, consistent with niche-specific selection. We observed that total 

BGC diversity scales linearly with increasing repertoire size, suggesting that secondary 

metabolites have little structural redundancy in individual fungi. We project that there is 

substantial unsampled BGC diversity across specific families of Dothideomycetes, which will 

provide a roadmap for future sampling efforts. Our approach and findings lend new insight into 

how BGC diversity is generated and maintained across an entire fungal taxonomic class. 

Keywords: 

chemical ecology; Fungi; metabolism; gene cluster 
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Background: 

Plants, bacteria and fungi produce the majority of the earth's biochemical diversity. These 

organisms produce a remarkable variety of secondary/specialized metabolites (SMs) that can 

mediate ecological functions, including defense, resource acquisition, and mutualism. Standing 

SM diversity is often high at the population level, which may affect the rates of adaptation over 

microevolutionary timescales. For example, high intraspecific quantitative and qualitative 

chemotype diversity in plants can enable rapid adaptation to local biotic factors (Agrawal, 

Hastings et al. 2012; Züst, Heichinger et al. 2012; Glassmire, Jeffrey et al. 2016), and the ability 

to produce specific SMs is linked to ecological adaptation and host-specific interactions in fungi 

(Thynne et al. 2019; Kominek et al. 2019). However, the fate of population-level chemodiversity 

across longer timescales is not well explored in any of these lineages. We therefore sought to 

identify how metabolic variation is distributed across macroevolutionary timescales by profiling 

chemodiversity across a well-sampled taxonomic class. 

The Dothideomycetes, which originated between 247 and 459 million years ago 

(Beimforde, Feldberg et al. 2014), comprise the largest and arguably most phylogenetically 

diverse class of fungi. Currently, 19,000 species are recognized in 32 orders containing more 

than 1,300 genera (Zhang, Crous et al. 2011). Dothideomycetes are divided into two major 

subclasses, the Pleosporomycetidae (order Pleosporales) and Dothideomycetidae (orders 

Dothideales, Capnodiales, and Myriangiales), which correspond to the presence or absence, 

respectively, of pseudoparaphyses during development of the asci (Schoch, Crous et al. 2009). 

Several other orders await definitive placement. 

Dothideomycetes also display a large diversity of fungal lifestyles and ecologies. The 
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majority of Dothideomycetes are terrestrial and associate with phototrophic hosts as either 

pathogens, saprobes, endophytes (Schoch, Crous et al. 2009), lichens (Nelsen, Lucking et al. 

2011), or ectomycorrhizal symbionts (Spatafora, Owensby et al. 2012). Ancestral character state 

reconstructions predict that the ancestral ecology of Dothideomycetes was terrestrial and 

saprophytic, with multiple and independent transitions to other lifestyles (Haridas et al. 2020; 

Schoch, Crous et al. 2009; Schoch et al. 2006). At least six orders have evolved plant pathogens, 

together affecting most crop species. The Pleosporales and Capnodiales, represent two 

independent transitions to plant pathogens, mostly asexual, that cause significant economic 

losses and have been well sampled in previous genome sequencing efforts (Goodwin, Ben 

M'Barek et al. 2011; Ohm, Feau et al. 2012; Oliver, Friesen et al. 2012; Condon, Leng et al. 

2013; Manning, Pandelova et al. 2013). Pleosporales consists primarily of nectrotrophs that rely 

on secondary metabolite toxins and suites of degradative enzymes for pathogenesis, while most 

Capnodiales are hemi-biotrophs with fewer secondary metabolism, carbohydrate degradation, 

and proteolysis genes (Ohm, 2012). Stem-canker pathogens within Botrysphaeriales 

(Neofusicoccum, Diplodia, Botryosphearia) (Phillips, Alves et al. 2013), fruit crop pathogens in 

Venturiales (Venturia spp.) (Gonzalez-Dominguez, Armengol et al. 2017) and Myriangiales 

(Elsinoë spp.)(Liao and Chung 2008; Braga, dos Santos et al. 2019), represent additional 

transitions to plant pathogenesis. Several lichenized groups have arisen independently within the 

class, and clades of both freshwater and marine taxa have evolved multiple times within several 

orders (Schoch, Crous, 2009). Human and animal pathogens, including some taxa that can elicit 

allergies and asthma (Crameri, Garbani et al. 2014), and rock-inhabiting fungi (Ruibal, Gueidan 

et al. 2009) are spottily distributed across the class. 
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This broad range of lifestyles is accompanied by extensive diversity of SMs, for which 

very few have known ecological roles (Muria‐Gonzalez et al. 2015). The Dothideomycetes, and 

several other ascomycete classes (Eurotiomycetes, Sordariomycetes, and Leotiomycetes), produce 

the greatest number and diversity of SMs across the fungal kingdom (Spatafora and Bushley 

2015; Akimitsu, Tsuge et al. 2014). Economically important plant pathogens in the Pleosporales 

(Alternaria, Bipolaris, Exserohilum, Leptosphaeria, Pyrenophora, and Stagonospora), in 

particular, are known to produce host-selective toxins that confer the ability to cause disease in 

specific plant hosts (Walton and Panaccione 1993; Walton 1996; Wolpert, Dunkle et al. 2002; 

Ciuffetti, Manning et al. 2010, Pandelova, Figueroa et al. 2012; Akimitsu, Tsuge et al. 2014). 

Other toxins first identified in Pleosporales have roles in virulence, but are not pathogenicity 

determinants, including depudecin (Wight, Kim et al. 2009) and solanapyrone (Kaur 1995).    

While lichenized fungi are prolific SM producers (Oksanen 2006, Bertrand and Sorensen 2018; 

Calcott, Ackerley et al. 2018), lichenized Dothideomycetes genomes have not been sequenced 

here or elsewhere.   

Dothideomycetes also produce some bioactive metabolites shared with more distantly 

related fungal classes. Sirodesmin, a virulence factor produced by Leptosphaeria maculans, for 

example, belongs to the same class of epipolythiodioxopiperazine (ETP) toxins as gliotoxin, an 

immunosuppressant produced by the eurotiomycete human pathogen Aspergillus fumigatus 

(Gardiner, Waring et al. 2005; Patron, Waller et al. 2007). Dothistromin, a polyketide metabolite 

produced by the pine pathogen Dothistroma septosporum shares ancestry with aflatoxin 

(Bradshaw, Slot et al. 2013), a mycotoxin produced by Aspergillus species that poses serious 

human health and environmental risks worldwide (Horn 2003; Wang and Tang 2004). 
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 A majority of bioactive metabolites in Dothideomycetes are small-molecule SMs that are 

produced by biosynthetic gene clusters (BGCs) composed of enzymes, transporters, and 

regulators that contribute to a common SM pathway. Most of these BGCs are defined by four 

main classes of SM core signature enzymes: 1) nonribosomal peptide synthetases (NRPS), 2) 

polyketide synthetases (PKS), 3) terpene cyclases (TC), and 4) dimethylallyl tryptophan 

synthases (DMAT) (Hoffmeister & Keller 2007).  Fungal gene clusters are hotspots for genome 

evolution through gene duplication, loss, and horizontal transfer, which recombine pathways and 

generate diversity (Wisecaver, Slot et al. 2014). Additionally, recent studies have shown that 

gene clusters may evolve through recombination or shuffling of modular subunits of syntenic 

genes (Lind, Wisecaver et al. 2017; Gluck-Thaler et al 2018). Changes in BGC gene content 

often result in structural changes to the SM product(s), and therefore BGCs can be used to 

monitor the evolution of chemodiversity (Lind, Wisecaver et al. 2017; Proctor, McCormick et al. 

2018). The most widely used methods for detecting BGCs rely on models of gene cluster 

composition based on putative functions in SM biosynthesis informed by a phylogenetically 

limited set of taxa, but gene function agnostic methods are being developed (Slot and Gluck-

Thaler 2019). 

 Here, we systematically assessed BGC richness and compositional diversity in the 

genomes of 101 Dothideomycetes species, most recently sequenced (Haridas et al. 2020). Using 

a newly benchmarked algorithm that identifies clustered genes of interest through the frequency 

of their co-occurrence with and around signature biosynthetic genes, we identified 3399 putative 

BGCs, grouped into 719 unique BGC families, including 5 families of candidate DHN melanin 

clusters. The conservation of specific gene pairs across BGC types suggests that precise 

functional interactions contribute to the modular evolution of these loci. Numerous BGCs have 
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either over- or under-dispersed phylogenetic distributions, suggesting pathways have been 

differentially impacted by selection. In comparisons across species, BGC repertoire diversity 

increases linearly with repertoire size, reflecting a mode of metabolic evolution in these fungi 

that is likely distinct from that of plants. We found little overlap in BGC repertoires among 

genomes from different genera, and project that a wealth of unique BGCs remain to be 

discovered within this fungal lineage.  

Results: 

Dothideomycetes contain hundreds of BGC families, a small fraction of which are 

characterized.  

Using a novel cluster detection approach based on shared syntenic relationships among 

genes (CO-OCCUR, see Methods, Figure 1, Figure SA), we identified 332 gene homolog groups 

of interest (Table SA, Table SB) whose members were organized into 3399 candidate BGCs of at 

least two genes (Table SC) in 101 Dothideomycete genomes (Table SD), representing an average 

of 33.7 BGCs per genome (SD= 15.4, Figure SB). We grouped BGCs into 719 unique BGC 

families based on a minimum gene content similarity of 90%. Of these, 459 BGC families had 4 

or more genes per BGC (Figure 2, Figure SC), and only 9 of these BGC families were ever found 

more than once in any given genome (Table SE). According to standard practice, we classified 

BGC families based on the presence of biosynthetic signature genes: DMAT, PKS, PKS-like, 

NRPS, NRPS-like, HYBRID (containing both PKS and NRPS signature genes), and TC. We 

found that among all BGC families with greater than 4 genes, 186 contained only PKS and 29 

contained only NRPS signature genes. Similarly, we detected 4 DMAT, 38 PKS-like, 16 NRPS-

like, 3 HYBRID, and 3 TC-only BGC families. 127 BGC families contained more than 1 type of 

signature gene, and 53 BGC families contained no signature gene at all but still consisted of 
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genes found in significant co-occurrences. 158 of CO-OCCUR BGCs corresponded to 32 unique 

MIBiG entries (Table SG) and 22 unique metabolites (Table SF).  

 Some CO-OCCUR detected BGCs matched MIBiG entries that encode non-host selective 

phytotoxins or other compounds with known roles in virulence to plants, particularly those in the 

large plant-pathogenic order Pleosporales. Several BGCs matching the dimethylcoprogen 

(extracellular siderophore) cluster, a virulence factor in the corn pathogen Cochliobolus 

heterostrophus (Dothideomycetes) and Fusarium graminearum (Sordariomycetes), were also 

found in most Pleosporales taxa (Oide, Moeder et al. 2006). Two PKS BGCs encoding the non-

host-specific phytotoxin and DNA polymerase inhibitor, solanapyrone (Mizushina, Kamisuki et 

al. 2002, Kasahara, Miyamoto et al. 2010), and the related alternapyrone (Fujii, Yoshida et al. 

2005), first identified in Alternaria solani (Kasahara et al. 2010; Mizushina et al. 2002; Fujii et 

al. 2005), were found across taxa primarily in the order Pleosporales, especially in the closely 

related Pleosporaceae, Leptosphaeriaceae, and Phaeosphaeriaceae families (Figure 2, Table SF, 

SG).  In contrast, a BGC matching the sirodesmin (NRPS phytotoxin ) cluster in Leptosphaeria 

maculans (Gardiner, Cozijnsen et al. 2004), and the depudecin (PKS histone deacetylase 

inhibitor) cluster in A. brassicicola (Wight et al. 2009), were discontinuously distributed in a few 

unrelated species within Pleosporales  (Figure 2, Table SF, SG).  The only other putative host-

selective toxin BGC matched the T-toxin (PKS) cluster from race T (C4) of C. heterostrophus 

(only Race O (C5) included in this study), the fungus responsible for the devastating Southern 

Corn Leaf Blight (Daly 1982; Turgeon and Baker 2007). T toxin cluster homologs were also 

detected in Ampelomyces quisqualis and L. maculans (Table SG). 

Other CO-OCCUR BGCs matched MIBiG clusters from other ascomycete classes 

(Eurotiomycetes, Sordariomycetes), some of which have been previously detected in 
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Dothideomycetes while others were unexpected. The aflatoxin-like dothistromin clusters, which 

are fragmented into six mini-clusters in Dothistroma septorum (Bradshaw, Slot et al. 2013), were 

detected in D. septorum and the closely related Passalora fulva (Capnodiales). Some unexpected 

findings included a chaetoglobosin-like BGC in Macrophomina phaseolina. Chaetoglobosins are 

a class of mycotoxins with both antifungal and anti-cancer activities (Ali, Caggia et al. 2015; 

Jiang, Song et al. 2017) found in the distantly related Chaetomium globosum (Sordariomycetes) 

and some Eurotiomycetes  (Schumann and Hertweck 2007) (Figure 2, Table S1). Another 

unexpected finding was a leucinostatin-like cluster in M. phaseolina. Leucinostatin is a peptaibol 

compound with putative antimicrobial and antifungal activity, previously only known from 

Sordariomycetes taxa (Wang, Liu et al. 2016). 

Cluster co-occurrence networks reveal contrasting trends in diversification 

A total of 33 discrete gene homolog co-occurrence networks were recovered (Methods; 

Figure 3a), with 71% of gene homolog groups located in the largest two networks. Signature 

genes tended to be highly connected to other gene homolog groups in two qualitatively different 

types of subnetworks. In one type of subnetwork, signature genes are centrally connected to 

diverse accessory gene homolog groups (e.g. PKS subnetworks), while in the other type one or 

more signature genes are non-centrally linked with fewer accessory gene homolog groups (e.g., 

the NRPS and DMAT subnetwork in network 1). By quantifying the betweenness centrality of 

each node (a function of the number of shortest network paths that pass through that node) within 

each network, we identified signature genes and several other biosynthetic enzymes, transporters, 

and DNA binding proteins that bridge alternate subnetworks (Figure 3a,b).  
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PKS BGCs are more compositionally diverse than NRPS BGCs. BGCs containing PKS 

signature genes tended to have fewer significant co-occurrences among their constituent genes 

across various BGC sizes, compared to BGCs containing NRPS signature genes (Figure 3c). 

This is consistent with a trend in which PKS BGCs are more diverse across cluster sizes, 

compared with NRPS BGCs (Figure 3d).  

Different algorithms annotate overlapping and complementary sets of clustered genes.  

CO-OCCUR predictions and the pHMM-based SMURF (Khaldi, Seifuddin et al. 2010) 

and antiSMASH (Blin, Wolf et al. 2017) programs all predicted similar absolute numbers of 

BGCs with 4 or more gene homolog groups, but these BGCs varied in their predicted content. 

antiSMASH identified a total of 1710 BGCs that were part of 252 BGC families and 887 BGC 

singletons, occurring in only one genome (Table SH, Table SI). SMURF identified a total of 686 

BGCs that were part of 194 BGC families and 495 BGC singletons (Table SJ, Table SK). CO-

OCCUR predicted 1469 BGCs with 4 or more gene homolog groups that are part of 239 BGC 

families and 220 BGC singletons (Table SC, Table SE). We found that no single algorithm was 

able to annotate all predicted genes of interest in a BGC, even those predicted to be involved in 

SM biosynthesis (Figure 4a, Table SL). CO-OCCUR identified 51.2% and 37.7% of the 

clustered genes detected by SMURF and antiSMASH, respectively. Conversely, SMURF and 

antiSMASH identify 40.7% and 42.0% of the clustered genes detected by CO-OCCUR, 

respectively. When examining only genes predicted to participate in SM biosynthesis, transport 

and catabolism, we found that CO-OCCUR identified 51.2% and 43.3% of genes detected by 

SMURF and antiSMASH, respectively, while SMURF and antiSMASH each identified 62.6% of 

those detected by CO-OCCUR (Figure 4a).  
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The complementary nature of the CO-OCCUR and antiSMASH algorithms is illustrated 

by their annotations of a characterized BGC that encodes the biosynthesis of cercosporin (Figure 

4b), a non-host specific polyketide produced by Cercospora spp. (Dothideomycetes) and 

Colletotrichum (Sordariomycetes) (de Jonge, Ebert et al. 2018). Encoded in a BGC, all 10 genes 

involved in cercosporin biosynthesis, are known and characterized (CTB1-3, CTB5-7, CTB9), in 

addition to a regulator (CTB8) and two transporters (CTB4 and CFP)(Chen, Lee et al. 2007; de 

Jonge, Ebert et al. 2018; Newman & Townsend 2016). At this BGC’s locus in Cercospora zeae-

maydis, both antiSMASH and CO-OCCUR annotated CTB1, CTB2, and CTB3 as genes of 

interest; only antiSMASH annotated CTB4, CTB5 and CTB6; only CO-OCCUR annotated 

CTB10, CTB11 and CTB12; and no algorithm annotated CTB7, CTB8, CTB9 or CFP.  

CO-OCCUR and antiSMASH recovered similar proportions of loci homologous to 

known BGCs and both predicted additional genes of interest in the vicinity of these candidates. 

We identified 364 BGCs with ≥ 3 genes across all Dothideomycete genomes that are 

homologous to 58 characterized BGCs from the MIBiG database (Table SM). We found that 

both antiSMASH and CO-OCCUR recovered similar percentages of BGC content (antiSMASH 

mean percent recovery = 48.3%, SD = 37.6%; CO-OCCUR mean percent recovery = 51.0%, SD 

= 42.6%), although for any given BGC, percent recovery often differed between each algorithm 

(Figure 4c, Table SG). Large standard deviations in recovery scores likely reflect differential 

likelihood of identifying genes “of interest” among BGCs. We also found that both antiSMASH 

and CO-OCCUR identified similar numbers of new genes of interest around BGC loci 

(antiSMASH mean percent discovery = 65.4%, SD = 85.4%; CO-OCCUR mean percent 

discovery = 56.6%, SD = 89.4%). The number of additional genes of interest often exceeded the 

size of the recovered candidate cluster resulting in percent discovery values  >100%, which in 
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turn resulted in high standard deviations. High rates of novel gene discovery might reflect the 

incomplete annotation of many clusters in MIBiG.  

Some over-dispersed clusters have ecologically biased distributions 

Using Fritz and Purvis’ D (Fritz & Purvis 2010), a measure of statistical dependence 

among species’ trait values due to their shared phylogenetic history (see methods), we found that 

nearly one-fifth (18%) of BGC families with at least 4 genes are phylogenetically over-dispersed 

(i.e. D > 1) (Figure 5, Figure SD). By comparison, 22.5% of BGC families had distributions that 

were phylogenetically under-dispersed (D < 0). The remaining BGC family distributions either 

fell on the continuum between Brownian and random inheritance models (35.1%) or were 

present in too few taxa to be analyzed (23.8%). Six over-dispersed BGC families were two-fold 

over-represented in either plant pathotrophs or plant saprotrophs. Figure 6 presents three 

examples of sets of highly similar BGC families, including the DHN melanin families, that vary 

in their phylogenetic conservation (See Methods).  

Dothideomycetes have five families of DHN melanin BGCs 

We detected five BGC families with distinct but overlapping compositions that appear to 

encode partial pathways for 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis in 87 of the 

101 genomes (Figure 6, Figure SE). No genome had more than one predicted DHN melanin 

cluster. The two most prevalent families, BGC family 131 and BGC family 113, are found in 48 

fungi from 10 of the 13 taxonomic orders and in 29 fungi from 6 orders, respectively. In addition 

to the gene homolog groups known to participate in DHN melanin biosynthesis, we detected 3 

additional gene homolog groups (Prefoldin subunit, Heat-shock protein 40 co-chaperone JID1, 

and a protein of unknown function) that are broadly conserved within DHN melanin clusters but 

that have no known role in melanin biosynthesis. As an example of how CO-OCCUR is not 
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constrained by a priori assumptions of pHMMs, these additional gene homolog groups were not 

detected by either antiSMASH or SMURF despite their prevalent linkage to the known 

biosynthetic genes. 

 

SM cluster diversity is under-sampled and increases proportionally with total number of 

genomes in Pleosporales 

BGC repertoires (combinations of BGC families found within a given genome) differ 

markedly between fungi from different genera (mean pairwise Sørensen dissimilarity = 0.79, SD 

= 0.12) and to a lesser extent within a genus (mean = 0.37, SD = 0.13), with dissimilarity 

increasing linearly with phylogenetic distance across all pairwise species combinations among 

49 Pleosporales (y = 0.84x + 0.51; R2 = 0.50), the most well-sampled Dothideomycetes order 

(Figure SF, Figure SG). However, given the same level of within-repertoire alpha diversity and 

total gamma diversity across all repertoires, dissimilarity between repertoires (i.e., beta diversity) 

can result from some combination of nestedness, where some repertoires are subsets of others, or 

turnover, where no repertoire is a subset of the other. When we partitioned total Sørensen 

dissimilarity between all BGC repertoires (βSOR = 0.969) into its nestedness and turnover 

components, nearly all of the differences between the BGC repertoires of different genomes were 

due to turnover (βSIM = 0.96) and not repertoire nestedness (βSNE = 0.008), such that any given 

BGC repertoire contains a unique combination of clusters (Figure SH). Furthermore, the 

compositional diversity of gene clusters within a given repertoire (Figure SF) scales linearly with 

repertoire size (y = 0.49x + 3.92; adj. R2 = 0.86), indicating that clusters added to a given 

repertoire are generally dissimilar to the clusters already present in that repertoire (Figure 7a). 

Finally, rarefaction analysis suggests genomes within Pleosporales are under-sampled with 
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respect to BGC diversity, and project substantially more unique BGC families arising from 

future genome sampling within this order (Figure 7b).  

Discussion: 

BGC diversity has been investigated primarily in bacteria (Cimermancic, Medema et al. 

2014) and within individual genera in the fungal classes Eurotiomycetes and Sordariomycetes 

(Lind, Wisecaver et al. 2017; Theobald, Vesth et al. 2017; Villani, Proctor et al. 2019). Although 

Dothideomycetes are producers of a number of secondary metabolites important to fungal-plant 

interactions and toxin production, to date there has not been a systematic evaluation of BGC 

diversity in the Dothideomycetes nor in any other fungal class. Fungal genomes experience 

frequent reorganization and changes in gene composition that underlies large-scale differences in 

chromosomal macro- and micro-synteny among species (Grandaubert, Lowe et al. 2014; Hane, 

Rouxel et al. 2011; Shi‐Kunne, Faino et al. 2018). Yet despite the overall dynamic nature of 

fungal chromatin, tight linkage is often maintained between loci with related metabolic 

functions, manifesting as gene clusters (Del Carratore, Zych et al. 2014). Here, we developed an 

alternative, function-agnostic approach to annotating SM genes of interest that exploits these 

patterns of microsynteny in order to identify previously unexplored dimensions of fungal BGC 

diversity. 

Complementary methodologies enhance understanding of BGC composition and diversity 

in Dothideomycetes 

There are two main approaches to predicting genes that are functionally associated in 

BGCs. The first uses targeted methods based on precomputed pHMMs derived from a set of 

genes known to participate in SM metabolism to identify sequences of interest (Khaldi, 

Seifuddin et al., 2010; Blin, Wolf et al., 2017). The second uses untargeted methods based on 
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some function-agnostic criteria, such as synteny conservation or shared evolutionary history, to 

implicate genes as part of a gene cluster (Gluck-Thaler & Slot 2018). Due to common metabolic 

functions employed across distantly related taxa, targeted approaches, such as those employed by 

SMURF and antiSMASH, have proven enormously successful. However, our objective in this 

study was to develop a complementary untargeted approach in order to capture undescribed BGC 

diversity within a single fungal lineage.  

Our CO-OCCUR algorithm leverages a database of 101 Dothideomycete genomes in 

order to annotate genes of interest using unexpectedly conserved genetic linkage as an indicator 

of selection for co-inheritance with SM signature genes. CO-OCCUR failed to recover many of 

the genes annotated using the pHMM approaches employed by SMURF and antiSMASH, 

indicating that it has limitations in its prediction of secondary metabolite BGC content. These 

results suggest that it is not optimal for the de novo BGC annotation of individual genomes, and 

its ability to annotate genes of interest is proportional to their co-occurrence frequency in a given 

database, meaning that it is not well suited for recovering associated SM genes that are not 

evolutionarily conserved. This may explain in part why 10,295 genes (including 2,478 genes 

predicted to be involved in secondary metabolism) identified by antiSMASH and SMURF 

combined were not detected with CO-OCCUR (Figure 4), and why CO-OCCUR detected only a 

few of the host-selective toxins found in Dothideomycetes.  

Nevertheless, our method avoids some of the limitations intrinsic to algorithms that 

employ pHMMs to delineate cluster content. While pHMM-based approaches gain predictive 

power by leveraging similarities in SM biosynthesis across disparate organisms, they may fail to 

identify gene families involved in secondary metabolism that are unique to a particular lineage of 

organisms. For example, SMURF detects accessory SM genes using pHMMs derived from 
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mostly Aspergillus (Eurotiomycetes) BGCs  (Khaldi, Seifuddin et al., 2010), while antiSMASH 

v4 and v5 use 301 pHMMs of smCOGs (secondary metabolism gene families) derived from 

aligning SM-related proteins, of which few are currently from fungi, in order to identify genes of 

interest in the regions surrounding signature biosynthetic genes (Blin, Wolf et al., 2017). 

Taxonomic bias introduced by sampling a limited number of BGCs may account for the 6,051 

proteins found in BGCs that were identified by CO-OCCUR but not any other algorithm, of 

which 796 are predicted to participate in secondary metabolism and 617 could not be assigned to 

a COG category but nevertheless have domains commonly observed in secondary metabolite 

biosynthetic proteins (e.g., methyltransferase, hydrolase).  

A linkage-based approach can also identify non-canonical accessory genes involved in 

SM biosynthesis. For example, we detected 3 genes among the 5 variants of the DHN melanin 

cluster that were not previously considered to be part of this BGC and not detected by either 

antiSMASH or SMURF. One of these genes, a predicted HSP40 chaperone, is a homolog of the 

yeast gene JID1, whose knock-out mutants display a range of phenotypes 

(https://www.yeastgenome.org/locus/S000006265/phenotype) related to melanin production, 

including increased sensitivity to heat and chemical stress. We propose that natural selection (not 

genetic hitchhiking) is responsible for conservation of synteny in these loci, because SM cluster 

locus composition and microsynteny in general are typically highly dynamic in fungi (Lind, 

Wisecaver et al., 2018; Proctor, McCormick et al. 2018), and therefore conserved linkage in 

these clusters over speciation events is a strong indicator of related function (de Jonge, Ebert et 

al. 2018; Del Carratore, Zych et al. 2019). The identification of genes with non-canonical 

functions, including those not participating directly in SM biosynthesis, may reveal SM 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/doi/10.1093/m
olbev/m

saa122/5839751 by U
niversity of C

alifornia, Berkeley user on 07 July 2020



 17 

supportive functions, including mechanisms to protect endogenous targets of the metabolic 

product (Keller 2015), in addition to novel biosynthetic genes (de Jonge, Ebert et al. 2018). 

Ultimately, targeted and untargeted approaches to BGC annotation reinforce and enrich 

our understanding of BGC diversity, as no single method identifies all accessory genes of 

interest in the regions surrounding signature biosynthetic genes (Figure 4). It is notable that the 

cercosporin BGC was long thought to consist only of CTB1-8, based on functional analyses and 

structural prediction. However, de Jonge et al. recently predicted CTB9-12 to be of interest after 

observing that these genes have conserved synteny among all fungi that possessed CTB1-8, and 

subsequently demonstrated they are essential for cercosporin biosynthesis (de Jonge, Ebert et al. 

2018). Only CO-OCCUR detected these additional four genes and both pHMM-based models 

and CO-OCCUR were required to detect the complete cercosporin BGC in our study. Given the 

complementary nature of the advantages and disadvantages of different algorithms, we suggest 

future studies incorporate multiple lines of evidence from both targeted and untargeted 

approaches to more fully capture BGC compositional diversity. The 332 gene homolog groups of 

interest that we identified using CO-OCCUR could further be used to build pHMMs and be 

incorporated into existing BGC annotation pipelines in order to facilitate more complete analyses 

of single genomes. 

Signature genes differ in mode of BGC diversification  

Although BGCs in fungi typically display characteristics of diversification ‘hotspots’, 

showing elevated rates of gene duplication and gene gain and loss (Wisecaver, Slot et al. 2014; 

Lind, Wisecaver et al. 2017), modular parts of clusters and even entire clusters are often shared 

between divergent species. BGC diversification through gain and loss of individual genes and 

sub-clusters of genes has been demonstrated in bacterial BGC diversity (Cimermancic, Medema 
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et al. 2014). Although the extent of sub-clustering in fungal genomes has never been directly 

addressed to our knowledge, the algorithm we designed here essentially functions by identifying 

the smallest possible type of sub-cluster: a pair of genes found more often than expected by 

chance. The unexpected co-occurrence of gene pairs revealed that the two largest types of 

signature gene families, PKS and NRPS, have contrasting co-occurrence network structures. 

NRPS gene homolog groups are embedded in highly reticulate cliques (i.e., form unexpected 

associations with genes that co-occur amongst themselves).  This could suggest NRPS cluster 

diversification is constrained by interdependencies among accessory genes. By contrast, PKS 

gene homolog groups are network hubs (i.e., form unexpected associations with many non-co-

occurring genes), which may underlie the higher compositional diversity and decreased 

frequency of unexpected co-occurrences found within PKS clusters (Figure 3c, d). The apparent 

contrast in how these different signature BGC families are assembled may reflect the range of 

accessory modifications typically applied to the structures of polyketides and nonribosomal 

peptides produced by PKSs and NRPSs. Alternatively, PKS clusters may be subject to more 

diversifying selection, due to the ability of cognate metabolism in other organisms to utilize, 

degrade, or neutralize the metabolites. These hypotheses remain to be tested. 

Persistent gene co-occurrences reveal layers of combinatorial evolution 

Previous large-scale analyses of BGCs suggest there is an upper limit to the number of 

gene families that associate with signature biosynthetic genes, and that diversity is in large part 

dependent on combinatorial re-shuffling of existing loci (Cimermancic, Medema et al. 2014). 

Our analysis expands the number of gene families implicated in BGC diversity and identifies 

patterns of modular combinatorial evolution among accessory gene homolog groups with 

metabolic, transport and regulatory-related functions. While some of these accessory gene 
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homolog groups are restricted to BGCs with a particular type of signature SM gene, others are 

present in multiple BGC with different signature SM genes, suggesting they encode evolvable or 

promiscuous functions that can be readily incorporated into different metabolic processes (Table 

SB). For example, 34 gene homolog groups with predicted transporter functions are common 

features of the clusters we detected, present in just under half (43%) of all predicted clusters. 

Among these gene homolog groups, five (MCL000003, MCL000005, MCL000016, 

MCL000193, MCL000109) have been recruited into especially diverse BGCs, and are primarily 

annotated as toxin efflux transporters or multidrug resistance proteins. These five transport-

related genes are found in 33% of all BGC families, and in at least one BGC in 99% of all 

examined species. Transporters are a key component of fungal chemical defense systems, well 

known for facilitating resistance to fungicides and host-produced toxins (Coleman & Mylonakis 

2009). Transporters are also increasingly recognized as integral components of self-defense 

mechanisms against toxicity of endogenously produced SMs (Menke, Dong et al., 2012).  

Heterogeneous dispersal patterns of BGCs underpin fungal ecological diversity 

The distribution of fungal chemodiversity remains difficult to observe and interpret 

directly, making BGCs useful tools for elucidating underlying trends in fungal chemical ecology. 

Although the vast majority of BGCs remain uncharacterized, their phylogenetic distributions 

occasionally provide clues to the selective environments that promote their retention (Slot 2017). 

For example, spotty distributions resulting from horizontal transfer of BGCs between distantly 

related but ecologically similar species suggests the encoded metabolites contribute to fitness in 

the shared environment (Dhillon, Feau et al. 2015; Reynolds, Vijayakumar et al. 2018). Shared 

ecological lifestyle may also help explain why certain clusters, such as those involved in putative 

degradative pathways, are retained among phylogenetically distant species (Gluck-Thaler and 
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Slot 2018). Our simple eco-evolutionary screen identified 43 BGCs that are more widely 

dispersed than expected under neutral evolutionary models, and further revealed that a subset of 

these BGCs are present more often in fungi with specific nutritional strategies (e.g. plant 

saprotrophs and plant pathotrophs), suggesting the molecules they encode contribute to specific 

plant-associated lifestyles (Figure 5). For example, we found an over-dispersed NRPS BGC 

(family 221) that is present in three plant pathogens and one plant saprotroph. In contrast, the 54 

BGCs showing a phylogenetically under-dispersed distribution among mostly closely related 

genomes is consistent with lineage-favored traits, which may or may not be due to shared 

ecology. For example, a monophyletic clade of 26 pleosporalean fungi all have a 6 gene NRPS-

like cluster (family 100) of unknown function, fully maintained among these allied taxa (and a 

single distant relative), suggesting it encodes a trait that contributes to the success of this lineage. 

Phylogenetic screens, especially when coupled with more robust phylogenetic analyses, such as 

gene tree-species tree reconciliation methods and hypothesis testing using phylogenies 

representing alternative evolutionary scenarios, will be useful for prioritizing the characterization 

of BGCs most likely to contribute to the success of particular guilds or clades. 

Among those BGCs with hits to the MIBiG database, we identified clusters that displayed 

both lineage specific and spotty or sporadic distributions.  The Pleosporales, for example, 

contains many plant pathogens and the conservation of BGCs involved in production of general 

virulence factors towards plants such as solanopyrone, alternapyrone, and the extracellular 

siderophore dimethylcoprogen across many taxa in this order suggests a shared lineage-specific 

trait with roles in plant-pathogenesis.  In contrast, the aflatoxin-like cluster Dothistromin cluster, 

which was proposed to be horizontally transferred from Aspergillus (Eurotiomycetes), had a very 

spotty distribution, found only in several closely related taxa in Capnodiales, supporting a 
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hypothesis of HGT (Bradshaw, Slot et al. 2013). Similarly, the ETP toxin sirodesmin shares 6 

genes with the BGC producing the epipolythiodioxopiperazine (ETP) toxin gliotoxin, which 

plays a role in virulence towards animals in  human pathogen Aspergillus fumigatus 

(Eurotiomycetes) (Gardiner, Cozijnsen et al. 2004; Bok, Chung et al. 2006).  Related ETP-like 

BGCs have since been identified in a number of other taxa of Eurotiomycetes and 

Sordariomycetes, but among Dothiodeomycetes were previously known only from 

Leptosphaeria maculans and a partial cluster in Sirodesmin diversum lacking the core NRPS 

(Patron, Waller et al. 2007). We detected homologs of this cluster found sporadically distributed 

in several other taxa within Pleosporales (Figure 2, Table SG).  The CO-OCCUR algorithm 

detected only a few BGC with hits to host-selective toxins (sirodesmin and T-toxin) but failed to 

detect several well-known host-selective toxins such as HC-toxin, and other host-selective toxins 

in Alternaria alternata. Either these host-selective toxins are not represented in MIBiG or as 

discussed above, the uniqueness of these clusters and rarity of the linkages between genes in 

these clusters in the overall dataset may make them difficult to detect through CO-OCCUR.   

 

Variation among BGC repertoires is due to high BGC turnover, not nestedness 

Recent comparative studies have documented high intraspecific diversity of SM 

pathways within and between different species of plants, bacteria and fungi (Penn et al., 2009; 

Choudoir, Pepe-Ranney & Buckley 2018; Holeski, Hillstrom et al. 2012; Holeski, Keefover-

Ring et al. 2013; Vesth, Nybo et al. 2018). However, identical estimates of diversity can result 

from two distinct processes: nestedness, where one set of features is entirely subsumed within 

another, or turnover, where differences are instead due to a lack of overlap among the features of 

different sets (Baselga 2012). When we partitioned diversity among BGC repertoires in 
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Pleosporales (i.e., beta diversity), we found that the vast majority of variation is due to a high 

degree of genome-specific cluster combinations, and not nestedness (Figure 7, Figure SH). Much 

of the turnover in BGC repertoire content between genomes appears to occur over relatively 

short evolutionary timescales (Figure SF), and then diversifies more gradually, suggesting that 

divergence in repertoires may be closely linked to speciation processes, such as niche 

differentiation or geographic isolation. Directional selection, especially for multi-genic traits 

encoded at a single locus (e.g., BGCs), leads to rapid gain/loss dynamics exemplary of many SM 

phenotypes and genotypes (Choudoir, Pepe-Ranney & Buckley 2018; Lind, Wisecaver et al. 

2017). Niche differentiation further reinforces divergence between closely related repertoires, 

which might lead to rapid accumulation of variation over short evolutionary timescales. Indeed, 

evidence from within populations suggests that BGCs are occasionally located in genomic 

regions experiencing selective sweeps in geographically isolated pathogen populations 

(Hartmann, McDonald et al. 2018). The retention/loss of certain SM clusters is coincident with 

speciation in bacteria (Kurmayer, Blom et al., 2015) and much of the variation in BGC 

repertoires in Metarhizium insect pathogens is species specific (Xu, Luo et al., 2016). Within 

Dothideomycetes, the evolution of host-selective toxins even within a single species of pathogen, 

for example, may allow for niche differentiation, host specialization, and potentially speciation. 

Rare chemical phenotypes, especially with regards to defense chemistry, may also increase 

fitness in complex communities (Kursar, Dexter et al. 2009).  

BGCs interact with dimensions of chemical diversity 

Biological activity of a SM can increase organismal fitness, but any given molecule is not 

likely to be biologically active. The screening hypothesis posits that mechanisms to generate and 

retain biochemical diversity would therefore be selected, despite the energetic costs, because 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/doi/10.1093/m
olbev/m

saa122/5839751 by U
niversity of C

alifornia, Berkeley user on 07 July 2020



 23 

increasing structural diversity increases the probability of “finding” those that are adaptive (Firn 

and Jones 2003). This phenomenon is analogous to the mammalian immune system’s latent 

capacity to generate novel antibodies, resulting in a remarkable ability to respond to diverse 

antagonists (Firn and Jones 2003). However, while the screening hypothesis may equally apply 

to plants and microorganisms, patterns of diversity we observe here suggest each lineage 

generates and maintains biochemical diversity in fundamentally distinct ways. Specifically, 

fungal individuals appear to maximize total chemical beta diversity while simultaneously 

minimizing alpha diversity of similar chemical classes (Nielsen, Grijseels et al. 2017; Vesth, 

Nybo et al. 2018). In contrast, individual plants are more likely to produce diverse suites of 

structurally similar molecules (Li, Bladwin & Gaquerel 2015; Song, Qiao et al. 2017; Weinhold, 

Ullah et al. 2017). We show that total cluster diversity increases linearly with repertoire size 

across a broad sample of fungi, extending previous observations that individual fungal genomes 

are streamlined to produce molecules that share little structural similarity. Rather than 

maintaining sets of homologous BGCs and pathways within the same genome, evidence from 

ours and other studies suggests that fungi instead maintain high genetic variation in homologous 

BGCs across individuals at the level of the pan-genome (Ziemert, Lechner et al. 2014; Lind, 

Wisecaver et al. 2017; Olarte et al.2019). Although not a selectable evolvability mechanism per 

se, greater access to the diversity of BGCs harbored in pan-genomes through recombination, 

hybridization and horizontal transfer effectively outsources the incremental screening for 

bioactive metabolites across many individuals, thereby decreasing the costs for generating 

diversity for any given individual and likely accelerating the rate at which effective bioactive 

metabolite repertoires are assembled within a given lineage (Slot and Gluck-Thaler 2019). Our 

characterization of BGC diversity across the largest fungal taxonomic class represents a step 
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towards elucidating the broader consequences of these contrasting strategies for generating and 

maintaining biodiversity of metabolism writ large.  

Conclusions: 

Fungi produce a range of secondary metabolites that are linked to different ecological functions 

or defense mechanisms, playing a role in adaptation over time. Although studied at intra- and 

interspecific level, this phenomenon has not been studied at macroevolutionary scales. The 

Dothideomycetes represent the largest and phylogenetically most diverse class of fungi, 

displaying a range of fungal lifestyles and ecologies. Here, we assessed the patterns of diversity 

of biosynthetic gene clusters across the genomes of 101 Dothideomycetes to dissect patterns in 

the evolution of chemodiversity. Our results suggest that different classes of BGCs (e.g. PKS 

versus NRPS) have differing diversity of cluster content and connectedness among networks of 

co-occurring genes and implicate high rates of BGC turnover, rather than nestedness, as the main 

contributor to the high diversity of BGCs observed among fungi. Consequently, little overlap 

was found in biosynthetic gene clusters from different genera, consistent with diverse ecologies 

and lifestyles among the Dothideomycetes, and suggesting that most of the metabolic capacity of 

this fungal class remains to be discovered. 

 
Methods: 

Dothideomycetes genome database and species phylogeny  

A database of 101 Dothideomycetes annotated genomes, gene homolog groups, and the 

corresponding phylogenomic species tree were obtained from (Grigoriev et al. 2014; Haridas et 

al 2020). 

Gene cluster annotation with the SMURF algorithm 
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We used a command-line Python script based on the SMURF algorithm (Vesth, Nybo et al. 

2018). Using genomic coordinate data and annotated PFAM domains of predicted genes as input, 

the algorithm predicts seven classes of SM clusters based on the multi-PFAM domain 

composition of known 'backbone' genes. The BGC classes are 1) Polyketide synthases (PKSs), 2) 

PKS-like, 3) nonribosomal peptide-synthetases (NRPSs) 4) NRPS-like, 5) hybrid PKS-NRPS, 6) 

prenyltransferases (DMATS), and 7) terpene cyclases (TCs). The borders of clusters are 

determined using PFAM domains that are enriched in characterized SM clusters, allowing up to 

3 kb of intergenic space between genes, and no more than 6 intervening genes that lack SM-

associated domains. SM-associated PFAM domains were borrowed from Khaldi et al. (2010). 

Gene cluster annotation with antiSMASH 

All genomes were annotated using antiSMASH v4.2.0 by submitting genome assemblies 

and GFF files to the public web server with options “use ClusterFinder algorithm for BGC 

border prediction” and “smCOG analysis” (Blin, Wolf et al., 2017). antiSMASH reports all 

genes within the borders of a predicted cluster as part of the cluster. For our analysis, we only 

considered genes belonging to annotated smCOGs or signature biosynthetic gene families as part 

of a given cluster and excluded all others, in order to obtain conservative, high confidence 

estimations of cluster content based on genes of interest.  

Sampling null gene homolog group pair distributions 

We created null distributions from which we could empirically estimate co-occurrence 

probabilities by randomly sampling gene homolog group pairs without replacement from all 

Dothideomycete genomes (Figure 1, Figure SA). Before beginning, we defined null distributions 

based on two parameters: a range of sizes for the smallest gene homolog group in the pair, and a 

range of sizes for the largest gene homolog group in the pair, where each range progressively 
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incremented by 25 from 1-800 and all combinations of ranges were considered. For example, 

there existed a null distribution for gene homolog group pairs where the smallest gene homolog 

group had between 26-50 members, and the largest gene homolog group had between 151-175 

members. To begin, we randomly sampled a genome and then randomly selected two genes 

within 6 genes of one other from that genome. We retrieved the gene homolog groups to which 

those genes belonged, and then counted the number of times members of each gene homolog 

group were found within 6 genes of each other across all Dothideomycete genomes. We counted 

the number of members belonging to each gene homolog group, excluding those that were found 

within 6 genes of the end of a contig, in order to obtain a corrected size for each gene homolog 

group that accounted for variation in assembly quality. The co-occurrence observation was then 

stored in the appropriate null distribution based on the corrected sizes of each gene homolog 

group. For example, the number of co-occurrences of a sampled gene homolog group pair where 

the smallest gene homolog group had a corrected size of 89, and the largest gene homolog group 

had a corrected size of 732 would be placed in the null distribution where the smallest size bin 

was 76-100 members, and the largest size bin was 726-750. All gene homolog groups with 

greater than 800 members were assigned to the 776-800 size bin. This sampling procedure was 

repeated 500,000 times. After evaluating various bin sizes, we ultimately decided to use a range 

of 25 because this resulted in the most even distribution of samples across all null distributions.  

Due to variation in the number of gene homolog groups with any given size across our dataset, it 

was not possible for all null distributions to contain the same number of samples.  

The CO-OCCUR pipeline 

Current BGC detection algorithms first identify signature biosynthetic genes using profile 

Hidden Markov Models (pHMMs) of genes known to participate in SM biosynthesis, and then 
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search predefined regions surrounding signature genes for co-located "accessory" biosynthetic, 

regulatory, and transport genes. The approach of CO-OCCUR, in contrast, is to define genes of 

interest based on whether they are ever found to have unexpectedly conserved syntenic 

relationships with other genes in the vicinity of signature biosynthetic genes, agnostic of gene 

function. Here, we used CO-OCCUR in conjunction with a preliminary SMURF analysis to 

arrive at our final BGC annotations (Figure 1, Figure SA). We first took all SMURF BGC 

predictions and extended their boundaries to genes within a 6 gene distance that belonged to 

gene homolog groups found in another SMURF BGC, effectively “bootstrapping” the BGC 

annotations in order to ensure consistent identification of BGC content across the various 

genomes. SMURF BGCs at this point in the analysis were considered to consist of all genes 

found within the cluster’s boundaries. For each pair of genes in each BGC (including signature 

biosynthetic genes), we retrieved their gene homolog groups, and kept track of how many times 

that gene homolog group pair was observed across all BGCs. Then, for each observed gene 

homolog group pair, we divided the number of randomly sampled gene homolog group pairs in 

the appropriate null distribution (based on the corrected sizes of the smallest and largest gene 

homolog groups within the observed pair, see above) that had a number of co-occurrences 

greater than or equal to the observed number of co-occurrences by the total number of samples in 

the null distribution. In doing so, we empirically estimated the probability of observing a gene 

homolog group pair with at least that many co-occurrences by chance, given the sizes of the gene 

homolog groups. In this way, we were able to take into account the relative frequencies of each 

gene homolog group within a pair across all genomes when assessing the probability of 

observing that pair’s co-occurrence. For example, if we observed that gene homolog group 1 and 

gene homolog group 2 co-occurred 19 times within SMURF-predicted BGCs, and that gene 
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homolog group 1 had 57 members while gene homolog group 2 had 391 members, we would 

count the number of randomly sampled gene homolog group pairs that co-occurred 19 or more 

times within the null distribution where the smallest gene homolog group size bin was 51-75 and 

the largest gene homolog group size bin was 376-400, and then divided this by the total number 

of samples in that same null distribution to obtain the probability of observing gene homolog 

group 1 and gene homolog group 2’s co-occurrences by chance. All co-occurrences with an 

empirical probability estimate of ≤0.05 were considered significant and retained for further 

analysis. In order to decrease the risk of false positive error, we did not evaluate the probability 

of observing any gene homolog group pairs with less than 5 co-occurrences, and also did not 

evaluate any gene homolog group pairs whose corresponding null distribution had fewer than 10 

samples.  

 Next, in order to obtain our final set of predicted BGCs, we took all gene homolog groups 

found in significant co-occurrences, and conducted a de novo search in each genome for all 

clusters containing genes belonging to those gene homolog groups within a 6 gene distance of 

each other. In this way, all BGC clusters in our final set consisted of genes that belonged to these 

gene homolog groups of interest, while all other intervening genes were not considered to be part 

of the cluster. We treated gene homolog groups containing signature biosynthetic genes as we 

would any other gene homolog group: if a signature gene predicted by SMURF was not a 

member of a gene homolog group part of an unexpected co-occurrence, we did not consider it 

part of any clusters. We stress that co-occurrences were only used to determine gene homolog 

groups of interest, but that once those gene homolog groups were identified, they did not need to 

be part of an unexpected co-occurrence within a predicted cluster in order to be considered part 

of that cluster. By focusing only on genes that form unexpected co-occurrences, it is likely that 
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we have underestimated the compositional diversity of Dothideomycetes BGCs (but this may be 

the case for all cluster detection algorithms; see Results). 

 We then grouped all predicted BGCs into BGC families based on a minimum of 90% 

similarity in their gene content, rounded down, in order to obtain a strict definition of BGC 

homology that increases the likelihood that homologous clusters encode similar metabolic 

phenotypes. This meant that clusters with sizes ranging from 2-10 were allowed to differ in at 

most 1 gene; clusters with sizes ranging from 11-20 were allowed to differ in at most 2 genes, 

etc. Clusters that were not at least 90% similar to any other cluster in the dataset were designated 

as BGC singletons. Note that because there is no perfect way to determine homology when using 

similarity based metrics, (e.g., a 10 gene cluster could be 90% similar to a 9 gene cluster, which 

in turn could be 90% similar to a 8 gene cluster, but that 8 gene cluster cannot be 90% similar to 

the 10 gene cluster), we developed a heuristic approach for sorting clusters into groups. First, we 

conducted an all-vs-all comparison of content similarity to sort all clusters into preliminary 

groups by iterating through the clusters from largest to smallest, where size equaled the number 

of unique gene homolog groups, and clusters could only be assigned to a single group. Then, 

within each preliminary group, we identified clusters most similar to all other clusters within the 

group and used them as references to which all other clusters were compared during a new round 

of group assignment. In this final round, clusters were grouped together with a given reference 

into a BGC family if they were at least 90% similar to it and were classified as a BGC singleton 

if they were not 90% similar to any references. The often-unique compositions of clusters means 

that in most cases, there is no ambiguity to how the clusters are classified; however, for a small 

number of clusters, especially those with fewer genes, there may be some ambiguity as to which 

group they belong. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/doi/10.1093/m
olbev/m

saa122/5839751 by U
niversity of C

alifornia, Berkeley user on 07 July 2020



 30 

Annotation of BGCs and gene functions 

In order to detect loci homologous to known BGCs in Dothideomycete genomes, amino 

acid sequences of each annotated BGC within the MIBiG database (v1.4) were downloaded and 

used as queries in a BLASTp search of all Dothideomycete proteomes (last accessed 

04/01/2019). All hits with ≥50 bitscore and ≤1x10-4 evalue were retained, and clusters composed 

of these hits were retrieved using a maximum of 6 intervening genes. In order to retain only 

credible homologs of the annotated MIBiG queries and to account for error in BLAST searches 

due to overlapping hits, we retained clusters with at least 3 genes that recovered at least 75% of 

the genes in the initial query. This set of high confidence MIBiG BGCs was then compared to 

the set of BGCs predicted by CO-OCCUR and antiSMASH to assess the ability of each 

algorithm to recover homologs to known clusters. For each algorithm and each BGC recovered 

using BLASTp to search the MIBiG database, we calculated percent recovery, defined as the 

number of genes identified by the BLASTp search that were also identified as clustered by the 

algorithm, divided by the size of the BGC identified by the BLASTp search, multiplied by 100. 

We also calculated percent discovery, defined as the number of clustered genes identified by the 

algorithm but not identified in the BLASTp search, divided by the size of the BGC identified by 

the BLASTp search, multiplied by 100. 

 In order to annotate BGCs recovered by CO-OCCUR with characterized clusters, we 

used amino acid sequences of all signature biosynthetic genes in CO-OCCUR clusters as 

BLASTp queries in a search of the MIBiG database (min. percent similarity=70%; max 

evalue=1x10-4; min. high scoring pairs coverage=50%). Basing our annotations on percent amino 

acid similarity to characterized signature biosynthetic genes rather than on the number of genes 
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with similarity to BGC genes enabled a more conservative and comprehensive approach, as 

many BGC entries within the MiBIG database are not complete.  

 Proteins within predicted BGCs were annotated using eggNOG-mapper (Huerta-Cepas, 

Forslund et al., 2017) based on fungal-specific fuNOG orthology data (Huerta-Cepas, 

Szklarczyk, et al., 2015). Consensus annotations for all gene homolog groups were derived by 

selecting the most frequent annotation among all members of the group.   

Comparing BGC detection algorithms 

 In order to assess the relative performances of SMURF, antiSMASH and CO-OCCUR, 

we compared all BGCs predicted by each method, and kept track of the genes within those BGCs 

that were identified by either one or multiple methods. We summarized these findings in a venn 

diagram using the “eulerr” package in R (Larsson 2019). Note that for the purposes of this 

analysis, BGCs predicted by SMURF and antiSMASH were considered to be composed only of 

genes that matched a precomputed pHMM, and BGCs predicted by CO-OCCUR were composed 

only of genes belonging to gene homolog groups that were part of unexpected co-occurrences, 

while all other intervening genes within the BGC’s boundaries were not considered to be part of 

the cluster. In doing so, we effectively ignored intervening genes that were situated between or 

are immediately adjacent to these clustered genes of interest for the purposes of defining a 

cluster’s content. While this approach likely does not capture the full diversity of cluster 

composition, it is expected to decrease false positive error in BGC content prediction and 

represents a conservative approach to identifying what genes make up a given cluster. 

Construction of a co-occurrence network 

We visualized relationships between gene homolog group pairs with unexpectedly large 

numbers of co-occurrences in a network using Cytoscape v.3.4.0 (Shannon, Markiel et al. 2003). 
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The network layout was determined using the AllegroLayout plugin with the Allegro Spring-

Electric algorithm. In order to identify hub nodes within the network, we calculated betweeness 

centrality, a measurement of the shortest paths within a network that pass through a given node, 

for each node using Cytoscape.   

Assessment of BGC family phylogenetic signal 

In order to quantify the dispersion of phylogenetic distributions of BGC families 

predicted by CO-OCCUR, we created a binary genome x BGC family matrix for all 239 BGC 

families with ≥4 genes that indicated the presence or absence of these BGC families across all 

101 genomes. We used this matrix in conjunction with the “phylo.d” function from the “caper” 

package v1.0.1 in R (Orme, Freckleton et al. 2012) to calculate Fritz and Purvis’ D statistic for 

each BGC family’s distribution, where D is a measurement of phylogenetic signal for a binary 

trait obtained by calibrating the observed number of changes in a binary trait’s evolution across a 

phylogeny by the mean sum of changes expected under two null models of binary trait evolution. 

Fritz and Purvis’ D measures the degree of statistical dependence among species’ trait values due 

to their shared phylogenetic history. D is scaled such that D = 0 when a trait’s distribution 

follows a model of Brownian inheritance (where differences in trait values between species are 

proportional to their shared phylogenetic history), and D = 1 when a trait’s distribution follows a 

model of random inheritance (where differences in trait values between species are random with 

respect to their shared phylogenetic history). As D increases from 0 to 1, traits display 

increasingly random distributions; as D increases above 1, traits display more over-dispersed 

distributions than the random model; conversely, as D decreases below 0, traits display more 

under-dispersed or conserved distributions than the Brownian model. The first null model 

simulates the phylogenetic distribution expected under a model of random trait inheritance, and 
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the second simulates the phylogenetic distribution expected under a threshold model of 

Brownian evolution that evolves a trait along the phylogeny where variation in that trait’s 

distribution accumulates at a rate proportional to branch length, such that more closely related 

species will have more similar trait values than distantly related species (Fritz & Purvis 2010). D 

= 0 if the trait has a phylogenetic distribution that follows the Brownian model. As values of D 

increase, the trait’s phylogenetic distribution becomes increasingly random and less dependent 

on branch length until reaching 1, where it has a perfectly phylogenetically random distribution. 

D>1 if the trait has a phylogenetic distribution that is more over-dispersed than the distribution 

of a randomly inherited trait; D < 0 if the trait has a phylogenetic distribution that is more 

conserved, or under-dispersed, than the distribution of trait whose inheritance follows a 

Brownian model.   

Dissimilarity and Diversity Analyses 

We created BGC family x gene homolog group matrices in order to determine the 

dissimilarity between predicted BGC families. In these matrices, for each BGC family, we 

indicated the presence or absence of gene homolog groups in at least one cluster within the BGC 

family, effectively summarizing each BGC family by integrating over the content of all clusters 

assigned to that family. We next used the matrix in conjunction with the “vegdist” function from 

the “vegan” package in R (Oksanen, Blanchet et al. 2016) to create a Raup-Crick dissimilarity 

matrix that was visualized as a dendrogram using complete linkage clustering as implemented in 

the “hclust” function from the core “stats” package in R. Raup-Crick dissimilarity is a commonly 

used statistic in community ecology to measure the probability that two sites have non-identical 

species compositions. Here, we chose to use Raup-Crick dissimilarity to characterize the degree 

to which two BGCs have non-identical gene homolog group compositions over other 
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dissimilarity metrics because this statistic takes into account the global frequencies of gene 

homolog groups (i.e., species) sampled across all BGCs (i.e., sites), such that BGCs that share 

more rarely clustered gene homolog groups will appear less dissimilar than BGCs that share 

more commonly clustered gene homolog groups, effectively minimizing the contributions of 

commonly clustered gene homolog groups to overall dissimilarity. The Raup-Crick dendrograms 

were then used to assess the functional diversity of BGC repertoires (e.g., in the Pleosporales) by 

measuring the total branch distance connecting all BGC families within a given repertoire using 

the “treedive” function from the “vegan” package in R. 

We used the same above procedure to calculate Sørensen dissimilarity between 

Pleosporalean genomes based on their BGC repertoires, only this time using a genome x BGC 

family matrix that depicted the presence or absence of BGC families across all 49 Pleosporalean 

genomes. Sørensen dissimilarity is a commonly used statistic in community ecology to describe 

the extent of overlap in species presence/absence data between two geographic sites. We applied 

Sørensen dissimilarity to quantify the degree of overlap in BGC family presence/absence data 

between two genomes. We also used this matrix to calculate and partition beta diversity in 

Pleosporalean BGC repertoires using the “beta.sample” function (index.family = "sorensen", 

sites = 10, samples = 999) from the “betapart” v1.4 package in R (Baselga & Orme 2012) in 

order to determine how much of the observed diversity among repertoires was due to gain/loss of 

BGC families, and how much was due to nestedness. We also used the genome x BGC family 

matrix to conduct a rarefaction of cluster richness across Pleosporalean genomes using the 

“iNEXT” function (q = 0, datatype="incidence_raw", endpoint=98) from the “iNEXT” package 

in R (Hseih, Ma & Chao 2016). 
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BGC - Biosynthetic Gene Cluster; pHMM - profile Hidden Markov Model; SM - Secondary 

Metabolite; PKS - Polyketide Synthetase; NRPS - Nonribosomal Peptide Synthetase; TC - 

Terpene Cyclase; DMAT - dimethylallyl tryptophan synthase; 
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Figure legends: 

Figure 1.  CO-OCCUR pipeline.  The pipeline used genome annotations from 101 

Dothideomycetes, and previously computed gene homolog groups consisting of both orthologs 

and paralogs (Haridas et al. 2020). Biosynthetic gene clusters (BGCs) were inferred by 

determining unexpectedly distributed shared gene homolog group pairs, determined according to 

a null-distribution of randomly sampled gene pairs in the same genomes, and then a search for all 

clusters containing the gene homolog group pairs. The resulting BGCs were then consolidated 

into BGC families where members share ≥90% of gene homolog group content.  A detailed 

pipeline is presented in Figure SA. 

Figure 2. Diversity of the largest detected secondary metabolite gene clusters across 101 

Dothideomycetes. A maximum likelihood phylogenomic tree of 101 Dothideomycete species 

(Haridas et al. 2020) corresponds to rows in a heatmap (right) that depicts the number of 

biosynthetic gene clusters (BGCs) found in each genome, delimited by order (dotted line). Each 
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cluster is assigned to a BGC family (column) defined by at least 90% similarity at the 

composition level. Only BGC families with ≥ 5 unique gene homolog groups per cluster are 

shown. A complete linkage tree (top) depicts relationships among BGC families, where distance 

is proportional to the Raup-Crick dissimilarity in BGC family composition. BGC families are 

colored according to their core signature biosynthetic genes, and BGC families with greater than 

1 signature gene are left uncolored. BGC families with signature genes ≥70% identical to 

characterized BGC signature genes in MIBiG are indicated by a labeled red box.  

Figure 3. Gene co-occurrence networks among biosynthetic signature gene clusters. a) Co-

occurrence network of gene homolog groups. Nodes in the co-occurrence network represent all 

gene homolog groups found in a biosynthetic gene cluster (BGC) family. Edges represent 

significant co-occurrences (empirical probability ≤0.05 based on the null distribution, see 

methods) between gene homolog groups. Node size is proportional to the number of significant 

co-occurrences involving that gene homolog group, and edge width is proportional to the number 

of unique BGC families with ≥ 4 gene homolog groups that contain the co-occurrence. Distance 

between nodes is proportional to the number of co-occurrences they have in common, adjusted 

by edge width. Signature genes (colored circles) and transport-related function (squares) are 

indicated. Betweenness centrality scores ≥0.2 are indicated in brackets for signature genes and 

eight other nodes (n1-8). Networks 1 and 2 are the two largest networks. b) Histogram of 

betweenness centrality scores for all nodes in Networks 1 and 2 (bin width = 0.1).  c) Significant 

co-occurrences within PKS and NRPS clusters. Boxplots of gene homolog group co-occurrences 

involving signature genes (top) and non-signature genes (bottom) across all polyketide synthase 

(PKS; green) and nonribosomal polypeptide synthetase (NRPS; purple) clusters with ≥4 unique 

gene homolog groups. Boxplots display the 75% percentile (top hinge), median (middle hinge), 
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the 25th percentile (lower hinge), and outliers (dots) determined by Tukey’s method. d) Diversity 

of PKS and NRPS clusters. A line chart tracks the diversity of PKS and NRPS clusters across all 

cluster sizes for both PKS (green) and NRPS (purple) clusters, where diversity is defined as the 

total number of unique BGC families  divided by the total number of clusters. 

Figure 4. Benchmarking three different algorithms for biosynthetic gene cluster (BGC) 

detection. a) Proportional Venn diagram of distinct and overlapping BGC genes of interest 

detected by SMURF, antiSMASH and CO-OCCUR. SMURF and antiSMASH use profile Hidden 

Markov Models (pHMMs) to identify clustered genes of interest, while CO-OCCUR uses 

linkage-based criteria (see methods). Clustered genes (unbracketed) and secondary metabolism 

biosynthesis, transport and catabolism clustered genes (fuNOG) detected are indicated for each 

algorithm/combination. b) Complementary recovery of the cercosporin BGC using antiSMASH 

and CO-OCCUR). Shading of genes in the Cercospora zeae-maydis cercosporin BGC (MIBiG 

ID BGC0001541; recovered clusterID Cerzm1_BGC0001541_h92 in Table SG) indicates genes 

identified by antiSMASH (blue), CO-OCCUR (yellow), or both algorithms (green). Gene names 

are as in (de Jonge et al., 2018) and those required for cercosporin biosynthesis (Chen et al., 

2007; Newman et al., 2016; de Jonge et al., 2018) are indicated with an asterisk. c) Gene 

recovery and discovery in clusters homologous to known BGCs. Scatterplots show the percent of 

genes recovered (top) or discovered (bottom) by antiSMASH vs. CO-OCCUR at each locus 

homologous to a MIBiG BGC (search criteria: minimum 3 gene cutoff; minimum of 75% genes 

similar to MIBiG BGC genes in locus). Percent recovery is defined as the number of genes 

identified by BLASTp in an algorithm-identified cluster divided by the size of the BLASTp 

identified BGC, multiplied by 100. Percent discovery is defined as the number of genes 
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identified by the cluster algorithm but not identified in the BLASTp search, divided by the size 

of the BLASTp identified BGC, multiplied by 100. y = x at the dotted reference line.  

Figure 5. Phylogenetic and ecological signal in the distributions of biosynthetic gene cluster 

(BGC) families. a) Scatterplot of phylogenetic and ecological signal of BGC families. Values 

along the x-axis correspond to Fritz and Purvis’ D statistic, representing phylogenetic signal in a 

BGC family’s distribution and values along the y-axis indicate the absolute ratios of lifestyles 

(pathotroph/saprotroph above and saprotroph/ pathotroph below the x-axis). Distributions of 

BGC families with D<0 are more conserved compared to a Brownian model of trait evolution, 

and distributions of BGC families with D>1 are considered over-dispersed. Points representing 

BGC family distributions with probability of Brownian trait evolution (P(Brownian)) ≤0.05 are 

in black, while those >0.05 are in gray. BGC families with P(Brownian) ≤0.05 and a lifestyle 

ratio ≥2 are labeled and described in b) and c). Only BGC families with ≥ 4 unique gene 

homolog groups per cluster are shown. b) Summary descriptions of labeled BGC families. Sig. 

genes = signature genes present in the BGC family; Size = number of unique gene homolog 

groups in the BGC family reference cluster; Freq. = number of fungi with a cluster that belongs 

to the BGC family; Best known signature(s) = signature gene(s) from the MIBiG database with 

the highest similarity to signature genes from the BGC family, with average percentage 

similarity shown in parentheses. c) Phylogenetic distributions of labeled BGC families.  Presence 

(black cells) and absence (gray cells) matrix of clusters assigned to each labeled BGC family 

across Dothideomycetes genomes tree as in Figure 2.  

Figure 6. Three examples of biosynthetic gene cluster (BGC) families with conserved 

phylogenetic distributions. a) BGC family distributions. Presence (black cells) and absence 

(gray cells) matrix of clusters assigned to various BGC families (columns a-j, described in part 
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b), across Dothideomycetes genomes tree as in Figure 2. Each matrix contains distinct sets of 

BGC families that are separated by ≤0.05 distance units on the complete linkage tree in Figure 2. 

The number of fungi with each BGC family is indicated at the bottom of each column. b) BGC 

family composition. BGC families in set 1 are predicted to encode DHN melanin biosynthesis 

and is found in nearly all Dothideomycetes; set 2 contains unknown BGC families with NRPS-

like signature genes and is restricted to Pleosporales; set 3 contains unknown BGC families with 

PKS signature genes, where the PKSs from group 16 are on average 84% similar to the PKS in 

the characterized alternapyrone cluster (MIBiG ID: BGC0000012), and is found in Bipolaris and 

Dothidotthia, two closely related genera within the Pleosporales. Gene homolog group presence 

in a given BGC family is indicated by a gray box below the description. Brackets surround gene 

homolog groups present in <50% of clusters assigned to a given BGC family. 

Figure 7. Diversity of secondary metabolite gene BGC repertoires in Pleosporalean fungi. 

a) Relationship between BGC repertoire size and BGC repertoire diversity. BGC repertoire 

diversity was calculated for each genome by finding the total branch length on the Raup-Crick 

dissimilarity tree in a) associated with the set of clusters found in that genome. BGC repertoire 

diversity is thus a measurement of a given genome’s repertoire diversity, in terms of the gene 

content of its clusters. A solid line models the linear relationship between repertoire size and 

diversity (adj. R2 = 0.855). The shaded area around the line represents the 95% confidence 

interval associated with the model. b) Sampled and projected secondary metabolite cluster 

richness within the Pleosporales. Rarefied (solid lines) and extrapolated (dotted lines) estimates 

of secondary metabolite gene cluster richness (i.e., the number of unique BGC families) with 

respect to the number of sampled genomes are shown for the Pleosporales. Shaded areas 

represent the 95% confidence intervals for both estimate types, derived from 100 bootstrap 
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replicates. All three graphs were generated using data from the 318 unique BGC families with ≥ 

4 unique gene homolog groups that are associated with 47 Pleosporalean fungi and 2 as yet 

unclassified fungi found within the Pleosporalean clade on the phylogenomic species tree in 

Figure 2. 

 

Supporting information: 

 

Figure SA: Schematic and description of the CO-OCCUR and Null Model pipelines used to 

predict biosynthetic gene clusters (BGCs). See Methods for more details. 

 

Figure SB: Total number of predicted biosynthetic gene clusters (BGCs) with at least one 

signature secondary metabolite gene in each of the 101 Dothideomycete genomes. To the left 

is a phylogenomic tree detailing relationships among all species included in this study (Haridas 

et al., 2020).  

 

Figure SC: The distribution of predicted biosynthetic gene cluster (BGC) families across 

101 Dothideomycete genomes. To the left is a phylogenomic tree detailing relationships among 

all species included in this study (Haridas et al., 2020). To the right is a heatmap indicating the 

presence/absence of individual BGCs in each genome, where each column corresponds to a 

different BGC family. Green-filled cells indicate a single occurrence of a BGC in a given 

genome, while black-filled cells indicate two occurrences. A dendrogram detailing the Raup-

Crick dissimilarity in gene composition among all BGC families is displayed on top of the 

heatmap, where increasing branch lengths indicate increasing dissimilarity in gene composition. 
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A horizontal red line is drawn at Raup-Crick dissimilarity = 0.05. For visualization purposes, 

only BGC families with 4 or more genes are shown.  

 

Figure SD: Phylogenetic signal of predicted biosynthetic gene cluster (BGC) families across 

101 Dothideomycete genomes. To the left is a phylogenomic tree detailing relationships among 

all species included in this study (Haridas et al., 2020). To the right is a heatmap indicating the 

presence/absence of individual BGCs in each genome, where each column corresponds to a 

different BGC family. Green-filled cells indicate a single occurrence of a BGC in a given 

genome, while black-filled cells indicate two occurrences. BGC families are ordered from left to 

right by increasing values from -2.66 to 2.5 of Fritz and Purvis’ D statistic, a measurement of 

phylogenetic signal in binary presence/absence distributions (Methods). Vertical dotted lines are 

drawn at D=0, D=1, and D=2.5 for reference. Fritz and Purvis’ D statistic could not be calculated 

for BGC families to the right of the dotted line at D=2.5 because these families were not present 

in sufficient numbers of species. 

 

Figure SE: Different biosynthetic gene cluster (BGC) algorithms vary in their ability to 

identify genes of interest at DHN melanin loci. The performances of the CO-OCCUR, 

antiSMASH and SMURF BGC prediction algorithms were compared by evaluating each of their 

abilities to identify or recover genes of interest at 87 loci encoding DHN melanin BGCs found 

across the 101 Dothideomycete genomes, where each locus is found in a different genome. 

Percent of genes recovered at each locus was calculated as the number of genes identified at that 

locus by a specific algorithm, divided by the total number of genes identified at that locus across 

all algorithms.  
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Figure SF. Grouping of fungi based on the combinations of biosynthetic gene cluster 

families (i.e., BGC repertoires) found in their genomes. Shown to the left is a complete 

linkage tree where distance between different fungal species is proportional to the Sørensen 

dissimilarity between their BGC repertoires. To the right is a presence (black) and absence 

(white) matrix where each column represents a unique BGC family and each row corresponds to 

the adjacent fungal genome. On top of the heatmap is a complete linkage tree displaying 

relationships between unique BGC families, where distance is proportional to the Raup-Crick 

dissimilarity in cluster composition. 

 

Figure SG: Dissimilarity in the combinations of biosynthetic gene cluster families (i.e., 

BGC repertoires) found among 49 Pleosporales fungi increases with decreasing 

phylogenetic relatedness. Each point on the graph represents a unique pairwise comparison 

between two Pleosporales species (1176 total comparisons). Phylogenetic distance along the X 

axis was measured as the total branch length distance separating two given species on the 

phylogenomic species tree (Haridas et al., 2020). Sørensen dissimilarity along the Y axis was 

measured for each pairwise species comparison as the dissimilarity between their BGC 

repertoires. A blue linear regression line (y = 0.84x + 0.51; R2 = 0.50) with shaded areas 

indicating 95% confidence interval is overlaid on the graph.  

 

Figure SH: Partitioning dissimilarity in the combinations of biosynthetic gene cluster 

families (i.e., BGC repertoires) found among 49 Pleosporales fungi. Estimates of overall 

Sørensen dissimilarity in BGC repertoires, as well as its nestedness and turnover components, 
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were calculated using the “beta.sample” function in the R package “betapart” by resampling 10 

pairwise species comparisons (out of 1176 total possible comparisons) 999 times for each 

estimate. Kernel density plots summarize the frequency of resampled values obtained for each 

estimate across the 999 permutations.  

 

Table SA. Gene homolog groups part of unexpected co-occurrences. 

Table SB. Unexpected co-occurrences between gene homolog groups occurring in the vicinity of 

signature biosynthetic genes, and their frequency across different SM classes. 

Table SC. Positional information of all recovered CO-OCCUR clusters. 

Table SD. Genomes used in this study. 

Table SE. BGC families detected by CO-OCCUR. 

Table SF. BLAST-based annotation of CO-OCCUR clusters with known signature biosynthetic 

genes from the MIBiG database. 

Table SG. Cross-referencing clusters retrieved by CO-OCCUR,  antiSMASH, and BLAST 

searches of MIBiG database to determine percent recovery and discovery. 

Table SH. Positional information of all recovered antiSMASH clusters. 

Table SI. BGC families detected by antiSMASH. 

Table SJ. positional information of all recovered SMURF clusters. 

Table SK. BGC families detected by SMURF. 

Table SL. Overlapping and complementary recovery of clustered genes of interest using 

antiSMASH, SMURF, and CO-OCCUR. 

Table SM. Positional information of all clusters recovered with a BLASTp search of the MIBiG 

database. 
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Viridothelium virens
Trypetheliales

Myriangium duriaei CBS 260.36
Myriangiales
Elsinoe ampelina
Myriangiales

Aureobasidium pullulans EXF-150
Dothideales

Aureobasidium namibiae CBS 147.97
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Dothistroma septosporum NZE10
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Pseudocercospora fijiensis
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Sphaerulina musiva SO2202
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Sphaerulina populicola
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Cercospora zeae-maydis SCOH1-5
Capnodiales

Hortaea acidophila
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Baudoinia panamericana UAMH 10762
Capnodiales

Teratosphaeria nubilosa
Capnodiales

Piedraia hortae  
Capnodiales

Acidomyces richmondensis BFW
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Eremomyces bilateralis CBS 781.70
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Microthyrium microscopicum
Microthyriales
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Phaeotrichales

Tothia fuscella
Venturiales

Verruconis gallopava
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Venturia inaequalis
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Aulographum hederae
Unknown

Rhizodiscina lignyota
Patellariales

Lineolata rhizophorae
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Coniosporium apollinis CBS 100218
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Botryosphaeriales

Phyllosticta citriasiana
Botryosphaeriales

Neofusicoccum parvum UCRNP2
Botryosphaeriales

Macrophomina phaseolina MS6
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Botryosphaeria dothidea
Botryosphaeriales
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Botryosphaeriales
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Botryosphaeriales

Pseudovirgaria hyperparasitica
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