
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Advances in Generalized Valence Bond-Coupled Cluster Methods for Electronic Structure 
Theory

Permalink
https://escholarship.org/uc/item/2j7526xc

Author
Lawler, Keith Vanoy

Publication Date
2009
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2j7526xc
https://escholarship.org
http://www.cdlib.org/


Advances in Generalized Valence Bond-Coupled Cluster Methods for
Electronic Structure Theory

by

Keith Vanoy Lawler Jr.

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Chemistry

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Martin Head-Gordon, Chair

Professor William H. Miller
Professor Joel S. Moore

Fall 2009



The dissertation of Keith Vanoy Lawler Jr., titled Advances in Generalized Valence
Bond-Coupled Cluster Methods for Electronic Structure Theory, is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2009



Advances in Generalized Valence Bond-Coupled Cluster Methods for
Electronic Structure Theory

Copyright 2009
by

Keith Vanoy Lawler Jr.



1

Abstract

Advances in Generalized Valence Bond-Coupled Cluster Methods for Electronic Structure
Theory

by

Keith Vanoy Lawler Jr.
Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Martin Head-Gordon, Chair

The electron-electron correlation term in the electronic energy of a molecule is the
most difficult term to compute, yet it is of both qualitative and quantitative importance
for a diverse range of chemical applications of computational quantum chemistry. Gen-
eralized Valence Bond-Coupled Cluster (GVB-CC) methods are computationally efficient,
size-consistent wavefunction based methods to capture the most important static (valence)
contributions to the correlation energy. Despite these advantages early GVB-CC methods
suffer four major short-comings: over-localization leading to symmetry breaking, poor be-
havior with spin-unrestriction, neglect of the dynamic (or residual) correlation energy, and
multiple orbital minima. The work presented here is directed at rectifying these major
short-comings of the GVB-CC methods.

The GVB-CC methods suffer from symmetry-breaking (SB) in systems with multiple
resonance structures, which arises due to neglected correlations. We show how these prob-
lems can be significantly removed by using 2nd order perturbation theory (PT) for weak
correlations coupling 3 different electron pairs, and (infinite order) CC theory for stronger
correlations involving electrons in only 1 or 2 different pairs. The resulting Three-pair
corrected Imperfect Pairing (TIP) method works quite well in removing SB from aromatic
hydrocarbons, but it is shown that to robustly combine CC and PT it is necessary to mod-
ify several aspects of the basic method. A penalty function term needs to be introduced to
regularize the PT amplitudes and ensure they remain small. When TIP is compared side-
by-side with CC treatments of the 3-pair correlations, the results suggest that the penalty
function is beneficial for any hybrid CC/PT method that includes orbital optimization.
TIP greatly reduces SB and recovers a significantly higher fraction of the valence electron
correlation energy than earlier double excitation based GVB-CC methods.

Spin-unrestriction is typically defined as a free variation of the molecular orbitals of
different spins in order to lower the molecular energy. In GVB-CC methods, this approach
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often leads to undesirable artifacts, so therefore we develop an alternate method for spin-
unrestriction that transfers concepts from corresponding orbitals in Hartree-Fock theory to
active space electron correlation methods. The Unrestriction-in-Active-Pairs (UAP) proce-
dure forces an orbital to only mix with its corresponding virtual orbital to spin-unrestrict,
thus limiting the number of degrees of freedom that the molecular orbitals can use to spin-
unrestrict and thereby eliminating many of the undesirable artifacts of spin-unrestriction.
It can be shown that in the unrestricted limit of ROHF fragments (the UAP dissociation
orbitals) the CC equations are singular if only the strongly correlated electrons are consid-
ered. The CC equations can be regularized to alleviate this problem. UAP when combined
with the GVB-CC model chemistries we have developed makes a powerful tool for predict-
ing potential energy surfaces including appropriate orbitals on the molecular fragments at
dissociation.

Finally, we consider the extension of the standard single-determinant Kohn-Sham (KS)
method to the case of a multi-configuration auxiliary wave function, such as the GVB-
CC methods. By applying the rigorous Kohn-Sham method to this case, we construct
the proper interacting and auxiliary energy functionals. Following the Hohenberg-Kohn
theorem for both energy functionals, we derive the corresponding multi-configuration Kohn-
Sham equations, based on a local effective potential. At the end of the analysis we show
that, at the ground state, the auxiliary wavefunction must collapse into a single-determinant
wave function, equal to the regular KS wavefunction. We also discuss the stability of the
wave function in multi-configuration density functional theory methods where the auxiliary
system is partially interacting, and the residual correlation is evaluated as a functional of
the density. We also discuss improvements to the definition of the residual correlation
energy of the partially interacting system.
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Chapter 1

Introduction

1.1 The Electronic Problem

Quantum mechanics is in essence the study of the behavior of the very small. The formal
field of quantum mechanics arose in the early twentieth century [1–10] when many phenom-
ena were being empirically observed [11–14] that defied the contemporary understanding
of physics. Quantum mechanics arose from the realization that electrons and other matter
behaved as both a particle and wave simultaneously [15]. From this, the mathematics of
wave mechanics can be extended and combined with classical mechanics to understand the
unique nature of the very small. In a time-independent manner, the entirety of a system
of electrons and nuclei can be expressed by a wavefunction that is an eigenfunction of a
Hamiltonian,

Ĥ|Ψ〉 = E|Ψ〉. (1.1)

For atoms and molecules not in a field, the Hamiltonian is a combination of the kinetic and
potential energy operators and a function of all the inter-particle distances.

The Born-Oppenheimer approximation [16] simplifies the time-independent Schrödinger
equation into nuclear and electronic sets of variables. This separation of variables can be
justified by an argument based on the motion and response of the different types of particles
happening on different time scales. Electrons are lower in mass than nuclei and move and
interact with each other very quickly, while the nuclei are slower and their motion can be
viewed as a response to changes in the electronic state of the system. Nuclear motions
occur on the pico-to-femto second time scale, whereas electronic motions occur on the
femto-to-atto second time scale. The electronic degrees of freedom are therefore solved
independently from those of the nuclei. This is done by creating a wavefunction containing
only the electrons that is the eigenfunction of the electronic Hamiltonian (in atomic units):
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Ĥelec|Ψelec〉 = Eelec|Ψelec〉
Ĥelec = −

∑
i

1

2
∇2
i −

∑
i

∑
A

ZA
riA

+
∑
i

∑
j>i

1

rij
. (1.2)

The electronic Hamiltonian accounts for the kinetic energy of all electrons, i, the
electronic-nuclear potential energy between all electrons i and all nucleiA, and the electronic-
electronic potential energy between all electrons i and j. Solving this eigenfunction problem
is the primary focus of the field of study known as electronic structure theory. Knowledge
of the electronic wavefunction and electron density is necessary for computing the nu-
clear dynamics and related properties of the chemical system of interest within the Born-
Oppenheimer approximation, and is often the starting point for going beyond it also.

The total N electron electronic wavefunction can be represented as a product of 1-
particle wavefunctions. Spin orbitals are 1-particle wavefunctions that are parameterized
by the position and the spin angular momentum of the electron, χi(r1) = ψi(r1)α(ω1),
or χi(r1) = ψi(r1)β(ω1). The spin angular momentum function of the spin orbital is
parameterized by the variable, ω1. The two electronic spin functions are orthonormal:

〈α|α〉 = 1
〈β|β〉 = 1
〈α|β〉 = 0. (1.3)

The spatial functions are formed as linear combinations of atomic orbital, φµ(r1), basis
functions that are optimized for specific atomic properties,

ψi(r1) =
∑
µ

cµiφµ(r1). (1.4)

The indices denoted by a lower case Greek letter, µ, represent a function in the atomic or-
bital (AO) basis, and indices denoted by a lower case Roman letter, i, represent a function
in the molecular orbital (MO) basis.

Electrons are fermions and are anti-symmetric with respect to the interchange of two
electrons and must obey the Pauli Exclusion Principle [17]. The repercussion of anti-
symmetry on the electronic wavefunction is that

|χ1(r1)χ2(r2)...〉 = −|χ1(r2)χ2(r1)...〉. (1.5)

A direct product of spin orbitals is not a suitable wavefunction to describe more than one
electron because of this property of anti-symmetry. To satisfy anti-symmetry for multi-
electron systems, the wavefunction can be expressed as a Slater determinant [18,19] of spin
orbitals for each of the N electrons,
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|Ψ(r1, r2, ..., rN)〉 = (N !)−
1
2 det{χi(r1)χ2(r2)...χN(rN)}. (1.6)

As we shall discuss below, such a form is not exact because it does not include electron cor-
relation. A superposition of all determinants accounting for all possible orbital occupations
can be exact and is called full configuration interaction (FCI).

1.2 Ab initio Wavefunction Quantum Mechanics

1.2.1 Mean-Field Approximation

The electronic Schrödinger equation is a difficult problem to solve exactly and much
work has been done to approximate the electronic Schrödinger equation. The simplest ap-
proximation to understand the electronic problem is the mean-field approximation [20–24].
The mean-field approximation assumes that each electron only interacts with the other
electrons by a mean-field created by their charge density.

In the mean-field, or Hartree-Fock (HF), approximation, the N electron wavefunction
is represented by a single Slater determinant. The energy of the molecular system is the
expectation value of the N electron Slater determinant with the electronic Hamiltonian.

EHF = 〈ΨHF |Ĥ|ΨHF 〉

EHF =
occ∑
i

〈χi|ĥ|χi〉+
1

2

occ∑
i

occ∑
j

[
〈χiχj|

1

rij
|χiχj〉 − 〈χiχj|

1

rij
|χjχi〉

]
(1.7)

The MO expansion coefficients from the AO basis, cµi from Eqn. 1.4, can be optimized
using the variational theorem [25] to return the optimal HF wavefunction and energy. The
HF energy is minimized under the constraints that the spin functions are orthonormal and
that the individual orbitals remain orthonormal, 〈χi|χj〉 = δij. The overlap of the spatial
AO basis functions defines the AO overlap matrix,

Sµν = 〈φµ(r)|φν(r)〉. (1.8)

The overlap matrix can be transformed into the MO basis to form MO overlap matrix, Sij.
In HF theory, Sij will be diagonal and will be identical to the identity matrix.

In the MO basis, the HF wavefunction will produces spin orbitals that are either occu-
pied or unoccupied (virtual). For an N electron system in a linearly independent AO basis
set of size K, HF produces an N occupied orbitals (denoted by i, j, k, ...), and 2K − N
virtual orbitals (denoted by a, b, c, ...). The N occupied orbitals are the N lowest en-
ergy spin orbitals created in a HF calculation. Of course, K must be greater than N/2
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to generate the appropriate number of occupied spin orbitals. Increasing the size of this
AO basis set to be more complete improves the quality of the MOs and lowers the overall
HF energy. If the basis set is perfectly flexible (ie. infinite-dimensional), this is known as
the complete basis set (CBS). The energy for any method computed with an infinite basis
set is known as the CBS limit for the method. Each method has its own convergence rate
towards the CBS limit, and HF converges rapidly to this limit relative to other methods
like perturbation theory and coupled cluster theory.

HF theory can be reduced to a set of one electron eigenvalue problems for the spin
orbitals given their dependence on the other spin orbitals in the system:

f̂(r1)χ1(r1) = εiχi(r1)

f̂(r1) = ĥ(r1) +
∑
j 6=i

Ĵj(r1)−
∑
j 6=i

K̂j(r1)

ĥ(r1) = −
∑
i

1

2
∇2
i −

∑
i

∑
A

ZA
riA

Ĵj(r1)χi(r1) =

[∫
dr2|χj(r2)|2 1

rij

]
χi(r1)

K̂j(r1)χi(r1) =

[∫
dr2χj(r2)

1

rij
χi(r2)

]
χj(r1) (1.9)

The eigenvalue expressions are evaluated for each spin orbital, the MO expansion coeffi-
cients are updated, and then the eigenvalue expressions are re-evaluated given the updated
expansions for the MO spin orbitals. This process is repeated until the MOs and energy no
longer vary. This process is known as a self-consistent field approach to optimizing orbitals
and obtaining an energy for the chemical system. The resulting spin orbitals are used to
form the HF Slater determinant, which is often used as a zeroth order reference for many
higher order quantum chemistry methods.

In these methods, the Fock operator, f̂ , becomes the zeroth-order operator whose eigen-
values are sums of orbital energies, εi, for eigenvectors which are Slater determinants of
spin orbitals. The Fock operator can be written as an expectation value matrix element
which is diagonal in the canonical HF MO basis:

εpq = 〈χp(r1)|f̂(r1)|χq(r1)〉
εp = εpqδpq. (1.10)

The HF energy is not just the sum of the occupied spin orbital energies, EHF 6=
occ∑
i=1

εi.

The direct sum of spin orbital energies double counts the coulomb, Ĵ , and exchange, K̂,
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interactions as each eigenvalue includes the full value of these quantities. A factor of 1
2

must
be included on the coulomb and exchange interactions to equal the correct HF energy.

The Fock operator can be represented as matrix in the AO basis,

Fµν = 〈φµ(r1)|f̂(r1)|φν(r1)〉. (1.11)

Using this representation, the Roothaan [26] equations for solving the finite basis HF prob-
lem can be written:

FC = SCε∑
ν

Fµνcνi = εi
∑
ν

Sµνcνi (1.12)

This is a matrix eigenvalue problem which is ideally suited for a computer to solve. The
eigenvalue problem is for the MO expansion coefficient matrix, however the internal depen-
dence of F on C is the reason the HF equations need to be solved self-consistently. If the
spatial components of the spin orbitals of different spin are allowed to vary independently
of each other, a similar set of equations known as the Pople-Nesbet equations [27] exist
to solve the spin-unrestricted HF (UHF) problem. Allowing the spatial components of the
spin orbitals of different spin to vary independently is known as spin-unrestriction.

1.2.2 Orbital Rotations

Spin orbitals can be optimized by the self-consistent field approach, repeated diagonal-
ization, or by making an initial guess and rotating the orbitals into each other via a series
of unitary orbital rotations. Unitary orbital rotations are a type of matrix transformation
using unitary matrices. Unitary matrices are a special kind of matrix in which the matrix
inverse is the adjoint of the matrix,

U†U = 1. (1.13)

Unitary matrices also have the nice property of preserving the Hermitian inner product
of any two vectors. A consequence of this property is that a unitary transformation of a
matrix preserves the trace of the original matrix.

Unitary matrices can be constructed by taking the matrix exponential of any anti-
Hermitian matrix:

U = eθ

θ† = −θ. (1.14)
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In the case of a real matrix, the anti-Hermitian property simplifies to the property of being
anti-symmetric, and the adjoint simplifies to a matrix transpose.

Since all the eigenvalues of a unitary matrix lie on the unit circle, unitary transforma-
tions can be viewed as rotations by some angle between element p into element q, θpq. The
anti-symmetric representation of this orbital rotation in a two-dimensional space is

θ =

[
0 θpq
−θpq 0

]
Exponentiating this anti-symmetric matrix yields a Givens transformation,

G(θpq) = eθ =

[
cos(θpq) sin(θpq)
−sin(θpq) cos(θpq)

]
.

For more than two elements, the two-by-two rotation matrix element can be projected into
an identity matrix of size N total elements by N total elements [28]. This matrix will
resemble the identity matrix except for the G(p, p), G(p, q), G(q, p), and G(q, q) elements
which will be those shown in the two-by-two case. The total unitary rotation matrix then
can be constructed as a product of the projected two-by-two unitary rotation matrices,

U =
N∏
p

N∏
q

G(θpq). (1.15)

Unitary orbital rotations have utility in quantum chemistry because of their ability to
simplify orbital optimization problems in quantum chemistry. MO expansion coefficients
can be optimized by successive unitary transformations of some set of initial guess MO
expansion coefficients,

C = C0

Niter∏
i

Ui. (1.16)

This process is done iteratively for Niter iterations after which the final spin orbitals should
yield the optimal energy for the quantum chemistry method. The standard way to perform
the iterative optimization of the set of MO expansion coefficients with respect to orbital
rotations is to take orbital rotation steps until the orbital rotation gradient is zero or within
tolerances,

∂E

∂θpq
=
∑
µ

[
∂E

∂Cµp
Cµq −

∂E

∂Cµq
Cµp

]
= 0. (1.17)

The steepest descent algorithm for this minimization involves taking only gradient de-
scent steps to generate a change in the orbital rotation angle, δθpq = − ∂E

∂θpq
. These steps
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are re-constructed into a new orbital rotation matrix and the process is repeated. This
method is slow and does not typically converge quadratically, rather its convergence is
linear. Quadratic convergence is defined as the gradient and step size decreasing quadrati-
cally after each optimization iteration. The optimization process can be greatly enhanced
by knowledge of the curvature of the potential energy surface, ie. a Hessian. A pure New-
ton method with knowledge of the full Hessian will optimize with quadratic convergence,
but this approach is excessively expensive and complicated because exact evaluation of
the Hessian is expensive and complicated. For most quasi-Newton or BFGS [29,30] meth-
ods, only the diagonal of the orbital rotation Hessian is necessary and the convergence is
intermediate between quadratic and linear. The diagonal of the orbital rotation Hessian
expressed only in terms of MO expansion coefficients is

∂2E

∂θ2
pq

=
∑
µ

∑
ν

[
∂2E

∂Cµp∂Cνp
CµqCνq +

∂2E

∂Cµq∂Cνq
CµpCνp − 2

∂2E

∂Cµp∂Cνq
CµqCνp

]
−

∑
µ

[
∂E

∂Cµp
Cµp +

∂E

∂Cµq
Cµq

]
. (1.18)

A BFGS method like Geometric Direct Minimization (GDM) [30] will optimize MO expan-
sion coefficients with superlinear convergence depending on the quality of the diagonal of
the orbital rotation Hessian. This procedure will work for any quantum chemistry method
that relies on orbital optimization.

1.2.3 The Need for Electron-Electron Correlation

HF is qualitatively correct for many systems, but often it is quantitatively incorrect even
for the systems for which it is qualitatively correct. HF theory only provides a mean-field
description of the molecular system and does not account for any instantaneous electron-
electron interactions. The missing energy arising from the neglected interactions is called
the correlation energy and is expressed as the difference between the exact energy ground
state energy and the HF energy in a given AO basis. The correlation energy is small in
magnitude when compared to the mean-field energy obtained by an HF calculation. This
correlation energy is important for many molecular systems. Some examples are dispersion
bound complexes [31] and hydrogen abstraction processes [32,33] that need dispersion and
Van der Waals interactions to describe the energetics of the system. Another example is
the oligo-acenes (the naphthalene, anthracene, tetracene, ... series) [34, 35] and any other
molecular system where the wavefunction can only be described well by more than one
Slater determinant, since the mean-field approximation only accounts for one possible con-
figuration of the electrons within the basis functions that have been used in the calculation.
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The mean-field approximation can be steadily improved upon to reach chemical ac-
curacy for chemical systems. Instantaneous electron-electron correlations are modeled in
wavefunction based methods as excitations from the HF occupied orbitals into the remain-
ing virtual orbitals. One common approximation for the correlation energy is Rayleigh-
Schrödinger perturbation theory [36]. The HF reference, |Ψref〉, does not couple directly
to singly excited Slater determinants, |Ψa

i 〉, because the canonical MO representation of
the Fock matrix is diagonal as is seen in Eqn. 1.10. In the order-by-order by expansion of
Rayleigh-Schrödinger perturbation theory to the HF reference, the leading order is second-
order perturbation theory. Second-order perturbation theory couples the HF reference
Slater determinant to doubly excited Slater determinants, |Ψab

ij 〉, and is usually referred to
as Møller-Plesset second-order perturbation theory (MP2). The energy expression for the
MP2 correlation energy is

EMP2 =
1

4

occ∑
i,j

virt∑
a,b

|〈Ψref |Ĥ|Ψab
ij 〉|2

εi + εj − εa − εb
=

1

4

occ∑
i,j

virt∑
a,b

|〈ij||ab〉|2

εi + εj − εa − εb
. (1.19)

The double bar integrals are the anti-symmetric four-center two-electron integrals:

〈ij||ab〉 = 〈χi(r1)χj(r2)| 1

r12

|χa(r1)χb(r2)〉 − 〈χi(r1)χj(r2)| 1

r12

|χb(r1)χa(r2)〉. (1.20)

MP2 is a useful method for improving the quantitative energetics compared to HF. MP2
works well in general for predicting equilibrium properties of molecules. MP2 does not
perform well when HF theory provides a poor reference especially when the molecule is
multi-configurational in nature. Open-shell radicals, diradical systems, conjugated systems
like the oligo-acenes [34, 35] and polyenes [37] are all systems where the HF reference or
a single Slater determinant is a poor reference. The strong (static) correlations in these
types of cases need to be accounted for more directly.

Configuration interaction (CI) [38–41] theory is where the wavefunction is expanded as
a linear combination of all possible determinants up to a certain selected level of electron
excitations (ie. single excitations, double excitations, triple excitations, etc).

|ΨCI〉 = (1 + Ĉ)|Ψref〉

|ΨCI〉 = |Ψref〉+
occ∑
i

virt∑
a

cai |Ψa
i 〉+

occ∑
i,j

virt∑
a,b

cabij |Ψab
ij 〉+ ...

|Ψa
i 〉 = â†aâi|Ψref〉

âi|i〉 = |0〉
â†a|0〉 = |a〉 (1.21)
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The ladder operators, â, create and annihilate electrons in a formalism known as second
quantization [42]. Second quantization is a useful algebraic tool for constructing matrix
elements of the CI coupling matrix. The full configuration interaction (FCI) method con-
structs a full Hamiltonian matrix which accounts for the coupling between all possible
N -electron Slater determinants. The CI Hamiltonian matrix is diagonalized and the low-
est eigenvalue produces an eigenvector containing the optimized CI expansion coefficients
for the ground state of the system within the given basis. The higher energy eigenvalues
produce eigenvectors containing the CI expansion coefficients for the excited states of the
molecular system. The main drawback to CI is its incredibly large cost. The cost grows
factorially with the introduction of new electrons or orbitals to the system. FCI is only
affordable for a very limited number of systems. Currently this limit is about 10 electrons
in a medium sized basis as that leads to billions of configurations that need to be accounted
for [43–48].

1.3 Valence Active Space Correlation Methods

1.3.1 Truncated CI and Size-Consistency

Due to the large cost of a FCI calculation, the number of configurations included in
a CI calculation is often truncated [24, 39, 42]. This truncation is usually not done on a
configuration by configuration basis, but rather by classes of configurations (ie. including
only singly and doubly excited Slater determinants along with the reference). If the CI
expansion is truncated, the energy is not size-consistent [42, 49]. Size-consistency is the
property that a molecular supersystem of two non-interacting fragments A and B have the
same energy as the sum of the energy of the fragments computed individually, EA+B =
EA + EB. In the limit of the fragments becoming non-interacting, the Hamiltonian is
separable,

Ĥ = ĤA + ĤB. (1.22)

A multiplicatively separable wavefunction is one that can be factorized into a product
wavefunction with each product localized on a fragment,

|ΨA+B〉 = |ΨAΨB〉. (1.23)

For an approximation like the HF wavefunction where in the limit on non-interacting frag-
ments, the wavefunction becomes multiplicatively separable, the energies of the supersystem
and subsystems are

EA = 〈ΨA|ĤA|ΨA〉/〈ΨA|ΨA〉
= 〈ΨA|ĤA|ΨA〉
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EB = 〈ΨB|ĤB|ΨB〉/〈ΨB|ΨB〉
= 〈ΨB|ĤB|ΨB〉

EA+B = 〈ΨAΨB|ĤA + ĤB|ΨAΨB〉/〈ΨAΨB|ΨAΨB〉
= 〈ΨA|ĤA|ΨA〉+ 〈ΨB|ĤB|ΨB〉 (1.24)

All multiplicatively separable wavefunctions have size-consistent energy expressions. Be-
cause it is a complete wavefunction, the FCI can be expressed as a product wavefunction
and is size consistent. The truncated CI wavefunction must be expressed as a linear ex-
pansion and is not generally multiplicatively separable. The truncated CI wavefunctions
for the system of two non-interacting fragments, A and B, is

|ΨCI〉 = (1 + Ĉ)|Ψ〉
|ΨA

CI〉 = (1 + ĈA)|ΨA〉
|ΨB

CI〉 = (1 + ĈB)|ΨB〉
|ΨA+B

CI 〉 = (1 + ĈA + ĈB)|ΨA+B〉. (1.25)

The expectation values of the CI wavefunction of the subsystems, A and B, with the
Hamiltonian are

EA = 〈ΨA
CI |ĤA|ΨA

CI〉/〈ΨA
CI |ΨA

CI〉
EB = 〈ΨB

CI |ĤB|ΨB
CI〉/〈ΨB

CI |ΨB
CI〉. (1.26)

The expectation value of the truncated CI wavefunction of the supersystem with the Hamil-
tonian is

EA+B = 〈ΨA+B
CI |ĤA+B|ΨA+B

CI 〉/〈Ψ
A+B
CI |Ψ

A+B
CI 〉. (1.27)

The numerator of Eqn 1.27 can be expressed as

〈ΨA+B
CI |ĤA+B|ΨA+B

CI 〉 = 〈ΨAΨB|ĤA + ĤB|ΨAΨB〉
+ 〈ΨAΨB|(ĈA + ĈB)(ĤA − EA

HF )(ĈA + ĈB)|ΨAΨB〉
+ 〈ΨAΨB|(ĈA + ĈB)(ĤB − EB

HF )(ĈA + ĈB)|ΨAΨB〉. (1.28)

Eqn. 1.28 simplifies to

〈ΨA+B
CI |ĤA+B|ΨA+B

CI 〉 = EA
HF + 〈ΨA|ĈA(ĤA − EA

HF )ĈA|ΨA〉
+ EB

HF + 〈ΨB|ĈB(ĤB − EB
HF )ĈB|ΨB〉

〈ΨA+B
CI |ĤA+B|ΨA+B

CI 〉 = 〈ΨA
CI |ĤA|ΨA

CI〉+ 〈ΨB
CI |ĤB|ΨB

CI〉. (1.29)
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The numerator of the CI expectation value separates to an expression that appears to be
size-consistent. The denominator of Eqn 1.27 can be expressed as

〈ΨA+B
CI |Ψ

A+B
CI 〉 = 1 + 〈ΨA|ĈAĈA|ΨA〉+ 〈ΨB|ĈBĈB|ΨB〉

= 〈ΨA
CI |ΨA

CI〉+ 〈ΨB
CI |ΨB

CI〉 − 1. (1.30)

The combination of the numerator in 1.29 and the denominator in 1.30 does not yield an
expression that is equivalent to summing the two individual fragments energies in 1.26.
The truncated CI wavefunction is not size-consistent because it must be expressed as a
linear combination of determinants and not a product wavefunction.

1.3.2 CASSCF

The truncation of the set of configurations in the CI wavefunction by excitation level
means that not all potentially important strong correlations are accounted for. An al-
ternate truncation is to define an active space containing only a subset of the occupied
and virtual spin orbitals for computing the correlation energy. An ideal active space in-
cludes only the valence orbitals. Valence orbitals are typically the highest energy occupied
and lowest energy virtual orbitals. The physical interpretation for the types of orbitals
included in the valence space are: bonding occupied orbitals, lone pair occupied orbitals,
singly occupied orbitals, anti-bonding virtual orbitals, and virtual orbitals that correspond
to the anti-bonding orbital of a lone pair occupied orbital. The cost of including addi-
tional electrons in the active space is exponential in cost for complete CI expansions of
the wavefunction. The active space should include a sufficient but not excessive number
of orbitals to describe the static correlations and form all the appropriate Slater determi-
nants to describe the multi-reference/multi-configurational nature of the true wavefunction.

The MO expansion coefficients can be re-optimized along with the simultaneous deter-
mination of the the CI coefficients to improve the wavefunction. Complete Active Space
Self-Consistent Field (CASSCF) [50–55] is a method for strong correlation which opti-
mizes the MO expansion coefficients while accounting for all possible N -electron excita-
tions within the active space. Unlike MP2 and the other CI theories discussed, CASSCF
is a model chemistry that re-optimizes the MO expansion coefficients after they have been
optimized in the HF level of theory. The re-optimization of the MO expansion coefficients
emphasizes the other configurations as well as the reference configuration. The resulting
wavefunction well describes the multi-configurational/multi-reference nature of molecular
systems and provides an accurate correlation energy for the static correlations. CASSCF
is a full CI method in the active space and therefore is size-consistent. However as a result,
the cost of CASSCF increases exponentially with the number of active electrons. CASSCF
also does not account for any residual, dynamic, correlation. The dynamic correlation is
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necessary to describe obtain the true non-relativistic ground state energy of the system and
to accurately predict phenomena such as reaction energies, reaction barrier heights, and
Van der Waals interactions.

1.3.3 GVB-PP

CASSCF is exponential in computational cost to determine the CI coefficients and is
iterative to simultaneously optimize the CI coefficients and the MO expansion coefficients.
To apply valence active space correlation theories to larger molecular systems or larger ac-
tive spaces, the overall cost of the calculation must be reduced. The strongest correlations
are often local in nature, and a local approximation to the correlation can be used to im-
prove the computational efficiency of CASSCF. Generalized Valence Bond-Perfect Pairing
(GVB-PP) [56, 57] is a simple, highly local approximation to CASSCF in the active space
which includes one active orbital per active electron (often called the pairing active space).

The GVB-PP wavefunction describes how electrons interact in a pairwise fashion. The
spin orbitals in the active space can be assembled into two-electron pairs such that the
two spin orbitals in the pair describe the same chemical feature, ie. a σ bond. In a spin-
restricted calculation, these spatial functions of these paired spin orbitals are exactly the
same. Each occupied pair is perfectly paired to a virtual pair of spin orbitals that are
grouped together in a similar manner as the occupied spin orbital pairs. These occupied-
virtual pairings are done in a one-to-one fashion with only one pair of occupied orbitals
correlating with one pair of virtual orbitals. The occupied-virtual pairings are determined
variationally to account for the strongest correlations. The strongest correlations will typ-
ically be with a bonding orbital pair, i, and its corresponding anti-bonding orbital pair, i∗.
A consequence of this one-to-one type of occupied-virtual pairing is that the active space
must have the same number of occupied orbitals as it does virtual orbitals.

Correlating a pair of occupied orbitals to a pair of virtual orbitals is equivalent to
accounting for a single doubly excited CI configuration. A specific GVB-PP anti-symmetric
geminal can be created for pair i to incorporate the correlation:

gPPi (r1, r2, ω1, ω2) = 2−
1
2

[
φi(r1)φi(r2) + ci

∗i
∗

ii
φi∗(r1)φi∗(r2)

]
(α(ω1)β(ω2)− α(ω2)β(ω1)) .

(1.31)
The spatial portions of each of the occupied and virtual paired orbitals is shown here as
different to represent the case of spin-unrestriction. The spatial one electron functions of
different spin will be allowed to vary from one another to lower the overall energy in a
spin-unrestricted formalism. If there is no truncation of correlations in the active space
correlation method, as in CASSCF, then restricted orbitals can be employed to ensure a
spin-eigenstate is obtained. If the correlation treatment is approximate, as in GVB-PP,
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then spin-unrestricted orbitals are essential in order to obtain correct dissociation prod-
ucts, particularly for dissociating multiple bonds and generally for any system with multiple
correlated electron pairs.

A total GVB-PP wavefunction can be expressed as an anti-symmetric Slater determi-
nant, represented by the anti-symmetry operator Â, of the core orbitals outside the active
space and the GVB-PP geminals,

|ΨGV B−PP 〉 = Â|χ1χ2...g
PP
i gPPj ...〉. (1.32)

Due to the nature of the occupied-virtual pairing, there are only a linear number of expan-
sion coefficients, ci

∗i
∗

ii
, to optimize along with the MO expansion coefficients to obtain the

GVB-PP wavefunction. This smaller number of variables greatly reduces the cost of the
overall valence active space calculation for GVB-PP compared to CASSCF. GVB-PP can
be used for larger molecular systems with larger active spaces than CASSCF. For example,
GVB-PP can be used to analyze long arene chains with the full bonding active space as
opposed to just the π bonding active space of benzene.

1.3.4 Localized Orbitals

Canonical HF MOs are very non-local and often span much of the whole molecular
system, whereas the GVB-PP MOs localize in space due to the highly local nature of the
correlation energy. The localized GVB-PP MOs resemble the MOs that would be predicted
with some intuition about chemical bonding, ie. σ and π bonding orbitals that span only
the space of a few atoms and core orbitals that localize on single atoms in the molecule.
Linear combinations of the canonical HF MOs can be made to closely resemble the GVB-PP
MOs. Localizing the canonical HF MOs before a GVB-PP orbital optimization improves
the GVB-PP calculation by reducing the total number of iterations necessary to solve for
the GVB-PP energy and wavefunction. Localization for active space methods is done in-
dependently in the subspaces of the inactive (core) occupied orbitals, the active occupied
orbitals, the active virtual orbitals, and the inactive virtual orbitals.

Many methods exist to localize orbitals based on optimizing the orbitals to meet a
certain criterion. The Boys localization [58] method minimizes the sum of spatial extent
of the orbitals. For each orbital i in the subspace of orbitals being localized, the spatial
extent integral is evaluated,

〈χi(r1)χi(r2)|(r1 − r2)2|χi(r1)χi(r2)〉. (1.33)

These integrals are summed and the orbitals in the subspace are rotated with each other to
minimize that sum. Boys localization can also be written as a maximization of the distance
between orbital centroids,
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∑
i,j

[〈χi(r1)|r1|χi(r1)〉 − 〈χj(r1)|r1|χj(r1)〉]2 . (1.34)

This process can be done with just the dipole integrals and can be solved in third order
time once those integrals are known. Boys localization is an iterative procedure repeated
iteratively until the orbitals self-consistently extremize either representation of the local-
ization kernel.

The Edmiston-Ruedenberg (ER) localization [59,60] method maximizes the self-interaction
energy of the orbitals. For each orbital i in the subspace of orbitals being localized, the
self-interaction energy integral is evaluated,

〈χi(r1)χi(r2)| 1

|r12|
|χi(r1)χi(r2)〉. (1.35)

These integrals are summed for all the orbitals in the subspace being localized and rotated
to maximize that sum. This localization procedure is also iterative and the formation of
these integrals has equivalent computational cost to the formation of the coulomb integrals
for HF. The ER procedure without the use of the resolution of the identity (RI) approxi-
mation [61–63] has equivalent overall computational cost to performing a HF computation.
With RI, the ER procedure is reasonably efficient though still much costlier than the Boys
method. These orbitals can be considered as the most classical and useful for creating a
valence correlation picture as they minimize the overall exchange between all the orbitals
by maximizing the self-interaction within an orbital [64, 65].

The Pipek-Mezey (PM) localization [66] method is perhaps the best balance of speed
and quality of orbitals. The PM localization scheme is based on population localization and
seeks to minimize the number of atoms spanned by the charge density. in this procedure
an atomic density projection operator is constructed for each atom A, P̂A, spanning all the
atomic functions on atom A. The functional of the population can be created,

P {ψi...ψN} =
∑
i

∑
A

[
〈i|P̂A|i〉

]2

. (1.36)

This population per atom is then maximized to localize the overall extent of each MO. PM
localization is a third order method like Boys localization. PM localization works well for
localized systems and typically converges faster than a Boys localization [67].

Once the occupied orbitals have been localized, how should the active space virtual
orbitals that are the best guess to the pairing orbitals be found? The procedure of Sano [68]
provides a good guess for the GVB-PP virtual orbitals. In the Sano procedure the active
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occupied orbitals are gone through one-by-one and an exchange matrix is produced that
evaluates the exchange of the occupied orbital i with that of the entire virtual space,

K
[ii]
ab = 〈ii|ab〉. (1.37)

The eigenvalues of this matrix are found, and the largest eigenvalue’s eigenvector is used
to construct a guess virtual orbital. The largest eigenvalue is chosen because that virtual
orbital has maximal exchange with the paired occupied orbital i. The virtual orbital with
the maximal exchange with its paired occupied produces the lowest GVB-PP energy for
that pair. The new modified virtual orbital is projected out of the virtual space and the
procedure is then repeated for all other occupied orbitals in the active space. This new
set of active space virtual orbitals is paired correctly for GVB-PP and does not need to
be further localized. Only the remaining inactive virtual orbitals remain to be optionally
localized to create a high quality initial guess for GVB-PP.

1.4 Coupled Cluster Theory

1.4.1 Basics of Coupled Cluster Theory

Coupled cluster (CC) theory [49, 69–77] is an alternative to CI for approximating the
correlated wavefunction. Instead of a linear superposition of determinants, CC theory
revolves around an exponential form of the wavefunction,

|ΨCC〉 = eT̂ |Ψref〉. (1.38)

The cluster operator, T̂ is a linear combination of excitation operators, like the CI operator
Ĉ, that can include single, double, triple, and higher excitations. If the cluster operator is
not truncated it is the exact wavefunction, but it is often truncated to make the method
computationally tractable for a variety of systems. The highest excitation operators in-
cluded in the cluster operator define the level of the truncated CC theory.

ĤeT̂ |Ψref〉 = EeT̂ |Ψref〉
T̂ = T̂1 + T̂2 + ...

T̂1 =
occ∑
i

virt∑
a

tai â
†
aâi

T̂2 =
1

4

occ∑
i,j

virt∑
a,b

tabij â
†
aâ
†
bâj âi. (1.39)

The equations for the energy and the amplitudes, t, can be determined by simply left pro-
jecting any level of excited determinant on the CC eigenvalue expression, with intermediate
normalization assumed (〈Ψref |ΨCC〉 = 1):
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〈Ψref |ĤeT̂ |Ψref〉 = E〈Ψref |eT̂ |Ψref〉 = E

〈Ψab...
ij... |ĤeT̂ |Ψref〉 = E〈Ψab...

ij... |eT̂ |Ψref〉. (1.40)

An equivalent form of the projection approach demonstrated in Eqn. 1.40 most com-
monly used to solve for the CC energy and amplitudes utilizes a left projection of the
inverse of the exponential operator, e−T̂ ,

〈Ψref |e−T̂ ĤeT̂ |Ψref〉 = E〈Ψref |e−T̂ eT̂ |Ψref〉 = E〈Ψref |Ψref〉 = E

〈Ψa
i |e−T̂ ĤeT̂ |Ψref〉 = E〈Ψa

i |e−T̂ eT̂ |Ψref〉 = E〈Ψa
i |Ψref〉 = 0

〈Ψab
ij |e−T̂ ĤeT̂ |Ψref〉 = E〈Ψab

ij |e−T̂ eT̂ |Ψref〉 = E〈Ψab
ij |Ψref〉 = 0

tai : ωai = 〈Ψa
i |e−T̂ ĤeT̂ |Ψref〉 = 0

tabij : ωabij = 〈Ψab
ij |e−T̂ ĤeT̂ |Ψref〉 = 0. (1.41)

This form uses the similarity transformed Hamiltonian, e−T̂ ĤeT̂ , which is not Hermitian
but has an identical eigenvalue spectrum to the original Hamiltonian if the cluster operator
is not truncated and is very similar if the cluster operator is truncated [49]. The similarity
transformed Hamiltonian can be evaluated as a sum of nested commutators of Ĥ and T̂ in
order to solve equations in 1.41.

The projective approach to solving the CC equations is non-variational as the left pro-
jection is not equivalent to an expectation value expression of the CC equations as the
inverse of the exponential cluster operator is not equivalent to the adjoint of the exponen-

tial cluster operator, e−T̂ 6= eT̂
†
. The CC energy evaluated in this fashion will not be an

upper bound to the true ground state energy unless the cluster operator is not truncated.
The CC amplitudes are formally exact if the cluster operator is not truncated.

To examine the size-consistency of the CC energy, the same model used in Section 1.3.1
needs to be applied to the CC wavefunction and energy. Using the exponential cluster
operator, the wavefunction of the supersystem of A+B is

|ΨCC〉 = eT̂A+T̂B |ΨA+B〉
|ΨCC〉 = eT̂AeT̂B |ΨA+B〉
|ΨCC〉 = |eT̂AΨAe

T̂BΨB〉. (1.42)

The CC wavefunction for the non-interacting fragments can be expressed as a multiplica-
tively separable product wavefunction. The energy can be evaluated similarly to Eqn.
1.24. Regardless of the level of truncation, the CC energy is size-consistent because the
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CC wavefunction can always be expressed as a product wavefunction.

Coupled cluster doubles (CCD) is the smallest truncation that makes any correction to
the energy obtained using the HF wavefunction as the reference wavefunction for CC theory.
By contrast with MP2, the CCD amplitudes, tabij , include contributions up to infinite-order
not just first-order, and they produce better overall energies and properties. The energy
expression for CCD using the HF wavefunction as a reference is

ECCD = EHF +
1

4

occ∑
i,j

virt∑
a,b

tabij 〈ij||ab〉. (1.43)

Solving the full CCD amplitude equations scales with the 6th power of molecular size
computationally. For large basis sets, the scaling is more precisely the size of the occupied
space squared, o2, by the size of the virtual space to the 4th power , v4, yielding the true
6th order scaling of the method, o2v4. Increasing the molecular system size only raises the
cost of a CCD calculation 6th order polynomial time, not factorial time like CI.

1.4.2 Coupled Cluster Generalized Valence Bond Theory

Because of the highly desirable properties of size-consistency and containing infinite-
order perturbation contributions, GVB wavefunctions can be re-cast from the geminal form
shown in Eqn. 1.32 into an exponential CC wavefunction [78, 79]. This re-formulation is
called generalized valence bond-coupled cluster (GVB-CC) theory. The one CI doubles
excitation operator per geminal can be replaced with an exponential CCD operator that
only includes only the diagonal amplitudes correlating pairs in the active space,

T̂PP =

Npairs∑
i

ti
∗i
∗

ii
â†i∗ â

†
i
∗ âiâi

EPP = Eref +

Npairs∑
i

ti
∗i
∗

ii
〈ii||i∗i∗〉. (1.44)

The perfect pairing (PP) method optimizes both the small number of retained CCD am-
plitudes and the MO expansion coefficients. To do this, CC theory can be made to be
pseudo-variational by using Lagrange’s method of undetermined multipliers by using a de-
excitation operator in the left projections of Eqn. 1.41. For a full treatment of CCD, the
pseudo-variational Lagrangian looks like:

Λ̂2 =
1

4

occ∑
i,j

virt∑
a,b

λabij â
†
i â
†
j âbâa
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LCCD = 〈Ψref |(1 + Λ̂2)e−T̂2ĤeT̂2|ΨRef〉

LCCD = Eref +
1

4

occ∑
i,j

virt∑
a,b

tabij 〈ij||ab〉+
1

4

occ∑
i,j

virt∑
a,b

λabij ω
ab
ij . (1.45)

The specific PP Lagrangian can be found by substituting the PP cluster operator, T̂PP ,
and its analogous PP de-excitation operator, Λ̂PP , into the final expression in Eqn. 1.45.
The amplitudes and Lagrange multipliers are simultaneously optimized via the conditions:

∂LCCD
∂tabij

= 0

∂LCCD
∂λabij

= 0. (1.46)

The CCD residual, ωabij , can be expanded in terms of four-center two-electron integrals,
Fock matrix elements, and amplitudes into the expression in Eqn. 1.45. Collecting similar
terms in this full algebraic expansion yields effective one-particle and two-particle density
matrices,

γiifii =
[
−tabij λabij + ...

]
fii

Γijab〈ij||ab〉 =
[
tabij + λabij + ...

]
〈ij||ab〉. (1.47)

Since t and λ are stationary as shown in Eqn. 1.46, these density matrices can be used
to construct gradients and Hessians as demonstrated in Section 1.2.2. The GVB-CC PP
equations can be optimized for both amplitudes, Lagrange multipliers and MO expansion
coefficients similar to the way they are optimized in Section 1.3.3.

The GVB-CC methods as shown can be expanded to including additional determinants
beyond those of PP. The expansion is done by improving the cluster operator T̂ by includ-
ing additional terms beyond PP. Adding more substitutions to a GVB-CC cluster operator
requires only polynomial additional computational effort, not factorial extra effort. The
valence optimized doubles (VOD) [80, 81] method is a GVB-CC model that contains all
active space double substitutions via T̂2. VOD has 6th order computational cost like solv-
ing the full set of CCD amplitude equations. Since VOD is done in the PP active space,
the number of correlated virtual and occupied orbitals is equivalent yielding a scaling of
o6
act. Unlike CCD, VOD optimizes the MO expansion coefficients making the whole process

iteratively 6th order. The computational cost of VOD is an improvement over the compu-
tational cost of CASSCF, but it is much slower than a PP calculation. The PP amplitudes
can be expressed as a sequence of quadratic equations that can be solved in linear time,
so PP is limited only by the cost of forming the necessary four-center two-electron MO
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integrals and the Fock matrix.

Another approximate GVB-CC method that is a truncation of the full doubles operator
is imperfect pairing (IP) [82,83]. In addition to the PP correlations, IP extracts the leading
inter-pair correlations that couple up to only two pairs. The cluster operator for IP is

T̂IP = T̂PP +

Npairs∑
i,j 6=i

[
ti
∗j∗

ij â†i∗ â
†
j∗ âj âi + tj

∗i∗

ij â†j∗ â
†
i∗ âj âi

]
. (1.48)

The IP amplitudes and Lagrange multipliers can be obtained in 3rd order time, o3
act, using

only quadratic memory. PP and IP are both iterative and limited in cost by the formation
of the four-center two-electron MO integrals. IP produces better energies than PP, but still
suffers from some of the problems like symmetry-breaking [84]. Additionally it is not exact
for two pairs of electrons relative to CASSCF. Addition of all such terms define the perfect
quadruples (PQ) method [85].

The GVB-CC methods developed to date solve the static correlation well for most sys-
tems, but they suffer from a few key outstanding problems. The first problem is that
methods with a truncated set of doubles amplitudes like PP and IP prefer electronic struc-
tures localized only over a single bond as opposed to electronic structures de-localized over
larger sections of a molecule. This is not problem for molecules like linear alkanes, but it
is a problem in aromatic systems like benzene. The well understood electronic symmetry
of these kinds of molecules is lost to emphasize highly localized bonds [84]. The PP and
IP correlation energies from D3h structures with the π bonds localized to resemble three
distinct double bonds are lower than the correlation energy produced in a D6h structure
with the π bonds de-localized over the entire ring.

The second outstanding problem is with spin-unrestriction [86, 87]. As mentioned in
section 1.3.3, methods that do not include all possible correlations with the active space
must utilize spin-unrestriction to obtain the correct dissociation products and energy. Ar-
tifacts arise in trying to use spin-unrestriction with an active space method. As a bond
that is being correlated dissociates, its energetic contribution to the correlation energy goes
to zero with spin-unrestricted orbitals. With orbitals allowed to freely spin-unrestrict, in
this limit the orbitals producing zero correlation energy are rotated out of the active space
and orbitals that were inactive before are rotated into the active space to lower the energy.
The deformations of the active space are irreparable at the level of freely spin-unrestricting
PP [86,87].

Another problem is that GVB methods solve for static correlations and lack a good
description of the residual dynamic correlation. All static correlation methods suffer from
this problem. CASPT2 [88–93] is usually employed to correct for the missing dynamic cor-
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relations in CASSCF. CASPT2 employs Møller-Plesset second-order perturbation theory
using the optimized CASSCF wavefunction as a reference. CASPT2 correlates inactive
orbitals with themselves and the orbitals in the active space. CASPT2 is very accurate,
but very computationally expensive. Second-order Møller-Plesset perturbation theory has
also been combined with GVB-PP methods [94–98]. In order to use a perturbation theory
correction to GVB-CC PP, the second-order perturbation theory needs to be adapted to
work with the similarity transformation Hamiltonian [99–102]. The PP(2) method uses the
appropriate form of second-order perturbation theory with the GVB-CC implementation
of PP [103]. The perturbation theory corrections to PP are algebraically simpler than what
is necessary for CASPT2 and are less computationally expensive. The perturbative correc-
tion in PP(2) scales the same as doing a single MP2 calculation. The cost of a perturbative
correction to a CASSCF calculation is relatively inexpensive compared to the full cost of
obtaining the CASSCF energy and wavefunction. However, the perturbative correction in
PP(2) can often be more expensive that the optimization of the PP energy and wavefunc-
tion. All of these perturbative corrections produce results that typically agree much better
with FCI than the parent static correlation method. The drawbacks to all of these methods
is that the cost of the perturbative correction can be quite expensive compared to a single
iteration of the parent method, the perturbative corrections are only applied at the end
of the static correlation calculation and are not self-consistent, and the quality of the cor-
rection depends on the quality of the solution produced by the static correlation calculation.

Density functional theory (DFT) has also been used to obtain the residual correlation
energies after a static correlation method [104–117]. Using DFT over second-order pertur-
bation theory has the advantage of improved computational efficiency, and it can be solved
for self-consistently with the static correlation. The existing DFT functionals for corre-
lation energy are not well-suited for use in getting the residual correlation energy when
combined with static correlation methods and potentially double count the correlations
already accounted for in the static correlation method.

Another practical problem is that of multiple orbital solutions to the energy minimiza-
tion problem. This is a problem that is even experienced with CASSCF. The best solution
is to test several initial guesses with an optimization algorithm that does not readily hop
between different solutions [30] to isolate the various low energy solutions.

1.5 Outline of this Work

1.5.1 Symmetry-breaking in GVB-CC methods

A localized orbital reference is the key to the speed and accuracy of the Generalized
Valence Bond methods. This can be problematic when the nature of the orbitals is actually



1.5. OUTLINE OF THIS WORK 21

de-localized, for example in aromatic hydrocarbons. This over-localization is often quite
dramatic and leads to undesirable symmetry breaking artifacts. These artifacts are dra-
matic enough that methods like Perfect Pairing will predict two different 3-fold symmetric
bond lengths for benzene as opposed to one 6-fold symmetric bond length [84]. In chapter
2, the ability to correct the coupled cluster based GVB methods like perfect and imperfect
pairing [82, 83, 86] by making a mixed Lagrangian of infinite-order coupled cluster theory
and second-order perturbation theory (PT) is explored. We justify that the PT only needs
to couple up to three correlating pairs, and then we discuss the algorithmic implementa-
tion of the energy and nuclear gradient for the resulting mixed Lagrangian method that is
have dubbed Three-Pair Corrected Imperfect Pairing (TIP). Finally, the results of the TIP
method on large aromatic hydrocarbons are presented. This chapter has been published as
an article in the Journal of Chemical Physics [118].

1.5.2 Penalty functions for combining coupled cluster and per-
turbation amplitudes in local correlation methods with op-
timized orbitals

All correlation methods that completely span the space of correlations they account
for (i.e. CCD) gain rotational invariance of their orbitals. CCD has occupied-occupied
and virtual-virtual rotational invariance, meaning that any rotation of an occupied orbital
with another occupied orbital or the rotation of any virtual orbital with another virtual
orbital will not affect the energy produced by the calculation. Since the GVB-CC methods
specifically truncate the space of all possible correlations, this typical rotational invariance
exhibited by CC theory when truncated only by excitation level is lost. Particularly in
the case of the mixed Lagrangian TIP method [118], this loss of invariance proves to be
quite catastrophic. In TIP, the correlations are separated into spaces of weak and strong
correlations and this lost rotational rotational invariance leads to the orbitals re-ordering
and the sub-spaces of strong and weak correlations losing their appropriate meaning and
leading to energies that are fictitiously too low. In chapter 3, we demonstrate the ability
to apply a penalty function to the TIP correlations and prevent these rotations which
artificially lower the energy. The parameterizing of this penalty function and the results
of applying the improved TIP method to several chemical systems are presented. This
chapter has been published as an article in Molecular Physics [119].

1.5.3 The numerical condition of electron correlation theories
when only active pairs of electrons are spin-unrestricted

Many electronic structure theories simplify the complicated nature of separating elec-
tron pairs by allowing the wavefunction to break spin symmetry instead of accounting
for all possible correlations that would be necessary to fully and accurately describe this
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process with spin-restricted orbitals. The spin-unrestricted wavefunction at dissociation
should match the energy of the non-interacting fragments at dissociation, however artifacts
arise when doing spin-unrestriction with valence space correlation methods [86, 87]. In re-
defining a basis for spin-unrestriction, we found that the CC amplitude equations became
ill-conditioned to the point of being singular. In chapter 4, the ill-conditioning is examined
and its origins are examined. A simple fix to this singularity in the form of a regularization
via a penalty function on the coupled cluster amplitudes is offered. This chapter has been
published as an article in the Journal of Chemical Physics [120].

1.5.4 Orbitals that are unrestricted in active pairs for GVB-CC
methods

Spin-unrestriction is vital to dissociating electron pairs when the wavefunction is only
approximate and has a truncated description of the actual electron correlations. Valence
active space space correlation methods tend to have artifacts with spin-unrestriction. In
chapter 5, the Unrestricted-in-Active-Pairs (UAP) approximation is explored. UAP is
designed to smoothly spin-unrestrict one pair at a time by allowing an occupied orbital
pair in the active space to mix only with its perfectly paired virtual orbital pair in order to
spin-unrestrict. This spin-unrestriction is controlled via a single degree of freedom for each
correlating pair reducing the number of degrees of freedom needed in spin-unrestriction from
an additional number of total orbitals squared to just a single variable for each correlating
pair. The algorithm and implementation of UAP is analyzed. Results on the smooth
dissociation of many types of chemically bonded systems and the predictive capabilities for
UAP on open-shell systems are presented. This chapter has been submitted for publication
as an article in the Journal of Physical Chemistry A.

1.5.5 Analysis of multi-configurational Kohn-Sham methods: The-
ory and model application to bond-breaking.

GVB-CC methods only account for static (strong) correlations. In chapter 6, we show
that Density functional theory (DFT) [121] can be combined with multi-configuration/multi-
reference wavefunction theory without any loss of exactness. This combination can be used
to account for the missing dynamic (residual) correlation energy that is typically lacking in
multi-configurational wavefunction methods. We explore combining DFT, and more specif-
ically the correlation function of Lee, Yang, and Parr [122] with PP. An approximate form
of the correlated PP density with a correction for double-counting of the correlation energy
for use in the DFT correlation energy is presented with results for this formulation on a
simple bond breaking example. This chapter has been published as an article in Molecular
Physics [123].
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Chapter 2

Symmetry-breaking in GVB-CC
methods

2.1 Introduction

Kohn-Sham density functional theory methods [124, 125] are the most computation-
ally efficient electronic structure theories for molecules [126], because with present-day
exchange and correlation functionals, they have only the computational requirements of
one-particle methods. However due to limitations of the functionals, they are not sat-
isfactory for treating many molecules that exhibit strong correlations (for example, the
phenalenyl dimer [127]). Since such systems exhibit more than one important orbital con-
figuration, efficient single-reference wavefunction approaches like second-order perturbation
theory are also inadequate.

Instead, strong correlations between electrons are often treated by wavefunction-based
methods that are either literally or conceptually of the complete active space (CAS)
type [50,53,54]. Real CAS methods correspond to solving the time-independent Schrdinger
equation in an orbital active space that spans valence bonding and anti-bonding orbitals,
as exemplified by the perfect pairing (PP) active space which provides one correlating
orbital for each valence occupied orbital. The orbitals are optimized to minimize the en-
ergy, defining the CAS self-consistent field (CASSCF). The computational cost associated
with CASSCF is approximately exponential in the number of active electrons, as it is a
Schrdinger equation. Thus, while correlating all valence electrons is in principle the goal, it
is impossible in practice for all but the smallest molecules. Practical CASSCF calculations
always involve a very difficult molecule-dependent definition of a truncated active space,
often by trial and error.

Instead of truncating the active space, a desirable alternative is to approximate the
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CASSCF model so that all valence electrons could be retained as active. This is sometimes
done in CI language by restricting the excitations within the active space [51], but this is
generally not size-consistent. There are also promising results from the numerical density
matrix renormalization group (DMRG) [128,129], which stores many-body matrix elements
rather than explicit eigenvectors. However, this is not yet a theoretical model chemistry,
and is so far most applicable to one-dimensional systems.

In this work, we consider an active space coupled cluster (CC) approach (where the

wavefunction, Ψ = exp
(
T̂
)

Φ, is formed by the action of a non-linear correlation factor on

a mean field reference Φ). The cluster operator, T̂ , is truncated at a given level such as
double excitations, defining the valence optimized doubles (VOD) model [80,81]. Within a
PP active space this corresponds (for the closed shell singlet case) to the following cluster
operator:

T̂ V OD =
v∑
i

v∑
k∗l∗

tk
∗ l̄∗

īi a†k∗a
†
l̄∗
aīai +

v∑
i>j

v∑
k∗l∗

tk
∗l∗

ij Êik∗Êjl∗ (2.1)

where we have introduced the unitary group generators, . The orbitals are optimized to-
gether with the amplitudes, defining the active space. The computational cost of the VOD
model is M6 with molecule size, which is still too limiting for applications to large molecules.

It is possible to further truncate the double substitution operator based on spatial lo-
cality considerations, along the lines of the local correlation models that have been pursued
in wavefunction methods that do not employ active spaces. The strongest correlations are
between electrons in the two orbitals that define a pair (i.e. intra-pair) since they are closest
together, and thus a model that includes only these excitations may be defined [78,86]

T̂ PP =

v/2∑
i∗

ti
∗i∗

īi â†i∗ â
†
i∗
âīâi (2.2)

This is commonly known as the perfect pairing model, and it reproduces CASSCF for a
single pair in the PP active space, while also being size-consistent. It is the CC version of
the more widely known variational generalized valence bond PP (GVB-PP) method [56,57].
PP has the chemical advantage of leading naturally to active orbitals that when fully opti-
mized are often localized into bonds or lone pairs, and accordingly may be interpreted to
understand the nature of the strongest correlations. The CC version is identical to GVB-
PP for a single pair, but is not guaranteed variational for larger systems (though we have
not seen breakdowns in practice).

In the PP model, electrons in different pairs are uncorrelated. We have suggested
extensions to the CC PP model that include the leading inter-pair correlations – defining
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the imperfect pairing (IP) model [79,83]:

T̂ IP = T̂ PP +

v/2∑
i 6=j

(
ti∗j∗ij Êii∗Êjj∗ + tj∗i∗ij Êij∗Êji∗

)
(2.3)

The IP model is, in a sense [79], an extensive analog of the GVB-RCI approach [130].
IP recovers a significantly higher fraction of the valence correlation energy than PP, and
additionally performs better for systems with multiple strongly correlated electron pairs,
such as double and triple bonds. The IP-type excitations are known from test calculations
to be the next largest amplitudes behind those of PP type when localized orbitals are em-
ployed [84].

The PP and IP models have been efficiently implemented [82, 131], including orbital
optimization and nuclear gradients, and have been used in a variety of chemical applica-
tions to diradicaloid molecules [132–135]. Second-order perturbation corrections to both
the GVB [136] and CC [103] forms of PP theory have been suggested. Within the valence
space, it is also possible to consider the further extension that includes all correlations
coupling two electron pairs [84], although this appears challenging to implement efficiently.

While these methods are chemically very appealing, it has been known for possibly as
long as 30 years that GVB-PP exhibits undesirable symmetry-breaking (SB) artifacts. The
CC-based PP method is no different. Benzene is a simple and striking example of these
problems, because, as shown in Fig. 2.1 (see Fig. 2.2 for the definition of the distortion
coordinate), the PP model favors alternating short and long bonds giving D3h symmetry
rather than the correct D6h symmetry. Not only is the potential curve qualitatively wrong,
but at the D6h geometry, the wavefunction breaks symmetry, as indicated by a slight charge
alternation. There are two such solutions, corresponding to the curves to the left and right
of D6h in Figure 2.1, and they intersect at a sharp cusp. This effect arises because the
PP optimized orbitals for the 6 π electrons localize into 3 partial double bonds of a sin-
gle resonance structure (and at the symmetric geometry there are 2 equivalent resonance
structures).

This is a very troublesome issue for chemical applications, which can potentially afflict
many molecules whose electronic structure consists of superpositions of resonance struc-
tures. One might hope that inclusion of some non-local correlations coupling electrons in
different pairs in the more advanced IP model might solve this problem. However IP was
also shown to break symmetry for benzene, though to a lesser extent (see Fig. 2.1). Full
geometry optimization with the same basis yields alternating bondlengths of 1.37 Å and
1.46 Å for PP, while at the IP level the bond lengths are 1.38 Å and 1.45 Å. This is a
substantial artifact, and therefore solutions to the SB problem have been proposed, such as
resonating GVB-PP [137], or the related “breathing orbital” valence bond method [138].
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Figure 2.1: Potential energy curve for distortion of benzene along the coordinate described in Fig.
2.2, showing symmetry breaking with the PP and IP methods which neglect non-local correlations.
Absolute energies (6-31G* basis) at D6h geometry are: -230.702049 H for HF, -230.902841 H for
PP, -231.014028 H for IP, and -231.089623 H for VOD.

These approaches, however, fail to be well-defined chemical models, because they rely on
identifying the multiple resonance structures, which is a molecule-by-molecule (and even
geometry-by-geometry) problem.

The SB issue in benzene is also a manifestation of a more general problem with the prac-
tical performance of local correlation models [139]. Along the distortion coordinate that
deforms benzene from D6h symmetry to D3h symmetry, the extent of localization of elec-
tron correlation effects changes. Correlation effects are most delocalized at the symmetric
geometry, and become more localized as the electronic structure tilts away from aromatic
and towards localized alternating single and double bonds. Thus the fractional recovery
of the correlation energy by a local correlation model changes along the reaction coordi-
nate [84], and this changing error causes the relative energy to be lower at symmetry-broken
geometries. This situation will, unfortunately, be common on many reaction coordinates.
Reactants and products, as stable chemical species, will typically display greater localiza-
tion of electronic structure, while geometries corresponding to intermediate saddle points
may display more delocalized bonding. Local correlation models such as PP and IP will
perform relatively better on the localized structures, and will therefore potentially exhibit
relative errors due to local correlation that are not present in a complete treatment of the
valence pair correlation operator (VOD) (or even in the mean field Hartree-Fock model
which neglects all electron correlations, as shown in Fig. 2.1). Conversely, other local
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Figure 2.2: The deformation angle ∆ in benzene is defined as the magnitude of the deviation of
the CXC (X being the geometric center) angles from 60◦. Adjacent CXC angles will therefore
be (60+∆) and (60−∆)◦. Fig. 2.2a shows D6h benzene with ∆=0. Fig. 2.2b is an example of
a D3h benzene with ∆=10. Carbon atom positions are fixed at 1.395249 Å from the geometric
center and hydrogen atom positions are fixed at 2.482360 Å (from the MP2/6-31G* optimized
D6h geometry).

correlation methods also exhibit SB in benzene for the same reason [140].

The first goal of this paper is to systematically explore the origin of SB in GVB methods
from a local electron correlation perspective. The second goal is given some understanding
of this origin, to propose a solution which is not molecule-specific, and which retains the
computational advantages of PP and IP, as well as the conceptual advantage of localized
orbitals. The outline of the rest of the paper is as follows. First, in Sec. 2.2, we describe
pilot calculations using second-order perturbation theory in an active space to explore the
effect of inter-pair correlations and to what extent they need to be described in order
to ameliorate SB. Based on these pilot results, we formulate a three-pair correction to
imperfect pairing (TIP) in Sec. 2.3, and describe how amplitude, orbital and geometry
optimization can be efficiently implemented for this new model. In Sec. 2.4 we look at
applications of the proposed TIP method to SB in aromatic hydrocarbons starting with
benzene, continuing to naphthalene, and then the cation and anion of phenalenyl. We
present our conclusions in Sec. 2.5.

2.2 Pilot calculations on benzene

It is a fact, as was shown in Figure 2.1, that the PP and IP models break symmetry for
benzene, while a fully delocalized treatment of pair correlations, such as VOD in the same
active space, does not. We can therefore be sure that the origin of SB is the incomplete
treatment of inter-pair correlations. The question we wish to address is how extensive does



2.2. PILOT CALCULATIONS ON BENZENE 28

the treatment of inter-pair correlations have to be in order to eliminate this problem? Let
us clarify at the outset the context in which we shall answer this question:

Active space: We shall always make all valence electrons active, as this is the active
space which can always be unambiguously defined (in contrast to the π active space). SB
artifacts will be more pronounced in larger active spaces since inter-pair correlation effects
will generally be larger. We have performed tests in the (6,6) π active space that strongly
support this obvious fact.

Orbital representation: Different orbital representations will give different results. For
example, if redundant, non-orthogonal functions are used to span the active occupied and
active virtual π spaces, symmetry breaking can be overcome at the level of non-orthogonal
perfect pairing [141]. It is an open question whether or not that is still true in a full valence
space. Here we shall work in the non-redundant orthogonal orbital framework of the PP,
IP and VOD models.

Excitation level: We restrict ourselves to orbital-optimized coupled cluster approxima-
tions to CASSCF that are truncated at double excitations, as defines the VOD model. Local
correlation models are therefore local approximations to VOD. More accurate approxima-
tions to CASSCF would proceed to take some account of triple and higher excitations, but
these are premature when fully viable doubles-only models are only just emerging.

Local correlation modeling: One can usefully distinguish “fixed domain” models which
retain a given number of pair correlations over an entire potential surface, versus “variable
domain” models where the number of retained pair correlations vary as a function of geom-
etry based on a various criteria. To ensure smooth potential surfaces, and no parameters
or cutoffs to define domains, we work with fixed domains, based on electron pairs.

With the perfect pairing active space, we can define fixed-domain local models that are
exact for 1, 2, 3 pairs respectively. The 1-pair model is of course simply perfect pairing
(see Eq. 2.2): the PP model is exact for a single pair and size-consistent. The 2-pair
model has been defined previously as ”doubly ionic pairing” since transfers of up to 2 elec-
trons between pairs are possible [84]. It includes additional inter-pair correlations beyond
the IP operator, Eq. 2.3, which transfer either 1 or 2 electrons between 2 electron pairs.
This model was implemented without orbital optimization previously, and could not fully
correct SB in benzene in the (6,6) space using fixed PP orbitals. It is an open question
as to what happens in the full valence space with orbital optimization. The 3-pair model
has not been explored hitherto. It corresponds to the subset of all possible valence pair
correlations that involve only 3 distinct pairs (and thus summations over 3-pair indexes).
While a plethora of other models that are possible (e.g. exact for single pairs and partially
correct for 2 pairs such as IP, or partially correct for 3 pairs and exact for 2 pairs etc),
we shall confine ourselves to this simple 3-rung hierarchy in describing the extent of the
inter-pair correlations treatment.

There is of course a fourth and final rung. The inclusion of correlations coupling up
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to 4 electron pairs is complete at the level of double excitations, and simply corresponds
to Eq. 2.1. If we are forced to go to this level to eliminate SB, then no local correlation
treatment is possible within the framework we have chosen.

A development version of Q-Chem 3.0 [142] was modified to enable orbital optimization
with each of these models and to evaluate the model described later on in this work.
Distinct intra-pair and inter-pair correlations can be described by limiting the number
of indices in Eq. 2.1 to the number of inter-pair correlations desired, i.e. for 1-pair,
there would only be one index and the expression would simplify to Eq. 2.2. Partly for
simplicity and partly with an eye towards constructing a tractable extension to existing
GVB methods, we limited the treatment of all the different inter-pair correlations to a
second-order treatment for these pilot calculations. The Lagrangian that emerges for the
electron correlation becomes simply the second-order Hylleras functional:

L = E0 + L(2) =
〈

Φ0

∣∣∣Ĥ∣∣∣ (1 + 2T̂2

)
Φ0

〉
+
〈
T̂2Φ0

∣∣∣F̂ ∣∣∣ T̂2Φ0

〉
C

(2.4)

Here F̂ is the mean field Fock operator associated with the reference Φ0, Ĥ is the
full Hamiltonian, and T̂2 is the operator describing the double excitations to first order in
perturbation theory (see, e.g. Eq. 2.1). The subscript C indicates only connected terms are
included. This Lagrangian is to be minimized with respect to those doubles amplitudes, td,
contained in the T̂2 operator for the desired level of inter-pair correlation, and with respect
to orbital variations θs :

∂L

∂td
=
∂L

∂θs
= 0 (2.5)

Here we omit the well-known expressions for the second-order amplitudes and the orbital
gradient expressions that are required for optimization of the orbitals – they may be ob-
tained using the standard methods of analytical gradient theory [143]. The implementation
of this second-order model selectively solves for amplitudes that are necessary for the dif-
ferent levels of inter-pair correlations and leaves the others as zero. The amplitudes can
be defined in two ways. The first is the standard non-canonical MP2 approach where the
amplitudes are coupled to each other via off-diagonal Fock elements and iteratively solved.
Alternatively, motivated by double perturbation theory as described by Kapuy [144–146]
the off-diagonal elements can be ignored to leading order giving a non-iterative expression
for the amplitudes as an integral divided by differences of diagonal Fock elements (K-MP2).
We have recently used K-MP2 in other contexts [147, 148], and for efficiency we shall use
it here also.

Fig. 2.3 presents data for the N-pair models acquired at the MP2 level of theory. The
complete 4-pair model is a valence optimized MP2, which is invariant to orbital transfor-
mations within any of the 4 orbital subspaces (inactive occupied, active occupied, active
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virtual, and inactive virtual). As expected, it does not break symmetry. Indeed comparing
Fig. 2.1 and Fig. 2.3 indicates that the MP2 approximation is sufficiently close to the full
coupled cluster treatment to be useful.
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Figure 2.3: Potential energy curves for deformation of benzene using local correlation models
which only retain correlations coupling up to 1, 2, 3 and 4 different electron pairs respectively,
where the correlation energy is evaluated at the second-order perturbation theory (MP2) level.
For reference, the absolute energies at the D6h geometry for the 1-, 2-, 3-, and 4-pair models are:
-230.834077 H, -230.965803 H, -231.020476 H, and -231.034350 H respectively.

The 1-pair model breaks symmetry as expected, with the lowest energy corresponding
to around 1.0◦ of deformation. This number agrees reasonably well with the full coupled
cluster PP as shown in Figure 2.1, which exhibits a minimum at around 1.6◦ deformation.
The 2-pair model breaks symmetry, and, perhaps surprisingly, the degree of SB is larger,
with a preferred geometry of around 1.5◦ deformation. We suspect the extent of SB in
the 2-pair model would be less than the 1-pair model in a coupled cluster implementation,
based on the fixed orbital (6,6) results we reported previously [84].

If the 3-pair model is used in the computation, then the SB effects are greatly reduced,
and the molecule comes very close to not breaking symmetry. As shown in Figures 2.3
and 2.4, the 3-pair model breaks symmetry only slightly (˜0.05 kcal/mol) with its optimal
configuration being at 0.2◦ deformation. The improvement relative to the 2-pair model is
very striking, and indicates that in benzene (with 30 active electrons, in 30 active orbitals),
there is only a very small differential energetic effect due to omitted 4-pair correlations.
This is the most important result of this section – it indicates that even in a π-delocalized
system like benzene, electron correlations still retain sufficient locality that it may be pos-
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sible to neglect the 4-pair couplings and nonetheless have sufficient accuracy for chemical
applications. This is the approach that we shall use in the remainder of this paper, so that
we may stay within a local correlation framework.
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Figure 2.4: Close-up view of the potential curve for small distortions of benzene away from D6h

symmetry for the 3-pair model shown above in Figure 2.3.

Finally it is useful to briefly examine the percentages of correlation energy that are
recovered by each model. At the D6h geometry, the percentages are 39.7% (1-pair), 79.3%
(2-pairs), 95.8% (3-pairs), relative to the 100% recovery defined by the 4-pair model. The
performance of the 1-pair model for benzene is significantly worse than for normal saturated
molecules where it may typically recover around 60% of the correlation energy. Likewise,
the IP model, which is a subset of the 2-pair model, usually recovers around 90% of the
correlation energy. And, at 1◦ deformation, the percentages of correlation energy recovered
shift to 40.6% (1-pair), 80.6% (2-pairs), and 96.1% (3-pairs). This serves to emphasize
that the changes in extent of locality of electron correlation as a function of deformation
are subtle rather than dramatic. The underlying framework of σ bonds (12 pairs) is well
localized for all deformations considered here, and it is only the 3 π pairs that change
significantly. Therefore the inter-pair correlations involving σ and π electrons, as well as
π electrons in different pairs are the principal terms that change along the deformation
coordinate. Our results indicate that the main inter-pair couplings are accounted for in a
fairly satisfactory absolute and relative sense at the 3-pair level.
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2.3 Three-pair corrected imperfect pairing

2.3.1 General considerations

Within the fixed domain inter-pair coupling hierarchy employed in this paper it ap-
pears from the results above that one must take account of correlations between at least
3 distinct electron pairs to approach satisfactory reproduction of the full non-local result
for benzene. We could attempt to translate that result into a coupled cluster method by
simply retaining all correlations that couple no more than 3 different pairs. The computa-
tional gains with this method would be relatively modest however, since it would be likely
to reduce the overall cost by just one power of system size (from 6th order to 5th order),
and also have quite a significant prefactor. However, it remains true, as demonstrated in
previous work [84] that by far the strongest correlations are the intra-pair (perfect pair-
ing) type, followed by the non-charge-transfer inter-pair correlations (the imperfect pairing
type). We are therefore tempted to group correlations into strong and weak, and treat the
(small number of) strong imperfect pairing correlations by infinite order coupled cluster
theory, and the (vastly larger number of) weak correlations by second-order perturbation
theory. This will define an approach we shall call three-pair corrected imperfect pairing
(TIP).

As in the previous section, we neglect off-diagonal terms in the MP2 amplitude equations
[144–146], so that the K-MP2 amplitudes can be obtained directly without iteration. We
then define a hybrid TIP Lagrangian:

Lcorr = E0 + L (IP )(∞) + L (3− IP )(2) (2.6)

The first term is the mean-field reference energy. The second term is the IP Lagrangian,
which is of the form:

L
(∞)
IP =

Npairs∑
i

ti
∗ ī∗

īi

(
ii∗|ii∗
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īi wi
∗ ī∗
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)
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(
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)]
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∗i∗

ij wj
∗i∗

ij (2.7)

The K-MP2 term (3rd term) of Eq. 2.6 contains several separate classes of excitations of
the form (ij)→ (i∗k∗), (ii)→ (j∗k∗) and (ij)→ (k∗k∗), with the PP+IP subset (which is
treated non-perturbatively) deleted.

Upon further investigation of Eq. 2.6, we found that SB in benzene and other aromatics
was not reduced as greatly as we had expected based on the pilot calculations reported in
Sec. 2.2. To achieve a model slightly closer to full treatment of the 3-pair couplings, we
then decided to correct the strong correlations (IP-type) with the one-electron coupling to
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the weak amplitudes, based on the assumption that the weak amplitudes are adequately
described by perturbation theory. This leads to the following modifications to the IP
amplitude equations:
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(2.8)

The most important effect of these coupling terms on the TIP model is to usually somewhat
reduce the magnitude of the IP amplitudes. This is likely to be beneficial in reducing SB
artifacts. The coupling terms also cause some additional complications in the expressions
and resulting algorithms for optimization of the orbitals, and then finally the geometry, as
discussed in the subsections below.

While this defines the TIP model for the purposes of this paper, it is useful to note
that these last two design decisions (use of K-MP2 and inclusion of one-electron coupling
of the weak amplitudes to the strong amplitudes) could be modified. We believe they are
the simplest useful choices. For example, it would be interesting (though substantially
more complicated) to explore the additional effects of two-electron coupling of the weak
amplitudes to the strong ones, and the effect of all one-electron couplings (i.e. MP2 rather
than K-MP2) on the results. Additionally, other slightly empirical variants of TIP can
be constructed by dividing the IP and MP2 amplitudes into different spin components
[149,150], and scaling them.

2.3.2 An Efficient Algorithm for the Energy

Energy evaluation for TIP requires making the Lagrangian stationary with respect to
both the correlation amplitudes and the orbitals; the latter evaluated assuming optimized
amplitudes. The corresponding algorithms for IP have been discussed extensively [82,131].
TIP is a correction to IP, and the TIP algorithm described here is structured as an addition
to the previously described IP algorithm. The implementation of the additional terms must
be handled carefully since a cubic number of amplitudes are involved relative to the vastly
smaller quadratic number in IP itself. The existing IP algorithm uses Resolution of the
Identity (RI) [61–63], with the bottleneck being the fourth order steps needed to make the
molecular integrals. Our TIP algorithm is also RI-based, and is designed to not introduce
any steps greater than fourth order or to exceed a memory usage for the new pieces greater
than three times the number of auxiliary basis functions squared.
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For notation, K, L will denote RI basis functions, µ, ν, λ, σ will denote atomic orbital
(AO) basis functions, i, j, k will represent active occupied molecular orbitals (MO’s), i∗,
j∗, k∗, a, b will represent active virtual MOs, and p, q, r, s will represent general MO
indices, while the index m will represent any core or active occupied MO. We have chosen
to implement TIP in a restricted closed-shell formalism initially, and therefore the algebra
presented below is in the restricted formalism. Generalization to unrestricted orbitals is
possible, and is a desirable future development.

The MP2 energy portion of the Lagrangian, (i.e. the third term of Eq. 2.6), can be
expressed as

L
(2)
3−IP =

3−IP∑
ijab

[
tabij (ia |jb) + λabij ω

ab
ij

]
(2.9)

where:

ωabij = 2 (ia |jb)− (ib |ja)− tabij ∆ab
ij

∆ab
ij = fii + fjj − faa − fbb

(2.10)

The summation indices in Eq. 2.9 are limited to include only those amplitudes that involve
up to 3 unique indices (e.g. a virtual index, , is defined by the corresponding GVB occupied
index,) excluding the PP and IP amplitudes, which are treated in the second term of Eq.
2.6. This is symbolized by using 3-IP as the summation range, both here and in subsequent
equations where the same consideration applies. Derivatives of the total Lagrangian, Eq.
2.6, with respect to the t amplitudes and the corresponding Lagrange multipliers, λ, yield
the equations defining those unknowns. Derivatives of the total Lagrangian with respect
to orbitals, given optimized t and λ amplitudes, then defines the orbital gradient.

Before generating the t and λ amplitudes a few RI precursors must be computed. During
the very first iteration of an orbital optimization cycle, the RI three-center integrals and
the associated RI expansion matrix for the AO functions pairs, C, is formed

CK
µν =

AUX∑
L

(µν |L) (L |K )−1 (2.11)

They only need to be computed once at a given geometry. At the beginning of each orbital
iteration the three-center integrals are transformed into the current MO basis, and then
the cubic number of required (3-pair) MO integrals are constructed and saved to disk, and
the amplitudes and initial Lagrange multipliers are computed

(ia |jb) =
AUX∑
K

(ia |K ) CK
jb =

AUX∑
L

AUX∑
K

(ia |K ) (K |L)−1 (L |jb). (2.12)
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Once these original quantities and the previously described IP and PP amplitude cou-
plings are determined, the couplings of the PP and IP Lagrange multipliers to the MP2
Lagrange multipliers are determined. For example a weak amplitude multiplier, λi

∗j∗

ii , is
given by:
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]]
∆i∗j∗

ii

(2.13)

The second term arises from the couplings illustrated in Eq. 2.8. From the computed
weak t and λ amplitudes, a correction to the correlated 1-PDM from the IP expressions is
generated

Pij (TIP ) = Pij (IP )−
3−IP∑
kab

tabikλ
ab
jk

Pab (TIP ) = Pab (IP ) +
3−IP∑
ijc

tacij λ
bc
ij

(2.14)

These amplitudes also give rise to a 3-center two-particle density matrix:

ΓKia =
3−IP∑
jb

(
tabij + 2λabij − λbaij

)
2

CK
jb (2.15)

With these two elements defined, the MO coefficient derivatives of the Lagrangian for the
MP2 amplitudes and their corresponding back contributions can be simply determined as
the sum of a base contribution

∂L
(2)
3−IP

∂C
m(occ)
µ

=
v∑
j

v∑
k

Pij [4 (µm |ij )− 2 (µi |jm)] + Pi∗j∗ [4 (µm |i∗j∗ )− 2 (µi∗ |j∗m)] (2.16)

for any general occupied MO index, plus specific additional terms for the active occupied
MO’s:
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µ

+
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a
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The derivative expression with respect to active virtual MO’s is of the form:
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∂Ci∗
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j
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K

4ΓKji∗ (K |jµ) +
v∑
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(Pi∗j∗ + Pj∗i∗) fµj∗ (2.18)
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and the derivative with respect to inactive virtual orbitals is always zero.

These derivatives are combined with the existing IP MO coefficient derivatives to form
the full molecular orbital coefficient derivative of the Lagrangian, which is then transformed
into an anti-symmetric orbital rotation gradient

∂E

∂θpq
=

AO∑
µ

∂L

∂Cp
µ
Cq
µ −

∂L

∂Cq
µ
Cp
µ (2.19)

Here the values and an approximation to the diagonal rotation matrix Hessian are passed
into an orbital optimization algorithm (in our case, geometric direct minimization [30]) to
minimize the energy with respect to orbital rotations.

The algorithm is an extension of our previous IP implementation, and can be summa-
rized in terms of the following steps, where o, N, X, and NB2 represent the size of the
occupied space, number of basis functions, number of auxiliary basis functions, and the
number of basis function pairs formed.

(0) SCF Procedure and guess orbitals, a Hartree-Fock calculation is performed and
then the core and active occupied subspaces are localized. The procedure of Sano [68] is
then applied to get a corresponding localized valence virtual space. The default orbital
localization in our implementation is that of Pipek and Mezey [66].

(1) Form the RI 3-center integrals and C matrix, take care of all the RI overhead costs for
the integrals in the AO basis before any orbital optimization iterations. The computational
cost is NB2 X for the 3-center integrals and NB2 X2 for the C matrix.

(2) Transform the RI integrals to the MO basis. On each orbital iteration, the RI 3-
center integrals and C matrix are half and fully transformed into the MO basis. The cost
for performing the half transformation is oNB2 X, and the cost of the full transformation
is o2NX.

(3) Form the 2-electron integrals, the amplitudes, and the couplings to the IP ampli-
tudes. The 4-center 2-electron integrals are evaluated, the amplitudes, and the couplings
are evaluated and saved to disk for later use. The cost to form the 4-center integrals is
o3X. The costs for solving for the amplitudes and the couplings are each o3.

(4) Perform the standard IP routines for amplitudes and energy. All of the costs of
these routines and necessary steps have been described previously [131].

(5) Solve for the MP2 Lagrange multipliers, the 1-PDM and the Gamma Matrix. These
are computed in a similar loop structure to that found in the amplitude solver. Cubic
I/O is required to reading the amplitudes from disk (after this step the amplitudes can be
thrown away). The cost associated with finding the Lagrange multipliers and the 1-PDMs
is o3. The cost for getting the two-particle density matrix is o3X.

(6) Solve for the MO coefficient derivatives of the MP2 part. There are three pieces
that need to be solved as shown in Eqs. 2.17 and 2.18. The cost for the Gamma matrix
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part is o2NX and the 1-PDM Fock element part has a cost of o2N. The general occupied
elements derivative terms are simply solved by transforming the correlated 1-PDM into
the AO basis, and then constructing only the four-centered two electron integral portion
of a Fock element. These matrix elements are then half transformed and built into the
gradient. The RI implementation of IP already includes the generation of the four-center
two electron integrals, so the only cost associated with this is an o2N and an oN2 step to
generate the 1-PDM in the AO basis.

(7) Solve for the MO coefficient derivatives of the IP part. This step is executed here so
that the four-center two-electron integral parts of the coefficient derivatives are efficiently
evaluated with only one call to the existing integral evaluation routines.

(8) Apply Geometric Direct Minimization and take additional steps. The orbital rota-
tions are evaluated and applied in a standard fashion and the process from 1-7 is repeated
until the orbitals have converged to within a specified threshold.

Finally it is worth commenting that the additional 1 and 2 PDM terms associated with
the 3-pair correction are adapted from our recently developed RI-MP2 analytical nuclear
gradient [151]. The key modifications made to those routines is to exploit the fact that
the TIP model has only a cubic number of amplitudes so that the computational costs can
be reduced from 5th order to no larger than 4th order in the system size, as was already
mentioned above. Figure 2.5 is a demonstration of this; it shows the average cpu cost
of all the steps. The average time includes an average of all the one-time computations
like the localization in step 0 and the formation of the necessary AO-RI quantities in
step 1. TIP benefits the most from this type of evaluation since it typically takes more
orbital iterations than PP or IP to find a solution from the Pipek-Mezey and Sano guess,
so the decently expensive steps (like step 1) get washed out over many orbital iterations.
The timings shown illustrate how TIP is IP with only one extra 4th order step for each
orbital iterations and one extra 4th order step at the very beginning by having the TIP
cpu times being slightly less than twice as long as the IP cpu times. The TIP timings are
also monotonically increasing towards the limit of being around twice as large IP timings,
which should be the case. In the small molecules the 3rd order steps should dominate, but
as the molecules get larger the 4th order steps take over and should make TIP scale pretty
much exactly as twice that of IP with the initial extra costs being washed out over the
number of cycles needed by TIP.

2.3.3 Analytical Nuclear Gradient

The nuclear gradient for TIP is implemented in a similar fashion to the way the TIP
energy correction was described above. The existing IP routines are minimally modified,
and the extra TIP routines are added in alongside the existing IP ones. The MP2 part
of the TIP nuclear gradient was also designed to exploit components of our analytical RI-
MP2 nuclear gradient [151]. Most of the components needed to evaluate a nuclear gradient
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Figure 2.5: The average CPU cost per orbital iteration and the average cost of performing an
analytical nuclear gradient of PP, IP, and TIP in seconds. The calculations were all performed
with the 6-31G* basis and RIMP2-VDZ auxiliary basis.

of this form were generated in the process of finding the energy. The expression for the
restricted closed-shell TIP analytical gradient is given as

E(x) = E
(x)
IP + 4
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µ

AO∑
ν

AUX∑
K

(µν|K)(x) ΓKµν − 2
AUX∑
K
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L

(K|L)(x) ΓKL

+
MO∑
p

MO∑
q

P TIP
pq f (x)

pq +W TIP
pq S(x)

pq (2.20)

The one electron term of the expression is already a necessary component of the IP gra-
dient, and is buried within the first term on the right hand side, which contains the full
1-PDM for both the reference wavefunction and the IP and MP2 correlation corrections.

The energy weighted 1-PDM is evaluated just as it is for IP itself, as the symmetrized
version of the MO coefficient derivative

Wpq =
1

2

AO∑
µ

∂L

∂Cp
µ
Cq
µ +

∂L

∂Cq
µ
Cp
µ (2.21)

This simple form for W is a consequence of using optimized orbitals, so that no response
equations need to be solved, unlike MP2 theory using Hartree-Fock orbitals. The full en-
ergy weighted 1-PDM is formed and symmetrized within step 7 of the algorithm, at trivial
N 2 cost.

All of these simplifications mean that only the two RI-based 2-particle density terms of
the TIP nuclear gradient need to be dealt with in some fashion that is not already included
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in an IP gradient algorithm. Both of these terms involve transforming the RI 2PDM in Eq.
2.15 into another basis,

ΓKµν =
v∑
i

v∑
a

ΓKiaC
i
µC

a
ν (2.22)

ΓKL =
v∑
i

v∑
a

ΓKiaC
L
ia, (2.23)

followed by contraction with the appropriate 2 and 3-center atomic orbital basis 2-electron
integral derivatives. Again the evaluation of those terms follows the procedure described
recently for the same terms in the RIMP2 gradient. The algorithm is quite simply then an
addition of the two 2-PDM TIP gradient terms at the very end of an IP gradient calculation.
The additional cost for a nuclear gradient beyond evaluation of the energy itself is generally
quite small (<15% for the calculations on naphthalene described later, for example). This
can be seen in Fig. 2.5, where the costs for a gradient for TIP and IP are almost the same,
save for one fortunate run where the TIP came out faster than IP.

2.4 Numerical Tests and Examples

A series of tests on conjugated aromatic molecules that exhibit SB when treated by
perfect-pairing (PP) or imperfect-pairing (IP) are described below. All of the calculations
were performed in the 6-31G* basis set in conjunction with the rimp2-VDZ auxiliary basis
set in a full valence perfect-pairing active space. This basis is sufficient to illustrate the
challenge of obtaining a balanced description of local versus non-local correlations within
these active space methods.

2.4.1 Benzene

The first test of the TIP model is the benzene SB problem, shown in Fig. 2.6, where
TIP is compared against a full CC treatment of all active space amplitudes (i.e. the 4-pair
CC model, which is simply VOD), and the original IP model (already shown in Fig. 2.1).
These results are encouraging. The distortion of benzene yields a smooth potential energy
curve with a single minimum at D6h (see Fig 2.7 for a blow-up of the small angle region).
There is only a small overall difference between the full VOD curve using a fourth order
number of CC amplitudes and the TIP curve which uses a quadratic number of CC am-
plitudes and a cubic number of MP2 amplitudes. The largest deviation in the calculated
distortion energies between TIP and VOD is about 1.5 kcal/mol at the largest distortion,
which represents more than a 5-fold reduction over the corresponding IP error. It is inter-
esting to compare this deviation against the corresponding 1 kcal/mol difference between
the pilot calculations at the K-MP2 level for 3 and 4 pairs shown in Fig. 2.3, which was a
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direct test of the effect of the missing correlations that couple 4 pairs when all are treated at
the same level of theory. The difference is of similar magnitude to the VOD-TIP difference,
but is of opposite sign. This suggests that errors due to neglect of 4-pair correlations are
of similar magnitude to errors due to approximating the weak amplitudes by second-order
perturbation theory.
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Figure 2.6: Comparative potential energy curves for deformation of benzene using the TIP, IP,
and VOD models. It is evident that TIP significantly improves upon the IP model that it is
designed to correct, and approaches the VOD model that it is approximating. For reference, the
absolute energies at the D6h geometry for the models are: -231.01428 H for IP, -231.095001 H for
TIP, and -231.089623 H for VOD.

Another way to compare the error associated with the local 3-pair model against the
errors associated with the perturbative treatment of the non-IP correlations is by examin-
ing the absolute energies at the D6h geometry. The TIP energy exceeds the VOD energy
by 3.37 kcal/mol. On the other hand, referring back to the caption of Fig. 2.3, the 3-pair
MP2 model recovers about 8.7 kcal/mol less correlation energy than the full 4-pair result.
This result is broadly consistent with the relative energies discussed above, and again sug-
gests that the remaining local correlation error is of similar magnitude (in fact somewhat
smaller) than the error associated with replacing cluster amplitudes by perturbation theory
amplitudes, and has opposite sign.

To dig deeper into the origin of the results obtained in Figs 2.6 and 2.7, we now consider
the form of the active orbitals obtained from the TIP calculations, relative to those from IP
calculations. In each case the active orbitals are uniquely determined, in contrast to VOD
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Figure 2.7: Close-up view of the potential curve for very small distortions of benzene away from
D6h symmetry for the 3-pair MP2, TIP and VOD models shown above in Figs 2.4 and 2.6. While
3-pair MP2 slightly breaks symmetry along this distortion coordinate, TIP does not.

or CASSCF calculations where only the active space spanned by the orbitals is determined.
We first consider the π and π∗ orbitals in Fig. 2.8 (both IP and TIP yield orbitals with
σ/π symmetry). IP yields 3 active occupied π orbitals that essentially localize into a given
bond, corresponding to the 3 double bonds of a given Kekule structure. The fact that the
optimized π orbitals take this form is clearly the driving force for SB within the IP model:
localized π orbitals in a strongly local correlation model preferentially correlate one of the
2 Kekule structures.

By contrast the TIP orbitals shown on the right-hand side of Fig. 2.8 optimize to be
delocalized. Indeed both the occupied and virtual levels are quite reminiscent of canonical
orbitals. The fact that the optimized π orbitals change form so strongly from IP to TIP is
consistent with the striking improvement in performance of TIP over IP with respect to SB
shown in Fig. 2.6 and 2.7. The change to delocalized π orbitals within a local correlation
theory for benzene is a clear success of the TIP model, because now the 2 Kekule struc-
tures can be correlated on an essentially equal footing. This is one of the most physically
interesting results of this paper.

One of the most important aspects of perfect-pairing models is the fact that the opti-
mized orbitals localize strongly, and thus are physically interpretable as bonds, lone-pairs,
anti-bonds, etc. The π space of benzene demands delocalized orbitals in order to elimi-
nate SB by a balanced treatment of the two Kekule structures. However, the underlying
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Figure 2.8: The 3 bonding and corresponding paired anti-bonding π orbitals (shown on the same
line) for benzene as predicted by IP and TIP.

σ framework can still be localized, because it corresponds to a single Lewis structure. To
what extent is this the case in practice for the TIP model? The answers are shown in Fig.
2.9, where the unique σ active orbitals are shown. They are still strongly localized into
C-C and C-H bonds, although we note that there are in fact two types of C-C σ bonds – 2
of the first case (c) and 4 of the second case (d). While very similar in general form, they
are nonetheless visually distinguishable. The implication of this is that a very small degree
of electronic SB still persists in the TIP model. The general picture that comes from the
TIP model is still a tremendously appealing improvement over the IP model – instead of
all orbitals localizing as in IP, TIP orbital optimization leads naturally to a delocalized π
system which correlates the two Kekule structures on an equal footing and a localized σ
system.

The next step is to perform full geometry optimization with no imposition of symme-
try to see the extent to which TIP removes the SB associated with IP and PP, when all
degrees of freedom are permitted to relax. The results are shown in Figure 2.10. VOD and
Hartree-Fock both correctly predict D6h geometries, as they involve no local correlation
modeling. PP and IP both incorrectly predict an optimal D3h structure with large bond-
alternation, of 0.09 Å and 0.08 Å respectively. TIP, on the other hand, actually predicts a
D2h structure, with a difference of 0.002 Å between the 2 unique bond-lengths. This is a
30-fold to 40-fold reduction in the extent of SB, relative to IP and PP.
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a) c)

b) d)

Figure 2.9: The localized occupied σ orbitals for benzene as predicted by TIP. Orbital A is a
6-fold degenerate inactive occupied s-type orbital on the carbons. Orbital B is a 6-fold degenerate
C-H σ bonding orbital. Orbital C is a 2-fold degenerate C-C σ bonding orbital. Orbital D is a
4-fold degenerate C-C σ bonding orbital.

Figure 2.10: The optimized bond lengths of benzene predicted by Hartree-Fock, PP, IP, TIP, and
VOD (using the 6-31G* basis). All bond lengths are in Angstroms.

The fact that the optimized TIP geometry has D2h symmetry with 4 bond-lengths of one
type and 2 of another is absolutely consistent with the form of the optimized orbitals shown
in Figs. 2.8 and 2.9. The active occupied π orbitals correlating two bonds on opposite sides
of the ring (middle orbitals in Fig. 2.8) leads to ever-so-slightly shorter bond-lengths than
the 4 other bonds that are primarily described by the active π orbitals at the bottom of
Fig. 2.8. This is also consistent with the form of the C-C sigma orbitals (4 of one type and
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2 of another) in Fig 2.9 already noted earlier.

The TIP optimized bond-lengths are approximately 0.01 Å longer than the VOD bond-
lengths that they are in principle approximating. While the very small residual SB is a
consequence of only including correlations that couple up to 3 pairs in TIP (i.e. local
correlation), the systematic error in the TIP geometry relative to VOD is a consequence of
the low-order perturbation treatment of the 3-pair correlation amplitudes. As we inferred
earlier, the latter seems to be the larger error.

2.4.2 Naphthalene

We now turn to the question of how transferable the TIP results for benzene are to
larger aromatic molecules with a more extended network of conjugated π bonding. At
what stage will the optimized TIP π orbitals start to localize? What consequences will
this have for addressing problems of SB? And are the pathologies of perfect and imperfect
pairing for benzene similar, larger or smaller for such systems? In this section, we consider
naphthalene, which has 48 valence electrons, and therefore 24 active electron pairs. It has
10 π electrons.

The results of geometry optimizations on naphthalene are collected in Figure 2.11. Both
HF and VOD predict qualitatively correct results, giving a D2h structure, which is a reso-
nance hybrid with contributions from several important Lewis dot structures. By contrast,
PP and IP optimizations incorrectly lead to 2 bond isomers (depending on the guess), la-
beled as (a) and (b) in Figure 2.11. These isomers correspond to 2 distinct Lewis structures,
one having D2h symmetry and the other having C2v symmetry. This is a more drastic con-
sequence of SB than in benzene, where the two possible alternating bond structures (left
and right wells of Fig. 2.1 for instance) were equivalent. The bond-length alternation is
pronounced, with differences of about 0.10 Å.

To explore the extent to which TIP corrects the SB associated with PP and IP, TIP
optimizations were started from both D2h and C2v guess structures. As is evident from Fig.
2.11, both guesses converge to the same D2h structure with TIP, indicating that the SB
problem in naphthalene is resolved with the TIP approach. We view this as another very
encouraging validation of the TIP method. Comparison of the structure against the VOD
geometry (which was optimized in the smaller 6-31G basis due to the large memory, disk
and CPU requirements of the VOD method) indicates reasonable agreement. The main
discrepancy is the central (C1-C6) bond, which is slightly longer in TIP than in the VOD
method.

A selection of the TIP optimized occupied orbitals are shown in Fig. 2.12. It is evident
that σ-π separation is properly retained. The 5 active π orbitals are partially delocalized,
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Figure 2.11: A comparison of optimized naphthalene bond lengths for a Hartree-Fock, PP, IP, TIP
and VOD. The (a) structures come from a guess of D2h symmetry; the (b) structures come from a
guess of C2v symmetry. All bond lengths are in Angstroms. All bond lengths are colorC coded to
indicate the symmetry equivalent bonds for a D2h structure. *VOD was done in the 6-31G basis
set with the rimp2-VDZ auxiliary basis set due to limitations in performing the optimization.

with one orbital, A, exhibiting nearly complete delocalization. The strongly localized form
of the σ orbitals demonstrates that with a more extended π system, TIP still has the
desirable property of generating a balanced mix of localized and delocalized orbitals. It is
also encouraging that this orbital solution is unique across the potential energy surface such
that the two different guess geometries converge to the same final optimized TIP geometry
without any constraints on the point group.

2.4.3 Phenalenyl cation and anion

To explore a larger molecule, we decided to examine the system comprised of three
fused benzene rings, C13H9. The neutral species is the phenalenyl radical, but its cation
and anion are closed shell systems, and we therefore chose to test the performance of PP,
IP and TIP on them. The optimized geometries obtained are summarized in Figures 2.13
and 2.14. Both cation and anion should exhibit a D3h geometry consistent with 12 and
14 delocalized π electrons, as seen for instance in the HF results. By contrast, PP and IP
show significant SB, with bond alternation of up to 0.06 Å. In addition, another isomer,
not shown in the figures, was located for PP and IP, with bond-alternation around the
periphery (i.e. C3v symmetry).

For the TIP method, the data for the cation in Fig. 2.13 and the anion in Fig. 2.14 are
the least successful and most successful presented thus far. For the cation, two isomeric
structures were obtained, although both exhibit significantly less SB than PP and IP.
Nevertheless, this is an illustration of the limitations of the TIP model to remove SB
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a) b) c)

d) e)

h)g)f)

Figure 2.12: The occupied orbitals for naphthalene as predicted by TIP. Orbitals A-E are the
unique π bonding orbitals for naphthalene Orbital F is an 11-fold degenerate C-C σ bonding
orbital. Orbital G is an 8-fold degenerate C-H σ bonding orbital. Orbital H is a 10-fold degenerate
inactive occupied s-type orbital on the carbons.

effects. Since it is still a local correlation model, it still has the potential to exhibit SB.
By contrast, the case of the anion shows complete removal of SB effects, as the optimized
structure converges to D3h symmetry. Evidently, removal (ionization) of a π electron to
yield the cation poses a more difficult challenge for the TIP local correlation model than
attachment of an electron to yield the anion. This leaves an interesting open question
of how a future open-shell TIP implementation would perform for the neutral phenalenyl
radical. It appears likely to be of intermediate difficulty.

2.5 Discussion and conclusions

Generalized valence bond coupled cluster methods such as perfect and imperfect pair-
ing inherit to a large degree the known symmetry-breaking (SB) problems of conventional
generalized valence bond methods. In benzene, the preference for localized relative to delo-
calized electronic structure leads to SB in which the equilibrium geometry is D3h symmetry
rather than D6h, and the electronic structure at D6h is symmetry broken, suggesting that
one Kekule structure is preferentially correlated. In naphthalene and phenalenyl cation one
can locate distinct isomers corresponding to preferentially correlating the localized orbitals
associated with different resonance structures. These examples are limitations that prevent
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Figure 2.13: Optimized bond lengths for the phenalenyl cation for Hartree-Fock, PP, IP, and TIP.
The PP, IP, and TIP (a) guess structures were the optimized Hartree-Fock structure. The TIP (b)
guess structure was the optimized phenalenyl anion geometry. The energies for TIP (a) and TIP
(b) are: -498.115876 H and -498.110478 H respectively. All bond lengths are in Angstroms, and
bond-lengths that should be symmetry-related are color-coded to enable inspection of symmetry-
breaking.

general usage of these methods for chemical applications.

The origin of SB is that fact that correlations involving multiple electron pairs are omit-
ted in these computationally efficient methods. The PP method correlates only electrons
within a pair, while IP augments this with the leading correlations between 2 pairs. By
contrast, the calculations presented in this paper show that to obtain a reasonably balanced
description of valence electron correlation effects in benzene along a D6h to D3h distortion
coordinate, one must minimally include all pair correlation effects that couple electrons in
up to 3 different electron pairs.

A tractable method for doing so is to treat the strongest (IP-type) correlations fully at
the coupled cluster level while weaker but far more numerous correlations coupling up to 3
pairs at once are treated only by 2nd order perturbation theory. This three-pair corrected
IP (TIP) method reduces the magnitude of the local correlation error by a factor typically
between 10 and 20, relative to IP itself, and accordingly should significantly reduce the
magnitude of SB effects.

This was seen in several numerical examples. TIP yields a potential curve for distortion
of benzene with a single D6h minimum, and the fully optimized TIP structure shows D2h
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Figure 2.14: Optimized bond lengths for the phenalenyl anion for Hartree-Fock, PP, IP, and
TIP. The guess structure for the PP, IP, and TIP optimizations was the Hartree-Fock structure.
All bond lengths are in Angstroms. All bond lengths are color coded to indicate the symmetry
equivalent bonds for a D3h structure.

symmetry with deviations of less than 0.002 Å from D6h. With TIP, the two spurious
isomers obtained for naphthalene at the IP level collapse to a single structure. For the
phenalenyl cation, TIP still exhibits noticeable SB, though its magnitude is significantly
diminished relative to IP (or PP). For the phenalenyl anion, SB is removed entirely.

A particularly interesting aspect of the TIP optimized orbitals in these aromatic systems
is that the σ orbitals localize strongly into bonds, while the π orbitals exhibit significant
delocalization, in contrast to PP or IP. This means that the TIP local correlation approach
can give a better balanced description of correlation effects arising from each resonance
structure than in PP or IP where a single resonance structure is preferentially correlated,
leading to SB. Overall, TIP seems to give a very significant reduction in the SB problems
associated with existing generalized valence bond coupled cluster methods, while maintain-
ing their desirable physical features (of orbitals that localize when possible – such as for a
molecule with a single Lewis structure) and computational efficiency. We intend to present
TIP results across a broader range of molecules including open-shell systems in the future.
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Chapter 3

Penalty functions for combining
coupled cluster and perturbation
amplitudes in local correlation
methods with optimized orbitals

3.1 Introduction

Symmetry Breaking (SB) in generalized valence bond (GVB) methods has been known
since the inception of the perfect pairing (GVB-PP) [56,57] method thirty years ago. The
extension of the GVB-PP model to include other correlations via coupled-cluster general-
ized valence bond (CC-GVB) approaches [78,79] also exhibits problems with SB [83,84,86].
In other respects these more sophisticated CC-GVB methods are very promising because
they recover the leading correlations omitted in the basic PP model, which are clearly
important in systems with coupled strongly correlated pairs, as exemplified by multiple
bonds [83,84,86]. The intrapair PP correlations are shown in part (a) of Fig. 3.1, together
with the additional interpair correlations that are included in the imperfect pairing (IP)
model, the 2-electron transfers between pairs that were previously shown to be next most
important [84], and finally the 1-electron charge transfer correlations.

Solutions to SB have been presented, such as the resonating GVB method [137] and
the ’breathing-orbital’ method [138]. Models such as these rely on the identification of
multiple resonance structures for each molecule being studied, which is unsatisfactory in
general. Other solutions include resorting to a fully delocalized Complete Active Space
Self-Consistent Field (CASSCF) [50, 51, 53, 54] approach, or approximations such as the
density matrix renormalization group [128, 129], or the valence orbital-optimized coupled
cluster doubles (VOD) approach [80, 81]. These methods are, however, high in computa-
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Figure 3.1: Electron correlations that couple one or two electron pairs together, where the corre-
lations are described in a perfect pairing active space such that each valence occupied orbital has
one correlating antibonding orbital. These two levels describe each electron pair, and thus perfect
pairing (PP) contains only the intra-pair correlation that excites both electrons from bonding
to anti-bonding level, as shown in (a). There are 4 types of electron correlation that couple 2
different electron pairs together. Two of these, shown in (b), involve no electron transfer and
are included in the imperfect pairing (IP) model in addition to the PP correlations. Electron
correlations that transfer either 1 or 2 electrons between pairs are shown in (c) and (d).

tional cost at present.

Recently, we explored the origin of the SB observed in aromatic hydrocarbons, such
as benzene and naphthalene, and suggested a model [118] that reduced it by at least a
factor of 10. Of course, SB could be completely eliminated if all missing correlations that
involve double excitations in the active space were included, since we then recover the VOD
method. We discovered, however, that SB could be dramatically reduced if only correla-
tions coupling up to 3 different electron pairs were included, while the far more numerous
(and smaller) terms coupling up to 4 different pairs were completely neglected. To make
the cost of including the 3-pair terms as low as possible, we then explored treating their
contribution to the correlation energy by second order perturbation theory, rather than
full coupled cluster theory. Since their magnitude should be small relative to the largest
amplitudes (of the types shown in parts (a), (b) of Fig. 3.1), this approximation should
introduce very little error.
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The resulting method, Three-Pair Corrected Imperfect Pairing (TIP), separates the
valence electron correlations in a PP active space into strong, weak and negligible terms.
Negligible terms (defined as coupling 4 different electron pairs) were completely neglected.
The strongly correlating terms were treated with coupled cluster theory (intrapair and
the imperfect pairing interpair correlations shown in Fig. 3.1). The weakly correlating
terms coupling electrons in 2 pairs ((c) and (d) of Fig. 3.1) and those coupling 3 different
electron pairs, shown in Fig. 3.2 were treated at a simplified second-order perturbation
theory level. The effect of the weak amplitudes on the strong amplitudes was included by
1-electron couplings. The resulting hybrid energy function was then minimized with re-
spect to both amplitude and orbital variations. TIP increases the computational cost of IP
itself by only a factor of about 2, independent of system size, and is therefore a promising
potential replacement for the study of large systems where more accurate alternatives are
unfeasible.

Figure 3.2: Electron correlations that couple three electron pairs together, where the correlations
are described in a perfect pairing active space such that each valence occupied orbital has one
correlating antibonding orbital. There are 4 distinct types of these correleations, shown schemat-
ically in the figure. The two left-most correlations transfer 1 electron from one pair to another,
and the two right-most correlations transfer 2 electrons.

However, when we subsequently began to use TIP to examine other systems, orbital
optimization pathologies resulting from the combination of an infinite-order and a second-
order treatment of different correlations can be observed. For instance, Fig. 3.3 shows
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the exact solution for N2 if it is treated only at an orbital optimized doubles level for the
6-31G* basis set in a (6,6) active space (i.e. 6 active electrons in 6 orbitals), describing the
σ and π bonding orbitals. The virtual orbitals show the expected anti-bonding character
of the occupied orbitals they correspond to in the GVB-PP sense. However, Fig. 3.4 shows
the orbitals for the same system as produced by TIP. The occupied orbitals have switched
their ordering so that their correlating virtual orbitals (shown below) are unexpected (for
instance the correlating orbital for σ is of π* character).

Occupied

Virtual

Figure 3.3: The orbitals for N2 for IP+DIP in the (6,6) active space at 6-31G. The top row is the
occupied orbitals in increasing energy ordering from left to right. The bottom row are the virtual
orbitals that correspond in the GVB-PP sense to the occupied orbital directly above it.

Such a re-arrangement leads to an artificial lowering of the energy by transferring some
”strong” correlations from being treated by CC theory to being treated by PT, which turns
out to significantly overestimate their contribution to the correlation energy. The energy
produced by TIP is -109.10528 Eh, but the energy produced with a full coupled-cluster
treatment of all the three pair correlations for those orbitals is only -109.07512 Eh. Thus
re-ordering the occupied orbitals (which should leave the correlation energy invariant) cre-
ates a chemically significant error of 0.030 Eh (0.8 eV). It is a failure of the proposed TIP
model, as now most of the largest correlations are treated at the low level (PT) while the
high level of theory (CC) is being used to treat weak correlations. This is the opposite of
our original purpose.
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Occupied

Virtual

Figure 3.4: The orbitals for N2 for TIP in the (6,6) active space at 6-31G. The top row is the
occupied orbitals in increasing energy ordering from left to right. The bottom row are the virtual
orbitals that correspond in the GVB-PP sense to the occupied orbital directly above it.

The goal of this paper is to modify the TIP model to eliminate pathologies such as the
ones discussed above associated with arbitrary orbital rotations or second-order pertur-
bation theory over-estimating the magnitude of a correlation. This will be accomplished
using a penalty function that ensures that ”strong” correlations are not treated by PT.
The result is not molecule specific, and retains all of the desirable properties of the original
TIP method. In Sec. 3.2, we will discuss the modifications to the TIP theory. In Sec. 3.3,
we will present tests of the improved TIP across a wide spectrum of molecular cases, and
in Sec. 3.4 we will present our conclusions.

3.2 Theory

3.2.1 Hybrid energy function

The design goals for the modified TIP local correlation model may be summarized as
follows. 1) Maintain the physical advantage of GVB-CC methods: namely orbitals that
localize when this is physically possible. 2) Remove the tendency of GVB-CC methods
to over-localize orbitals by breaking symmetry, as in compounds with multiple resonance
structures 3) Maintain the computational cost advantage of scaling at least 2 powers of sys-
tem size less than the valence orbital optimized CCD (VOD) method we are approximating
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by using perturbation theory [144–147] for weak correlations. 4) Remove the possibility
of artificial energy lowering when PT amplitudes describe strong correlations because they
yield overestimates of their energy contributions (as in the nitrogen example discussed
above).

Allowing orbitals to localize requires that we break the orbital invariance of full VOD
in the same active space by neglecting some terms. As a result our goal is not the recov-
ery of 100% of the VOD correlation energy, because we would then not obtain localized
orbitals in general. We want slightly less than 100%, yet still enough that orbitals in sys-
tems with multiple resonance structures will properly delocalize, as necessary to ameliorate
symmetry-breaking. We discovered in our pilot study on aromatic hydrocarbons [118] that
inclusion of correlations coupling only up to 3 distinct pairs would accomplish this goal,
and we shall attempt to preserve this framework.

To ensure that orbital rotations do not interchange orbitals to make PT describe strong
correlations, we shall employ penalty functions. The energy contribution of an amplitude tj
which is treated by perturbation theory is given by a modification of the standard Hylleraas
expression where the zero order energy difference, Dj0 = E

(0)
j − E

(0)
0 is penalized by λj:

E(tj) = tj[Dj0 + λj]tj + 2Vj0 (3.1)

Typically in regularization methods, λj is just taken as a small constant. This permits
solution for the amplitude, tj = [Dj0 + λj]

−1Vj0 even when Dj0 approaches zero.

In our application, we want to ensure that the partition between employing CC the-
ory for large amplitudes and PT for small amplitudes is stable under orbital optimization.
Therefore we shall use a non-standard penalty function that vanishes when the PT ampli-
tude is small in comparison to a partitioning threshold, tc, and grows rapidly to be very
large as the PT amplitude exceeds tc. A suitable form is therefore:

λj = γ[exp((tj/tc)
2)− 1] (3.2)

γ is an additional parameter to control how large the effect of the penalty function is on the
PT amplitude. Since the penalty function depends on the amplitude it is penalizing, the PT
amplitudes need to be solved for iteratively. The amplitudes only need to be solved for one
at a time, which involves computational cost that is third order with respect to active space
size (which is not limiting in any sense). Newton steps are used to converge the amplitudes.

We have made two other changes to the pilot method reported previously. The first
is a clear improvement that is sometimes physically important. That is to treat pair cor-
relations that move two electrons from one pair into the correlating orbital of the other
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pair at the CC level. The equations are shown in the appendix, and it turns out that
these doubly ionic paired (DIP) terms can be treated by CC theory without increasing the
computational cost significantly beyond the IP method [82, 131]. As shown in an earlier
investigation [84], these amplitudes are typically the largest of the ones we were treating
by PT, and a correct CC treatment will therefore yield a more robust method. When used
on its own, we refer to this model as the IP+DIP method. IP+DIP correctly accounts for
the PP terms, the IP terms and the DIP terms, shown in the diagram in Fig. 3.1.

The second change is entirely remove the remaining (smaller) amplitudes that couple
together two electrons in 2 pairs (by transferring 1 electron between them, as shown in part
(d) of Fig. 3.1), which were previously treated by PT. This is equivalent to applying a value
of tc → 0 for these singly ionic paired (SIP) amplitudes, and seems to be necessary in order
to fully prevent orbital rotations yielding artifacts. For example, two slightly inequivalent
bond lengths in water are obtained unless such large values of the penalty parameters are
applied that virtually no correlation energy is recovered by PT. It would be more desirable
to treat these terms by CC theory (as discussed above for the two-electron transfers cou-
pling 2 pairs), but it appears this cannot be accomplished without a substantial increase
in the computational cost and complexity of the resulting theory. It may be worthwhile to
implement this extension in the future, but the results shown later generally support the
adequacy of neglecting them entirely.

The final TIP Lagrangian takes the form L
(∞)
IP+DIP + L

(2)
3P , with the definitions of these

Lagrangians and their subsequent amplitudes found in the Appendix. We utilize the same
algorithm based on the efficient resolution of the identity [61–63] MP2 gradient implemen-
tation [151] as in our previous work, with significant improvements in formation of the
two-particle density matrix contributions from the cluster amplitudes which speed up the
nuclear gradient evaluation by a factor of six. The modified TIP method has been im-
plemented in a modified version of Q-Chem 3.0 [142]. Additionally, for test purposes, a
machine-generated program has been produced which solves the cluster equations for all
amplitudes in the TIP model has developed by John Parkhill – this will have much higher
intrinsic fifth order scaling, but will permit direct assessment of the errors in the production
algorithm.

3.2.2 Choosing Penalty Function Parameters

The introduction of a parameterized penalty function into TIP necessitates an evalu-
ation of those parameters with respect to the ideal performance of the method. The first
criterion is that TIP should recover less than or equal to the same correlation energy as
VOD. N2 is a good challenge for this, since the original pilot TIP method results in a recov-
ery of 155.71% of the VOD correlation energy in the 6-31G* basis set. Our CC-treatment
of the IP+DIP terms alone recovers 96.56% of the VOD correlation energy. Removing the
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SIP terms from the PT correction reduces the correlation energy to about 116% of the
correct result, before applying the penalty to the three-pair PT terms. Fig. 3.5 shows
the family of curves for several possible parameter combinations for N2. As the penalty
parameters increase, the nature of the TIP orbital solution changes. At smaller values of
the critical amplitude parameter, tc < 0.01, and larger values of the penalty function scalar,
(> 0.04 Eh), the curves all settle on one solution whose energy gradually decreases as the
strength of the penalty function is increased, towards the limit of 96.56%. Penalty function
parameters that lower the N2 correlation energy below 100% are too large to maintain the
SB reducing property of TIP, therefore N2 percent correlation energy will need to (slightly)
exceed that of VOD.
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Figure 3.5: A plot of the percent of the VOD correlation energy recovered by TIP for N2 at
the MP2/6-31G* optimized geometry. Each curve represents a single choice of the amplitude
scaling parameter, with the x-axis being the values of the penalty function scalar in Hartrees.
The percent of the VOD correlation recovered by TIP with no penalty function at all is 115.71,
and the percent recovered with no 2nd-order perturbation theory is 96.56.

Fig. 3.6 presents the case of the N6 molecule in a D6h ring, which is the saddle point in
the dissociation into three N2 molecules. It is also exhibits solution instability for weaker
choices of the penalty function. Not until stronger values of the two parameters are used
does TIP result in one orbital solution that monotonically decreases in percent correlation
energy with increased strength of parameters. Fig. 3.7 shows the isoelectronic case of D6h

benzene. The TIP solution becomes stable for weaker values of the penalty function in
this case. For both N6 and benzene, the un-penalized TIP correlation energy never exceeds
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100% of the VOD correlation energy, and all reasonable choices for parameters result in
over 95% recovery of the VOD correlation energy.
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Figure 3.6: A plot of the percent of the VOD correlation energy recovered by TIP for D6h N6,
at the MP2/6-31G* optimized geometry. Each curve represents a single choice of the amplitude
scaling parameter, with the x-axis being the values of the penalty function scalar in Hartrees.
The percent of the VOD correlation recovered by TIP with no penalty function at all is 98.95 and
the percent recovered with no 2nd-order perturbation theory is 78.68.

The final two examples are water in Fig. 3.8 and propane in Fig. 3.9. Both of these
molecules retain the nature of their TIP solution regardless of the choice of parameters, and
even the strongest penalty functions tests reduce the recovered correlation energy by only
0.04%. On the basis of these results (the weakest possible penalty function that gives stable
solutions for N2, N6 and benzene), we think that a critical amplitude of tc = 0.009 and a
prefactor of 0.16 Eh are reasonable choices that will robustly partition strong correlations
to CC theory and weak correlations to PT, while recovering as large a PT correction as
possible. These values will be used for all subsequent calculations reported in the Results
section below.
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Figure 3.7: A plot of the percent of the VOD correlation energy recovered by TIP for benzene,
C6H6, at the MP2/6-31G* optimized geometry. Each curve represents a single choice of the
amplitude scaling parameter, with the x-axis being the values of the penalty function scalar in
Hartrees. The percent of the VOD correlation recovered by TIP with no penalty function at all
is 99.04, and the percent recovered with no 2nd-order perturbation theory is 82.23.

3.3 Results

3.3.1 Correlation energy recovery with and without penalty func-
tions

The first and most basic test of the modified TIP method is to assess how effectively
valence electron correlation energy is recovered relative to more exact treatments. For this
purpose we employ the coupled cluster test code discussed earlier that can solve the equa-
tions including all 3 pair correlations (i.e. all terms included in the pilot TIP method), or
delete the SIP terms to permit a CC treatment of all terms included present version. Note
that this code (and the VOD code which includes all valence space pair correlations) uses
exact 2-electron integrals while the TIP codes use the resolution of the identity (RI) ap-
proximation. The RI approximation introduces around 50-60 µHartrees of error per atom
to the correlation energy for MP2, so for these molecules there is an RI error around 100
µHartrees, which will be small compared to the errors we are going to assess. The perfect
pairing active space includes all valence electron pairs.

Table 3.1 shows the correlation energy in Hartrees for a set of small 2 heavy-atom
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Figure 3.8: A plot of the percent of the VOD correlation energy recovered by TIP for water, H2O,
at the MP2/6-31G* optimized geometry. Each curve represents a single choice of the amplitude
scaling parameter, with the x-axis being the values of the penalty function scalar in Hartrees.
The percent of the VOD correlation recovered by TIP with no penalty function at all is 98.48,
and the percent recovered with no 2nd-order perturbation theory is 97.88.

molecules at a fixed geometry using fixed PP orbitals for all correlation methods. These
systems contain between 4 and 7 electron pairs. TIP, for the most part, recovers almost
the same correlation energy as its full coupled-cluster counterpart. For some cases, like N2

and F2, TIP recovers slightly more correlation than its full coupled-cluster counterpart, but
that correlation energy does not exceed that of the full three pair model. For most of the
molecules TIP recovers less correlation energy than the full valence space CCD method,
which is not surprising given the percent correlation energies seen in the previous section.
Even without a penalty, TIP without the SIP amplitudes only gathered around 98% of the
VOD correlation energy. The removal of the SIP amplitudes from TIP clearly has a small
effect on its energy recovery, lowering the overall correlation energy that is recovered. In-
deed the differences between the new and pilot forms of TIP track quite well the differences
between the corresponding CCD energies when the SIP amplitudes are removed. The effect
of the penalty function on the 3-pair correlations is evidently quite small, and the fact that
TIP with the penalty function yields better agreement with the CC values for the same set
of amplitudes suggests that the parameters chosen are reasonable.

Table 3.2 presents the same set of data at using a different set of fixed orbitals – this time
the orbitals used are those that minimize the energy of the pilot TIP model. This time the
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Figure 3.9: A plot of the percent of the VOD correlation energy recovered by TIP for propane,
C3H8, at the MP2/6-31G* optimized geometry. Each curve represents a single choice of the
amplitude scaling parameter, with the x-axis being the values of the penalty function scalar in
Hartrees. The percent of the VOD correlation recovered by TIP with no penalty function at all
is 97.41, and the percent recovered with no 2nd-order perturbation theory is 94.88.

picture is completely different, and this table illustrates the importance of employing the
penalty function in order to ensure a stable method. The pilot TIP method overestimates
the correlation energy for a majority of these simple test cases (negative mean signed
error). While we have not investigated the optimized orbitals for each case individually,
it is a reasonable assumption that most of the problem cases arise for reasons similar to
the overestimation in N2 illustrated in Fig. 3.4 – namely changes in active orbital ordering
within either the occupied or virtual spaces to interchange the roles of CC and PT so that
the latter is used to overestimate the strong correlations. Comparing the first two columns
of Table 3.2, it is evident that the penalty function approach combined with the removal of
the SIP amplitudes to define the present TIP model has satisfactorily resolved this issue.
The modified TIP method now yields notably higher energies than the full CC models
because the PT amplitudes are subject to significant penalties (compare the mean signed
errors for TIP with and without the penalty function). This will cause orbital optimization
in the penalty function TIP to retain treatment of strong correlations in the CC amplitudes,
and weak correlations in the PT amplitudes, as we are seeking to do. We can see the effect
of this in Table 3.3. When each method is allowed to let their orbitals fully relax, we see
the same trend as in Table 3.2, the present TIP is a marked improvement cutting the error
with respect to VOD by around a factor of five in comparison to the original TIP method,
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TIPa,b,d TIPa,c CC-TIP CC-3Pd VODd

N2 -0.1748 -0.1727 -0.1658 -0.1740 -0.1740
F2 -0.2402 -0.2373 -0.2368 -0.2381 -0.2383
CO -0.1593 -0.1567 -0.1578 -0.1598 -0.1598
CS -0.1137 -0.1115 -0.1138 -0.1167 -0.1167
NP -0.1568 -0.1532 -0.1544 -0.1573 -0.1573
P2 -0.1082 -0.1040 -0.1059 -0.1085 -0.1085

NaF -0.1301 -0.1294 -0.1301 -0.1318 -0.1318
ClF -0.1575 -0.1543 -0.1567 -0.1618 -0.1626
Cl2 -0.0808 -0.0771 -0.0788 -0.0850 -0.0850

HCN -0.1653 -0.1633 -0.1632 -0.1647 -0.1647
HNC -0.1447 -0.1433 -0.1430 -0.1445 -0.1445
HCP -0.1316 -0.1287 -0.1299 -0.1370 -0.1377
HNO -0.2003 -0.1969 -0.1978 -0.2010 -0.2012
HPO -0.1620 -0.1569 -0.1583 -0.1663 -0.1669
HOF -0.2298 -0.2253 -0.2259 -0.2304 -0.2307
HOCl -0.1565 -0.1525 -0.1540 -0.1593 -0.1601
H2CO -0.1771 -0.1736 -0.1734 -0.1771 -0.1773
H2CS -0.1177 -0.1144 -0.1162 -0.1201 -0.1203
H2O2 -0.2224 -0.2187 -0.2206 -0.2249 -0.2257
H2S2 -0.0929 -0.0905 -0.0924 -0.0974 -0.0984
N2H2 -0.1877 -0.1838 -0.1838 -0.1885 -0.1889

RMS error vs. VOD 0.0030 0.0057 0.0049 0.0004
MAX error vs.VOD 0.0061 0.0099 0.0086 0.0010
MSE error vs. VOD 0.0024 0.0056 0.0044 0.0003

Table 3.1: Correlation energies in Hartrees for a fixed geometry using the PP orbitals. aWith
the RI approximation in the 6-31G* basis (RIMP2-VDZ auxiliary basis). bOriginal formulation
of TIP. cRe-Formulation of TIP. dIncludes SIP amplitudes.

and eliminating the overestimation of correlation effects.

3.3.2 Equilibrium Bond-Lengths and Correlation Energies

A valence correlation method such as TIP or more accurate valence active space methods
such as VOD or ultimately CASSCF cannot yield quantitative values for energy differences
due to neglect of dynamic correlation. However they should nonetheless be sufficiently
balanced that they yield reasonable values for molecular properties such as equilibrium ge-
ometries. To this end, Table 3.4 shows a comparison of HF, PP, IP, IP+DIP, TIP and VOD
against experimental bond length values [152] for 21 small molecules with 33 unique bond
lengths. Every method used its own orbitals and analytical gradient to compute these bond
lengths. It is noteworthy that all the pairing methods yield molecular structures that are
substantially more accurate than HF: this validates the importance of defining all valence
electrons as active. Species with lone pairs in the active space and halogens (such as: F2,
ClF, Cl2, HOF, and HOCl) are troublesome for PP; typically PP over-estimates these bond
lengths by at least 0.05 Å. PP also under-estimates the length of the ionic bond of NaF by
0.035 Å. The more non-local methods tend to work better for these species, with the fully
non-local VOD model being best, as would be anticipated.
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TIPa,b,d TIPa,c CC-TIP CC-3Pd VODd

N2 -0.2210 -0.1561 -0.1760 -0.1772 -0.1772
F2 -0.2719 -0.2216 -0.2318 -0.2377 -0.2398
CO -0.1893 -0.1513 -0.1594 -0.1620 -0.1620
CS -0.1399 -0.1087 -0.1167 -0.1210 -0.1218
NP -0.2109 -0.1434 -0.1575 -0.1618 -0.1621
P2 -0.1298 -0.0976 -0.1097 -0.1123 -0.1123

NaF -0.1467 -0.1136 -0.1322 -0.1326 -0.1326
ClF -0.1931 -0.1685 -0.1743 -0.1800 -0.1825
Cl2 -0.1214 -0.1111 -0.1200 -0.1204 -0.1213

HCN -0.1933 -0.1547 -0.1621 -0.1685 -0.1685
HNC -0.1648 -0.1356 -0.1410 -0.1476 -0.1476
HCP -0.1576 -0.1175 -0.1335 -0.1350 -0.1353
HNO -0.2385 -0.1848 -0.1910 -0.2037 -0.2047
HPO -0.2034 -0.1530 -0.1629 -0.1747 -0.1759
HOF -0.2569 -0.2176 -0.2146 -0.2314 -0.2337
HOCl -0.1932 -0.1621 -0.1732 -0.1784 -0.1809
H2CO -0.2085 -0.1643 -0.1730 -0.1804 -0.1816
H2CS -0.1456 -0.1231 -0.1282 -0.1324 -0.1335
H2O2 -0.2499 -0.2081 -0.2203 -0.2276 -0.2305
H2S2 -0.1096 -0.1032 -0.1110 -0.1130 -0.1154
N2H2 -0.2153 -0.1804 -0.1855 -0.1913 -0.1930

RMS error vs. VOD 0.0239 0.0165 0.0080 0.0015
MAX error vs.VOD 0.0488 0.0229 0.0191 0.0029
MSE error vs. VOD -0.0192 0.0159 0.0070 0.0012

Table 3.2: Correlation energies in Hartrees for a fixed geometry using the original formulation of
TIP’s orbitals in the 6-31G* basis (RIMP2-VDZ auxiliary basis). aWith the RI approximation.
bOriginal formulation of TIP. cRe-Formulation of TIP. dIncludes SIP amplitudes.

The most relevant comparison here between the GVB-CC approximations and VOD,
which is essentially their parent theory. The effect of truncating the T̂2 operator is gen-
erally quite small, as one might hope for well-balanced local correlation methods. As the
most complete of the local correlation methods, TIP yields the lowest RMS and max er-
rors of the CC-GVB methods. The worst case is F2. For H2S2, TIP exhibits very slight
symmetry-breaking, giving inequivalent S-H bond-distances. We also note that multiple
(wavefunction) solutions exist for some molecules using these methods: the lowest energy
solutions are the ones shown in all cases.

3.3.3 Aromatic Hydrocarbons and Symmetry-Breaking

The next test for the improved TIP is whether the very good performance of its pre-
decessor for reducing SB can be retained with the changes we have made. We briefly
re-examine the same aromatic hydrocarbons, benzene, naphthalene, and phenalenyl cation
and anion, that we examined previously, using the 6-31G* basis set and the RIMP2-VDZ
auxiliary basis set in the an all-valence electron PP active space. The classic example of
SB is the distortion of D6h benzene along a D3h coordinate. Figure 3.10 shows that TIP
recovers a curve similar to that of VOD without the un-physical cusp at the D6h geometry
as predicted by PP and IP. Figure 3.11 reinforces this by showing that the re-formulation
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TIPa,b,d TIPa,c CC-TIP CC-3Pd VODd

N2 -0.2210 -0.1805 -0.1722 -0.1759 -0.1789
F2 -0.2719 -0.2424 -0.2342 -0.2354 -0.2420
CO -0.1893 -0.1644 -0.1574 -0.1637 -0.1637
CS -0.1399 -0.1213 -0.1176 -0.1240 -0.1240
NP -0.2109 -0.1640 -0.1588 -0.1621 -0.1668
P2 -0.1298 -0.1122 -0.1101 -0.1126 -0.1129

NaF -0.1467 -0.1332 -0.1323 -0.1331 -0.1333
ClF -0.1931 -0.1814 -0.1731 -0.1828 -0.1852
Cl2 -0.1214 -0.1128 -0.0846∗ -0.0878∗ -0.1149

HCN -0.1933 -0.1708 -0.1649 -0.1690 -0.1706
HNC -0.1648 -0.1490 -0.1420 -0.1493 -0.1493
HCP -0.1576 -0.1375 -0.1326 -0.1392 -0.1394
HNO -0.2385 -0.2053 -0.2041 -0.2071 -0.2073
HPO -0.2034 -0.1755 -0.1754 -0.1754 -0.1794
HOF -0.2569 -0.2324 -0.2260 -0.2348 -0.2350
HOCl -0.1932 -0.1784 -0.1599∗ -0.1621∗ -0.1826
H2CO -0.2085 -0.1826 -0.1775 -0.1845 -0.1847
H2CS -0.1456 -0.1336 -0.1175 -0.1243 -0.1278
H2O2 -0.2499 -0.2282 -0.2258 -0.2278 -0.2321
H2S2 -0.1096 -0.1043 -0.1119 -0.0991∗ -0.1131
N2H2 -0.2153 -0.1908 -0.1847 -0.1952 -0.1954

RMS error vs. VOD 0.0221 0.0033 0.0070 0.0027
MAX error vs.VOD 0.0441 0.0088 0.0120 0.0065
MSE error vs. VOD -0.0197 0.0017 0.0064 0.0016

Table 3.3: Correlation and orbital relaxation energies in Hartrees for a fixed geometry using
each method’s own orbitals in the 6-31G* basis (RIMP2-VDZ auxiliary basis). aWith the RI
approximation. bOriginal formulation of TIP. cRe-Formulation of TIP. dIncludes SIP amplitudes.
∗Converged to a different orbital solution, excluded from statistics.

actually improves the TIP predicted geometry for benzene. The bond lengths predicted
by modified TIP show a factor of three less bond alternation then previously reported, only
0.0009 Å, and the average bond length is now only 0.0017 Å longer than that predicted
by VOD, previously it was 0.0087 Å longer. The other cases studied in our previous work
are re-examined in the Supplementary Material with generally similar conclusions. The
reformulation of TIP yields comparable or reduced SB relative to the pilot version, with
results that are typically more than an order of magnitude better than the PP and IP
methods which suffer from artifacts as dramatic as false bond isomers for the individual
resonance structure of naphthalene.

We next consider Li2C4H4, C4H4
2−, and N2S2 [153] which are all four membered aro-

matic rings that all contain 6π electrons like benzene. The different CC-GVB methods
predicted geometries for Li2C4H4 can be seen in Table 3.5. VOD predicts a bond length of
1.491 Å which is very close to the experimental value [154] of 1.495 Å. There is significant
symmetry-breaking in PP (D2h structure), and IP and IP+DIP (C2v structure), and the
electronic wavefunctions for these methods are doubly degenerate giving a cusp at the de-
sired D4h symmetry. The addition of the three pair correlations results in a large reduction
in the SB observed. The bond alternation of around .036 Å as seen in IP is brought down
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bond HF PP IP IP+DIP TIP VOD Expt.a

N2 rNN 1.066 1.090 1.097 1.098 1.110 1.099 1.098
F2 rFF 1.324 1.480 1.408 1.407 1.430 1.398 1.412
CO rCO 1.102 1.118 1.126 1.127 1.127 1.128 1.128
CS rCS 1.511 1.524 1.532 1.536 1.532 1.531 1.535
NP rNP 1.446 1.485 1.492 1.493 1.491 1.491 1.491
P2 rPP 1.851 1.900 1.919 1.916 1.910 1.915 1.893

NaF rNaF 1.908 1.919 1.928 1.928 1.928 1.929 1.926
ClF rClF 1.587 1.659 1.634 1.637 1.619 1.625 1.628
Cl2 rClCl 1.974 2.032 2.019 2.054 2.006 2.032 1.988

HCN rHC 1.057 1.071 1.073 1.073 1.077 1.077 1.065
rCN 1.124 1.148 1.155 1.155 1.158 1.158 1.152

HNC rHN 0.982 0.996 0.999 0.999 1.003 1.003 0.994
rNC 1.144 1.160 1.168 1.170 1.171 1.171 1.169

HCP rHC 1.062 1.078 1.081 1.081 1.084 1.085 1.069
rCP 1.508 1.543 1.550 1.549 1.549 1.549 1.540

HNO rHN 1.031 1.045 1.048 1.050 1.062 1.063 1.063
rNO 1.165 1.210 1.210 1.212 1.204 1.207 1.212

HPO rHP 1.441 1.457 1.458 1.459 1.466 1.476 -
rPO 1.442 1.471 1.473 1.474 1.470 1.476 1.512

HOF rHO 0.944 0.967 0.967 0.966 0.971 0.968 0.966
rOF 1.359 1.466 1.423 1.426 1.442 1.418 1.442

HOCl rHO 0.942 0.964 0.965 0.964 0.965 0.966 0.975
rOCl 1.647 1.732 1.696 1.708 1.700 1.692 1.690

H2CO rCO 1.176 1.204 1.208 1.208 1.206 1.205 1.208
rCH 1.094 1.105 1.106 1.107 1.114 1.117 1.116

H2CS rCS 1.589 1.622 1.627 1.625 1.619 1.617 1.611
rCH 1.077 1.093 1.095 1.095 1.100 1.101 1.093

H2O2 rHO 0.941 0.963 0.964 0.962 0.967 0.965 0.965
rOO 1.383 1.482 1.446 1.451 1.459 1.442 1.452

H2S2
b rHS 1.327 1.348(50) 1.350(52) 1.348 1.338(40) 1.350 1.345

rSS 2.052 2.090 2.095 2.105 2.081 2.058 2.058
N2H2 rHN 1.012 1.029 1.032 1.033 1.037 1.038 1.028

rNN 1.209 1.245 1.250 1.251 1.249 1.251 1.252
RMS error vs. Expt. 0.038 0.022 0.014 0.018 0.012 0.013
Max. error vs. Expt. 0.088 0.068 0.039 0.066 0.042 0.044
MSE error vs. Expt. -0.032 0.005 0.002 0.004 0.003 0.002
RMS error vs. VOD 0.037 0.022 0.009 0.012 0.010
Max. error vs. VOD 0.074 0.082 0.037 0.047 0.032
MSE error vs. VOD -0.034 0.003 0.000 0.002 0.001

Table 3.4: Predicted equilibrium geometries in the 6-311g(3df,2p) basis (cc-pVTZ RI auxiliary
basis) as compared to experiment. aRef. [152], bSome structures asymmetric on the milliAngstrom
scale, both bond lengths are listed.

to only .003 Å. TIP also deviates by only .005 Å from the VOD answer. We note that SB
is associated with the Li atoms, and when they are removed so is the SB problem for all
methods, as illustrated by the results in Table 3.6 for the dianion, C4H4

2−. We note that
TIP predicts almost exactly the VOD bond length, overshooting by only 0.001 Å. The Li
atoms should be symmetrically oriented along the z-axis if the molecule lies in the xy plane,
as seen in the cartesian coordinates of the Li atoms as predicted by HF and VOD. The
GVB-CC models skew this orientation with IP and IP+DIP shifting the axis the Li’s are
aligned on closer to one of the corners of the ring. TIP substantially reduces this problem:
it is again an order of magnitude better than the other CC-GVB methods, but is still not
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Figure 3.10: Potential energy curve for the distortion of benzene along a D3h to D6h coordinate
axis. The PP and IP models exhibit SB, whereas the HF, TIP, and VOD methods do not.
Absolute energies at the D6h are: -230.702049 H for HF, -230.902841 H for PP, -231.014028 H for
IP, -231.075839 H for TIP, and -231.089623 H for VOD.

Figure 3.11: A chart of the optimized bond lengths for benzene as solved by TIP with the 6-31G*
basis set. The TIP (a) bond lengths are without any penalty function. The TIP (b) bond lengths
are with the re-formulation and penalty function. All bond lengths are in Å.

completely cured of SB.

N2S2 is isoelectronic in the valence space to C4H4
2−. As seen in Table 3.7, VOD pre-

dicts a D4h species with bond lengths 0.015 Å longer than experiment. This deviation from
experiment is about what should be expected from VOD as can be seen in the VOD RMS
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HF PP IP IP+DIP TIP VOD Expt.a

C1-C2 1.461 1.483 1.468 1.469 1.488 1.491 1.495
C2-C3 1.461 1.455 1.468 1.469 1.485 1.491 1.495
C3-C4 1.461 1.483 1.504 1.504 1.488 1.491 1.495
C4-C1 1.461 1.455 1.504 1.504 1.485 1.491 1.495

Li Cart. Coords HF PP IP IP+DIP TIP VOD
xLi1 0.000 0.000 0.030 0.030 -0.003 0.000
yLi1 0.000 0.080 0.030 0.030 0.003 0.000
zLi1 1.770 1.761 1.779 1.778 1.774 1.767
xLi2 0.000 0.000 0.030 0.030 -0.003 0.000
yLi2 0.000 -0.020 0.030 0.030 0.003 0.000
zLi2 -1.770 -1.797 -1.779 -1.778 -1.774 -1.767

Table 3.5: Predicted Structures for Li2C4H4 in the 6-31G*basis. All bond lengths are in Å.
aRef. [154]

HF PP IP IP+DIP TIP VOD
C-C 1.454 1.475 1.464 1.464 1.484 1.483

Table 3.6: Predicted C-C Bond Lengths in C4H4
2− in the 6-31G* basis. All bond lengths are in

Å.

error versus experiment in Table 3.4. HF underestimates the bond length, but surprisingly
PP, IP, and IP+DIP approach very nearly the accuracy of VOD. IP+DIP is almost exactly
VOD except for a slight shift towards D2h symmetry. TIP keeps the same D2h character of
the IP+DIP solution while predicting an average bond length 0.008 Å longer than VOD’s.
The pilot version of TIP exhibited nearly pathological behavior for this molecule – with
multiple symmetry-broken solutions possible. The moderate errors observed for the penalty
function TIP effectively removes these problems.

HF PP IP IP+DIP TIP VOD Expt.a

N1-S1 1.614 1.663 1.666 1.669 1.674 1.669 1.651
S1-N2 1.614 1.663 1.666 1.671 1.680 1.669 1.657
N2-S2 1.614 1.663 1.666 1.669 1.674 1.669 1.651
S2-N2 1.614 1.663 1.666 1.671 1.680 1.669 1.657

Table 3.7: Predicted N-S Bond Lengths in N2S2 in the 6-31G* basis. All bond lengths are in Å.
aRef. [155]

Borazine, B3N3H6, is isoelectronic to benzene. Borazine, like N2S2, has a resonance
structure where the π electrons can localize as lone pairs on the nitrogen atoms along the
ring. Table 3.8 shows the bond lengths for borazine as predicted the family of CC-GVB
methods. All GVB-CC methods yield very good reproductions of the VOD structure. All
of the CC-GVB methods reproduce the D3h nature of the VOD solution with the internal
bond angles alternating between around 117.28 and 122.72 degrees. The original version
of TIP slightly over-estimates the B-N bond length and the bond angle alternation for
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borazine. Fig. 3.12 compares the TIP occupied and correlating π benzene orbitals against
those of borazine. In benzene, the π orbitals de-localize across the entire ring much like
the VOD orbitals. For borazine, the electronic structure clearly shows donation from N to
B, but the orbitals are essentially localized on the N sites. The other orbitals not shown
for benzene and borazine strongly localized C-C σ, C-H σ, and carbon s orbitals. The
penalty function version of TIP for benzene still produces a very desirable mix of local
and de-localized orbitals, which leads to the large reduction in SB relative to the simpler
CC-GVB methods.

HF PP IP IP+DIP TIPa TIPb VOD
B-N 1.4265 1.4400 1.4462 1.4464 1.4513 1.4460 1.4465

^ N-B-N 117.59 117.37 117.37 117.34 117.11 117.27 117.28
^ B-N-B 122.41 122.63 122.63 122.66 122.88 122.73 122.72

Table 3.8: Predicted D3h structures for B3N3H6 in the 6-31G* basis. All bond lengths are in Å.
aOriginal formulation of TIP. bRe-Formulation of TIP.

occupied occupiedvirtual virtual

b)a)

Figure 3.12: The TIP occupied and corresponding virtual orbitals for a) benzene and b) borazine.

3.3.4 Linear Polyenes

Another interesting set of molecules with complicated electronic structures are the linear
polyenes. Hirao et al. [37] did a very informative study where they compared CASSCF
results for the bond lengths of a series of trans linear polyenes against experimentally
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observed [156–159] bond lengths. Using these CASSCF results as a benchmark, Table 3.9
compares the C-C bonds observed by TIP and VOD versus those presented by Hirao et al.
Some discrepancies in the basis sets utilized are seen in the case of ethene, where the π
active space is the one pair space where PP is exact. VOD and TIP are the same here, and
agree almost perfectly with experiment. Butadiene is the case where the two pair model
(full DIP) is exactly correct. TIP is the same as IP+DIP here, and we see that the lack of
the SIP amplitudes has a big effect in these systems. VOD reproduces experiment almost
exactly, but TIP has too much bond alternation owing to a higher degree of localization
of the π bonds. In the larger polyenes, VOD clearly becomes an incomplete description
of the true physical picture, but it mirrors the trends observed in CASSCF quite well.
TIP recovers about 60% of these trends as observed by VOD. However TIP routinely over-
estimates the single bond lengths and under-estimates the double bond lengths, showing
that there is a greater degree of localization in the model than VOD for these systems. Table
3.4 states that TIP is expected to exceed the experimental bond length on average by about
0.025 Å. This puts the TIP results into the same degree of agreement with experiment here
as observed before. The problem with CASSCF is that it is computationally limited for
most of these molecules to use only a π bonding active space that includes up to fourteen
electrons. CASSCF can only be used to predict as far as C14H16. TIP is capable of running
much larger systems, including C40H42 with the full valence active space! Diradicaloid
character has been attributed to the behavior in these polyenes. TIP predicts a somewhat
stagnant diradicaloid character of 7.9% for all the larger polyenes, with the note that each
π bond has around 7% diradicaloid character. For decapentaene, the LUMO, LUMO+1,
LUMO+2, LUMO+3 and LUMO+4 each have about the 7% diradicaloid character. This
result is identical to the diradicaloid characters as predicted by VOD. The very promising
results of TIP in this case strongly motivate a fuller study into this topic. An unrestricted
TIP would be useful in computing the singlet-triple gaps and vertical excitations of these
molecules. Since TIP can do chains with at least twenty π bonds in it, the question of how
long must the chain be in order for all the interior bonds to assume the same length can
be looked at.

3.3.5 Multiple Minima

Local valence correlation models (and nonlocal ones sometimes as well) have the problem
that they tend to exhibit multiple orbital solutions that are local minima within the space
of wave function variables. In practice, multiple solutions can often be found by changing
the initial guess orbitals. This seems to be particularly true for molecules with many lone
pairs, when using the perfect pairing active space. Figure 3.13 illustrates the issue for F2

(with the 6-311g(3df,2p) basis) showing the difference between optimized TIP orbitals using
canonical Hartree-Fock and the Pipek-Mezey [66] (PM) localized orbitals respectively as the
initial guess. The TIP solution from the HF orbitals is 0.005 Hartrees lower in energy than
that from the PM guess. Despite being higher in energy, the PM-derived lone pairs look
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C1-C2 C2-C3 C3-C4 C4-C5 C5-C6

Ethene CASSCFa (Expt.)b 1.334 (1.339)
Ethene PP [IP] 1.338 [1.338]
Ethene TIP [VOD] 1.338 [1.338]

Butadiene CASSCFa (Expt.)c 1.335 (1.343) 1.463 (1.467)
Butadiene PP [IP] 1.339 [1.340] 1.481 [1.478]
Butadiene TIP [VOD] 1.340 [1.344] 1.478 [1.465]

Hexatriene CASSCFa (Expt.)c 1.338 (1.337) 1.469 (1.457) 1.345 (1.367)
Hexatriene PP [IP] 1.339 [1.340] 1.478 [1.475] 1.340 [1.342]
Hexatriene TIP [VOD] 1.341 [1.345] 1.474 [1.461] 1.342 [1.351]

Octatetraene CASSCFa (Expt.)d 1.345 (1.336) 1.457 (1.451) 1.351 (1.327) 1.451 (1.451)
Octatetraene PP [IP] 1.339 [1.340] 1.478 [1.475] 1.341 [1.342] 1.475 [1.472]
Octatetraene TIP [VOD] 1.341 [1.345] 1.473 [1.460] 1.343 [1.352] 1.470 [1.457]

Decapentaene CASSCFa 1.346 1.454 1.351 1.450 1.352
Decapentaene PP [IP] 1.339 [1.340] 1.478 [1.475] 1.341 [1.342] 1.475 [1.471] 1.341 [1.343]
Decapentaene TIP [VOD] 1.341 [1.345] 1.473 [1.460] 1.343 [1.352] 1.469 [1.456] 1.344 [1.353]
% Diradicaloid Eth. Buta. Hexa. Octa. Deca.

PP 9.1 7.7 7.8 7.8 7.7
IP 9.1 7.9 7.9 7.9 7.9

TIP 9.1 7.9 7.9 7.9 7.9
VOD 9.1 7.9 7.9 7.9 7.9

Table 3.9: Predicted Bond Lengths of the first five conjugated polyenes in the 6-31G* basis. All
bond lengths are in Å. aRef. [37] bRef. [156,157] cRef. [158] dRef. [159]

more physical: they are fluorine s and p functions. There is accordingly some ambiguity
as to which solution to prefer. We suggest that when a TIP or CC-GVB job is performed,
the resulting orbitals should always be inspected, and if they do not appear physical, then
it is desirable to also employ a smaller active space (for instance correlating only the bond
orbitals) and compare results – both should be consistent. In the tables presented in this
paper, to present a balanced comparison, we have always simply taken the lowest energy
solutions for all methods.

3.4 Conclusions

Local correlation methods yield significantly increased efficiency by either truncating
amplitudes based on spatial criteria, or using simple approximations such as perturba-
tion theory (PT) to treat those amplitudes that are considered to be small. We apply
both of these techniques to define an improved generalized valence bond (GVB)coupled
cluster (CC) method for valence correlations. This approach, called 3-pair corrected im-
perfect pairing (TIP) was proposed recently to address the well-known symmetry-breaking
problems of more approximate GVB-CC methods such as perfect pairing and imperfect
pairing. SB often arises because correlation energy associated with geometries where elec-
tronic structure is delocalized (e.g. D6h benzene) cannot be as effectively recovered by a
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a) b)

Figure 3.13: The TIP lone pair orbitals for F2 computed with a) Pipek-Mezey [66] localized
orbitals for the guess and b) the canonical orbitals for the guess.

local correlation model as those geometries where electronic structure is localized (e.g. D3h

benzene). The addition of correlation amplitudes coupling 3 pairs can restore appropriate
balance as illustrated in Fig. 3.11.

However, methods that combine PT for (numerous) weak amplitudes and CC for (a
small number of) strong correlations are fraught with difficulty because the two meth-
ods give incompatible estimates for the energy-lowing associated with a given amplitude.
Combined with orbital optimization, as we do in the TIP method, one can obtain very
undesirable artifacts such as PT describing the strong correlations (when it overestimates
them) and CC theory describing weaker amplitudes. We discuss how to address these dif-
ficulties by modifying the energy expressions for PT amplitudes with a penalty function
that is zero for small amplitudes ( < tc, a critical value) but rises very strongly when this
threshold is exceeded. Two other changes are made to the design of our pilot method,
to treat one other class of amplitudes by CC theory (which can be done efficiently), and
to entirely remove another class of amplitudes that couple two pairs which was previously
treated by perturbation theory.

The resulting improved TIP method is tested on a range of problems, and when assessed
alongside its GVB predecessors, TIP continually out-performs them in terms of correlation
energy recovery, reduction of symmetry-breaking and quality of property-predictions. The
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reduction of error for many properties compared its GVB predecessors and many of the
other good features of TIP make it a very useful method for obtaining static local correla-
tions for many types of molecular systems. It is now appears to be a superior replacement
for the imperfect pairing pairing method for chemical applications. Finally we believe that
the penalty function approach to perturbation theory tested here may also be useful in
other methods where it is desirable to ensure that amplitudes evaluated by perturbation
theory should be small.
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Chapter 4

The numerical condition of electron
correlation theories when only active
pairs of electrons are
spin-unrestricted

4.1 Introduction

Many electron models often sidestep the complicated structure of separating electron
pairs by allowing approximate wavefunctions to break spin symmetry. The spin-unrestricted
wavefunction [160] has the strength that it matches the energy of non-interacting molecular
fragments in the limit of dissociation. As a consequence, spin-unrestricted Hartree-Fock
has become a standard reference for many sorts of correlated treatments including high-
quality coupled-cluster (CC) methods [161]. When correlated models are used to optimize
unrestricted orbitals [86] strong correlations between paired electrons are described redun-
dantly, and the two competing descriptions can cause difficulties. Multiple solutions are
one manifestation, and another which we have unfortunately encountered while developing
orbital-optimized cluster models [81] is singular behavior of the amplitude equations.

Because of their great physical impact, the existence and character of solutions to the
coupled cluster equations are of interest in themselves. Despite the non-linearity and high
dimension of these equations much is now known about their solutions thanks to the efforts
of several groups [162–169]. Our focus in this paper is much more quotidian, we simply ex-
plore why we were unable to combine valence-space CC with orbital optimization when only
active pairs of electrons are spin-unrestricted. These unrestricted in active pairs (UAP)
orbitals lead to the high spin ROHF wavefunctions for molecular fragments at dissociation.
We find, to our surprise, that the CC equations are quite generally singular in the UAP
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space.

Poor numerical condition of the CC amplitude equations at restricted dissociation is not
new to any practitioner, but with unrestricted orbitals they are usually well-behaved. The
UAP case is noteworthy for a few reasons: it is a general feature of combining unrestricted
orbitals for dissociation with a correlation model in the unrestricted space, it is easy to find
”false solutions”, and we can offer a possible solution. The Jacobian and closely related
stability matrix [170] of the CC equations will be examined for these purposes. The former
has been examined before for the case of restricted linear [163] and multi-reference [165]
cluster theories.

4.2 Results

In all that follows CC calculations were performed in the minimal Perfect Pairing active
space formed by the geminal pairs relevant to a bond-dissociation process. The orbitals
were unrestricted in the UAP sense, as is demonstrated in Figure 4.1. It is important
to stress that our conclusions only hold for a cluster model in this UAP basis where all
singly occupied spin-orbitals are spin parallel on a given fragment and all other orbitals are
restricted. Our conclusions do not hold for the usual UHF orbitals because of the partial
spin-polarization of inactive spectator pairs which would be restricted in the ROHF case.

Our analysis begins with a curious set of calculations on the N2 molecule. Orbitals
were prepared such that only the 6 active valence electrons were unrestricted and localized
on each fragment so that a dissociation curve could be followed inwards from the correct
asymptote at a separation of a few Ångstroms. We attempted to apply CCD in the active
space, and with simple amplitude iterations convergence was sluggish. Inspection of the
amplitudes revealed that they were a scaled unit vector. Employing a standard DIIS [171]
solver the correction vector was zeroed in a few iterations, but again the amplitudes ap-
peared unphysical and the simple iteration residual was non-zero. The gradient obtained
from these amplitudes took strange orbital optimization steps, and the same results were
found independently in our two totally independent implementations of the theory, and so
we proceeded to examine them further.

Many attempts were made to obtain a solution by continuation. At N-N separations of
less than 1.7 Å , 〈Ŝ2〉 of the reference determinant is well below the spin-polarized limit (3)
even for simple Hartree-Fock orbitals and the coupled cluster equations can be solved easily.
This solution however cannot be followed to the dissociation limit. Even at the dissocia-
tion limit, one can easily solve the CC equations if a single term linear in the amplitudes is
neglected. We attempted to continue this solution by introducing a simple continuous de-
formation parameter λ as the coefficient of the single linear term and solving the equations
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Figure 4.1: Unrestricted in active pairs orbitals at the dissociation limit for N2.

along the real axis between λ = [0, 1], but were unsuccessful. Convergence stagnated, but
no single element of the amplitude diverged. A similar situation has been observed in some
other studies of singular CC equations [164]. The same attempts were made for several
other dissociation problems (Ethene, H2, etc.) with the same results. Further analysis
of homotopies [166–169] can completely characterize the solutions of non-linear equations
should they exist, and can establish the precise identity of a non-linear singularity (pole,
branch, pinch etc.), but any such distinction is of mathematical (not physical) concern, as
was established in the pioneering work of others [162] (c.f. Section IV(d)). We will instead
focus on firmly establishing the singularity of the Jacobian, the scope of the problem, de-
veloping a similar set of well-conditioned equations, and heuristic understanding of this
situation.

The Jacobian characterizes the response of the coupled cluster equations to a linear
perturbation:

∂2Ẽ

∂T∂Λ
=
∂〈Φβγ

uv |{ĤeT}c|Φ0〉
∂tλµlm

. (4.1)

This matrix is the size of the amplitude vector squared; if one of its eigenvalues should
become non-positive either the equations have no well-behaved solution, or solutions will
meet at this point. In either of the previous cases the amplitude vector to which the Jaco-
bian belongs should not be regarded as a good approximation to a physical ground state.
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Furthermore one might say the ”condition number” (the ratio of the Jacobian’s smallest
and largest eigenvalues) can be used to measure how rapidly the equations can be solved by
iteration as it is a linear approximation to the amplitude iteration step. This non-Hermitian
matrix has been derived and coded into programs many times [172–174] in the history of
quantum chemistry. For the purposes of this paper we produced a computer-generated
implementation, as have others [175,176]. The results of the automatic implementation are
complemented by a separate program derived and coded by hand for the cases of our local
cluster models with which all stability matrix calculations were performed. In all cases the
Jacobian was explicitly constructed and diagonalized to avoid the art of guess construction.

Figure 4.2 depicts the lowest eigenvalue of the CC Jacobian for the case of ethene
dissociation as obtained by explicit diagonalization. The orbitals were prepared as the
dissociation limit UAP orbitals, then allowed to restrict as the fragments coalesce. Several
sets of amplitudes were examined: the null guess (alternatively this can be considered the
Linearized Coupled Cluster (LCC) Jacobian), the MP2 guess, the best amplitudes which
can be reached by simple iteration (as seen in the figure), those produced by DIIS, and
even amplitudes iterated from random noise, all to the same effect. The increase of the
lowest eigenvalue around the unrestriction point on the inclusion of single excitations is
noteworthy (shown here as a comparison of CCD versus CCSD for ethene in the (4,4)
active space). Performing the same exercise for analogous dissociation problems produces
the same results. By 5 Å the condition numbers of all of these dissociation processes are so
large that convergence seems impossible with double precision arithmetic. Of the cases ex-
amined Mo2 is the most stable, with a smallest Jacobian eigenvalue of roughly 0.0001 at 7 Å.

If the active space is expanded with the same orbitals so that not all the active or-
bitals are completely spin-polarized at dissociation, the equations become immediately
well-behaved. The resulting Jacobian eigenvalues are strictly positive at any displacement.
The reader is undoubtedly familiar with the reasonable condition of UCC calculations and
so this should be evidence enough. Having converged these amplitudes for the case of
ethene in the (12,12) active space at dissociation, they were projected on the minimal UAP
(4,4) active space as a guess (the orbitals are unchanged between these two calculations;
only the amplitude space is altered). The singularity remains whether one tries to converge
from this guess or immediately diagonalizes the Jacobian. Based on these results and the
previous observations we argue that the singularity can be understood with the linear part
of the Jacobian which does not depend on the amplitudes. Inspection of the fragment
orbitals provides another simple argument, all non-linear CCD terms depend on integrals
of the sort (ov||ov) and for these fragment localized spin-orbitals (Figure 4.1) these are
separated across space and vanishing.

The coupled cluster stability matrix contains information very similar to the Jacobian,
but can be used to understand the convergence properties of the iterative process we rely
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Figure 4.2: Smallest Jacobian eigenvalue for various fragment dissociations, in the 6-31G basis
for all cases except Mo2 which is in the CRENBS ECP [177].

upon to solve these equations. Surján [170] and coworkers recently published work exam-
ining this matrix for several solutions of the CC equations along dissociation curves. Their
results showed that the CC equations may exhibit a diverse range of iterative behavior
(convergence, chaos and divergence) if manipulated by a denominator shift, and that ex-
trapolative methods like DIIS [171] can be misleading as they seem to converge on what
appear to be stable fixed points. We reiterate the formulas for this matrix given CCD and
the usual partitioning. One can see that it is essentially the Jacobian dressed by factors
which reflect the conventional form we use to solve the CC equations.

J22
uvβγ,lmλµ = δulδvmδβλδγµ −

∂〈Φβγ
uv |{ĤeT}c|Φ0〉/∂tλµlm
fββ + fγγ − fuu − f vv

(4.2)

The Lyapunov exponents are the central object of this analysis, which are the logarithm
of the stability matrix’s eigenvalues. If these should equal or exceed zero, the iterations
are non-convergent. We turned to this tool because we wanted to understand what was
occurring when simple iterations would stagnate at very small residual values. Figure 4.3
depicts the results for several small molecules obtained with a hybrid of our local CC meth-
ods: The Perfect Pairing (T̂PP =

∑
ti
∗i
∗

ii
â†i∗ â

†
i∗ âiâi) [56, 57, 86, 131], and Imperfect Pairing

(T̂IP = T̂PP +
∑

i 6=j t
i∗j∗

ij â†j∗ â
†
i∗ âj âi + tj

∗i∗

ij â†i∗ â
†
j∗ âj âi) [78,79,82,83] models. Note that even if

the species is asymmetrical the same trend is observed.
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Figure 4.3: The largest Lyapunov exponent as a function of bond length for a stability analysis
of PP and IP exchange type amplitudes for 3 molecules using the IP energy ansatz with the UAP
PP orbitals in a minimal active space [(4,4) for C2H4 and C2H3F, (6,6) for N2] with the 6-31G*
basis.

These results firmly establish the singularity of the CC equations using the UAP orbitals
at dissociation, but what meaning, if any, does this have for UCC as it is practiced when the
UAP style spin polarization is almost never the case? Many situations could be imagined
where this construction would be the case. One such situation is if the restricted core
electrons are cut from the calculation by a pseudo-potential the results are essentially the
same as those which would be obtained from the minimal active space. Another example is
N2 in a minimal basis where there are no virtual orbitals beyond those utilized in the (6,6)
active space. Figure 4.2 depicts the CCD Jacobian’s lowest eigenvalue for the dissociation
of Mo2 with the CRENBS basis and matching pseudo-potential.

4.3 Modified Equations Which are Well-Conditioned

Since the instability and ill-conditioning of the CC amplitude equations at the UAP
dissociation limit has been established, we seek to restore solubility to these cluster models
in this case. Here we will discuss a few possible solutions based on the idea of regular-
ization [178, 179]. We will rate them based on a simple set of criteria: a) does it stabilize
the CC amplitudes, b) is it simple to define and implement, c) how heavily does it affect
the energetics of the molecular system at equilibrium, and d) will it allow us to optimize



4.3. MODIFIED EQUATIONS WHICH ARE WELL-CONDITIONED 78

orbitals with active space CC Lagrangian methods.

The first and simplest correction is to add a constant denominator shift. As shown
by Surján et al. [170], this enables us to make the amplitude equations stable. However,
it requires a constant shift of at least 12 kcal/mol to be able to optimize the orbitals
along the entire ethene dissociation curve. This is a very strong penalty near equilibrium
bond lengths where the amplitude equations are usually well-conditioned. We also took
a non-linear equation solving approach and tried to identify the source of the singular-
ity, eliminate it, solve the system when it is non-singular, and follow a homotopy back
closely [180]. In the next section we attribute the singularity to the structure of the block
of the linear coupling matrix containing the PP and the IP exchange type amplitudes. We
can create a stable nonlinear system and solution by eliminating the off-diagonal matrix
elements. The CC amplitude equations are easily solved in that diagonal representation,
and the homotopy can be followed in very closely to the original problem. However the ho-
motopy could only be followed in to a scaling parameter of at maximum around 80.0% for
the IP level of correlation, and it is prohibitively expensive to follow the homotopy properly.

Another approach can be taken from our recent work [119]. A dynamic denominator
shift reminiscent of amplitude regularization with a form reminiscent of a damping func-
tion, −γ(e(t/tc)2n − 1), can be constructed to affect the amplitudes similarly to a static
denominator shift. The tc critical amplitude parameter defines the largest desired value
an amplitude can take before it becomes heavily regularized. The power 2n is designed to
require the power of the argument to the exponent to be an even integer and the dynamic
penalty function to be invariant of the phase of the amplitude. The coefficient γ is there to
help scale the magnitude of the dynamic penalty when amplitudes are not small, but not as
large as the critical amplitude parameter. Unlike the static denominator shift the dynamic
penalty function approach is flexible enough to be very small before the unrestriction point
on the dissociation PES where amplitudes are typically small, and large when amplitudes
become large (typically on non-variational surfaces the amplitudes are greater than one).
Of course to evaluate a gradient in the presence of such a penalty we must propagate this
modification through the derivatives of the Lagrangian, so that it can be used to optimize
orbitals and geometries.

A reasonable choice for the critical amplitude parameter, tc, is one, since that prevents
a complete inversion of the reference and the doubly excited states. The other parameters
(γ and n) should be chosen to balance making the corrections small at equilibrium, with
ensuring that orbitals can be optimized towards dissociation. A dynamic penalty function
that we have found to work well by numerical experiment is −8(et

6 − 1) Eh in the ampli-
tude equations with a corresponding penalty function of −8(et

6
(1 + 6t6) − 1) Eh for the

Lagrange multipliers. There is only a cost in correlation energy of 9.1 µ Eh for ethene at its
equilibrium geometry with the IP+DIP method, and a mean absolute error of 11.5 µ Eh for
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the full PP active space G2a and G2b sets [181, 182] done with 6-31G*. These parameter
values are of course not unique: a choice of a γ of 2 and a power of 4 also works quite well
with an energy cost around twice as large (both RMS and MAE) as the above parameters.

4.4 Heuristic Understanding of the Problem

There is a very simple argument for linear dependence in the basis composed of exci-
tations from the UAP orbitals in the dissociation limit. The molecular fragments with the
UAP orbitals are completely degenerate with respect to complete spin inversion. The diver-
gent unphysical amplitudes connect these two solutions, and the energy changes along the
path connecting these solutions are either negligible or zero. The resulting physical conse-
quence is that a degenerate subspace of solutions has been created and a linear dependence
arises when the amplitudes and spin polarization compete to describe the spin-unrestriction.
One can also ask how this is manifest in the representation of the Hamiltonian in this basis
explicitly, and this is much less straightforward. The results demonstrate that generally
this singularity is present in the coupled cluster equations and strongly suggest that it lies
in the linear part of the Jacobian. There is a possibility that both the linear and non-linear
equations are singular but for different reasons. In this work we will assume that their
conditions stem from the same problem.

The simplest possible case is the dissociation of a hydrogen molecule in the minimal
STO-3G basis. There is only one unique amplitude in the wavefunction, and one unique
orbital unrestriction parameter which reflects the rotation of the beta bonding MO into the
beta anti-bonding MO. The coupled cluster equations for the amplitude have the simple
form of a quadratic equation, whose coefficients can be constructed for any distance, R
and any orbital rotation, θ, the surfaces representing these coefficients and their resulting
amplitudes and energetics are plotted in Figure 4.4.

0 = A+BT̂ + CT̂ 2 (4.3)

First notice on the plot of energy that variational determination of the orbitals would
not unrestrict at any distance. The simple 1-amplitude CCD expansion can handle the
open-shell singlet. Next focus on the line passing through 45o, both the constant and
quadratic terms vanish, but the linear term doesn’t, so one of the two roots diverges in this
unrestricted limit, while the other goes to zero. We can dissect the linear term further and
find that there is a single diagram responsible for the non-vanishing term with the usual
algebraic form: ∑

kc

< ka||ic > T̂ kjcb ⇒ BT̂2 (4.4)
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Figure 4.4: CCD parameters for H2 in STO-3G basis, horizontal axis θ, vertical axis R (Å).

Figure 4.5: Orbital labeling for H2 dissociation.

In the numbering of Figure 4.5 the 2-electron integral that appears in this term is (11|1∗1∗).
The Coulomb operator lies between orbitals lying on the same atom, and so it fails to decay
as the bond is broken. If the description of the correlation is expanded to include singles,
i.e. CCSD, the problem remains singular.

Considering a more general case, such as ethene dissociation, the CCD equations are
now of much higher dimension, but we maintain that the essential features of this singularity
are the same. The linear part of the equations is now multidimensional, and the coefficient
of the linear term is a matrix which is precisely the well-known LCCD Jacobian [163]
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(which is alternatively the CCD Jacobian for the null guess, also known as the matrix Û
in the notation of some other papers [81]). For complete CCD the dimension is too large
to permit direct inspection, but we can examine the truncated block of amplitudes (Table
4.1) spanned by a local model for physical insight, remembering that they exhibit the same
behavior seen in the full active-space CC models examined in Section 4.2 and were the root
of our interest in this problem. A figure labeling the relevant 1 particle functions is also
included for clarity (Figure 4.6).

t1
∗1∗

11
t2
∗1∗

12
t1
∗2∗

21
t2
∗2∗

22

t1
∗1∗

11
0.093 -0.047 -0.047 0.000

t2
∗1∗

12
-0.047 0.093 0.000 -0.047

t1
∗2∗

21
-0.047 0.000 0.093 -0.047

t2
∗2∗

22
0.000 -0.047 -0.047 0.093

Table 4.1: Linear coupling matrix for the PP and IP exchange amplitudes for ethene (H2C=CH2)
at a C-C bond length of 7.50 Å with unrestricted PP orbitals in the minimal active space in the
6-31G* basis.

Figure 4.6: Orbital labeling for ethene dissociation.

Ironically, orbitals that lack any spin-symmetry impart a fragment symmetry onto this
matrix which causes its determinant to vanish. The off-diagonal matrix elements are found
to arise in the same diagram examined above and the troublesome (oo||vv) integral. It
can also be shown algebraically that this block of the linear coupling matrix must have
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this structure in general. Introducing asymmetry in to the molecules, i.e. fluorinated
ethene or the molecule NP, does not alleviate this problem and the structure of the linear
coupling matrix is identical with some slight asymmetry in the off-diagonal elements. In
the appendix we provide further argument for the structure of this matrix for our local
models (again because the number of amplitudes is manageable) and general formulas for
the determinant given this structure for the interested reader.

4.5 Conclusions

Recently an interesting study was directed at the question, ”Do broken-symmetry ref-
erences contain more physics than the symmetry adapted ones?” [183]. In that case the
concern was for RHF orbitals with broken spatial symmetries, and it was found that it was
difficult for single-reference CC theories to correct the symmetry-broken wavefunction. In
a similar vein, we have found that in the case of completely broken spin symmetry, the
physics of spin correlation is removed from the cluster equations such that they are singular.
This manifests itself in poor numerical condition of the cluster equations which prevents
us from finding physical solutions and hampers orbital optimization. Ad-hoc manipula-
tion of the Lagrangian using a dynamic penalty of the form −γ(e(t/tc)2n − 1) can render
the equations soluble, even in this situation, and it seems that the remaining correlations
are relatively unperturbed. Philosophically, our results suggest that CC based on UHF
references succeeds (in the sense that most dissociation curves are reasonable even in the
intermediate region) largely through the independence of strong spin correlations from the
others. This bodes well for correlation models designed on the principle of dividing these
problems. This ill-conditioning is striking at first sight, just as the poor values of 〈Ŝ2〉
usually observed with spin-unrestricted orbitals are also striking. However the physical
properties at dissociation with the UAP fragment orbitals are absolutely fine. Amplitude
regularization breaks the degeneracy between amplitudes which are zero and those which
are divergent, in favor of the former, which can then be readily obtained.
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Chapter 5

Orbitals that are unrestricted in
active pairs for GVB-CC methods

5.1 Introduction

Generalized Valence Bond (GVB) methods are active space electron correlation meth-
ods. The simplest model is GVB Perfect Pairing (PP) [56,57] which can correctly describe
the making and breaking of isolated single bonds with spin-restricted orbitals since it al-
lows one bonding and one anti-bonding orbital to describe each pair of electrons. The
PP method can be extended within the framework of spin-coupled valence bond (SC-VB)
theory, although due to computational expense which is higher than even Complete Active
Space (CAS) methods for a given number of electrons, such calculations are not common.
Recently a low-order polynomial-scaling approximation to SC-VB has been proposed [184],
which appears very promising, but its strengths and weaknesses have not yet been fully
characterized. It is also possible to view PP as a rough approximation to the Complete
Active Space Self-Consistent Field (CASSCF) [50, 51, 53, 54] treatment of all electron cor-
relations in the valence space that includes one active orbital per valence electron.

The PP wave function has direct connections with the coupled cluster (CC) formal-
ism [78,79,86]; PP is an approximation to active space CC with double excitations, where
only 1 double excitation is retained per electron pair. The CC connection allows for the
creation of new GVB-CC methods that are more accurate than PP (closer to CASSCF)
but still computationally efficient. A variety of approaches have been explored includ-
ing imperfect pairing (IP) [83], imperfect pairing with doubly ionic pairing amplitudes
(IP+DIP) [119], and doubly ionic pairing [84]. These methods are subsets of the next logi-
cal stopping point, which is a cluster approximation that is exact for two pairs of electrons,
fully extensive – this is perfect quadruples (PQ) model [85], which neglects all correla-
tions that couple more than two different electron pairs. Inclusion of pair correlations that
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couple three electron pairs as an augmentation to IP+DIP has also been explored by us,
and shown to be crucial in the reduction of symmetry-breaking in molecules with multiple
resonance structures [118, 119]. The resolution of the identity (RI) [61–63] approximation
can also be used with the GVB-CC methods [131] without any significant loss of accuracy
to further reduce the computational cost.

The focus of this paper is the form of optimized orbitals to employ in GVB-CC meth-
ods. As for CASSCF, the orbitals should be optimized to minimize the energy. Should
the orbitals be spin-restricted or spin-unrestricted? If there is no truncation of correlations
in the active space correlation method, then restricted orbitals can be employed to ensure
a spin-eigenstate is obtained. If the correlation treatment is approximate, as in GVB-CC
methods, then spin-unrestricted orbitals may be essential in order to obtain correct disso-
ciation products, although this will introduce spin-contamination. For instance PP cannot
separate multiple bonds correctly with restricted orbitals. For this reason, Unrestricted PP
(UPP) has been implemented [86], with some promising results such as molecular properties
for open shell systems that are significantly improved over Hartree-Fock theory. Addition-
ally the valence orbital optimized CC doubles (VOO-CCD, or simply VOD) method has
been implemented with unrestricted orbitals [81].

However, some serious problems have also been identified as a consequence of allowing
orbitals to freely spin-unrestrict within an active space description of the electron correla-
tion [87]. The most undesirable artifact that is associated with spin-unrestriction in active
spaces is the rotation of pairs out of the active space as they dissociate in favor of orbitals
that still produce some correlation energy. For example, the dissociation of methane to
methyl and H leads to a valence active space that consists of 4 bond pairs at equilibrium,
but 3 bond pairs, and the 1s core pair at separation [87]. This means the resulting energies
will not be properly size-consistent: dissociated methyl and H with 4 pairs has lower energy
than the energy of separate calculations on methyl with 3 active pairs, and H atom. In
other cases, the character of the active space may change suddenly change along a reac-
tion coordinate, leading to discontinuous potential energy surfaces. These problems apply
equally to unrestricted orbitals from active space methods more sophisticated than PP,
such as VOD [81].

With intent to both remedy the artifacts found with freely spin-unrestricting PP and to
make the approach workable with higher order GVB-CC methods (IP, IP+DIP, 2P, etc.),
we will introduce in this paper a new model for spin-polarization in GVB-CC methods
that we term unrestricted in active pairs (UAP). The UAP orbitals are defined so that two
spatial orbitals span the space describing each active orbital pair (i.e. one bonding and
one anti-bonding level) just as for restricted orbitals, and, subject to this constraint, the
two alpha orbitals can differ from the two beta orbitals. This strongly limits the extent to
which spin polarization is possible. Thus when dissociating molecules into fragments such
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that all active pairs separate, the UAP procedure will directly yield fragment orbitals and
energies which are high spin restricted open shell Hartree-Fock.

The UAP approach very strongly limits the spin polarization that is possible in GVB-
CC methods relative to the unconstrained approach suggested originally. However, there
is a close relation between the spin polarization allowed in UAP, and unrestricted orbitals
at the HF level, which is revealed by comparing the UAP construction with the so-called
corresponding HF orbitals [185]. The coupled cluster valence bond (CC-VB) approach [184]
also yields orbitals that are non-orthogonal within a pair, while being strongly orthogonal
between pairs, though in this case the wave function is spin-pure.

The outline of the remainder of this paper is as follows. In Sec. 2, the UAP approach
is developed, and a practical implementation of the UAP orbitals is described for GVB-
CC models including PP itself as well as extensions to include interpair correlations. The
connection to the corresponding orbitals of UHF theory is discussed. In Sec. 3 we compare
UAP calculations with unconstrained unrestricted calculations on a variety of sample cases
to assess the extent of improvement. Finally, in Sec. 4 we will present our conclusions.

5.2 Theory

5.2.1 Unrestricted in Active Pairs (UAP) orbitals

The UAP method begins with a set of restricted molecular orbital (MO) coefficients,
C. They must be optimized with respect to all rotation angles that mix orbitals in the 4
spaces (core, active occupied, active virtual, and virtual). They must also be optimized
with respect to mixings of the active occupied orbitals amongst themselves and the active
virtual orbitals amongst themselves, since one of each is used to describe each electron
pair. Collectively, these mixings define the orbital rotation, θ, degrees of freedom. They
are typically solved for as successive unitary orbital rotations [30, 82, 186] in the GVB-CC
methods, such that the ith orbital update is Ci+1 = Cie

θi , where a full set of N(N − 1)/2
rotations (i.e. both non-redundant and redundant rotations) are used for θ on each itera-
tion.

In truncated GVB-CC theory (e.g. breaking a double bond with methods such as PP
or IP) the use of restricted orbitals causes the energy to behave non-variationally towards
dissociation. We seek to avoid this problem by permitting the orbitals to spin-polarize so
that α and β orbitals are different. This is done by making both the α and β molecular
orbitals a unitary transformation of the restricted reference orbitals, C,
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Cα = CU (5.1)

Cβ = CU†. (5.2)

In previous work [81, 86], the spin polarization transformation, U, was optimized as
generally as possible. In the UAP approach, instead the spin-polarization transformation
is defined on a pair by pair basis via a 2x2 Givens rotation matrix that mixes only the
two orbitals describing each geminal pair: the bonding orbital, i, and the corresponding
correlating orbital, i∗. This will prevent the artifacts that have been reported previously [87]
from occurring. Additionally, inactive occupied orbitals, inactive virtual orbitals, and any
half-occupied orbitals are constrained to remain restricted. The unitary transformation
matrix, U, is therefore a tensor product of 2x2 Givens rotation matrices that only interact
within the pair, Gi,

U =

Npairs∏
i=1

Gi. (5.3)

For example, a 2-pair case will be composed of two Givens matrices for the pairs and the
identity elsewhere: 

1
cosφi sinφi

cosφj sinφj
1

−sinφj cosφj
−sinφi cosφi

1


,

and more specifically these equations emerge for the UAP MOs:

Cα
µi = CµiUii + Cµi∗Ui∗i (5.4)

Cα
µi∗ = CµiUii∗ + Cµi∗Ui∗i∗ (5.5)

Cβ
µi = CµiUii + Cµi∗Uii∗ (5.6)

Cβ
µi∗ = CµiUi∗i + Cµi∗Ui∗i∗ . (5.7)

With the UAP definition of spin polarization, there is a single unrestriction angle, φ,
for each pair, which permits dissociating bond orbitals to spin-unrestrict along reaction
coordinates, without solving for excessive numbers of degrees of freedom (in principle there
could be N(N − 1)/2 variables associated with U). The UAP model has a resemblance to
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the corresponding orbitals of self-consistent field theory [185]. The corresponding orbitals
are those which diagonalize the overlap matrix between α and β molecular orbitals, while
retaining orthonormality amongst themselves. The result is that a given α orbital has non-
zero overlap with only one β orbital. These two orbitals will then span a subspace that is
2-dimensional if there is spin polarization (α β overlap of less than 1). The UAP orbitals
have exactly the same property.

5.2.2 Algorithm

In the current implementation of UPP and related GVB-CC methods [82] in Q-Chem
[142] spin-polarized orbital optimization is performed by independently varying all 2N(N−
1) orbital rotation degrees of freedom with the Geometric Direct Minimization (GDM) pro-
cedure [30,82]. For the UAP model, we choose to optimize the restricted orbital variables,
θ, and the spin-polarization degrees of freedom, φ, together with GDM as N(N−1)+Npairs

degrees of freedom. The N(N − 1) θ degrees of freedom are treated just as in the existing
restricted GVB-CC implementations. The additional Npairs φ degrees of freedom associ-
ated with UAP are treated as a series of 2x2 rotations. It is also possible to converge
θ and φ disjointly, and this appears potentially very promising for some implementations
(such as using only exact integrals). However, for our implementation (exact integrals
for mean field, and resolution of the identity for electron correlation), it is most economi-
cal to employ combined optimization with GDM to minimize the total number of iterations.

The main computational steps in a GVB-CC calculation are MO basis integral transfor-
mations and forming an MO derivative, ∂E

∂Cpµ
, on each orbital iteration. Both steps involve

the half transformed Coulomb and exchange integral quantities J
[ii]
µν and K

[ii]
µν , where the

untransformed indexes µ and ν are in the AO basis. In a spin-restricted calculation this
step scales with the fourth power of molecule size and requires 6NpairsN

2 (3J and 3K) total
space. For implementation of spin-polarization in GVB-CC without constraints, 16NpairsN

2

of these half-transformed quantities are needed, which requires fourth order computational
effort on each φ and θ iteration.

By contrast, to implement spin polarization via the UAP model, the three-quarters
transformed quantities, J

[ii]
µp and K

[ii]
µp , (the new index, p runs over all core occupied and

active MO’s) can be formed and written to disk in the reference restricted basis. This
requires only 7NpairsNNp (3J and 4K) space on disk, which is more than a 2-fold reduction.
The target spin-unrestricted quantities and final transformations can be performed on the
fly with only quadratic memory and third order computational effort. For instance to create
an active space integral, (ii|µp∗), two simple steps are needed:

(ii|µp) = UiiUii(ii|µp) + Uii∗Uii∗(i
∗i∗|µp)
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+ Uii∗Uii(i
∗i|µp) + UiiUii∗(ii

∗|µp), (5.8)

(ii|µp∗) = Up∗p(ii|µp) + Up∗p∗(ii|µp∗). (5.9)

The restricted open-shell integrals need to be updated every time a step in θ is made. That
is the only expensive step in our new process, as the number of θ iterations in an UAP
calculation is comparable with that of a restricted calculation. When compared side by
side, this three-quarters transformation algorithm rivals our restricted algorithm on a per
step basis as will be shown later in the Results section.

To obtain the solution in practice it is recommended to start a computation at a point
with strongly spin-polarized unrestricting pairs (i.e a broken bond at dissociation or by
just looking at the primary bonding orbitals for a radical). The spin-polarization gives the
unrestriction angle gradient for the other pairs the appropriate direction. The correspond-
ing orbitals guess [185] is constructed by forming the α and β overlap matrix, Sαβ, for the
occupied space and then diagonalizing it to obtain the unrestriction angles. From here the
orbital are localized and the procedure of Sano [68] is used to form the guess for the active
virtual space. It is also useful to pre-converge the θ degrees of freedom as typically there
is enough of a difference between the desired restricted reference orbitals and those pro-
duced by a spin-unrestricted Hartree-Fock calculation to be noticeable. This is done in our
algorithm by taking a few PP iterations in θ at the fixed guess values of the unrestriction
angles. This approach is particularly helpful when running UAP-2P calculations.

5.2.3 Amplitude Regularization

Perhaps the simplest possible model problem is H2 in the STO-3G basis. The two re-
stricted orbitals are determined by symmetry as σ and σ∗, so there are no rotation angles
to optimize, and it has only one unrestriction angle, φ, and one PP amplitude. If we opti-
mize the amplitude for each value of φ, we obtain the results shown in Figure 5.1, where
each curve corresponds to a different bond-length. The equilibrium geometry curve shows
that spin-polarization is energetically unfavorable, as we should expect. What may not
be expected is that as the angle is varied from 0o to 90o, representing the change from
standard orbital configuration to a complete inversion of the occupied and virtual orbitals,
the potential surface exhibits cusps and takes the form of periodically repeated parabolas.
The cusps arise from the PP amplitude becoming too large (>1) to be reliably described
by the non-variational CC method past φ = 45o.

We have also shown recently [120] that the iterator for the non-PP GVB-CC meth-
ods does not produce stable amplitude solutions [170] at dissociation without amplitude
regularization. The unrestricted CC equations are effectively singular, and this problem
must be remedied by adding an additional term to the equations which regularizes the
solutions [120]. For all subsequent calculations in this paper, we use a modification of our
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Figure 5.1: The unrestriction angle PES for (2,2) H2 using PP (choosing most energy lowering
amplitudes) with the STO-3G basis.

original penalty function that is even smaller in magnitude but still effective. A PP ampli-

tude, ti
∗i
∗

ii
, always bear a penalty of the form −0.01(exp(ti

∗i
∗

ii

6
)− 1)/(e1 − 1) Eh which has

a maximum value of −0.01 Eh. The imperfect pairing [83] exchange amplitudes, tj
∗i
∗

ij
, also

need to be penalized if they are present in the correlation model [120]. They are penalized
by the values of the PP amplitudes they are directly connected to:

−0.05(exp((2ti
∗i
∗

ii
)
6
)− 1)/(e1 − 1)Eh +−0.05(exp((2tj

∗j
∗

jj
)
6
)− 1)/(e1 − 1)Eh (5.10)

with each term being restricted to a maximum value of −0.05 Eh.

While the precise form of the penalty function is not unique, it has the important
property that its effect on GVB-CC energies is very small, both for weakly and not so
weakly correlated systems. For example, for the absolute energies of the molecules in the
G2a and G2b data sets [181, 182], using the 6-31G* basis, the penalty functions give a
mean absolute error of 0.35 µEh and a root-mean square error of 4.07 µEh . The largest
outlier in this set is O3, which has an error of 49.5 µEh. By removing this piece of data,
the RMS error reduces to .03 µEh. For the two pair (2P) model [84], the mean absolute
error is .04 µEh and the RMS error is .10 µEh for the G2a and G2b sets done with 6-31G*.
This choice of penalty function works well in the usual domain of φ where the angles and
amplitudes can be well guessed and solved for easily.
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5.3 Results

5.3.1 Performance and Timings

After the presentation of our improved algorithm for the GVB-CC methods utilizing
the UAP model, it is necessary to demonstrate its computational efficiency and its over-
all predictive performance. First, we will examine the computational efficiency of the
UAP approximation as the algorithm is significantly changed compared to previous imple-
mentations of GVB-CC in Q-Chem [142]. Table 5.1 shows the performance of UAP-PP
compared to both restricted PP and freely unrestricting PP (UPP) for polyenyl radicals
of three different lengths in the 6-31G* basis set using the geometries listed in Table 5.4
as the alternating guess, ”a”, geometries. For the following timings we utilize the exact
integrals with a cut-off threshold of 10−14. Our implementation includes both exact and
RI [61–63] integrals. The previous GVB-CC implementations utilized the RI integrals for
the mean-field contributions to the orbital rotation gradient, whereas the UAP implemen-
tation formulates those contributions with exact integrals. using the exact integrals to
form the mean-field contributions to the orbital rotation gradient means slower iterations,
but the orbital rotation gradient is numerically correct which is important for difficult to
converge systems.

Method Initial Guess (s) Time per Iter. (s) Num. of Iter.
Allyl Free Unrest. 2.34 5.27 24
Allyl UAP 1.17 2.95 22

Pentadienyl Free Unrest. 14.73 38.73 36
Pentadienyl UAP 7.23 21.23 54
Heptatrienyl Free Unrest. 50.77 145.11 40
Heptatrienyl UAP 25.03 77.05 47

Table 5.1: A timing comparison of both spin-unrestricted implementations of PP for various sized
radicals. All calculations are performed in the 6-31G* basis using exact (analytical) integrals with
a convergence criterion of 10−5 for the orbitals and an integral threshold of 10−14. The timings
were done on an Apple Mac Pro with 3 GHz Quad-Core Intel Xeon processors.

In comparing per-iteration timings for UAP to free spin-polarization in Table 5.1, it is
clear that the ability to exploit the reduction in the number of degrees of freedom in the
UAP integral transformation algorithm is very advantageous. Each iteration of UAP only
takes about 50 to 60 percent of the time of an iteration of freely unrestricted PP takes with
this percentage diminishing towards a limit as system size increases. In essence UAP-PP
timings per iteration are very close to restricted PP timings, as a result of the implementa-
tion strategy developed in the previous section. There is a similar nearly 2-fold reduction
in UAP versus freely unrestricting calculations in the amount of time needed for the initial
guess. The UAP initial guess timings are nearly comparable with restricted timings, as
the additional work needed to do the diagonalization of Sαβ in the initial guess for UAP is
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relatively small.

Both types of calculations take roughly similar numbers of iterations. Perhaps surpris-
ingly the freely unrestricting UPP calculations take slightly fewer iterations than UAP-PP.
This is not because UPP is an easier optimization problem than UAP-PP (in fact, the
opposite is generally true). Instead it is because a more approximate diagonal hessian is
used for the UAP methods. Only components coming from the 1-particle density matrix
terms are used, whereas the existing RPP and UPP implementations utilize both 1 and
2-particle density matrix contributions to the hessian. The diagonal hessian becomes quite
complicated to compute for all the GVB-CC methods if all the 2-particle density matrix
components are included, and therefore we have not done so at this time.

5.3.2 Minimal Active Space Homolytic Bond Dissociation

Figure 5.2 shows the potential energy surfaces for pulling apart the carbon-carbon dou-
ble bond in ethene in the minimal (4,4) active space, which leads to triplet methylene
fragments at dissociation. As PP cannot correctly break two interacting bonds simulta-
neously, spin-polarization is essential, leading to a lowest energy asymptotic solution with
two spins of one type on one fragment, and those of the other on the opposite fragment.
The zero of Fig. 5.2 has been set to just that limit of two triplet methylene fragments. It is
evident that UAP-PP smoothly dissociates to this limit. By contrast, freely unrestricting
PP (UPP) goes to a different asymptote about 25 kcal/mol lower in energy than the correct
dissociation limit. If the orbitals are examined as in Figure 5.3, we can see that this lower
asymptote spuriously includes the correlation energy of one C-H bond in ethene. Around
2.0 Å the UPP solution begins to rotate out the C-C fragment orbitals that are not yielding
enough correlation energy in favor of the C-H σ bonding orbitals which lower the overall
correlation energy. By contrast, the UAP orbitals as seen in Figure 5.3, cleanly dissociate
to the desired fragments. The uncontrollable switching of active space orbitals with UPP
(or other truncated active space methods with unconstrained unrestricted orbitals) shows
that the freely spin-unrestricting approach is not size-consistent. By contrast the UAP
approach is perfectly size-consistent.

Just how smooth is the UAP-PP potential energy surface? This question can be an-
swered numerically by examining the derivatives on both sides of the geometry (about 2.0
Å) at which spin-polarization occurs point need to be examined to verify the smoothness of
the UAP potential surface. The force on the C atoms as a function of geometry is plotted
in Figure 5.4. It is evident that the force is continuous but changes slope at the geometry
where spin-polarization first occurs. In other words, at the point where spin-polarization
first occurs, the second derivative of the energy exhibits a discontinuity. This is exactly
the same as spin-polarization in the Hartree-Fock and Kohn-Sham density functional the-
ory (at least with present day approximations), as has been recently discussed [187], and
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Figure 5.2: The C-C dissociation PES for ethene in the (4,4) active space in the 6-31G* basis.

Figure 5.3: The orbitals at 3.5 Å C-C separation in ethene using restricted, freely unrestricting,
and UAP PP.
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Figure 5.4: The absolute value of the nuclear gradient along the C-C bonding axis for ethene in
the (4,4) active space in the 6-31G* basis.

occurs for the same reason (the derivative of the spin-polarization variables, φ, exhibits a
discontinuity when spin-polarization occurs).

In Figure 5.5 a series of dissociation curves for N2 in the (6,6) active space can be
seen. The zero limit of this curve represents the ROHF dissociation limit of two quartet
nitrogen atoms, and once again UAP-PP approach cleanly dissociates to this limit whereas
the free spin-unrestriction does not. The freely spin-unrestricting approach once again re-
organizes the active space to lower the correlation energy at dissociation. As is evident
in the potential energy surface, not only does this yield an incorrect asymptote (again
a size-consistency violation), but there are multiple changes in active space character on
the path to dissociation which leaves the UPP PES visibly discontinuous at the level of
first derivatives. Not only is this unsatisfactory for chemical applications, it also leads
to considerable difficulties in converging the orbital optimization across the PES. By and
large, all of these difficulties are resolved with the UAP approach. The UAP orbitals
change character from molecular to atomic gradually and smoothly, and are prevented by
the constraints from involving spectator orbitals. UAP-PP yields a smooth potential energy
surface with a greatly reduced hump around 2.0 Å.

5.3.3 Full Active Space Bond Dissociation in Methane

We will re-examine the model system studied by Beran et al. [87]; a single hydrogen
abstraction from methane in the full (8,8) PP active space. In ethene, a carbon-hydrogen
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Figure 5.5: The N-N dissociation PES for N2 in the (6,6) active space in the 6-31G* basis.

bond rotated into our active space as the carbon-carbon bond orbitals began to assume
methylene fragment character. In the methane case, all the possible carbon-hydrogen bonds
are being correlated and they hypothetically follow the single hydrogen abstraction until
the fragments are a doublet methyl radical and doublet hydrogen. RPP, UPP and UAP-PP
curves are equivalent from 1.0 to about 2.8 Å, and then differences are seen towards the
dissociation limit as shown in Figure 5.6. The energy of the dissociation limit is hydro-
gen plus 3-pair UAP-PP for CH3. Freely unrestricting PP branches off to a lower energy
solution, where as UAP-PP and restricted PP both stay about the same. The energy for
restricted PP becomes slightly higher than UAP-PP as it approaches a limit where the
CH3 pays an energy penalty for not having any spin-polarization.

The freely unrestricting PP asymptote at dissociation is around 3 kcal/mol lower in
energy than the appropriate UAP-PP asymptote. Instead of rotating in a different bond
to correlate, Figure 5.7 shows that with freely unrestricting PP the system has rotated
out the hydrogen-centered virtual orbital (it can no longer provide any correlation energy)
and rotated in an orbital centered on the CH3 fragment. Fig. 5.6 shows that if the UAP
approximation is used, the potential energy surface does not branch to that lower asymptote
and instead goes to the desired molecular fragments as can be seen in the orbitals shown in
Figure 5.7. As a consequence of the constraint which permits only spin-polarization within
the 2-dimensional subspace describing a pair, the bond has dissociated to have one electron
on each fragment and its corresponding pairing virtual on the opposite fragment. Including
the full PP active space is not sufficient to prevent artifacts with free spin-unrestriction; the
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Figure 5.6: The spin-unrestriction point along the single hydrogen abstraction PES for CH4 in
the (8,8) active space in the 6-31G* basis. The zero in energy is the UAP dissociation limit.

UAP approach is again necessary to keep the appropriate orbitals in the active space and
ensure size-consistency. Together with the results of the previous section, this establishes
that all of the main artifacts associated with freely unrestricted PP identified in earlier
work [87] are resolved with the UAP model for spin polarization.

5.3.4 Radical Properties

Radicals can also be examined with the UAP approach, beginning with equilibrium
properties calculated from these static correlation models. The biggest problem in dealing
with radical properties is sorting out all the different low-lying minima and a preference for
symmetry breaking solutions. To compute these properties the UAP-2P method with the
cc-pVTZ basis (with the RIMP2-cc-pVTZ auxiliary basis) is employed. The 2P method
includes all the doubles amplitudes that connect two pairs and also removes all the integrals
with indices spanning more than two pairs. This method corresponds to a truncation of
the PQ method discussed elsewhere [85] at the level of double excitations. 2P includes as
many doubles amplitudes as can be done with quadratic memory and quartic computa-
tional effort. The basic properties we are examining are the optimized equilibrium bond
length of the radical, 〈Ŝ2〉 for the correlated wave function, and the Mulliken charge and
spin populations for the diatoms at the equilibrium bond length. Tables 5.2 and 5.3 shows
the properties of the wavefunction for 7 of the worst cases for the freely spin-unrestricted
PP [86]: BO, CN, CO+, N+

2 , O+
2 , OF and F+

2 . Table 5.2 contains UAP-PP results while
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Figure 5.7: C-H bonding and anti-bonding orbitals from the CH3 + H reaction using a) freely
unrestricting PP and b) UAP-PP. a) Includes an inactive virtual orbital to indicate re-arrangement
of active space.

Table 5.3 contains UAP-2P results.

Req Expt. Req Predicted 〈Ŝ2〉 Charge Spin
BO 1.205 1.193 0.7553 0.153/-0.153 1.079/-0.079
CN 1.172 1.155 0.7925 0.044/-0.044 1.300/-0.300

CO+ 1.115 1.098 0.7727 0.704/0.296 1.196/-0.196

N+
2 1.116 1.155 0.7958 0.628/0.372 1.235/-0.235

O+
2 1.116 1.094 0.7576 0.500/0.500 0.500/0.500

OF 1.358 1.418 0.7544 0.089/-0.089 1.054/-0.054

F+
2 1.322 1.428 0.7615 0.713/0.287 1.089/-0.089

MAD Expt. 0.039
RMS Expt. 0.050

Table 5.2: Properties of some diatomic radicals in the cc-pVTZ basis (with the rimp2-cc-pVTZ
auxiliary basis) using the UAP-PP method. The Mulliken charge and spin populations are given
in the order of the molecular formula. The bond lengths are expressed in Angstroms.

Comparing the predicted bond lengths against the known experimental bond lengths, it
can be seen in Table 5.2 that UAP-PP does a fairly poor job relative to our usual expecta-
tions of an accuracy of perhaps 0.01 Å. This demonstrates that regardless of the treatment
of spin-polarization, the PP level of correlation is insufficient for modeling the equilibrium
properties of these radicals. Table 5.3 demonstrates that UAP-2P improves greatly over
UAP-PP: it still has large errors in bond lengths for the halogenated species, but for all
other species it performs superbly. Thus inter-pair correlations help significantly to reduce
the PP error.
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Req Expt. Req Predicted 〈Ŝ2〉 Charge Spin
BO 1.205 1.204 0.7500 0.136/-0.136 1.030/-0.030
CN 1.172 1.161 0.7503 0.024/-0.024 1.129/-0.129

CO+ 1.115 1.107 0.7502 0.691/0.309 1.085/-0.085

N+
2 1.116 1.106 0.7506 0.633/0.367 1.083/-0.083

O+
2 1.116 1.105 0.7500 0.500/0.500 0.500/0.500

OF 1.358 1.391 0.7500 0.100/-0.100 1.018/-0.018

F+
2 1.322 1.399 0.7501 0.700/0.300 1.032/-0.032

MAD Expt. 0.022
RMS Expt. 0.033

Table 5.3: Properties of some diatomic radicals in the cc-pVTZ basis (with the rimp2-cc-pVTZ
auxiliary basis) using the UAP-2P method. The Mulliken charge and spin populations are given
in the order of the molecular formula. The bond lengths are expressed in Angstroms.

The values of 〈Ŝ2〉 for the correlated wave function indicate that an almost pure doublet
has been found for each of these cases at the UAP-2P level, with reduced contamination
relative to UAP-PP. The improved description of electron correlations in UAP-2P leads to
more symmetric solutions than obtained with PP. However the Mulliken spin and charge
densities tell us that a symmetry broken state is still the preferred one for all molecules
except O+

2 . The more symmetric states for CN and N+
2 are on the order of 10 kcal/mol

higher in energy for UAP-2P than the solution presented at their optimized geometry. The
predicted bond length for the more spin-symmetric species are also around 0.04 Å longer
than the ones for the spin symmetry broken solutions. This means that although the spin
symmetry is wrong, the spin-polarized symmetry broken solutions agree better with ex-
periment. The leading spin-unrestriction angles for each of these cases is for the bonding
orbital pairs, and they are typically small values ranging from 1 to 5 degrees.

The allyl radical is a well-known problem for both HF and GVB methods because of
its propensity to exhibit artificial symmetry breaking. UB3LYP predicts a structure that
has symmetric C-C bonds of 1.386 Å in the cc-pVDZ basis and Beran et al. [86] showed
that unconstrained UPP breaks symmetry along a distortion coordinate. The distortion
coordinate is defined as the difference in the two C-C bond lengths, with UPP yielding an
optimized geometry with a distortion of around 0.06 Å. If the PP optimized geometries
are computed with both types of spin-unrestriction, we find that UPP predicts C-C bond
lengths of 1.3735 and 1.4393 Å and UAP-PP predicts a nearly symmetric structure with
C-C bond lengths of 1.4005 and 1.4008 Å. Figure 5.8 shows a plot along the C-C bond
distortion coordinate. The 0 Å distortion point is defined as the average of the two equi-
librium C-C bond lengths at the optimized symmetry-broken geometry. The UAP method
produces a curve that is virtually flat around the symmetric geometry, showing that in this
case artificial symmetry breaking can be significantly reduced simply by our constrained
treatment of spin-polarization.
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Figure 5.8: PP using different forms of spin-unrestriction potential energy surfaces along a dis-
tortion coordinate from their optimized structures in the cc-pVDZ basis.

Continuing from allyl radical, Table 5.4 shows predicted bond lengths for the next two
larger polyenyl radicals, pentadienyl, C5H7, and heptadienyl, C7H9. Two initial geometries
were used for each molecule done with each method. The ”a” geometry has the radical
electron localized on a terminal carbon with alternating single and double carbon-carbon
bonds, and the ”b” geometry is a C2v structure with the radical electron in the center of
the molecule. Each calculation is done in the full PP active space with the cc-pVDZ basis
set (with its corresponding auxiliary basis). For pentadienyl radical, both UAP-PP and
UAP-2P predict the appropriate location for the radical electron (centered around the cen-
tral carbon atom of the chain), but freely unrestricting PP keeps the alternating geometry
regardless of the guess used. Overall, the UAP-PP vs UPP results for pentadienyl resemble
those discussed above for allyl: the UAP approach to spin polarization diminishes artificial
symmetry breaking significantly. It is noteworthy that UAP-2P obtains the correct sym-
metry, whereas UAP-PP still yields some distortion.

The bond length difference (outer vs inner CC distance) for this species was found to
be 0.054 Å for CASSCF and 0.053 Å for UCCSD(T) [188]. UAP-2P has bond alternation
that is about two times too large at 0.090 Å with UAP-PP roughly the same at 0.095 Å.
This suggests that the radical electron is too localized in these methods, and that correla-
tions coupling more than 2 pairs and/or higher than double substitutions are important to
obtain the correct extent of localization/delocalization in this case.
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C1-C2 C2-C3 C3-C4 C4-C5 C5-C6 C6-C7

Pentadienyl Guess (a) 1.338 1.444 1.341 1.436
Free-UPP 1.360 1.472 1.394 1.415
UAP-PP 1.367 1.444 1.468 1.355
UAP-2P 1.374 1.464 1.464 1.374

Pentadienyl Guess (b) 1.389 1.403 1.402 1.387
Free-UPP 1.360 1.472 1.394 1.415
UAP-PP 1.370 1.439 1.471 1.354
UAP-2P 1.374 1.464 1.464 1.374

Heptatrienyl Guess (a) 1.338 1.445 1.342 1.447 1.341 1.436
Free-UPP 1.353 1.488 1.365 1.463 1.398 1.412
UAP-PP 1.353 1.494 1.353 1.477 1.422 1.382
UAP-2P 1.360 1.493 1.378 1.460 1.464 1.374

Heptatrienyl Guess (b) 1.378 1.447 1.395 1.395 1.447 1.378
Free-UPP 1.358 1.475 1.387 1.428 1.460 1.364
UAP-PP 1.350 1.485 1.401 1.401 1.485 1.350
UAP-2P 1.360 1.493 1.378 1.461 1.464 1.374

Table 5.4: Optimized geometries of pentadienyl and heptatrienyl radicals. The calculations were
performed with the cc-pVDZ basis (with the rimp2-cc-pVDZ auxiliary basis) with the 3 spin-
polarized correlation methods. The a) guess geometries are alternating single and double bonds
with the radical electron on a terminal carbon. The b) guess geometries are structures of the
appropriate C2v geometry with the radical electron centered on the central carbon of the chain.

For the heptadienyl radical, UAP-2P was able to move the radical electron inwards from
the terminal carbon, but it did not return the whole molecule to a C2v geometry. Instead it
produced a geometry similar to pentadienyl, with another carbon single and double bond
attached to one end of it. UAP-PP can find two solutions, one of the appropriate C2v

structure, and one similar to the structure predicted by UAP-2P, with the asymmetric
structure being lower in energy by around 0.19 kcal/mol. Freely unrestricting PP also
predicts two structures. The structure with a pentadienyl-like subunit is 3.65 kcal/mol lower
in energy than the bond alternating structure that closely resembles guess structure ”a”.
Therefore, while UAP is again a clear improvement over unconstrained spin-polarization
at the PP level, it is an interesting question for future investigation as to how delocalized
the correlations must be permitted to be in order to correctly reproduce CASSCF results.

5.4 Conclusions

Spin-polarization is essential for describing strongly correlated problems like multiple
bond dissociation with truncated descriptions of electron correlation, such as coupled clus-
ter generalized valence bond (CC-GVB) methods which use an active space of one orbital
per active electron. When using active space methods to describe the static electron corre-
lation of a molecular system, the normal definition of spin-unrestriction which allows the α
and β variables to vary independently becomes unacceptable [87]. The resulting artifacts
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include orbitals completely rotating out of the active space so that the system described by
the correlation at equilibrium is no longer the same as the one described at dissociation [87].

The spin-polarization method described in this paper constrains orbitals to only be
unrestricted within active pairs (UAP). In UAP, spin-polarization occurs only with the
space of two orbitals (one bonding, and one antibonding) used to describe each active
electron pair, giving one degree of freedom per pair. The smaller number of degrees of
freedom and the strict pair-by-pair definition of spin-polarization of orbitals can be utilized
to make an efficient implementation of UAP with PP or more advanced CC-GVB methods.
Most importantly, UAP produces orbitals that smoothly transition from the restricted
bonding orbitals at Req to appropriate spin-polarized orbital fragments at dissociation. To
ensure well-behaved amplitudes, we additionally add a penalty function term to the CC-
GVB equations. Based on a variety of test calculations, the resulting UAP methods are
a great improvement over the spin-polarization without constraints. It will be interesting
and desirable to combine the UAP approach with further systematic improvement of the
cluster operator [85,118,119] in the future.
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Chapter 6

Analysis of multi-configurational
Kohn-Sham methods: Theory and
model application to bond-breaking.

6.1 Introduction

Density functional theory (DFT) [121] is considered to be the most applicable and useful
method to determine the ground-state (GS) physical properties of microscopic electronic
systems. Given a system of N particles, bound in an external potential, vext, the main idea
of DFT is to search for their GS density, n, rather than the full GS wave function (WF), Ψ.
The former can be obtained, in principle, by solving the highly complicated 3N dimensional
Schrödinger equation (SE). DFT, on the other hand, takes advantage of the Hohenberg-
Kohn theorem [121], which proves that; first, the interacting particles’ energy functional,
ε [Ψ], can be replaced by a density functional, E [n], thanks to a 1-1 map between GS WFs
and densities; Ψ↔ n:

E [n] ≡ ε [Ψ [n]] = FHK [n] +

∫
drvextn

FHK [n] ≡ 〈Ψ [n] |T̂ + V̂ee|Ψ [n]〉

T̂ = −
N∑
i=1

1

2
∇2
i , V̂ee =

1

2

N∑
i 6=j=1

1

|ri − rj|
(6.1)

(we use atomic units: me = e2 = ~ = 1) and second, the GS energy and density can be
obtained from the variational principle of E [n]with respect to the density

δE [n] |n=ngs = 0
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However, since the exact, explicit one-to-one map Ψ↔ n is unknown, approximations are
required in order to estimate the universal HK functional part of the energy functional,
FHK [n].

Therefore Kohn and Sham [189] (KS) suggested mapping the real interacting system
onto an auxiliary fictitious system of N noninteracting particles, described by a WF, ΨS [n],
which restores the exact interacting GS density. Consequently, the HK functional FHK [n]
is partitioned as

FHK [n] = 〈Ψ [n] |T̂ |Ψ [n]〉+ EH [n] + EXC [n] (6.2)

where the Hartree energy, EH , and the exchange-correlation (XC) energy, EXC , are defined
as

EH [n] = 1
2

∫∫
drdr

′ n(r)n
“
r
′”

|r−r′ |
EXC [n] ≡ FHK [n]− EH [n]− TS [n]

TS [n] = 〈ΨS [n] |T̂ |ΨS [n]〉

(6.3)

It remains to model EXC as an explicit density functional, for instance, based on the homo-
geneous electron gas (the so-called local density approximation (LDA)). The KS fictitious
WF, ΨS, is taken as a Slater determinant of N orbitals, {φi}Ni=1. They are determined by
the KS method, as is explained later on, such that their density is in principle identical
to the exact GS density of the (real) interacting electrons. The density-WF relation is
exploited then:

n (r) = N

∫
dr2..drN |ΨS (r, r2..rN) |2

〈ΨS|ΨS〉
While the DFT-KS method yields very good results for GS energy in many equilibrium

cases, [190] it still exhibits several severe problems. These problems mainly arise from the
local density nature of EXC(LDA/GGA), and the very simple fictitious wave function, ΨS.
For instance, it is well known that KS method is unable to describe complete dissociation
curves [191], static linear and non-linear polarizability [192], 3-electron bonding [193], or
bond twisting [194], properly. Also, the various XC LDA/GGA functionals include un-
desired self-interaction energy, [195, 196] spin contamination [197], and lack of derivative
discontinuity of the derived XC potential [190]. The former is critical for band-gap cal-
culations in semiconductor and dielectric materials. It is also recognized that for strongly
correlated systems (some of the above examples are in this class also), the KS method yields
poor results [ [198, 199]. Furthermore, it is not clear how to systematically improve the
LDA/GGA XC functionals, taken from the homogeneous electron gas (HEG), for atomic
and molecular finite systems to address these problems, although progress has been made
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on self-interaction in particular [200,201].

It is therefore a present-day grand challenge in DFT to go beyond the regular KS method
and the various widely used XC functionals. One direction to improve the regular KS
method is searching for the energy minimum using an auxiliary multi-determinantal/multi-
configuration (MC) fictitious WF, ΨMC

S [n], where the energy functional is partitioned sim-
ilarly to the KS partition, as

E = 〈ΨMC
S [n] |T̂ + V̂ee|ΨMC

S [n]〉+ Edyn
C [n] +

∫
drvextn, (6.4)

where Edyn
C ≡ FHK [n] −

〈
ΨMC
S [n]

∣∣T̂ + V̂ee
∣∣ΨMC

S [n]
〉

is to be modeled as an explicit func-
tional of the density (it is called the ‘dynamical’ or ‘residual’ correlation). The interacting
system is now mapped onto a partially interacting system, where the corresponding KS
equations contain both effective local and nonlocal potentials. We are able, in this way,
to address the abovementioned problems by incorporating static (strong) correlations via
〈ΨMC

S |V̂ee|ΨMC
S 〉, and at the same time to reduce the dynamical correlation effects, taken

for instance from HEG. It is clear that the various aspects of the chemical bond can be
described in a more realistic and reliable manner, thanks to the nonlocal and long-range
nature of such correlation. Also, this method is much more flexible than the regular KS
method, and intelligent choice of the WF, ΨMC

S , may yield good results still with cheaper
computational cost than the standard WF methods. Indeed, proposed multi-determinantal
methods like multi-reference (MR) DFT/CAS-DFT, [104–113] and MC-optimized effective
potential (OEP) [114, 115] do exhibit feasibility and improvement over the regular KS
method.

It is the aim of this article to examine the basis of such theories, while extending the
rigorous regular KS method to the case of a MC auxiliary WF. By this we mean we are
interested in an effective local potential map between interacting and auxiliary systems, vS
:Ψ 7→ ΨMC

S , without any prior assumption for the auxiliary WF form, ΨMC
S . We show that

a consistent rigorous MCKS method will always yield a single-determinant (SD) WF at
the end of the KS-SCF procedure. We also discuss the connection between the above MC
methods and our analysis. Finally we illustrate the use of a partly interacting reference
system, and the associated challenge of treating residual correlation for bond-breaking in
the hydrogen molecule, using a perfect pairing reference wave function.

6.2 The Standard Kohn-Sham Method

To briefly summarize, the KS method [189] introduces an auxiliary system of non-
interacting particles, bound in an effective local external potential, vS (r), described by the
auxiliary (SD) wave function, ΨS. A fundamental assumption is that the non-interacting
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GS density is identical to the interacting GS density, and that this can be restored by vS
(v-representability). Since ΨS is a Slater determinant of N orbitals {φi}Ni=1, the energy
functional of the non-interacting system can be written as

ES [n] = TS +

∫
drvS (r)n (r) , (6.5)

where TS =
N∑
i=1

〈φi| − 1
2
∇2|φi〉 is the non-interacting kinetic energy functional, the density

is given by n (r) =
N∑
i=1

|φi (r) |2, and vS should be determined. At the same time one can

write the interacting energy as

E [n] = TS [n] +

∫
drvext (r)n (r) + EH [n] + EXC [n] . (6.6)

We require that the non-interacting and interacting systems have the same density at their
GS, restored by vS, i.e.

δE [ngs] = δES [ngs] = 0. (6.7)

A crucial part of the KS method is determining the non-interacting potential, vS. The as-
sumption that both interacting and non-interacting systems have the same density at their
GS enables us to determine vS rigorously. At the GS density, both variational principles
with respect to the density together with the particle number constraint, yield expressions
for the constrained variations:

δE [ngs] = δTS [ngs] + (vext + vH [ngs] + vXC [ngs] + µ) δn
δE [ngs] = δTS [ngs] + vS [ngs] δn+ µδn

(6.8)

where µ is the Lagrange multiplier for the particle number constraint, and,

vH [n0] (r) =
∫
dr
′
n0

(
r
′) ∣∣r − r′∣∣

vXC [n0] (r) = δEXC [n] /δn (r) |n=n0

(6.9)

Employing Eq. 6.8 in Eq. 6.7, we obtain vS (up to a constant):

vS [ngs] (r) = vext (r) + vH [ngs] (r) + vXC [ngs] (r) . (6.10)

The potential vS in Eq. 6.10 defines a map vS :Ψ 7→ ΨMC
S between the interacting and the

non-interacting systems. Furthermore, since ΨS = det ({φi})
/√

N !, the non-interacting

energy minimum can also be obtained from the following constrained variation via the
orbitals:
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δ

{
ES +

∑
i,j

[εij (〈φi|φj〉 − δij)]

}
= 0

δES = δTS + vSδn (6.11)

Eq. 6.11 yields the celebrated KS equations [189] for the orbitals:

ĥS (r)φi (r) = εiφi (r) ,

ĥS (r) ≡ −1

2
∇2 + vS (r) ,

n (r) =
N∑
i=1

|φi|2 (6.12)

Together with Eq. 6.12, the KS self-consistent field (SCF) has a closed form. The KS-SCF
ends when vS yields a set of orbitals that minimizes ES.

6.3 Mapping the Interacting System onto an Auxil-

iary System via an Effective Local Potential

In this section we prove that mapping an interacting system onto an auxiliary system,
the latter described by a multi-configuration (MC) WF, ΨMC

S , will always yield a single-
determinant WF, like in the regular KS method. Given a set of orbitals, {φi}Mi=1, we define

the MC WF as ΨMC
S =

∑
i

ciDi, where Di = det ({φk})
/√

N ! is a normalized determinant

of N orbitals chosen from the orthogonal set {φi}Mi=1 (N < M ≤ ∞), and {ci} are complex
coefficients. At first glance, it might seem obvious that such an auxiliary system should
be described by a SD WF. Indeed this is the final result, but, unlike a physical fixed po-
tential, the MC-KS effective potential is changed during the SCF procedure. Furthermore,
it is possible, at each SCF cycle, to obtain first the configuration coefficients, {ci}, and
then calculate the orbitals {φi}Mi=1 via the proper KS equations with frozen coefficients
{ci}. In this case a collapse into a SD WF is unlikely. However, as we will explain in Sec.
6.4, there is no consistent map between interacting and auxiliary systems in this latter case.

Let us repeat the KS analysis for the case of ΨMC
S . Again, we assume that there is a

local potential, vS, which at the auxiliary system’s GS, generates the GS density of the
interacting system. We have to find the GS energy of the auxiliary system (analogously to
Eq. 6.5):

EMC
S = 〈ΨMC

S |T̂ + V̂ee|ΨMC
S 〉/〈ΨMC

S |ΨMC
S 〉
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=
∑
i,j

c∗i cj〈Di|ĤS|Dj〉/
∑
i

|ci|2

≡
∑
i,j

Pij ({ck}) 〈φi|ĥS|φj〉 (6.13)

where Pij is theM xM Hermitian one-particle density matrix and ĤS (r1..rN) =
∑

i ĥS (ri) ≡∑
i

[
−1

2
∇2 + vs (ri)

]
. Correspondingly, we can define the interacting energy and XC func-

tionals as:

E = TMC
S [n] +

〈
ΨMC
S

∣∣V̂ee∣∣ΨMC
S

〉
+
∫
drvext (r)n (r) + Edyn

C [n] ,

TMC
S [n] =

〈
ΨMC
S [n]

∣∣T̂ ∣∣ΨMC
S [n]

〉
,

Edyn
C [n] ≡ FHK [n]−

〈
ΨMC
S [n]

∣∣T̂ + V̂ee
∣∣ΨMC

S [n]
〉
,

(6.14)

where

TMC
S = −1

2

∑
ij

Pij ({ck}) 〈φi|∇2|φj〉

n (r) =
∑
ij

Pij ({ck})φ∗i (r)φj (r) . (6.15)

From Eq. 6.15 the density is now a functional of the orbitals and the amplitudes, {ck}, so
the variation should be done, correspondingly, with respect to each of them. Furthermore,
the same trial wavefunction ΨMC

S must be used in the interacting and the auxiliary energy
functionals, since the variation is done with respect to the density, and the density is a
functional of both the orbitals and the amplitudes. The objective is again to find a closed
form for vS by equating the constrained variations:

δEMC
S = δE = 0, (6.16)

in direct analogy to Eq. 6.7. From Eqs. 6.14 and 6.16 we obtain, similarly to the regular
KS method:

vS = vext + vMC
XC

vMC
XC = δ

{
〈ΨMC

S [n] |V̂ee|ΨMC
S [n]〉+ Edyn

C [n]
}
/δn

(6.17)

Note that vMC
XC can be found similarly to the extended OEP method [115]. The MCKS

equations are obtained now from the constrained variation principle

δEMC
S +

∑
i,j

[ε̃ijδ (〈φi | φj〉 − δij)] = 0, (6.18)

with respect to each orbital and amplitude (vS is not varied of course). The final result is
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∑
j

Pij ({ck}) ĥS (r)φj (r) =
∑
i

ε̃ijφj (r) ,

∂EMC
S /∂ck = 0. (6.19)

Since ĥS is a 1-body Hamiltonian, orbitals
{
φdi
}

can be chosen that diagonalize it:

ĥSφ
d
i = εiφ

d
i (6.20)

Therefore each determinant, Dd = det
({
φdi
})/√

N ! , is automatically an eigenfunction of

ĤS (defined in Eq. 6.13):

ĤSD
d
i = EiD

d
i ,

Ei =
N∑
j=1

εij . (6.21)

For any such determinant, Ei ≥ Ed
min ≡

N∑
i=1

εi (assuming that {εi} are ordered from

lower to higher). We now expand the MC-WF in the determinants
{
Dd
i

}
:ΨMC

S =
∑
i

ciDi =∑
i

biDi. Employing the first equality in Eq. 6.13 and the fact that ĤS is a sum of

single-particle operators (i.e. unitarily invariant), one can see that EMC
S = ~b†

←→
H d~b/|~b|2

where
(
~bi

)
= bi and

←→
H d is the diagonal matrix Hij ≡

〈
Dd
i

∣∣ĤS

∣∣Dd
j

〉
δij ≡ Eiδij. Therefore,

the non-interacting MC energy is

EMC
S =

∑
i |bi|2Ei∑
i |bi|2

= E0 +

∑
i |bi|2∆Ei∑
i |bi|2

(6.22)

where E0 = min {Ei|bi 6= 0} and ∆Ei = Ei−E0. Thus, provided that ΨMC
S contains more

than one nonzero bi, and E0 =
N∑
j=1

εij ≥ Ed
min as we concluded above, we obtain:

Ed
min ≤ E0 < EMC

S (6.23)

Therefore, for any given local potential, vS, the MC-WF will never minimize EMC
S unless

it collapses into a single determinant (in the case of degeneracy, the MC-WF will collapse
into a sum of determinants containing non-excited orbitals). We conclude that Eqs. 6.16
and 6.17 can never be satisfied rigorously by a nontrivial MC-WF.
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6.4 Mapping the Interacting Systems onto Partially

Interacting Systems

Despite the fact that a rigorous MC-KS construction simply collapses to the standard
KS method, there are MC-DFT methods that do not exhibit such a WF collapse. For
instance, the CAS-DFT/MR-DFT approach [105, 106, 113] uses the partition 4 to model
the total energy by a MC-WF. The energy functional is then mapped onto a ‘partially’
interacting system via an effective local potential, w, w :Ψ 7→ ΨMC

S , where the interacting
and partially-interacting energy functionals are (respectively)

E = 〈ΨMC
S |T̂ + V̂ee|ΨMC

S 〉+ Edyn
C [n] +

∫
drvext (r)n (r)

E = 〈ΨMC
S |T̂ + V̂ee|ΨMC

S 〉+
∫
drw (r)n (r) .

The assumption here is that there is a local potential, w, that at the GS of the partially
interacting E, generates the same fully interacting GS density of E. w is determined from
the HK variational principle (with total particle number constraint):

δE = δE = 0 (6.24)

to yield w (r) = vext (r) + δEdyn
C /δn (r). This equality defines a consistent map between the

fully interacting and partially interacting systems, if the variation of E is done with respect
to both orbitals and amplitudes. Hence the amplitudes and the orbitals are determined by
the SCF equations for the orbitals and the amplitudes:

δ

[
E +

∑
j,k

(〈φj|φk〉 − δjk)

]
/δφi = 0,

∂E/∂ci = 0 (6.25)

The first set of equations are extended KS equations, containing both effective local and
nonlocal potentials (see Eq. 6.20 in Ref. [113]). WF collapse is not likely here, since the
KS equations contain a nonlocal potential, reflecting partial treatment of electron-electron
interactions in 〈ΨMC

S |T̂ + V̂ee|ΨMC
S 〉. Therefore, our analysis of Sec. 6.3 does not hold here:

E cannot be written as a pure bilinear form of the amplitudes as was done for EMC
S in Eq.

6.13.

Another method is the MC-OEP [115], a variation of CAS-DFT/MR-DFT, with a
difference regarding the evaluation of the orbitals. Here, three systems and functionals
are defined, the fully interacting E [n], a partially interacting E [n] and a noninteracting
ES [n]. At each iterative cycle, the amplitudes are determined, first, from the variation
∂E/∂ci = 0, as in Eqs. 6.25 (w is obtained from Eq. 6.24). Then, the local potential is
calculated from the variation ∂E/∂vs = 0 (an extended OEP equation), which is equivalent
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to ∂E/∂n = 0 [202]. Finally, the orbitals are obtained from the regular KS equations
(Eqs. 6.12) with the calculated local vS(δE = δES = 0 should be assumed in order to
obtain a consistent map). Therefore MC effects enter the KS equations only implicitly,
through vS. Here, again, MC-WF collapse is unlikely, since the amplitudes are calculated
for the partially interacting system, and then, with frozen values of the amplitudes, only
the orbitals have to minimize a non-interacting energy. Furthermore, the assumption,
δE = δES = 0, where the variation should be done with respect to the density, is not fully
satisfied, since δES is done with respect to the orbitals only and not for the amplitudes.
Therefore, the orbitals are not calculated from a fully consistent local potential map, vS.
In fact, this inconsistency keeps the MC WF from collapsing into a SD WF.

6.5 Perfect Pairing as a Partially Interacting Refer-

ence

The purpose of this paper is not to assess MC-DFT schemes based on partially in-
teracting reference wavefunctions. Nevertheless, a simple practical example can serve to
illustrate the central issues that arise. For this purpose, we will employ the perfect pairing
(PP) wavefunction as the MC-DFT reference wave function. PP is exact for isolated elec-
tron pairs using a 2 electron-in-2 orbital active space, and thus gives perhaps the simplest
possible account of static correlations. The wavefunction is:

|ΨPP 〉 = exp
(
T̂PP

)
|Φ0〉 ∝ Â

n/2∏
j=1

Gj. (6.26)

Â is the antisymmetrizer and there is one cluster amplitude, tj, for each 2-electron geminal
function, Gj, which is composed of a superposition of two electrons in a bonding orbital
and two electrons in an antibonding orbital:

Gj =
(
1 + t2j

)−1/2
{

det
[
φjφj

]
+ tj det

[
φ∗jφ

∗
j

]}
(6.27)

Discussions of PP, the defining equations, and its relation to more advanced static correla-
tion methods are available elsewhere [56,78,79].

Following the discussion of the previous section, the PP energy is to be augmented with
a functional of the electron density to describe residual dynamic correlation:

E = EPP + Edyn
C (6.28)

The residual correlation correction depends upon the electron density and its gradients.
The PP electron density is:
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n (r) =

N/2∑
j=1

[
(2− uj)

∣∣φj (r)
∣∣2 + uj

∣∣φ∗j (r)
∣∣2] (6.29)

where the scalar uj ∈ [0, 1] measures the occupation number of the correlating orbital for
the jth pair (and the reduction from double occupation of the bonding orbital):

uj =
2t2j

1 + t2j
(6.30)

To address the double-counting problem, it is convenient to associate part of the density
with unpaired electrons. From Eq. 6.29, there are no unpaired electrons when uj = 0
while both electrons are unpaired when uj = 1. These two known points can be smoothly
connected by defining the distribution of unpaired electrons to be:

nmu (r) =

N/2∑
j=1

(uj)
m
[∣∣φj (r)

∣∣2 +
∣∣φ∗j (r)

∣∣2] (6.31)

The integer m is taken as 2 in the definition due to Yamaguchi [203], and 1 in the definition
of Head-Gordon [204]. In fact any positive value of m is potentially acceptable.

The unpaired electron density can be used as a basis for correcting the double counting
problem associated with evaluating the residual correlation energy, following the suggestion
of Pérez-Jiménez et al [116,117]. The idea is to construct fictitious polarized densities (even
though no spin polarization has occurred) such that no double counting correction is applied
when there are no unpaired electrons (uj = 0), and a maximal correction is applied if the
electron density associated with a pair of electrons is completely unpaired (uj = 1). These
densities are defined by adding and subtracting half the unpaired electron density from half
the total density:

n+ (r) = 1
2
n (r) + 1

2
nmu (r)

n− (r) = 1
2
n (r)− 1

2
nmu (r)

(6.32)

They are used to evaluate the residual dynamic correlation energy in place of the usual
alpha and beta densities, within a conventional correlation energy functional (the LYP
functional [122]).

Edyn
C = ELY P

C (n+, n−) (6.33)

This construction correctly yields no opposite spin correlation energy in the limit of sep-
arating bonds (uj = 1), as well as full opposite-spin correlation when there is no MC
character (uj = 0).
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Figure 6.1: Energy (in Hartrees) as a function of H-H separation in the hydrogen molecule by the
restricted Hartree-Fock method, the perfect pairing (PP) method (PP for this case is identical
to CASSCF with 2 electrons in 2 orbitals), the PP method with the LYP correction for dynamic
correlation (uncompensated for double counting), and the exact answer. All calculations are
performed in the aug-cc-pVTZ basis.

As a very simple illustration of the behavior of this model for the dissociation of a sin-
gle bond, we consider the H2 molecule, using the aug-cc-pVTZ basis set. Figure 6.1 shows
potential energy curves for 4 different approaches: from highest to lowest are restricted
Hartree-Fock (RHF), PP, the exact wavefunction, and then PP directly augmented with
LYP correlation, as Edyn

C = ELY P
C (n/2, n/2). All these methods are spin-pure. The first

point to note is that the multi-configurational character of PP allows it to separate correctly,
unlike RHF, but relative to the exact solution (in this quite large basis), it is missing a
significant fraction of the correlation energy near the equilibrium geometry. However, when
corrected directly for residual dynamic correlation using LYP correlation, the result is a
curve that not only is significantly lower than the exact result, it no longer reaches the
correct asymptote of independent hydrogen atoms. The error relative to the exact wave
function is a good measure of the double-counting problem associated with treating residual
correlation with an existing correlation functional such as LYP, which itself derives from
correcting the helium atom [205].

The improvements that are possible using Eq. 6.33 to evaluate residual correlation can
be assessed from Figure 6.2, which shows the PP curve, the exact curve, and PP with resid-
ual corrections for correlation via Eq. 6.33 using m = 1, 0.5, 0.2 and 0.1. First consider
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Figure 6.2: Energy (in Hartrees) as a function of H-H separation in the hydrogen molecule by the
PP method with the compensated correction for residual dynamic correlation defined by Eq. 6.33
using several values of m, as defined in Eq. 6.31, as compared to the exact energy. All calculations
are performed in the aug-cc-pVTZ basis.

the m = 1 curve relative to the lowest curve of Figure 6.1. This is the method that was
suggested by Pérez-Jiménez and Pérez-Jordá [117]. As they already discussed, the results
obtained show that the double counting problem is now correctly resolved in the dissocia-
tion limit of large H-H separations: in that limit n+ → n and n− → 0. However, inspection
of the equilibrium region shows that the double counting problem there is not adequately
resolved – in fact there is only a very slight difference relative to the lowest curve on Figure
6.1. The reason for inadequate compensation is the very small t amplitude value in the
reference wave function around equilibrium (less than 0.1, in contrast to approaching 1
at dissociation), which, when substituted into Eq. 6.31 yields nearly negligible unpaired
electron density, with m = 1. Furthermore, for a similar reason, the approach of the curve
to the zero asymptote is too slow. So, while this approach is a qualitative improvement on
the uncompensated LYP correction shown in Figure 6.1, it is not a complete panacea.

It is possible to simultaneously ameliorate the two deficiencies associated with residual
correlation by reducing the value of m employed in Eq. 6.31. The curves on Figure 6.2
with smaller values of m illustrate the extent to which this is possible. A value of m = 0.5
visibly improves over m = 1 by approaching the correct dissociation limit more quickly,
but it does not significantly reduce the double counting error around equilibrium. A value
of m = 0.2 further improves the approach to dissociation and, intriguingly, also reduces
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the double counting error at equilibrium. The m = 0.1 curve is roughly optimal: there is a
reduction of the double counting error by at least 75% for all geometries, and the curve is
satisfyingly parallel to the exact one. Still smaller exponents probably cannot be justified
and furthermore do not further improve the results. While this is a toy model case, it
suggests that this very simple approach may have promise for yielding computationally
tractable, and reasonably accurate residual correlation corrections. We intend to explore
this is more detail in the future, with the additional important refinement that the residual
correlation correction is included properly in the self-consistent iterations, rather than as a
one-shot final correction, as we have done here. It will be particularly interesting to explore
whether known deficiencies of PP for molecular problems, such as symmetry-breaking in
benzene [118,119], can be improved with this approach.

6.6 Discussion and Conclusions

We have analyzed the rigorous basis of various extended Kohn-Sham methods, where
the auxiliary wave function (WF) contains multiple configurations (MC) rather than the
regular single determinant Kohn-Sham (KS) approach. We showed that the auxiliary MC
WF in a consistent map between interacting and auxiliary systems would always collapse
into the single determinant KS WF. We explained the non-collapse of the auxiliary MC
WF in the case of an interacting – to partially interacting mapping of systems. Partially
interacting system approaches have been used to combine MC WF treatments (particu-
larly CASSCF) of static correlation with DFT treatments of the residual dynamic correla-
tions [105,106,113]. We also showed that the MC-OEP method [115] does not have a fully
consistent map between its partially-interacting and non-interacting systems (the latter
determines the orbitals).

Partially interacting system approaches are promising extensions to KS DFT for strongly
correlated systems but face two main challenges. First, there is significant double counting
between DFT dynamical correlation functionals and CASSCF treatments of static correla-
tion. Second, the computational cost of the MC WF can increase very strongly (exponen-
tially for CASSCF) with the number of valence electrons that are statically correlated. We
presented some very simple illustrative calculations on bond-separation in H2 to address
aspects of the double counting problem, using perfect pairing (which for H2 is equivalent
to CASSCF with 2 electrons in 2 active orbitals). The results show that while obtain-
ing a residual correlation functional that is free from double counting problems is very
difficult in general, there are simple possibilities that appear to be quite promising for
practical applications. We have explored just one here – others have been presented else-
where [106,111,113,206], and further progress seems likely.

It is far from clear how to address the steep increase of cost of CASSCF methods with
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molecular size, but there are some interesting possibilities. One possibility is to approximate
CASSCF with polynomial scaling models – perfect pairing itself is one of these, but more
sophisticated examples exist [85, 128]. A second possibility involves a partially interacting
system that is related to the conventional spin-polarized KS method. It is possible to
construct the MC WF, ΨMC

S as a spin-coupled valence bond (VB) WF, with one spatial
orbital φj per valence electron [207]:

ΨMC
S = Â

{
N

Π
j=1

[φj] Θ (1...N)

}
(6.34)

coupled together by a spin-coupling function, Θ. If all valence electron pairs are separated
(as in dissociation to high spin fragments), then the VB WF provides no correlation be-
yond the KS WF, but simply corrects the WF to a spin eigenfunction. Therefore it provides
the ability to reach dissociation (or antiferromagnetically couple) without spin polarization
(which introduces a second derivative discontinuity in the energy at the unrestriction point
with all current functionals [187]). Recently it has been shown that the spin coupling func-
tion, Θ, while formally exponentially expensive with the number of coupled pairs [207],
can correctly recover the dissociation limit with only pairwise re-coupling (i.e. a quadratic
number of spin coupling coefficients) [184]. Therefore a VB WF can also be a computa-
tionally efficient reference wave function for describing a partially interacting system, and
thereby potentially offer a new route towards a tractable MC DFT.
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Chapter 7

Conclusions & Outlook

7.1 Summary

In the course of this research, many of the known failures of the generalized valence
bond-coupled cluster (GVB-CC) methods have been addressed and thereby the GVB-CC
methods have been improved. These improvements were made while keeping the compu-
tational efficiency of the GVB-CC methods. A broader range of a molecular systems can
now be examined with the improved GVB-CC methods usually with better results than
the previous generation of GVB-CC methods.

The issues with symmetry breaking (SB) in aromatic molecules such as benzene in
GVB-CC methods such as perfect pairing (PP) and imperfect pairing (IP) were examined
and a method to ameliorate them was proposed in chapter 2. The origin of the SB is iden-
tifiable as over correlation of localized structures due to omitted inter-pair correlations.
PP only correlates electrons within one pair, and IP only correlates electrons between two
pairs. Pilot orbital optimized active space Møller-Plesset second-order perturbation theory
(MP2) calculations that coupled only one and two pairs of electrons produced results simi-
lar to those of PP and IP for the model system of distorting benzene from a D6h structure
to a D3h structure. The orbital optimized active space MP2 calculations that coupled three
pairs of electrons are the first that significantly reduce the SB in the benzene model sys-
tem. Based on this data, a new mixed Lagrangian method known as three-pair corrected
IP (TIP) was proposed. The TIP method treats the strong (IP-type) inter-pair correlations
at the coupled cluster level, and the weaker and more numerous correlations coupling up to
three pairs are treated with second-order perturbation theory. TIP reduces the magnitude
of the over correlation of local structures error by a factor of 10 to 20, and reduces the
magnitude of SB effects by a similar factor. Several aromatic hydrocarbons were analyzed
with TIP, and for each case the SB effects of TIP were greatly reduced compared to IP.
An interesting feature of the TIP optimized orbitals is that the σ bonding and core or-
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bitals localize strongly into bonds while the aromatic π bonding orbitals delocalize over the
molecule. TIP gives a better balanced description of local and non-local static correlations
while still reducing SB compared to PP and IP.

The rotational invariance of the orbitals and the resulting artifacts in the TIP method
was addressed in chapter 3. Methods that combine coupled cluster theory for strong corre-
lations and perturbation theory for weaker correlations give incompatible estimates for the
energy-lowing associated with a given amplitude. These differences can lead to re-ordering
of the active space orbitals to fictitiously lower the energy of the system as is observed in
the case of N2. This problem can be alleviated by the application of a penalty function
to regularize the second-order perturbation theory amplitudes. The penalty function goes
to zero when the perturbation theory amplitudes have small values and rises very strongly
once a threshold for the amplitudes is exceeded, tc. To improve the quality of the TIP
calculation in general, it is necessary to include a new class of amplitudes, the doubly ionic
pairing amplitudes, into the strong correlations and remove another class of amplitudes, the
singly ionic pairing amplitudes, entirely. The resulting improved TIP method out-preforms
all of its GVB-CC predecessors in terms of correlation energy recovered and SB.

The nature of the coupled cluster amplitudes in the dissociation limit when using spin-
unrestricted orbitals that resemble non-interacting restricted open-shell molecular frag-
ments was explored in chapter 4. In this spin symmetry broken reference, the physics of
spin correlation is removed from the cluster equations such that they become singular.
This singularity manifests itself in poor numerical conditioning of the coupled cluster am-
plitudes. Poor numerical conditioning prevents the finding of physical solutions and makes
the process of orbital optimization impossible even though by construction there should
be no strong correlations. The offending amplitudes are coupled cluster doubles (CCD)
amplitudes that can be described as the PP amplitudes and the IP exchange-type ampli-
tudes. In this dissociation limit, a degenerate subspace of solutions is created and these
particular amplitudes become linearly dependent. A solution to this poor numerical condi-
tioning is to regularize the CCD amplitudes with a dynamic penalty function of the form
−γ(e(t/tc)2n−1). Amplitude regularization renders the coupled cluster amplitude equations
soluble without affecting the physical properties of the GVB-CC wavefunction using the
reference of non-interacting restricted open-shell molecular fragments at dissociation.

The Unrestricted-in-Active-Pairs (UAP) approximation for spin-unrestriction of valence
active space correlation methods was formulated and its utility was assessed in chapter 5.
For active space methods that truncate the included correlations, spin-unrestriction is a
necessary tool to accurately describe the correlated wavefunction at dissociation. UAP
limits the spin-unrestriction to occur only in within the space of two orbitals (one bond-
ing, one anti-bonding) instead of the usual completely independent variation of α and β
orbitals. UAP produces solutions which smoothly transition from a spin-restricted so-
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lution at equilibrium to a spin-polarized solution of non-interacting restricted open-shell
molecular fragments at dissociation. UAP is implemented to work with up to the 2P
GVB-CC model, and the pair-by-pair definition of spin-unrestriction is utilized to make an
efficient algorithm for spin-unrestricted orbital optimization. To ensure well-behaved am-
plitudes, a penalty function term is added only to the GVB-CC equations that caused the
poor numerical conditioning observed in chapter 4. UAP removes the artifacts associated
with spin-unrestriction in valence active space correlation methods [87]. UAP is shown
to improve the description of spin polarized systems (dissociating molecules and radical)
compared to free spin-unrestriction.

A rigorous analysis of combining Kohn-Sham density functional theory (KS DFT) meth-
ods with auxiliary wavefunctions containing multiple configurations instead of a single
Slater determinant was preformed in 6. It was shown that the auxiliary multi-configurational
(MC) wavefunction in a consistent map between interacting and auxiliary systems will al-
ways collapse into the single determinant KS wavefunction. There is a non-collapse in the
case of interacting to partially interacting mapping of systems. The partially interacting
system approach is promising as it shows that KS DFT can be extended for strongly corre-
lating systems. The main issues with using MC DFT is double counting of the correlation
energy and coping with high computational cost of most MC wavefunction based methods.
Results on combing DFT for residual correlation with a relatively inexpensive MC wave-
function method, PP, were presented. These results show promise for the improvement of
methods combining GVB-CC and DFT with respect to both double counting and compu-
tational efficiency.

Some recommendations can be made based on this work regarding appropriate methods
to treat strongly correlated systems. For any system that must describe non-local correla-
tions, (like conjugated π systems like polyacenes [34, 35] and polyenes [37]), the modified
TIP method presented in chapter 3 should be used. The drawback to this method is that
to date it is only fully developed and implemented in a spin-restricted formalism. For spin-
polarized systems, the UAP approximation needs to be used with the GVB-CC methods
to produce smooth potential energy surfaces and good molecular orbitals and properties.
In instances where an orbital guess is desired for a higher-order CC calculation (such as
valence active space optimized coupled cluster doubles (VOD) [81] or perfect quadruples
(PQ) [85]), UAP-PP is recommended and is the default in the current implementation of
Q-Chem [142]. The combination of GVB-CC with DFT for residual correlation is quite
useful conceptually as it demonstrates that near chemical accuracy can be achieved without
the complicated and laborious measures taken by other methods to approach that level of
accuracy. The implementation of GVB-CC+DFT presented here is a proof of principle
that very likely can be improved for general use on many types of molecular systems.



7.2. FUTURE RESEARCH DIRECTIONS 118

7.2 Future Research Directions

The research in this work has produced good results and can be extended in the future.
First, the UAP approximation is of general value for approximate active space methods
and can be implemented to work with all forms of valence active space orbital optimized
quantum chemical methods. The methods that are correlation complete (ie. CASSCF or
the appropriate higher order truncated orbital optimized CC models) do not need spin-
unrestriction, but other truncated models such as valence active space optimized coupled
cluster doubles (VOD) [81], perfect quadruples (PQ) [85], and perfect hextuples (PH) can
benefit from the inclusion of UAP.

The TIP model could be improved and also extended to the UAP spin-unrestricted
framework. A pilot spin-unrestricted version of the modified TIP has been implemented,
but it exhibited convergence problems. Integrating the UAP model fully with GDM [30]
to optimize all the necessary rotation angles should greatly fix these convergence problems.
The original TIP models were constructed without a working implementation of the singly
ionic pairing amplitudes being treated with CC theory. With the creation of the two pair
doubles (2P) model, the TIP method can possibly be improved by the inclusion of the singly
ionic pairing amplitudes treated with CC. The use of mixed coupled cluster/perturbation
theory Lagrangians can also be expanded from the examples presented here. Even though
it is computationally slower, the amplitudes coupling four different electron pairs could be
included into the TIP second-order perturbation theory Lagrangian. Also, the TIP second-
order perturbation theory Lagrangian can be integrated with the current implementation
of PQ [85] to improve that method with regards to SB.

The combination of GVB-CC with DFT holds promising future prospects. The formu-
lation presented in chapter 6 is only integrated with PP and only guaranteed to work for
systems with one pair of active electrons. Preliminary work has been done to improve the
residual energy to reduce double counting for PP by using a geminal form to construct the
density used by the DFT correlation functional and incorporate more than one pair of elec-
trons into the active space. The DFT residual correlation correction could be connected
to any other static correlation model (such as imperfect pairing with doubly ionic pair-
ing (IP+DIP) [119], 2P, PQ [85], VOD [81], or CC-VB [184]) with appropriately designed
residual energy expressions to eliminate double counting. The DFT residual correlation
correction is presented only utilizing the correlation function of Lee Yang and Parr [122],
however a specifically designed DFT correlation function could substantially improve the
performance of the method. The overall prospects resulting from the research described in
this dissertation are therefore quite encouraging for future developments of fast, accurate
quantum chemical methods.
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Appendix A

Supporting Information

A.1 Chapter 3: Penalty functions for combining cou-

pled cluster and perturbation amplitudes in local

correlation methods with optimized orbitals

A.1.1 Amplitude Equations

Restricted closed-shell TIP infinite-order
coupled-cluster amplitude equations

The TIP Lagrangian and T̂ amplitude equations for the restricted closed-shell
coupled-cluster case are presented below. They were derived by eliminating the singles,
non-local doubles and SIP type amplitudes from the spin-orbit CCSD equations [77]. The
following definitions apply, with RHS being the right hand side of the amplitude equation:

Dab
ij = fii + fjj − faa − fbb (A.1)

ωabij = RHS − tabijDab
ij (A.2)

• The infinite-order Lagrangian is
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• Opposite spin T̂ -amplitude equations including couplings via the Fock operator to the
second-order perturbation theory amplitudes. For the ti

∗j∗

ij , tj
∗i∗

ij , and tj
∗j∗

ii equations, i 6= j,
and Pij is defined as Pij(xij) = xij + xji. All sums run over active electron pairs only.
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where the following intermediates are defined:
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Restricted closed-shell TIP second-order
perturbation theory amplitude equations

The TIP Lagrangian and T̂ amplitude equations for the restricted closed-
shell second-order perturbation theory case are presented below. They include the
necessary definitions for the penalty function.
• The second-order Lagrangian is
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• with the following amplitude definitions, γ and α are the penalty parameters for the TIP
method.

(Dj∗k∗

ii − γeαt
j∗k∗
ii

2

)tj
∗k∗

ii = 〈ii|j∗k∗〉 (A.20)

(Dk∗k∗
ij − γeαt

k∗k∗
ij

2

)tk
∗k∗
ij = 〈ij|k∗k∗〉 (A.21)

(Di∗k
∗

ij
− γeαt

i∗k∗
ij

2

)ti
∗k
∗

ij
= 〈ij|i∗k∗〉 (A.22)

(Di∗k∗
ij − γeαt

i∗k∗
ij

2

)ti
∗k∗
ij = 〈ij|i∗k∗〉 − 〈ij|k∗i∗〉 (A.23)

(Dk∗i
∗

ij
− γeαt

k∗i∗
ij

2

)tk
∗i
∗

ij
= 〈ij|k∗i∗〉 (A.24)

(Dk∗i∗
ij − γeαt

k∗i∗
ij

2

)tk
∗i∗
ij = 〈ij|k∗i∗〉 − 〈ij|i∗k∗〉 (A.25)

(Dj∗k
∗

ij
− γeαt

j∗k∗

ij

2

)tj
∗k
∗

ij
= 〈ij|j∗k∗〉 (A.26)

(Dj∗k∗

ij − γeαt
j∗k∗
ij

2

)tj
∗k∗

ij = 〈ij|j∗k∗〉 − 〈ij|k∗j∗〉 (A.27)

(Dk∗j
∗

ij
− γeαt

k∗j∗

ij

2

)tk
∗j
∗

ij
= 〈ij|k∗j∗〉 (A.28)

(Dk∗j∗

ij − γeαt
k∗j∗
ij

2

)tk
∗j∗

ij = 〈ij|k∗j∗〉 − 〈ij|j∗k∗〉 (A.29)

τ i
∗k∗
ij = ti

∗k
∗

ij
+ ti

∗k∗
ij (A.30)

τk
∗i∗

ij = tk
∗i
∗

ij
+ tk

∗i∗
ij (A.31)

τ j
∗k∗

ij = tj
∗k
∗

ij
+ tj

∗k∗

ij (A.32)

τk
∗j∗

ij = tk
∗j
∗

ij
+ tk

∗j∗

ij (A.33)

A.1.2 Supplementary Figures

Presented here are the same larger molecules as explored in Chapter 2 with the penalized
Mixed Lagrangian for TIP.
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Figure A.1: A chart of the optimized bond lengths for naphthalene as solved by TIP with the
6-31G*. Structure (1) for each level of theory is a D2h guess structure; structure (2) is from a C2v

guess. The TIP (a) bond lengths are without any penalty function. The TIP (b) bond lengths
are with the re-formulation and penalty function. All bond lengths are in Å. *The VOD bond
lengths are with the 6-31G basis set.

Figure A.2: A chart of the optimized bond lengths for phenalenyl cation as solved by TIP with
the 6-31G*. The TIP (a) bond lengths are without any penalty function. The TIP (b) bond
lengths are with the re-formulation and penalty function. All bond lengths are in Å.
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Figure A.3: A chart of the optimized bond lengths for phenalenyl anion as solved by TIP with the
6-31G*. The TIP (a) bond lengths are without any penalty function. The TIP (b) bond lengths
are with the re-formulation and penalty function. All bond lengths are in Å.



A.2. CHAPTER 4: THE NUMERICAL CONDITION OF ELECTRON
CORRELATION THEORIES WHEN ONLY ACTIVE PAIRS OF ELECTRONS ARE
SPIN-UNRESTRICTED 125

A.2 Chapter 4: The numerical condition of electron

correlation theories when only active pairs of elec-

trons are spin-unrestricted

In the arguments that follow, a pair correspondence between alpha and beta spin orbitals
will be assumed by our notation. We enforce such a correspondence on our constrained
CC models, however we note that by the pairing theorem [208] it is valid to apply such
language to unrestricted wave-functions generally, as they may be cast into this form.
The electronic Hamiltonian is separable into operators affecting each fragment separately
Ĥ = Ĥ1 + Ĥ2, and because of the high-spin structure of our reference any opposite-spin
doubles amplitude doesn’t alter the number of electrons on a fragment (only their spin),
and spatial symmetry dictates that the spatial parts of the orbital in each pair should be
the same on both fragments.

A.2.1 The Two Electron-Pair Case.

t1
∗1∗

11
t2
∗1∗

12
t1
∗2∗

21
t2
∗2∗

22

t1
∗1∗

11
0.102 -0.047 -0.056 0.000

t2
∗1∗

12
-0.047 0.102 0.000 -0.056

t1
∗2∗

21
-0.056 0.000 0.102 -0.047

t2
∗2∗

22
0.000 -0.056 -0.047 0.102

Table A.1: Linear coupling matrix for the PP and IP exchange amplitudes for fluoroethene
(HFC=CH2) at a C-C bond length of 7.50 Å with unrestricted PP orbitals in the minimal active
space.

The situation of the 2-pair case of two-atom dissociation (an active space with 4 spa-
tial, 8 spin orbitals) is similar physically to that of the 1-pair case. However, instead of
two degenerate states that we can use the amplitudes to decide between, there is a larger
degenerate subspace leading to far more zeroes in our Hamiltonian. The couplings between
these degenerate states again leads to potentially infinite amplitudes, and the necessity of
solving the CC equations iteratively leads to quite a problem here. A simple description of
these degenerate doubly excited references can obtained with the pairing notion, as there
are amplitudes that show coupling within a pair (PP), ie: T̂ 1∗1

∗

11
, and opposite spin (OS)

exchange-type amplitudes that couple the two pairs (IP), ie: T̂ 21
∗

12
. Because the determi-

nants generated by all of these amplitudes only differ from the reference by flipping the
spins of two of the spin-orbitals, the diagonal of the doubles-doubles block of the Hamil-
tonian is some value, a. Breaking down the off-diagonal matrix element coupling a PP
amplitude to an IP amplitude, 〈Φ1∗1

∗

11
|Ĥ|Φ2∗1

∗

12
〉, over the two fragments, we see that on one

fragment the projections of these determinants are the same as generated on the diagonal
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of Ĥ. Because the two determinants differ by 2 spin-orbitals the matrix element is a single
integral, (12|1∗2∗) which may be identified with the integral examined in the 1-pair case.
These matrix elements which share a single index may be denoted b. Matrix elements which
share no indices, ie. PP of one pair with PP of the other, differ by more than two spin
orbitals and are thus zero. The result is that the Hamiltonian has the following structure
(in the basis: T̂ 1∗1

∗

11
, T̂ 2∗1

∗

12
, T̂ 1∗2

∗

21
, T̂ 2∗2

∗

22
):

Ĥ = (Ĥ1 + Ĥ2) =


a b b 0
b a 0 b
b 0 a b
0 b b a

 (A.34)

This matrix is singular if b = −a/2 which is empirically found to be the case, and explained
below. Of course this is only a sub-block of the linear coupling matrix, U, which would
occur in complete CCD, and we affirm with calculations that in unrestricted CCD as it is
usually practiced this is not a concern.

A.2.2 The Many-Pair Case.

t1
∗1∗

11
t2
∗1∗

12
t3
∗1∗

13
t1
∗2∗

21
t2
∗2∗

22
t3
∗2∗

23
t1
∗3∗

31
t2
∗3∗

32
t3
∗3∗

33

t1
∗1∗

11
0.142 -0.036 -0.036 -0.036 0.000 0.000 -0.036 0.000 0.000

t2
∗1∗

12
-0.036 0.142 -0.036 0.000 -0.036 0.000 0.000 -0.036 0.000

t3
∗1∗

13
-0.036 -0.036 0.142 0.000 0.000 -0.036 0.000 0.000 -0.036

t1
∗2∗

21
-0.036 0.000 0.000 0.142 -0.036 -0.036 -0.036 0.000 0.000

t2
∗2∗

22
0.000 -0.036 0.000 -0.036 0.142 -0.036 0.000 -0.036 0.000

t3
∗2∗

23
0.000 0.000 -0.036 -0.036 -0.036 0.142 0.000 0.000 -0.036

t1
∗3∗

31
-0.036 0.000 0.000 -0.036 0.000 0.000 0.142 -0.036 -0.036

t2
∗3∗

32
0.000 -0.036 0.000 0.000 -0.036 0.000 -0.036 0.142 -0.036

t3
∗3∗

33
0.000 0.000 -0.036 0.000 0.000 -0.036 -0.036 -0.036 0.142

Table A.2: Linear coupling matrix for the PP and IP exchange amplitudes for nitrogen (N2) at
a N-N bond length of 7.50 Å with unrestricted PP orbitals in the minimal active space in the
6-31G* basis.

In general, for a given PP amplitude there are three classes of possible OS exchange
IP amplitudes: those which share no indices, those which excite from the same α orbital
(we will call this one the fragment 1 corresponding IP amplitude) and those which excite
from the same β orbital (fragment 2). The matrix elements of these combinations were
examined above. If two IP amplitudes excite from a common index they will also have a
nonzero matrix element b, and with these rules in hand one may construct Ĥ. Consider a
blocking of ĤIJ such that a PP amplitude I and its corresponding fragment 1 IP amplitudes
(indexed by J) are grouped together in a block which is ordered by their beta indices. In
conventional spin-orbital notation this ordering is written: {T̂ 1∗ ī∗

i1̄ , T̂ 2∗ ī∗

i2̄ , T̂ i
∗ ī∗

īi , ..., T̂ n
∗ ī∗

in̄ }.
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Symbolically one may construct the diagonal block (A) for the general case and see that it
has the shape below, and determinant (a− b)n−1(a+(n−1)b). The off-diagonal blocks (B)
are themselves diagonal, with value b and determinant bn. The complete matrix has the
following block structure with this ordering, and the determinant of Ĥ for n pairs (n > 2) is
(a−2b)(n−1)2(a+(n−2)b)2(n−1)(a+2(n−1)b). The matrix will be singular when b = −a/2,
or if (a+ (n− 2)b) = 0 or (a+ 2(n− 1)b) = 0. In the full space, correlations of spin-paired
basis functions often lift this linear dependence by coupling to this block, explaining the
robust strength of unrestricted coupled cluster demonstrated in the literature.

A =


a b · · · b
b a · · · b
...

. . .
...

b b · · · a

 ; B =


b 0 · · · 0
0 b · · · 0
...

. . .
...

0 0 · · · b

 ; Ĥ =


A B · · · B
B A · · · B
...

. . .
...

B B · · · A

 (A.35)
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A.3 Chapter 5: Orbitals that are unrestricted in ac-

tive pairs for GVB-CC methods

A.3.1 Additional timings

The following tables present additional timings tables to compare UAP-PP to restricted
PP and freely spin-unrestricted PP.

Method Initial Guess (s) Time per Iter. (s) Num. of Iter.
Methane Restricted 2.98 2.22 11
Methane Free Unrest. 8.71 4.00 12
Methane UAP 4.74 2.46 12
Ethane Restricted 112.53 22.99 12
Ethane Free Unrest. 225.02 42.84 13
Ethane UAP 115.12 24.97 12
Propane Restricted 62.31 115.33 12
Propane Free Unrest. 115.02 218.40 14
Propane UAP 57.81 122.12 13
Butane Restricted 177.84 386.91 13
Butane Free Unrest. 464.58 742.57 14
Butane UAP 186.36 404.17 13

Table A.3: A timing comparison against all the developed spin implementations of PP. All calcu-
lations done in the aug-cc-pVDZ basis.

Multiplicity Initial Guess (s) Time per Iter. (s) Num. of Iter.
O2 singlet 0.70 1.85 29
O2 triplet 0.67 1.84 41

O−1
2 doublet 0.67 1.81 55

O+1
2 doublet 0.71 1.89 33

N2 singlet 0.67 1.70 18
N2 triplet 0.65 1.70 24

N−1
2 doublet 0.67 1.78 28

N+1
2 doublet 0.63 1.67 80

F2 singlet 0.73 1.97 50
F2 triplet 0.70 1.88 87

F−1
2 doublet 0.69 1.92 79

F+1
2 doublet 0.71 1.97 35

Table A.4: A timing comparison for different spin/charge states of diatomic molecules in UAP-PP.
All calculations done in the aug-cc-pVDZ basis.

A.3.2 The need for amplitude regularization in multi-pair cases

The illustrative plot demonstrating large unphysical amplitudes for the 1-pair case is
Figure 5.1. The large unphysical amplitude is manifest in the multi-pair problem as well.
Figures A.4 and A.5 show the PP two angle spin-unrestriction surfaces for ethene in the
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Figure A.4: The unrestriction angle PES for (4,4) ethene at 1.33 Å C-C separation in ethene
using PP (choosing the most energy lowering amplitudes) with the STO-3G basis.

STO-3G basis at equilibrium and dissociation, respectively. The correlation energy over-
compensation for an inverted reference leads to discontinuous cusps on the surface, and
incorrect energies for dissociation channels. The solution at (+45o,+45o) represents the
appropriate triplet methylene fragments where as the (-45o,+45o) solution represents dis-
sociation into open-shell singlets. The need for amplitude regularization was demonstrated
in Chapter 4 and this data reinforces the conclusions made there.
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Figure A.5: The unrestriction angle PES for (4,4) ethene at 5.00 Å C-C separation in ethene
using PP (choosing the most energy lowering amplitudes) with the STO-3G basis.
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Appendix B

Basis Sets for Doing Electron
Correlation with 3d Block Metals

These are all-electron basis sets built for doing treating 3d block metals originally cre-
ated by Wachters [209, 210]. The basis sets were expanded by adding higher order polar-
ization functions of f and g angular momentum.To create the f functions’ exponents, the
arithmetic mean of d functions’ exponents was taken. For the g functions, the arithmetic
mean of the created f functions’ exponents was taken. To expand and make a hextuple-
zeta basis set, the contracted functions in Wachters’ original basis were de-contracted and
the same prescription as above was taken to fill in the missing higher angular momentum
functions. Only the f and g functions are presented here, as the rest of the functions are
published and available online at: https://bse.pnl.gov/bse/portal. The elements included
here go from Sc to Zn. These basis sets ignore the f functions created by Bauschlischer et
al [211] and rely only on Wachters’ original basis sets.

B.1 Wachters-pQZ Basis

SC 0

F 1 1.00

2.000000000 1.00000000

F 1 1.00

0.600000000 1.00000000

F 1 1.00

0.180000000 1.00000000

G 1 1.00

1.095445115 1.00000000

G 1 1.00

0.328633535 1.00000000
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****

TI 0

F 1 1.00

2.300000000 1.00000000

F 1 1.00

0.690000000 1.00000000

F 1 1.00

0.207000000 1.00000000

G 1 1.00

1.259761882 1.00000000

G 1 1.00

0.377928565 1.00000000

****

V 0

F 1 1.00

2.600000000 1.00000000

F 1 1.00

0.780000000 1.00000000

F 1 1.00

0.234000000 1.00000000

G 1 1.00

1.424078650 1.00000000

G 1 1.00

0.427223595 1.00000000

****

CR 0

F 1 1.00

2.900000000 1.00000000

F 1 1.00

0.870000000 1.00000000

F 1 1.00

0.261000000 1.00000000

G 1 1.00

1.588395417 1.00000000

G 1 1.00

0.476518625 1.00000000

****

MN 0

F 1 1.00

3.200000000 1.00000000

F 1 1.00
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0.960000000 1.00000000

F 1 1.00

0.288000000 1.00000000

G 1 1.00

1.752712184 1.00000000

G 1 1.00

0.525813655 1.00000000

****

FE 0

F 1 1.00

3.500000000 1.00000000

F 1 1.00

1.050000000 1.00000000

F 1 1.00

0.315000000 1.00000000

G 1 1.00

1.917028951 1.00000000

G 1 1.00

0.575108685 1.00000000

****

CO 0

F 1 1.00

3.900000000 1.00000000

F 1 1.00

1.170000000 1.00000000

F 1 1.00

0.351000000 1.00000000

G 1 1.00

2.136117974 1.00000000

G 1 1.00

0.640835392 1.00000000

****

NI 0

F 1 1.00

4.300000000 1.00000000

F 1 1.00

1.290000000 1.00000000

F 1 1.00

0.387000000 1.00000000

G 1 1.00

2.355206997 1.00000000
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G 1 1.00

0.706562099 1.00000000

****

CU 0

F 1 1.00

4.800000000 1.00000000

F 1 1.00

1.440000000 1.00000000

F 1 1.00

0.432000000 1.00000000

G 1 1.00

2.629068276 1.00000000

G 1 1.00

0.788720483 1.00000000

****

ZN 0

F 1 1.00

5.400000000 1.00000000

F 1 1.00

1.620000000 1.00000000

F 1 1.00

0.486000000 1.00000000

G 1 1.00

2.957701811 1.00000000

G 1 1.00

0.887310543 1.00000000

****

B.2 Wachters-p6Z Basis

SC 0

F 1 1.00

22.22222222 1.00000000

F 1 1.00

6.666666667 1.00000000

F 1 1.00

2.000000000 1.00000000

F 1 1.00

0.600000000 1.00000000

F 1 1.00
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0.180000000 1.00000000

G 1 1.00

12.17161239 1.00000000

G 1 1.00

3.651483717 1.00000000

G 1 1.00

1.095445115 1.00000000

G 1 1.00

0.328633535 1.00000000

****

TI 0

F 1 1.00

25.55555556 1.00000000

F 1 1.00

7.666666667 1.00000000

F 1 1.00

2.300000000 1.00000000

F 1 1.00

0.690000000 1.00000000

F 1 1.00

0.207000000 1.00000000

G 1 1.00

13.99735425 1.00000000

G 1 1.00

4.199206274 1.00000000

G 1 1.00

1.259761882 1.00000000

G 1 1.00

0.377928565 1.00000000

****

V 0

F 1 1.00

28.88888889 1.00000000

F 1 1.00

8.666666667 1.00000000

F 1 1.00

2.600000000 1.00000000

F 1 1.00

0.780000000 1.00000000

F 1 1.00

0.234000000 1.00000000
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G 1 1.00

15.82309611 1.00000000

G 1 1.00

4.746928832 1.00000000

G 1 1.00

1.424078650 1.00000000

G 1 1.00

0.427223595 1.00000000

****

CR 0

F 1 1.00

32.22222222 1.00000000

F 1 1.00

9.666666667 1.00000000

F 1 1.00

2.900000000 1.00000000

F 1 1.00

0.870000000 1.00000000

F 1 1.00

0.261000000 1.00000000

G 1 1.00

17.64883796 1.00000000

G 1 1.00

5.294651389 1.00000000

G 1 1.00

1.588395417 1.00000000

G 1 1.00

0.476518625 1.00000000

****

MN 0

F 1 1.00

35.55555556 1.00000000

F 1 1.00

10.66666667 1.00000000

F 1 1.00

3.200000000 1.00000000

F 1 1.00

0.960000000 1.00000000

F 1 1.00

0.288000000 1.00000000

G 1 1.00
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19.47457982 1.00000000

G 1 1.00

5.8423739467 1.00000000

G 1 1.00

1.752712184 1.00000000

G 1 1.00

0.525813655 1.00000000

****

FE 0

F 1 1.00

38.88888889 1.00000000

F 1 1.00

11.66666667 1.00000000

F 1 1.00

3.500000000 1.00000000

F 1 1.00

1.050000000 1.00000000

F 1 1.00

0.315000000 1.00000000

G 1 1.00

21.30032168 1.00000000

G 1 1.00

6.390096504 1.00000000

G 1 1.00

1.917028951 1.00000000

G 1 1.00

0.575108685 1.00000000

****

CO 0

F 1 1.00

43.33333333 1.00000000

F 1 1.00

13.00000000 1.00000000

F 1 1.00

3.900000000 1.00000000

F 1 1.00

1.170000000 1.00000000

F 1 1.00

0.351000000 1.00000000

G 1 1.00

23.73464416 1.00000000
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G 1 1.00

7.120393248 1.00000000

G 1 1.00

2.136117974 1.00000000

G 1 1.00

0.640835392 1.00000000

****

NI 0

F 1 1.00

47.77777778 1.00000000

F 1 1.00

14.33333333 1.00000000

F 1 1.00

4.300000000 1.00000000

F 1 1.00

1.290000000 1.00000000

F 1 1.00

0.387000000 1.00000000

G 1 1.00

26.16896664 1.00000000

G 1 1.00

7.850689991 1.00000000

G 1 1.00

2.355206997 1.00000000

G 1 1.00

0.706562099 1.00000000

****

CU 0

F 1 1.00

53.33333333 1.00000000

F 1 1.00

16.00000000 1.00000000

F 1 1.00

4.800000000 1.00000000

F 1 1.00

1.440000000 1.00000000

F 1 1.00

0.432000000 1.00000000

G 1 1.00

29.21186973 1.00000000

G 1 1.00
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8.763560920 1.00000000

G 1 1.00

2.629068276 1.00000000

G 1 1.00

0.788720483 1.00000000

****

ZN 0

F 1 1.00

60.00000000 1.00000000

F 1 1.00

18.00000000 1.00000000

F 1 1.00

5.400000000 1.00000000

F 1 1.00

1.620000000 1.00000000

F 1 1.00

0.486000000 1.00000000

G 1 1.00

32.86335345 1.00000000

G 1 1.00

9.859006035 1.00000000

G 1 1.00

2.957701811 1.00000000

G 1 1.00

0.887310543 1.00000000

****
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