
ZU064-05-FPR RSL-logicism-final 1 December 2013 21:42

The Review of Symbolic Logic

Volume 0, Number 0, Month 2013

Logicism, Interpretability, and Knowledge of Arithmetic

Sean Walsh

Department of Logic and Philosophy of Science, University of California, Irvine

Abstract. A crucial part of the contemporary interest in logicism in the philosophy
of mathematics resides in its idea that arithmetical knowledge may be based on logical
knowledge. Here an implementation of this idea is considered that holds that knowledge of
arithmetical principles may be based on two things: (i) knowledge of logical principles and
(ii) knowledge that the arithmetical principles are representable in the logical principles.
The notions of representation considered here are related to theory-based and structure-
based notions of representation from contemporary mathematical logic. It is argued that
the theory-based versions of such logicism are either too liberal (the plethora problem)
or are committed to intuitively incorrect closure conditions (the consistency problem).
Structure-based versions must on the other hand respond to a charge of begging the
question (the circularity problem) or explain how one may have a knowledge of structure
in advance of a knowledge of axioms (the signature problem). This discussion is significant
because it gives us a better idea of what a notion of representation must look like if it is
to aid in realizing some of the traditional epistemic aims of logicism in the philosophy of
mathematics.
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at Arché at the University of St. Andrews on May 31, 2011, at the conference
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§1. Introduction Epistemic variants of logicism in the philosophy of mathe-
matics contend that knowledge of arithmetical principles may be based on knowl-
edge of logical principles. Here a principle is said to be “logical” if it is epistemically
akin to modus ponens: it is apriori, it is analytic, etc. Much of the recent discussion
of logicism has centered around Crispin Wright’s arguments that Hume’s Principle
–which states that two properties have the same cardinality if and only if they
can be one-one correlated with each other –is a logical principle in this sense.1

However, Wright and other logicists are ultimately interested in Hume’s Principle
because they think that knowledge of it can account for our knowledge of arith-
metical principles such as the Peano axioms.2 While these axioms are crucial to
contemporary mathematics, contemporary philosophers of mathematics have had
relatively little to say about the epistemic status of the Peano axioms. For instance,
among the Peano axioms is the Mathematical Induction Axiom, which says that
if zero has a property and if n + 1 has this property whenever n does, then all
natural numbers have this property. In his recent book Charles Parsons says of
this principle: “Writers on the foundations of arithmetic have found it difficult to
state in a convincing way why the principle of mathematical induction is evident”
(Parsons (2008) p. 264). So part of what is distinctive about logicism is that it is
one of the few contemporary accounts that explicitly addresses the question of the
evidence for mathematical induction.3

Let us call the Logicist Template the following schematic claim: knowledge of
arithmetical principles may be based on knowledge of logical principles and the
knowledge that these arithmetical principles can be represented within the logi-
cal principles. This claim is schematic in that it presupposes some antecedently
specified notion of what it is for one set of principles to be represented within
another set of principles. In contemporary mathematical logic, there are a number
of notions of representation –often called interpretations in this tradition –that
differ from one another both in terms of what and how they represent. Some of
these notions are theory-based, wherein the idea is that one theory is representable
within another if provability within the represented theory is matched by provability
within the representing theory. Others of these notions are structure-based, where
the idea is that the represented structure is isomorphic to a structure definable in
the representing structure. In §2, the essentials of these notions of representation
are briefly reviewed.
Theory-based and structure-based versions of the Logicist Template are respec-

tively articulated and evaluated in §3 and §4. In regard to the theory-based versions
of the Logicist Template (§3), my thesis is that they cannot exert an appropriate
amount of control over the variety and scope of the propositions that are repre-
sented. The evidence for this lies in the plethora and consistency problems, which
respectively show that too much would be counted as knowledge by this view or

1 For Wright’s arguments, see Wright (1999) pp. 7-15, Hale & Wright (2001) pp. 308-320.
See Appendix §6.1. for a formal definition of Hume’s Principle.

2 Indeed, Wright even says that “[. . . ] nothing can be essentially involved in the
epistemology of number theory that is not involved in an understanding, and knowledge
of the truth of Hume’s Principle” (Wright (1998a) p. 366, Hale & Wright (2001) p. 255).
For a formal definition of the Peano Axioms, see Appendix §6.1.

3 Other extant accounts of the evidence for mathematical induction include Shapiro
(2000b) pp. 109 ff and Leitgeb (2009) §3 pp. 273 ff.
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that incompatible propositions would each be counted as knowledge by this view.
While the plethora problem has been previously noted in the secondary literature
on logicism by Hochberg, Blanchette, and Heck, the consistency problem has not
been so noted. It is important to note both because there are theory-based versions
of the Logicist Template which are immune to the plethora problem but not to the
consistency problem.

In §4, I turn to versions of the Logicist Template centered around structure-based
notions of representation. I begin with a version in §4.1 which additionally requires
that the arithmetical theory be known to be definable within the logical theory.
While this version is able to overcome the plethora and consistency problems,
there is an objection, due to Papert, Parsons, and Boolos, to the effect that this
version of the Logicist Template is circular because one of the claims recording the
definability is too conceptually close to the Mathematical Induction Axiom itself.
My presentation of the circularity problem is distinctive in that the conceptual
proximity is here rendered as a provable equivalence of the definability claim and
the Mathematical Induction Axiom across background knowledge. As I discuss,
one way to avoid this circularity problem involves contending that the definability
claims are all known on the basis of a knowledge of the meaning of their constitutive
arithmetical and logical terms. However, as I argue, it seems reasonable to think
that some but not all of these definability claims are so known. Finally, in §4.2, I turn
to a structure-based notion of representation that weakens the definability claim to
an isomorphism claim. The chief difficulty here is understanding what knowledge of
structure amounts to in advance of knowledge of axioms, and in particular I argue
that this knowledge cannot discriminate between various rival formal languages or
signatures.

My overall conclusion in this paper is that both the theory-based and structure-
based versions of the Logicist Template face deep problems, and hence that hitherto
no satisfactory version of the Logicist Template has been presented which can
secure the inference from knowledge of logical principles such as Hume’s Principle
to knowledge of arithmetical principles such as the Peano axioms. Nonetheless,
it’s worth highlighting that there are other variants of logicism that remained
untouched by argumentation adduced here, such as the idea that arithmetic is
maximally applicable because it “[. . . ] can be accounted for on the basis of our
general knowledge of principles of reasoning discoverable in every domain of inquiry
(Demopoulos & Clark (2005) p. 138) and the idea that arithmetic results from a
fictionalist “encoding” of finite cardinality quantifiers (Hodes (1990) p. 350). Thus
this paper is directed only toward the epistemic strand of logicism which takes up
Frege’s idea that the Mathematical Induction Axiom is “based on general logical
laws” and Crispin Wright’s idea that Hume’s Principle gives us a way to “apprehend
the truth” of the Peano axioms (Frege (1980) p. iv, §80 p. 93, §108 p. 118, Frege
(1967) p. 104, Wright (1983) p. xiv, p. 131).

§2. Brief Overview of the Interpretability of Theories and Structures

The goal of this section is to provide some brief background on notions of representa-
tion or “interpretation,” as they are called in mathematical logic. There are notions
of interpretability for theories and notions of interpretability for structures, and
whereas the former are centered around proof, the latter are centered around defin-
ability. Structures and theories are both relative to formal languages or signatures,
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and these are simply specifications of a class of constant symbols, relation symbols,
and function symbols. Given a signature, a structure then is simply a set along
with distinguished constants, relations, and functions on this set corresponding to
the symbols from the signature.4 Likewise, given a signature, a theory is simply a
collection of sentences in this signature (cf. Marker (2002) chapter 1 or Enderton
(2001) chapters 1-2).
An illustrative example of one structure being interpretable in another is the

complex numbers and the real numbers: roughly, the field of complex numbers is
interpretable in the field of real numbers because the complex numbers can be
taken to be pairs of real numbers. One may make this notion of intepretability
precise by first recalling the definitions of “a definable set” and “isomorphism.”
If M is a structure, then a subset X of Mn is definable in M if there is a first-
order formula ϕ(x1, . . . , xn), perhaps containing parameters from M , such that the
set X contains a tuple of elements from M if and only if M models that this
tuple satisfies the formula. Further, two structures in the same signature are said
to be isomorphic if there is a structure-preserving one-one map from the one onto
the other. More formally, suppose that M and N are two structures in the same
signature. Then M and N are said to be isomorphic, and one writes M ∼= N , if
there is a map f fromM onto N such thatM models ϕ(a1, . . . , an) if and only if N
models ϕ(f(a1), . . . , f(an)) for every formula ϕ(x1, . . . , xn) in their shared signature
and every tuple of elements a1, . . . , an from M , i.e.: M |= ϕ(a1, . . . , an) if and only
if N |= ϕ(f(a1), . . . , f(an)).

5 Then one says that a structure M is definable in a
structure M∗ if the domain, constants, relations, and functions of M are definable
in M∗. (Here, a function is said to be definable if its graph is definable, and a
constant is said to be definable if the singleton consisting just of it is definable).
Finally, one says that a structure M is interpretable in a structure M∗ if it is
isomorphic to a structure that is definable in M∗.
There are two natural modifications of this definition of interpretability, the first

of which pertains to equivalence relations and the second of which pertains to
many-sorted settings. Part of what is distinctive about the example of the complex
numbers given above is that each complex number is determined by a unique
pair of real numbers. In other famous examples of interpretability in mathematics,
this uniqueness clause is not always satisfied. For instance, in the case of the real
projective plane, each triple of real numbers determines a point of the real projective
plane, but for instance (1, 1, 1) and (-1, -1, -1) determine the same point of the real
projective plane. In general, the indicator for when two triples (a, b, c) and (x, y, z) of
real numbers determine the same point of the real projective plane is the relation E
of “being on the same line through the origin”:

(a, b, c)E(x, y, z) ⇐⇒ ∃ λ 6= 0 [a = λx & b = λy & c = λz] (1)

This relation E on the set R3 is an equivalence relation: it is reflexive, symmetric,
and transitive. Given any equivalence relation E on any set X, an equivalence class

4 Sometimes these assignments of set-theoretic entities to the elements of a formal
signature are called interpretations. I eschew this terminology here so that this notion
is not conflated with the notion of interpretation which I define in the next paragraphs
and which is the subject of this paper.

5 See Marker (2002) Definition 1.1.3 pp. 8-9 and the proof of Theorem 1.1.10 p. 13, or
Enderton (2001) p. 94 and the Homomorphism Theorem part (c) p. 96.
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of E is a set of the form [a]E = {b ∈ X : aEb} and the set of all equivalence classes
is written X/E. Suppose that X and E are definable in M∗. Then a relation R∗ ⊆
(X/E)n is said to be definable in M∗ if there is an M∗-definable relation R such
that (i) R(a1, . . . , an) and a1Eb1, . . . , anEbn implies R(b1, . . . , bn) and (ii) R∗ =
{([a1]E , . . . , [an]E) :M

∗ |= R(a1, . . . , an)}. ThenM is a quotient structure definable
in M∗ if the domain of M is X/E for some M∗-definable set X and some M∗-
definable equivalence relation E and the constants, relations and functions ofM are
likewise definable inM∗. Given the ubiquity of quotient structures in contemporary
mathematics, it is common to revise the definition of interpretability provided in
the above paragraph to the following more expansive notion: a structure M is
interpretable in a structure M∗ if it is isomorphic to a structure that is a quotient
structure definable in M∗. This is the sense in which the real projective plane is
interpretable in real space: each point of the real projective plane can be taken to
be equivalence classes of triples of real numbers.

The second modification of the notion of interpretability concerns many-sorted
structures, that is structures which consist of a multitude of different domains con-
nected in various ways. For instance, it’s natural to formalize Euclidean geometry in
a two-sorted manner, wherein one has separate domains for the points and the lines
as well as a primitive incidence relation connecting the two domains. Likewise, in
simple type theory, one works with a domain of objects, along with a second domain
for its properties, a third domain for properties of those properties, etc., along
with membership or predication relations connecting these domains. In general,
given a many-sorted signature equipped with a collection of sorts, a many-sorted
structure M in this signature consists of domains Ms for each sort s, along with
distinguished constants, relations, and functions on the various Ms corresponding
to symbols from the signature. Given a finite sequence of sorts s1, . . . , sk, a subsetX
of Ms1 × · · · ×Msk is said to definable if there is a formula ϕ(x1, . . . , xk) where xi
has sort si such that the set X contains a tuple of elements from Ms1 ×· · ·×Msk if
and only if M models that this tuple satisfies the formula. Finally, a many-sorted
structure M is said to be definable in another M∗ if the domains, the constants,
the relations, and the functions of M are definable in M∗; and the notion of a
definable quotient structure is defined similarly. Finally, one says that a many-sorted
structure M is interpretable in a many-sorted structure M∗ if it is isomorphic to
a structure which is definable in M∗ (or to a quotient structure which is definable
in M∗).6

6 Standard references on many-sorted logic include Manzano (1996) Chapter 6 and
Enderton (2001) §4.3 and Ebbinghaus (1985) pp. 27 ff. It should be mentioned
that there is an alternative definition of interpretability for many-sorted structures.
This is related to the natural operation M 7→ Flat(M) that associates each many-
sorted structure M to a one-sorted structure Flat(M) obtained by adding new unary
predicates Us for each of the sorts s and taking the domain of Flat(M) to be the union
of the Ms and interpreting Us by Ms (cf. Monk (1976) §29.9 p. 484, Manzano (1996)
§6.8.2 p. 258, Enderton (2001) §4.3 p. 297). The alternative definition of interpretability
of structures would then read: M is interpretable in M∗ precisely when Flat(M)
is interpretable in Flat(M∗). This alternative definition trivially implies the original
definition, but is not implied by it (cf. Hook (1985)). Here is an example of a many-
sorted structures M and M∗ such that M is interpretable in M∗ but Flat(M) is not
interpretable in Flat(M∗). Let M be a many-sorted structure with sorts tk for k > 0
such that Mtk

has exactly one element, and let M∗ be a saturated elementary extension
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Whereas the key role in the interpretability of structures is played by the notion
of definability, the key role in the interpretability of theories is played by the notion
of provability. In particular, one says that a theory T is interpretable in a theory T ∗

if the primitives of the interpreted theory T can be translated into formulas of
the interpreting theory T ∗ so that the translation ϕ∗ of every theorem ϕ of T is a
theorem of T ∗. That is, the key idea is that the translation of theorems are theorems,
i.e.: if T ⊢ ϕ then T ∗ ⊢ ϕ∗. For instance, the Zermelo-Fraenkel axioms for set theory
interpret the Peano axioms for arithmetic because one can associate the arithmetical
primitive “being a natural number” with the set-theoretic formula “being a finite
ordinal,” and likewise one can associate “x < y” with “x ∈ y,” and “x = 0” with
“x = ∅.” One can then verify that the translations of arithmetical theorems are
set-theoretic theorems, where the translation is given compositionally, so that the
translation of a conjunct is the conjunct of the translations, i.e.: (ϕ∧ψ)∗ ≡ (ϕ∗∧ψ∗).
For instance, it is a theorem of Peano arithmetic that no natural number is less
than zero, and it is likewise a theorem of Zermelo-Fraenkel set theory that no finite
ordinal is contained in the empty set.7

Let us now briefly take note of how to incorporate equivalence relations and
many-sortedness into the concept of the interpretability of theories. For instance,
just as the theory of the complex numbers is interpretable in the theory of the real
numbers, so one would like a way of saying that the theory of the real projective
plane was interpretable in the theory of the real numbers. Since interpretability of
theories involves translating the primitives of the interpreted theory into formulas
of the interpreting theory, the natural thought is to simply view the identity sym-
bol itself as yet another primitive of the interpreted theory. Since identity is an
equivalence relation and the idea of interpretability is that translations of theorems
are theorems, one will necessarily translate the identity symbol by a formula which

of the structure (ω, 0, S) (cf. Marker (2002) p. 138 for the definition of saturation
and p. 116 for the associated concept of a type). Then by interpreting Mtk

by the

singleton {Sk(0)}, one has that M is interpretable in M∗. Suppose that Flat(M) was
interpretable in Flat(M∗), which is just M∗ with an additional unary predicate symbol
for the domain. In particular, suppose that Flat(M) was isomorphic to the structure M ′

which was definable in M∗ (resp. a definable quotient structure in M∗). Then the
type p(v) = {M ′(v) ∧ ¬Utk

(v) : k > 0} is finitely realized in M∗ and hence realized
in M∗. But then M ′ contains an element which is not in the interpretation of any of
the predicates Utk

and hence M ′ cannot be isomorphic to Flat(M). The advantage of
using the original definition of interpretability of many-sorted structures given in the
above text, as opposed to the alternative definition described in this footnote, is that
the alternative definition has no obvious correlate in the setting of theories.

7 For a more formal presentation of the notion of interpretability for theories, see
Lindström (2003) pp. 96-97 or Hájek & Pudlák (1998) pp. 148-149 or Visser (2006)
§2.2. There is a very natural correspondence between the notion of interpretability for
structures and the notion of interpretability for theories, at least when the semantics for
these theories has a completeness theorem. For, in this case, a theory T is interpretable
in a theory T ∗ if and only if every model M∗ of T ∗ uniformly defines a model M
of T , where the sense of uniformly is that the same formulas are used each time. These
formulas may be allowed to include parameters from a certain parameter-free definable
class inM∗, so long as one stipulates that any choice of parameters from this class effects
such a definition of a model of T (cf. Hájek & Pudlák (1998) Definition 1.4 p. 149, Visser
(2006) §B.3, Hodges (1993) Remark 5 p. 215). This natural correspondence also holds
in the many-sorted setting, and in particular for the model-based notion defined in the
previous paragraph and the theory-based notion defined in the subsequent paragraph.
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satisfies the axioms of an equivalence relation (when appropriately relativized to a
formula that serves as the translation of the domain). So for instance, in the case
of the real projective plane, one translates the identity symbol governing identity
of points by associating it with a formula defining the equivalence relation E from
equation (1). Finally, one defines interpretability between many-sorted theories by
associating each sort s of the signature of the interpreted theory to some finite
sequence of sorts σs = (σs(1), . . . , σs(ℓs)) from the signature of the interpreting
theory. One then requires that n-ary relations R(x1, . . . , xn) from the signature of
the interpreted theory, wherein xi has sort si, be associated to formulas from the
signature of the interpreting theory of the following form, where variable xi,j has
sort σsi(j):

ϕ(x1,1, . . . , x1,ℓs1 , . . . xn,1, . . . , xn,ℓsn ) (2)

One requires similar “typing discipline” in the case of the translation of constant and
function symbols. While notationally more complex, this is the natural modification
to the many-sorted setting of the fundamental idea that interpretations involve
associating primitives of the interpreted theory to formulas of the interpreting
theory in such a way that the compositionally defined map from sentences of the
former to sentences of the latter preserves theoremhood.8

It is instructive to contrast the interpretability of theories to the faithful in-
terpretability of theories. A theory T is said to be faithfully interpretable in a
theory T ∗ if T is interpretable in T ∗ so that translations of theorems are theorems
and so that translations of non-theorems are non-theorems, i.e.: T ⊢ ϕ if and only
if T ∗ ⊢ ϕ∗. It turns out that there are many examples of interpretations which are
not faithful interpretations. For instance, the interpretation of Peano arithmetic
in Zermelo-Fraenkel set theory given above is not a faithful interpretation because
Peano arithmetic doesn’t prove its own consistency, whereas Zermelo-Fraenkel set
theory does prove a formal arithmetical sentence expressive of the consistency of
Peano arithmetic. Finally, we can define the mutual interpretability of theories and
the mutual faithful interpretability of theories. In particular, two theories are said
to be mutually interpretable if each interprets the other, and two theories are said
to be mutually faithfully interpretable if each faithfully interprets the other. Just
as faithful interpretability implies interpretability, so we have that mutual faithful
interpretability implies mutual interpretability.
Finally, let us briefly describe two stronger notions of similarity of theories

and structures that are studied often in mathematical logic, namely the notion

8 If the signature of the interpreted and interpreting theories are finite and presented in a
primitive recursive manner, then interpretations are automatically primitive recursive
functions from the signature of the interpreted theory to formulas in the signature of
the interpreting theory. This fact is sometimes used in applying interpretations in the
settings of the incompleteness theorems, since it allows one to treat the interpretation
function itself as a defined notion within the theories (cf. Lindström (2003) p. 97).
However, in any infinite signature there is no longer any guarantee of interpretation
functions being primitive recursive or even computable. This is relevant to many-
sorted theories because the signature of any infinitely-sorted theory is automatically
infinite. Hence, interpretations between infinitely-sorted theories are not guaranteed to
be computationally tractable.
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of biinterpretability and sentential equivalence.9 Suppose that V and W are two
classes of structures, perhaps in different signatures. Then V and W are said to be
biinterpretable if four things happen:

(3) Every structure M from V uniformly defines a structure Γ(M) from W ,
(4) Every structure N from W uniformly defines a structure ∆(N) from V ,
(5) For every structureM from V there is a uniformlyM -definable bijection fM :

∆(Γ(M)) →M that induces an isomorphism fM : ∆(Γ(M)) →M ,
(6) For every structure N from W there is a uniformly N -definable bijection gN :

Γ(∆(N)) → N that induces an isomorphism gN : Γ(∆(N)) → N .

Further, V and W are said to be sententially equivalent if one has (3)-(4) as well
as the following:

(5′) Every structure M from V is elementarily equivalent to ∆(Γ(M)),
(6′) Every structure N from W is elementarily equivalent to Γ(∆(N)).

wherein two structures are said to be elementarily equivalent if they satisfy the
same first order sentences. Hence, since being isomorphic implies being elementarily
equivalent, one has that being biinterpretable implies being sententially equivalent.
Now, the notion of uniformity invoked in the above clauses is the natural one: an
interpretation of one structure within another is effected by a series of formulas,
and so insisting on uniformity is just to insist that the formulas one uses do not vary
from structure to structure. It’s natural also to modify clauses (3)-(4) to allow Γ(M)
and ∆(N) to be definable quotient structures inM and N respectively, rather than
mere definable structures. Further, the definition of sentential equivalence carries
over directly to the many-sorted setting, but to define biinterpretability in the
many-sorted setting one modifies (5)-(6) as follows to accommodate the different
sorts:

(5′′) For every structure M from V and every sort s there is a uniformly M -
definable bijection fMs

: (∆(Γ(M)))s → Ms which together induce an iso-
morphism fM : ∆(Γ(M)) →M ,

(6′′) For every structure N from W and every sort s there is a uniformly N -
definable bijection gNs

: (Γ(∆(N)))s → Ns which together induce an isomor-
phism gN : Γ(∆(N)) → N .

Finally, one says that two structures M and M∗ are biinterpretable (resp. sen-
tentially equivalent) if the classes of isomorphic copies {N : N ∼= M} and {N :
N ∼= M∗} are biinterpretable (resp. sententially equivalent), and one says that
two theories T and T ∗ are biinterpretable (resp. sententially equivalent) if the
classes of models {M : M |= T} and {M∗ : M∗ |= T ∗} are biinterpretable (resp.
sententially equivalent). It’s easy to see how these notions generalize that of mutual
interpretability of structures: whereas mutual interpretability of M and M∗ merely
requires that M can represent M∗ and vice-versa, biinterpretability and sentential
equivalence additionally require that M has the resources to confirm the accuracy
of its representation of M∗’s representation of it, and additionally that M∗ has
similar resources going in the other direction.

9 For biinterpretability, see Ahlbrandt & Ziegler (1986) p. 67, Hodges (1993) p. 222, Nies
(2007) pp. 333-334, Visser (2006) § 3.3 p. 295, Enayat et al. (2011) p. 61. For sentential
equivalence, see Visser (2006) § 3.3 p. 295, Enayat et al. (2011) p. 62.
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§3. Theory-Based Versions: the Plethora and Consistency Problems

As we saw in the previous section, the interpretability of theories is the most basic
theory-based notion of representation to be found in mathematical logic. Hence, it
is natural to first consider a theory-based version of the Logicist Template centered
around the interpretability of theories. This version contends that knowledge of an
arithmetical theory such as the Peano axioms may be based on knowledge of a
logical theory such as Hume’s Principle and the knowledge that this arithmetical
theory is interpretable in this logical theory. Of course, it is demonstrable that
Hume’s Principle interprets the Peano axioms, and this result is now called Frege’s
Theorem.10 Hence, if one does not dispute our knowledge of Hume’s Principle, then
what is at issue here is whether in general principles may come to be known by
interpreting them in known principles.

Prior to discussing this issue, let me briefly note one place where a prominent
logicist seems to endorse something very similar to this theory-based version of the
Logicist Template. The following is a passage which Wright repeats verbatim in
two different essays:

The neo-Fregean thesis about arithmetic is that a knowledge of
its fundamental laws (essentially, the Dedekind-Peano axioms)–
and hence of the existence of a range of objects which satisfy
them– may be based on Hume’s Principle as an explanation of the
concept of cardinal number in general, and finite cardinal number
in particular. More specifically, the thesis involves four ingredient
claims: [¶] (i) that the vocabulary of higher-order logic plus the
cardinality operator, octothorpe [#] or ‘Nx: . . . x. . . ’, provides a
sufficient definitional basis for a statement of the basic laws of
arithmetic; [¶] (ii) that when they are so stated, Hume’s Principle
provides for a derivation of those laws within higher-order logic
[. . . ] (Wright (1998b) p. 389, Wright (1999) p. 17, Hale & Wright
(2001) pp. 256, 321).

It seems to me that the key idea expressed in these two roman numerals is that
(i) there is a way of translating arithmetical primitives into formulas about car-
dinalities, and that (ii) all the axioms of Peano arithmetic become theorems of
Hume’s Principle when so translated. This, of course, implies that the translation of
theorems of Peano arithmetic are theorems of Hume’s Principle, which by definition
is what it means for the Peano axioms to be interpretable in Hume’s Principle.
Hence, it seems that what Wright is here suggesting is that knowledge of the Peano
axioms may be based on knowledge of Hume’s Principle because the Peano axioms
are interpretable in Hume’s Principle.

One problem with this version of the Logicist Template, which I will call the
plethora problem, has been voiced in different ways by Hochberg, Blanchette and
Heck, among others.11 The plethora problem stems from the fact that many theories

10 See Wright (1983) pp. 154-169, Boolos (1996).
11 Hochberg (1970) p. 396, Hochberg (1984) p. 321, Hochberg (1956) p. 119, Blanchette

(1994) p. 95, Blanchette (2012) §4.3 pp. 84-85, and Heck (1999) p. 59, Heck (2000)
p. 188, Heck (2011) p. 156, Heck (1997) p. 597, Cook (2007) p. 69, Heck (2011) p. 245,
and Shapiro (2000a) §7 pp. 360-361, Cook (2007) §7 p. 250-251, Wright (2000) p. 323,
Cook (2007) p. 261.
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are interpretable in the Peano axioms. For instance, it is well-known from the work
of Tarski that the complete first-order theory of the real and complex numbers are
interpretable in the Peano axioms.12 However, it would seem strange to suggest
that these theories can come to be known by way of an interpretability result. For
instance, some of the axioms of the complex numbers express the Fundamental
Theorem of Algebra, which asserts that every non-zero polynomial with complex
coefficients in one variable has a complex root. Now one might simply take the con-
tent of the Fundamental Theorem as epistemically basic, that is, as not derived from
other more basic knowledge. But most mathematicians do not do this: rather, they
require proof of this theorem, and the proofs of this theorem that they accept and
teach to their students are all non-trivial, and typically require appeal to limits or
to topological notions, each of which must be studied in its own right before one can
begin to understand these proofs of the Fundamental Theorem of Algebra. It would
seem counterintuitive to suggest that all of this could be circumvented by appeal
to a comparatively elementary interpretability result. Hence, the plethora problem
is that too much knowledge may be generated by the supposition that knowledge
of one theory can be based on knowledge of a theory which interprets it.

One way to avoid the plethora problem is to strengthen the notion of interpreta-
tion in a philosophically well-motivated way, and one obvious idea is to focus on the
strongest notion of interpretation that is provided by the traditional proof of Frege’s
Theorem. For, this proof actually establishes that the Peano axioms are faithfully
interpretable in Hume’s Principle, and moreover in such a way that the canonical
singular terms of the Peano axioms are made inferentially indistinguishable with
canonical singular terms of “applied arithmetic” coming from Hume’s Principle.
More precisely, consider the terms in the signature of the Peano axioms consisting
of zero, the successor of zero, the successor of the successor of zero etc. These may
be defined recursively (in the metalanguage) as follows:

0 = 0, n+ 1 = S(n) (3)

Correspondingly, consider the following terms n from the signature of Hume’s
Principle, where # is used to denote “the number of” or “the cardinality of”:

0 = #{z : z 6= z}, n+ 1 ≡ #{z :
n∨

ℓ=0

z = ℓ} (4)

12 See Appendix 6.1. for a formal statement of the Peano axioms. The easiest way to see
that the complete first-order theory of the real and complex numbers are interpretable
in the Peano axioms is to note three things. First, by the work of Tarski, the complete
theories of the real and complex numbers are complete and recursively axiomatizable
(cf. Marker (2002) Corollary 3.2.3 p. 85 and Corollary 3.3.16 p. 97). Second, by
formalizing Henkin’s proof of the completeness theorem, one can show that if the
Peano axioms prove the consistency of a recursively axiomatizable theory, then they
interpret that theory (cf. Lindström (2003) Theorem 4 p. 99 and Hájek & Pudlák (1998)
Theorem 2.39 p. 169). Third, it is easy to show by a model construction within Peano
arithmetic that the Peano axioms prove the consistency of the recursively axiomatizable
fragments of the complete theories of the real and complex numbers (cf. Simpson (2009)
Theorem II.9.4 p. 97 and Theorem II.9.7 p. 98).
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These terms embody important principles of applied arithmetic because Hume’s
Principle allows one to prove the following, which has been called “Nq”:

∀ F (#F = n↔ ∃=n x Fx) (5)

Moreover, in their “pure” uses, the terms n are inferentially indistinguishable
from n, in that one can show that for every formula ϕ(x1, . . . , xk) in the signature
of the Peano axioms and every n1, . . . , nk ≥ 0, one has that the Peano axioms
prove ϕ(n1, . . . , nk) if and only if Hume’s Principle proves that ϕ∗(n1, . . . , nk),
where ϕ 7→ ϕ∗ is the compositional map from formulas in the signature of the
Peano axioms to formulas in the signature of Hume’s Principle induced by the
usual proof of Frege’s Theorem. Of course, this inferential indistinguishability is
a natural strengthening of the notion of faithful interpretations discussed in the
previous section.

The applied character of the terms n expressed in Nq in equation (5) and the
inferential indistinguishability of n and n has been thought by Wright and Hale to
provide a crucial constraint on interpretations. Hale writes: “But why should we not
regard N= [Hume’s Principle] and [Nq], together with the definitions of the indi-
vidual numerals [i.e. n], as serving simultaneously to introduce the use of numerals
and terms of the form Nx : Fx [i.e. #F]?” (Hale (1987) p. 224). Indeed, it seems like
these constraints do serve to circumvent the plethora problem. For, Wright and Hale
have in effect suggested that knowledge is preserved under known interpretability
in known premises provided that both of the following conditions hold: (i) the
introduced singular terms and concepts are inferentially indistinguishable from a
range of terms and concepts already available via the known premises, and (ii)
the applied uses of the introduced concepts and singular terms are similarly made
available via the known premises.13 Further, this concern with applications is not
idiosyncratic to the natural numbers, but extends to an account of our knowledge
of other basic mathematical structures like the reals and Euclidean geometry. For
instance, Hale writes that the “insistence that reals be defined as ratios of quantities
derives from [the] belief that the application of reals as measures of quantities is
essential to their very nature” (Hale (2000) p. 104). So Wright and Hale might
respond to the plethora problem by suggesting that while the aforementioned work
of Tarski provides for an interpretation of the theory of the real numbers inside
Hume’s Principle, it does nothing to secure the applications of real numbers.

However, while this response to the plethora problem seems well-motivated, there
is another problem – which I call the consistency problem – which besets this and
other theory-based versions of the Logicist Template. This problem is that these
versions of the Logicist Template can provide us with knowledge of both a sentence
and its negation. To illustrate this, let us call the anti-Peano axioms the Peano
axioms but with the Mathematical Induction Axiom replaced by its negation.
It then turns out that axioms containing the anti-Peano axioms are faithfully
interpretable in Hume’s Principle, and moreover in such a way that the terms n

13 One might distinguish between two different senses of application. First, Nq in
equation (5) might be viewed as an application because the right-hand side does not
contain any non-logical vocabulary. Second, Nq might be viewed as an application
because of the functional character of the “number of” operator on the left-hand side.
For discussion of this second aspect, see Wright (2000) p. 325, Cook (2007) p. 263.
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and n continue to be inferentially indistinguishable. So as to not distract from
the philosophical point, the proof of this result is deferred until Appendix 6.2. In
short, the philosophical point here is this: if knowledge of the Peano axioms may be
based on Hume’s Principle because the Peano axioms are interpretable in Hume’s
Principle in such a way that the conditions (i)-(ii) from the previous paragraph are
met, then if the anti-Peano axioms are likewise interpretable in Hume’s Principle in
a way that meets conditions (i)-(ii), then presumably knowledge of the anti-Peano
axioms could be based on knowledge of Hume’s Principle. However, presumably it
is absurd to suggest that both the Mathematical Induction Axiom and its negation
can be known.14

While examples of T + ¬ϕ interpretable in T + ϕ have not been previously
discussed in the secondary literature on logicism, they and examples of mutually
interpretable T+ϕ and T+¬ϕ have been discussed in other parts of the philosophy
of mathematics. For instance, Edward Nelson had the idea of characterizing a highly
constructive theory of arithmetic, which he called “predicative arithmetic,” as the
collection of all those sentences ϕ of arithmetic such that Q+ ϕ was interpretable
in Q, where Q denotes a weak base theory of arithmetic called Robsinson’s Q (cf.
Appendix §6.1. for the definition of this theory). Nelson then immediately noted
and posed the problem of determining whether the conjunction of two sentences
have this property whenever the two sentences themselves individually have this
property (Nelson (1986) p. 63). But later work of Visser and Kalsbeek showed that
both a sentence and its negation could have this property. As Kalsbeek notes, this
results suggests that “the putative definition of predicative arithmetic is incoherent”
(Kalsbeek (1989) p. 63, cf. Iwan (2000) p. 151, Buss (2006) p. 194).
In the philosophy of set theory, Peter Koellner has described a solution to the con-

sistency problem, but there is no obvious analogue of Koellner’s solution available
to the logicist. Koellner draws attention to the Guaspari-Lindström theorem, which
implies that two extensions of the Zermelo-Fraenkel axioms by finitely many new
axioms in the same signature are mutually interpretable if and only if they prove
exactly the same Π0

1-sentences (cf. Lindström (2003) Theorem 6 pp. 103, 115). Here
a Π0

1-sentence is simply a sentence which begins with a universal quantifier over
natural numbers and all of whose other quantifiers are bounded. Koellner’s idea is
that the Π0

1-sentences are exactly the observational sentences, so that the Guispari-
Lindström theorem implies that while two mutually interpretable set theories may
disagree vastly about the nature of sets, they must of necessity have the same
observational consequences (Koellner (2009) p. 98). However, there does not seem

14 Another problem that ought not be confused with the consistency problem concerns
Feferman’s classical result that the Peano axioms plus the negation of the traditional
consistency statement for these axioms is interpretable in these axioms themselves
(cf. Lindström (2003) Theorem 8 p. 104, Feferman (1961) Theorem 6.6 p. 76).
Considerations of space prevent me from fully discussing this problem, but suffice it to
say that I do not view it as posing an incontrovertible problem for theory-based versions
of the Logicist Template. It’s perhaps also worth mentioning that the consistency
problem is not the problem of multiple interpretations, such as the interpretation of the
Peano axioms into set theory using the finite ordinals 0, 1, 2, . . . , n, . . . as opposed to
the infinite ordinals ω+0, ω+1, ω+2, . . . , ω+ n, . . .. Rather, the consistency problem
is that a given theory– like set theory– can interpret both T + ϕ and T + ¬ϕ, so that
interpreting a theory in a known theory like set theory cannot possibly be a way to
acquire knowledge.
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to be any analogue of Koellner’s idea which is available to the logicist. For not only
is the logicist interested in interpretations between theories in different signatures,
but the sentences that the logicist is interested in are not Π0

1-sentences, and so
would not be covered by the Guaspari-Lindström theorem in the first place.15

In formal theories of truth, Martin Fischer has articulated a position which bears
a certain family resemblance to the Logicist Template, and it seems that the consis-
tency problem is also a problem for unqualified versions of Fischer’s view. Fischer
has suggested that if a theory of truth is mutually faithfully interpretable with its
base theory of arithmetic, then the truth predicate and its arithmetical translate
possess the same inferential role.16 But, it turns out that there are examples of
theories T + ϕ and T + ¬ϕ that are mutually faithfully interpretable.17 It seems
that these examples require qualification of Fischer’s thesis. For, suppose that the
only primitive appearing in T and ϕ is the relation symbol R, and that T + ϕ is
mutually faithfully interpretable in T + ¬ϕ in such a way that R is translated by
formula R∗. Then Fischer’s suggestion would imply that R and R∗ possess the same
inferential role, and hence presumably that the sentence ϕ and its translation ϕ∗

induced by translating R as R∗ would possess the same meaning. Since T + ¬ϕ
proves ϕ∗, any agent who had reason to believe T + ¬ϕ would thus have reason to
believe ϕ∗ and hence also its synonym ϕ. Thus taken in its most unqualified form,
Fischer’s suggestion would require us to impute having reason to believe ϕ∧¬ϕ to
an agent merely in virtue of her belief in T + ¬ϕ.
The most promising avenue of response for both Fischer and the advocate of the

Logicist Template is to seek out stronger theory-based notions of representation and
to show that the consistency problem does not arise for these theories. One of the
strongest theory-based notions is the notion of “definitional equivalence” or “logical
synonymy” which is sometimes said to explicate the intuitive idea of two theories
being mere “notational variants” of one another (Corcoran (1980) p. 232) or having
the “same import” or being “various descriptions amount[ing] to the same thing”
(de Bouvère (1965b) p. 622, cf. de Bouvère (1965a)). The motivating examples of
this phenomena were: (i) taking < as primitive in a linear order and defining ≤,
as opposed to taking ≤ as primitive and defining < (de Bouvère (1965b) p. 622),
and (ii) taking meet and joint as primitive in a lattice and defining ≤-relation, as
opposed to vice-versa (cf. Givant & Halmos (2009) p. 43, Corcoran (1980) p. 233).
Given these examples, it should not be surprising that definitional equivalence im-
plies the notion of biinterpretability defined at the close of the previous section (cf.
Visser (2006) § 3.3). However, as we note in Appendix §6.3., the Peano axioms and
Hume’s Principle are not biinterpretable and hence not definitionally equivalent.
This highlights one potential pitfall in pursuing this response to the consistency
problem: as one develops more demanding theory-based notions of representation,

15 Of course, if one isolated a surrogate of the natural numbers within the interpreted
and interpreting theories, then one could attempt to formulate and prove versions of
the theorem with respect to these surrogates. But then one would have to separately
motivate the connection between the theorem and observational consequences.

16 Fischer (2010) p. 367, cf. Horsten (2011) §7.6 pp. 94 ff.
17 Lindström (2003) Exercise 6 (a) p. 91 and Theorem 14 p. 107.
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the notion must not become so demanding as to be inapplicable to its intended
philosophical targets.18

It ought to be mentioned that the shift from mere interpretability to stronger
representational notions like definitional equivalence and biinterpretability will most
likely be concomitant with a shift in one’s reasons as to why knowledge is preserved
under known representation in known principles. One might distinguish between
at least two such reasons, which I call the reliable mechanism position and the
irrelevance of contingencies position. The first position highlights the fact that in-
terpretability is merely deduction coupled in a certain way with explicit definitions,
and would suggest that just as both deduction and explicit definition are ways
of extending knowledge, so interpretability is a means of extending knowledge.
The best way to evaluate this position is not to demand any positive line of
argumentation for it, just as we don’t demand positive argumentation for why
deduction may extend knowledge, but rather to try to assay whether this is indeed a
reliable mechanism of knowledge extension: whether in general when we feed known
inputs into this mechanism we obtain known outputs as a result. The plethora and
consistency problems constitute two distinct ways in which such reliability fails
when the notion of representation is taken to be notions like interpretability or
faithful interpretability.

Alternatively, from the talk of “notational variants” and “various descriptions”
one might extract the idea that there are various elements of formal renderings of
mathematics into formal first-order theories that are largely underdetermined by
the mathematics itself. For instance, in spite of our vast knowledge of the natural
numbers, no one knows whether “the natural numbers have < as opposed to ≤
as a primitive” is true or false. The irrelevance of contingencies position simply
posits that such differences cannot make a difference to mathematical knowledge,
so that a theory differing from a known theory only in these ways is itself known.
As mentioned above, this position will not help the logicist who seeks to move from
knowledge of Hume’s Principle to knowledge of the Peano axioms, since Hume’s
Principle and the Peano axioms are not biinterpretable or definitionally equivalent
(cf. §6.3.). However, this is not to say that every principle whose epistemic status
is similar to Hume’s Principle will likewise fail to be biinterpretable with the Peano
axioms, and so this would be one theory-based way for the logicist to proceed that
would not obviously fall prey to the plethora and consistency problems discussed
in this section.

§4. Structure-Based Versions In this section, the aim is to set out and
examine two versions of the Logicist Template that supplement theory-based no-
tions of representability with additional contentions about the representability of
arithmetical structure within logical structure –e.g. the representability of the nat-
ural numbers within models of Hume’s Principle. The first structure-based notion

18 Fischer also suggests (in personal correspondence) that one might consider a
strengthening of mutual interpretability to sentential equivalence (cf. definition of this
notion at the close of §2.). I do not know whether Hume’s Principle and the Peano
axioms are sententially equivalent. In § 6.3., it is shown however that Hume’s Principle
and the Peano axioms are not fully sententially equivalent, where “fullness” (as defined
in § 6.2.) essentially requires that one not reinterpret the concept-object distinction.
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of representability described in §4.1 is very traditional, and simply posits that
the arithmetical structure is patently definable within the logical structure. One
problem with this account is a circularity objection, to the effect that certain of
the definability claims are trivially equivalent to the very arithmetical knowledge
which the advocate of the Logicist Template seeks to secure in the first place. This
naturally motivates a second structure-based notion of representability that merely
requires that arithmetical structure be isomorphic to a structure definable in logical
structure. However, in §4.2 I will argue that this second structure-based notion is
to be rejected for reasons related to the manner in which it requires a knowledge
of structures and their signatures in advance of knowledge of axioms.

Finally, before proceeding, it’s worth remarking that the distinction between
“theory-based” and “structure-based” notions of representation is more of a con-
tinuum than a binary opposition. The key idea in theory-based notions is that
provability should be privileged, while the key idea in the structure-based notions
is that definability should be privileged. However, the formal line between provabil-
ity and definability is invariably muddled: for instance, all definability facts in a
structure will be recorded as provability facts in its complete first-order theory, while
more locally any specific definability fact about a structure could be formalized as
yet another axiom of a first-order theory. The reason for separating the discussion
of theory-based and structure-based notions of representation is simply that the
epistemic hurdles seem different when we center matters around definability as
opposed to provability. For instance, in the following subsection (§ 4.1.), we must
ask questions about the epistemic status of definitions, questions which seem to go
above and beyond knowledge of axioms like Hume’s Principle.

4.1. First Version & The Circularity Problem To illustrate the first
structure-based notion of representation that I want to consider in this paper,
suppose that we prove in the usual way that the Peano axioms are interpretable
in Hume’s Principle, and suppose that we supplement this knowledge with the
additional knowledge that the natural numbers are the kinds of cardinalities in-
voked in the interpretation, that the natural number zero is the specific cardinality
invoked in the interpretation, and likewise for the other arithmetical operations like
successor and addition. This supplementary knowledge would then be articulated in
terms of the following biconditionals, wherein N , 0 and S refer respectively to the
natural numbers, zero, and successor, and where N∗, Z∗, and S∗ are their logical-
or cardinality-theoretic correlates in the signature of Hume’s Principle:

∀ x [N(x) ↔ N∗(x)] ∀ y [y = 0 ↔ Z∗(y)] ∀ y, z [S(y, z) ↔ [N(y) & S∗(y, z)]]
(7)

There would of course be analogous biconditionals for addition, multiplication, and
the less-than relation, but for the sake of simplicity we omit those here.

Now, traditionally, Z∗(y) would be taken to say that y was the cardinality of
some concept which had no members, and S∗(y, z) would be taken to say that y
was the cardinality of the Y ’s, z was the cardinality of the Z’s, all the Y ’s were Z’s,
and there was exactly one Z which was not a Y . The traditional choice of N∗(x)
would be as follows, which intuitively says that x holds of all the concepts F which
contain the ersatz of zero and are closed under the ersatz of successor:

N∗(x) ≡ ∀ F [[(∀ y (Z∗(y) → Fy)) & (∀ y, z (Fy & S∗(y, z)) → Fz)] → F (x)] (8)
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For the sake of definiteness, let us call the three biconditionals from equation (7),
with these traditional understandings of N∗, Z∗, and S∗ in place, the definabil-
ity biconditionals, and let us refer to them individually as the domain biconditional,
the zero biconditional, and the successor biconditional.

The version of the Logicist Template which I want to consider in this section con-
tends that knowledge of the Peano axioms could be based on knowledge of Hume’s
Principle because one knows Hume’s Principle, the definability biconditionals, and
that these two things together deductively imply the Peano axioms. This latter
piece of knowledge is of course non-trivial, but it is something that falls naturally
out of the usual proof of Frege’s Theorem. This version of the Logicist Template is
also more traditional than those considered in the last section. For, the definability
biconditionals are specific instances of the “bridge laws” from traditional versions
of intertheoretic reduction. Further, this version of the Logicist Template merely
posits that knowledge is preserved under known implication from known premises,
rather than under known interpretability in known premises.

But the decisive advantage of this version of the Logicist Template is that it
avoids both the plethora and consistency problems. On the one hand, the plethora
problem will be blocked because one would additionally need to know facts about
how the represented structure is defined in the representing structure. For in-
stance, one could infer from the Peano axioms to the Fundamental Theorem of
Algebra according to this version of the Logicist Template only if one knew that
complex numbers were certain kinds of sequences of natural numbers and that
this in conjunction with the Peano axioms deductively implied that the first-order
sentences expressive of the Fundamental Theorem of Algebra were true on the
complex numbers. On the other hand, the consistency problem is blocked because
the relevant notion of representation requires that theories are paired many-one
with structures which render the axioms of the theory true. Given this, one simply
can’t have arithmetical T + ϕ and T + ¬ϕ being representable in the relevant
sense in say, Hume’s Principle. For, since both these theories are arithmetical, the
representability in question would require that the arithmetical structure given
by (N, 0, S) model both ϕ and ¬ϕ, which is clearly impossible.

While this version of the Logicist Template has the advantage of being immune
to the plethora and consistency problems, it must contend with an objection spe-
cific to the definability biconditionals. The objection is that this version of the
Logicist Template is patently circular because some of the arithmetical knowledge
in question is trivially equivalent to one of the definability biconditionals. More
specifically, the relevant equivalence is that the Mathematical Induction Axiom is
trivially equivalent to the domain biconditional against the background of the zero
and successor biconditional and the supposition that zero is a natural number and
that successors of natural numbers are natural numbers. So as to not distract from
the discussion here, I defer the proof of this equivalence to Appendix §6.4. While
variants of this circularity objection can be found in the writings of Papert, Parsons,
and Boolos, rendering this objection in terms of such a provable equivalence is new.
I believe this rendering has the advantage of making clear the modal force behind
Papert and Parsons’ concern that “[. . . ] we must use the notion of natural number
[. . . ] to see the equivalence of the set-theoretical propositions and their number-
theoretical correlates” (Parsons (1965) p. 198, Parsons (1983) p. 168) or that “one
needs the principle of induction to justify the identifications even in extension of
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arithmetical notions and the corresponding notions of the Principa Mathematica”
(Papert (1960) p. 113).19

The circularity concern of Papert, Parsons, and Boolos has been occasionally
discussed in recent decades, but never to my knowledge buttressed by any for-
mal considerations such as the aforementioned provable equivalence. Steiner and
Demopoulus suggest responding to the objection by suggesting that the agent
who knows the definability biconditionals might be different than the agent who
acquires knowledge of the Peano axioms, and that the corresponding sources and
standards of justification might be different, and for instance perhaps pragmatic
in character.20 However, this response seems vulnerable to the plethora problem,
depending on how easy it is for the second agent to provide metaproofs or how
easy it is to meet the relevant pragmatic standards. More recently, Wright and
Hale briefly discuss the objection that “logicism illicitly presupposes distinctively
mathematical techniques– par excellence, mathematical induction– in, for instance,
establishing the requisite correlations between basic mathematical theories and the
logicist systems in which they are reconstructed” (Hale & Wright (2001) pp. 433-
434). They continue: “The natural reply to that particular charge is that the alleged
circularity wouldn’t matter. What would be significant would be if in order for
a thinker to follow through the logicist route to arithmetic, she would need to
be competent in induction in advance, as an unreconstructed rule of inference”
(Hale & Wright (2001) p. 434). It seems to me that the provable equivalence
of the Mathematical Induction Axiom with the domain biconditional across the
background of the other definability biconditionals makes a primae facie case that
“in order for a thinker to follow through a particular logicist route, she needs to
be competent in induction in advance.” The only other more recent discussion
of the circularity objection of which I am aware is the following remark of Heck,
who writes: “This sort of [circularity] objection was originally pressed by Henri
Poincare, but has in recent years been developed by Charles Parsons. Let me
not discuss it further, however, except to say that it is bound up with concerns
about impredicativity [. . . ] (Heck (1999) p. 70). But it is not immediately clear to
me how the circularity objection might be related to impredicativity. Further, as
mentioned in Appendix § 6.1., if one lowers the levels of comprehension, one can’t
prove Frege’s Theorem, and so the discussion of the significance of this theorem
would not obviously get off the ground in a predicative setting.21

19 There’s obviously much that distinguishes Papert, Parsons, and Boolos. For instance,
Papert is discussing the interpretations of arithmetic in Principia Mathematica,
while Parsons and Boolos are discussing interpretations of arithmetic in set theory.
It seems to me that their concern carries over to interpretations of arithmetic in
Hume’s Principle. However, perhaps responses to their concern could make use
of the important distinctions between Hume’s Principle, set theory, and Principia
Mathematica. However, primarily for reasons of space, I shall not pursue such responses
here.

20 Cf. “[. . . ] we have a metaproof [. . . ]” Steiner (1975) p. 30, “[. . . ] it is a wholly pragmatic
question whether we should justify the adequacy of the definition [. . . ]” Demopoulos
(1994) p. 237)

21 There is some recent work by Burgess (2005) p. 82 and Visser (2011) on how much one
can do in a predicative setting. The types of arithmetic that one can recover in this
setting are weak arithmetics like Robinson’s Q as opposed to strong arithmetics like the
Peano axioms which are the topic of this paper (cf. Appendix 6.1. for formal definitions
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In my view, the best response to the circularity objection is to appeal to what we
might call the evidential similarity principle: the impropriety of a trivial equivalence
of premise with conclusion across background knowledge is significantly lessened
when there is a similarity between the evidence for the background knowledge and
the evidence for the premises. To illustrate this principle, consider the following
example: no one thinks that it is objectionable to infer that all the samples have
a given chemical property from careful measurements of the last sample and a
prior knowledge that all the previous samples have the property when this prior
knowledge is similarly based on earlier careful observations. This is the case even
though the conclusion that all the samples have the chemical property is trivially
equivalent to the premise that the last sample has the property, against the back-
ground of our prior knowledge. Moreover, a moment’s reflection on this example
suggests a natural explanation for why the evidential similarity principle holds.
For, one might be of a mind that a trivial equivalence of conclusion with a premise
across background knowledge is improper because a chief aim of argumentation is
to remove doubt, and such trivial equivalence would indicate that any doubts one
had about the conclusion would be automatically transferable to the premise. But
one natural way to block this transfer of doubt is to note that the evidence one has
for the premise is similar to the comparatively indubitable evidence that one has
for the background knowledge.

So it seems open to the advocate of the Logicist Template to respond to the
circularity objection by noting that there seems to be a deep similarity between our
evidence for the zero- and successor-biconditionals and the domain biconditional.
The idea would be that the circularity objection seems most threatening when we
wrongly and artificially start out accepting the zero- and successor-biconditionals
and then subsequently inquire after the domain biconditional. For, once we accept
the zero and successor biconditionals, the line between successor S and ersatz suc-
cessor S∗ and zero 0 and ersatz zero Z∗ becomes blurred, and accordingly the
domain biconditional starts to have the “look” of mathematical induction. It is
this “inductive character” which Boolos emphasized in his version of the circularity
objection: “[. . . ] if at the outset one doubted whether the natural numbers satisfied
induction one will still doubt whether the natural numbers will be (isomorphic to)
the objects satisfying the definition, precisely because of the inductive character
of the definition ” (Boolos (1984) p. 470, Boolos (1998) p. 371). But if we treat
all of these biconditionals as premises rather than artificially treating some few
of them as background knowledge, then the “inductive character” of the domain
biconditional disappears, and it just becomes a long complicated sentence in a
higher-order language.

So how should the advocate of the Logicist Template conceive of the common
source for evidence for the definability biconditionals? As Benacerraf suggests, a
natural idea would be that the logicist would argue that “the sentences of arith-
metic, in their preanalytic senses, mean the same (or approximately the same)
as their homonyms in the logicist system” (Benacerraf (1981) p. 20, Demopoulos
(1995) p. 46). Or, as Dummett suggests, the logicist would seek “to settle the status
of the arithmetical laws we already have, involving those arithmetical concepts

of these theories). Hence, for instance, one could not account for our knowledge of the
Mathematical Induction Axiom using these results.
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we already grasp; and, to do that, he must analyse those concepts and supply
expressions of definitions long in use [. . . ]. [. . . ] if such definitions are to serve their
purpose, they must surely be analytic ones” (Dummett (1996) p. 20). Thus the idea
is that one reflects on the meanings of “zero,” “successor,” and “natural number,”
and realizes that they respectively mean the same things as the logicist correlates
flanking the opposite sides of the definability biconditionals.

The chief difficulty with making good on this thought is that there are presumably
patterns of use of the terms “zero,” “successor,” and “natural number,” such that
persons proficient in this use might habitually invoke the zero and successor bi-
conditonal but not the domain biconditional. For instance, consider the activity of
specifying exact numerosities, i.e. the activity of providing answers like “15” or “27”
to questions of the form “How many F ’s are there?” In this activity, it seems plausi-
ble that competent speakers might invoke the zero and successor biconditionals but
not the domain biconditional. For instance, we can easily see how to avail ourselves
of the zero and successor biconditionals to verify that the number of dots on the
screen is exactly 15 without making tacit or explicit appeal to the domain bicondi-
tional.22 Further, there is a natural explanation for why we do not so appeal to the
domain biconditional in this setting: for, in this activity, one simply does not need
a uniform method to establish universal claims about natural numbers, and this is
largely what the domain biconditional provides. This explanation must of course say
something further about the larger aims that circumscribe our needs. Presumably
the immediate aim here is one of compression of information, which presumably in
turn facilitates communication, storage, and recall. In answering the question “How
many F ’s are there?” with “15” as opposed to literally displaying the F ’s or an
explicit bijection between them and some class of objects whose exact number is
already known, a useful piece of information is rendered in a highly compact and
easily conveyable form which can be communicated or stored in memory with a
comparatively short sequence of words.

The points made here about exact numerosity seem to generalize to a broader
class of related mathematical activities. For instance, our everyday inferential activ-
ity is such that we would readily assent to the claim that to deduce a conjunction
it suffices to deduce each conjunct, whereas we would hesitate to assent to the
claim that a deduction from a set of axioms is a finite sequence of steps such that
each step is an axiom or follows from earlier steps by an antecedently fixed set of
inference rules. One consideration that may serve to induce such hesitation is a
moment’s reflection on one traditional way of motivating the significance of the
completeness theorems for propositional and predicate logic. For instance, Kleene
writes of the former: “[. . . ] we have listed eleven postulates for the propositional
calculus [. . . ]. Can we give a reason why we stop with just these? Might we with

22 The inferential process to verify that the number of F ’s is exactly k would go like this.
One selects arbitrarily one of the F ’s, which we might call n1, and concludes on the
basis of the zero and successor biconditionals that the number of objects equal to n1

is equal to the natural number one. Relying on one’s memory and visual faculties, one
then selects another of the F ’s, which we might call n2, and concludes on the basis
of one’s earlier knowledge and the successor biconditional that the number of objects
equal to n1 or n2 is equal to the natural number two. One then continues in this way
until one concludes that the number of objects equal to n1, n2, or . . . nk is equal to
the natural number k.
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advantage attempt to discover others which could be added to the list to give more
provable formulas?” (Kleene (1952) p. 131). Another related example comes from
geometry: our initial inculcation in Euclidean geometry is such that we know that
an equilateral triangle may be constructed on a given line, whereas we would not
know, at least on the same basis, that a geometrical construction is one that may
be effected by finitely many operations with only lines and circles as opposed to
other constructions.23 As a final example, take calculation: part of our training in
calculation shows us that our usual procedure for long division yields an effectively
calculable operation, whereas it presumably does not so show us that an effective
operation is one which may be obtained via finitely many applications of operations
such as primitive recursion and minimization. So the thought here is that proficiency
in these various activities (exact numerosity, deduction, geometric constructions,
and calculating) does not require the invocation of or assent to “exclusion clauses,”
like the domain biconditional, that tell us that “that’s all there is” to the relevant
concept (natural number, proof, geometric constructibility, effectively calculable
function).
This criticism of the appeal to epistemic analyticity in the philosophy of mathe-

matics is different in character from Williamson’s well-known recent critique of epis-
temic analyticity (Williamson (2007a), Williamson (2007b) Chapter 4). The easiest
way to see this is to note that the logicist has a viable response to Williamson’s
objection that does not meet the above objection. Williamson employs alterna-
tive logics to construct counterexamples to the contention that knowledge of the
meaning of certain paradigmatic analytic propositions like “All vixens are female
foxes” suffices for knowledge of that proposition. His specific counterexamples in-
volve supervaluational semantics or logics on which true universal hypotheses carry
existential presuppositions. Advocates of such alternative logics will have reason to
doubt “All F ’s areG” even in situations when F andG are known to be synonymous
because of their doubt in the elementary logical truth “All F ’s are F”. However,
without thereby giving up on logicism, it may be conceded that this is an example of
an agent who knows the meaning of the paradigmatic proposition without knowing
the proposition itself. For, Williamson’s example does not vitiate the contention
that knowledge of the meaning of the paradigmatic proposition plus knowledge of
basic logical truths entails knowledge of the paradigmatic proposition.24 This is
relevant because the logicist’s entire plan is to reduce the problem of mathematical
knowledge to the problem of logical knowledge, and hence it seems entirely apposite
for the logicist to suppose that the mechanism of this reduction– namely epistemic
analyticity– is itself facilitated by a good deal of logical knowledge. It’s clear that
this logicist response does not meet the criticism articulated in the previous para-

23 See Bos (2001) esp. pp. 221 ff for a historical account of the vacillations in the concept
of geometric constructibility in the early modern period.

24 Williamson, unlike the advocate of alternative logics, thinks that we do know basic
logical laws like “All F ’s are F .” He writes: “For unless a radical form of scepticism
holds, we know that every vixen is a vixen, even though Peter and Stephen do not”
(Williamson (2007a) p. 28) and he likewise writes: “Other people just like Peter
and Stephen except for having more logical insight do know every vixen is a vixen”
(Williamson (2007b) p. 130). “Stephen” is the name Williamson gives to the advocate of
supervaluational semantics, while “Peter” is the name Williamson gives to the theorist
who has non-standard beliefs about presuppositions.
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graphs: for, knowledge of further inference rules or basic logical laws of the predicate
calculus won’t undercut the thought that one may exhibit an understanding of
a given mathematical domain without being in a position to assent to exclusion
clauses like the domain biconditional.

4.2. Second Version & The Signature Problem Given the discussion in
the previous section, it is thus natural to seek out a structure-based version of the
Logicist Template that does not appeal to the definability biconditionals. Since the
definability biconditionals express that arithmetical structure is definable in the
logical structure (or cardinality-theoretic structure), it is natural to focus on the
weaker claim that arithmetical structure is isomorphic to a structure definable in the
logical structure. This condition is very natural, and one highlighted in accounts of
ontological reduction by both Quine and Goodman respectively in “Ontological Re-
duction and the World of Numbers” and The Structure of Appearances.25 Further,
since Goodman was motivated by cases “[. . . ] where the extensional coincidence
of definiendum and definiens is far from evident” (Goodman (1951) p. 6), it’s
natural to hope that this condition will avoid the problems related to definability
biconditionals discussed in the previous section.26

In §2, it was mentioned that to say that one structure is interpretable in a
second structure is just to say that the first structure is isomorphic to a structure
definable in the second structure. With this terminology in place, I can now state
the final version of the Logicist Template to be considered in this paper. This version
claims that one can know that the arithmetical theory is true of the arithmetical
structure because (i) one knows that the arithmetical theory is interpretable in
the logical theory, (ii) one knows that the arithmetical structure is interpretable
in the logical structure, and (iii) one knows that the formulas used in the two
interpretations are the same. This version of the Logicist Template thus demands
a kind of pre-established harmony of interpretability of theories and structures,
wherein one knows that the formulas which define some model of the arithmetical
theory within an arbitrary model of the logical theory are the same as those which
define an isomorphic copy of the arithmetical structure within the logical structure.

While this version of the Logicist Template is easily able to overcome the consis-
tency problem, it is less obvious that it can overcome the plethora problem. Before
turning to the latter, let us briefly describe the mechanism by which it avoids
the consistency problem. This mechanism is an elementary consequence of the
hybrid notion of representability described in the previous paragraph: namely, that
it follows deductively from the hypotheses (i)-(iii) of the previous paragraph that
the arithmetical theory is true of the arithmetical structure. For, since the logical
structure models the logical theory, by (i) it defines a model M of the arithmetical
theory. But by (ii), an isomorphic copyM∗ of the arithmetical structure is definable
in the logical structure. By (iii), one has that M and M∗ are identical, so that M∗

25 See Quine (1964) p. 215, Quine (1976) p. 218, Goodman (1951) p. 6, Polánski (2009)
Definition 7, Hellman (1978) pp. 214, 218.

26 I do not know of any logicist who has suggested or endorsed the second-structure
based version discussed in this section, which is motivated by these ideas of Quine
and Goodman. Despite this, it seems valuable to map out the conceptual space and to
understand what other structure-based versions are available and what problems they
might face.
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also models the arithmetical theory. Since M∗ is isomorphic to the arithmetical
structure, it likewise follows that the arithmetical structure models the arithmetical
theory. So this is the reason why hypotheses (i)-(iii) imply that the arithmetical
theory is true of the arithmetical structure. Hence, were there two rival arithmetical
theories T +ϕ and T +¬ϕ which satisfied these hypotheses (i)-(iii), then one would
have that the arithmetical structure satisfies both ϕ and ¬ϕ, which is impossible.
This, in any case, is the elementary consideration which shows that this version of
the Logicist Template is not afflicted by the consistency problem.

However, it is less than obvious whether this version of the Logicist Template is
able to overcome the plethora problem. For, hypothesis (ii) of this version requires
that one knows that arithmetical structure is interpretable in logical structure,
in advance of knowing much else about the arithmetical structure, for instance
whether it models the arithmetical theory. If this kind of knowledge is too easy to
come by, so that it is too easy to know that this or that structure is interpretable
in logical structure via antecedently specified formulas, then one might very well
be concerned that the plethora problem would simply reemerge in this slightly
more complex setting. So the advocate of this version of the Logicist Template
has to walk the fine line between saying something about how it is known that
arithmetical structure is interpretable in logical structure via specific formulas,
without it thereby being the case that it is easy to know that a wide variety of
structures are so interpretable.27 While these reflections on the plethora problem
do not generate crisp counterexamples to this version of the Logicist Template, they
do serve to underscore the general opacity of the kind of knowledge of structure
invoked by this version of the Logicist Template.

To get clearer on the nature of this knowledge of structure, it is helpful to bear
in mind that we typically expect our foundational axiomatic theories of arithmetic,
analysis, and set theory to effect two tasks in tandem: to record our entitlements
and to describe a structure. That is, we expect such theories to both tell us
what inferences are permitted in the relevant practice (arithmetic, analysis, set-
theory), as well as to describe the subject-matter of the practice (the natural
numbers, the real numbers, the cumulative hierarchy). By contrast, this version
of the Logicist Template seeks to secure our entitlement to arithmetical axioms
like the Peano axioms by presupposing that we have some independent grasp of
arithmetical structure in advance of these axioms. One way to cast doubt on the
nature of this presupposition is to ask whether the type of knowledge of structure
implicated therein is able to discriminate between various relevant alternatives in
advance of knowledge of arithmetical axioms. While this requirement is admittedly
high, it is something that we are prone to expect of our logical knowledge in general:
whatever the evidence is that vouches for modus ponens, presumably it is able to
rule out this law holding with respect to propositions about middle-sized objects
whilst failing in more esoteric settings. Thus if this version of the Logicist Template
presupposed a type of knowledge that was unable to so discriminate, this would cast

27 These reflections are similar to Hellman’s reflections on whether Goodman’s notion of
ontological reduction is afflicted with a version of the plethora problem which Hellman
dubbed “mathematicism”: the problem that physical theory would be reducible to set
theory (cf. Hellman (1978) §4 pp. 221 ff).
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doubt on its capacity to vindicate the contention that our arithmetical knowledge
is akin to our logical knowledge.

One way to develop this kind of objection is to focus in on the knowledge of
formal language or signature that is implicated in the pre-axiomatic knowledge
of arithmetical structure postulated by this version of the Logicist Template. In
particular, this version of the Logicist Template clearly presupposes that one knows
that the natural numbers are a structure in a specific signature, namely that
of the Peano axioms, which includes addition and multiplication as well as zero
and successor. However, there are other formal theories of arithmetic such as the
Presburger axioms which involve only addition, zero and successor. But it is unclear
that there is evidence for the natural numbers being a structure in the signature of
the Peano axioms as opposed to the Presburger axioms that does not presuppose
the very knowledge of the Peano axioms which this version of the Logicist Template
seeks to secure. For instance, one good reason to think that the natural numbers
are a structure in the signature of the Peano axioms is that one knows that there
are infinitely many prime numbers on the basis of the Peano axioms, but that the
set of prime numbers is not first-order definable in the signature of the first-order
Presburger axioms.28

One response to this signature problem is to suggest that it is misleading to speak
about the signature of the natural numbers, and that whatever the natural numbers
are, they aren’t something that comes equipped with a signature. This thought
has a certain appeal to it and might be viewed as an extension of the received
wisdom that attitudes like knowledge apply more properly to propositions than
to sentences.29 In the development of his brand of structuralism, Resnik likewise
suggested that structures qua basic mathematical objects ought not be tied to
specific signatures (cf. Resnik (1981) p. 535, cf. Resnik (1997) pp. 207-208), and
he later suggested a way to handle this problem by defining a certain equivalence
relation on structures. In particular, Resnik says that two structures are equivalent
if they have the same domain and if the constants, relations, and functions of the
one are first-order definable in the other.30 One concern is that this is too fine-
grained an equivalence relation for the purposes of this structure-based version of
the Logicist Template. For instance, no two of the following first-order structures
are pairwise equivalent in Resnik’s sense, wherein N denotes the natural numbers:

(N,S), (N,+), (N,+,×) (9)

For, the even numbers are first-order definable in the second structure, whilst any
first-order definable subset of the first structure is finite or cofinite (cf. Marker
(2002) Exercise 3.4.3 p. 104). Likewise, multiplication is not first-order definable in
the second structure, since if we could define multiplication, then we could define

28 This non-definability results follows from the well-known quantifier elimination results
for first-order Presburger arithmetic. See Marker (2002) pp. 81 ff.

29 Further, one who was sympathetic to the irrelevance of contingencies position
(described at the close of §3.) might obviously be sympathetic to this thought.

30 See Resnik (1981) p. 536, Resnik (1997) pp. 208-209, noting that the key notion of
“pattern occurrence” is explicitly cast in terms of definability at Resnik (1981) p. 533,
Resnik (1997) p. 205. It’s perhaps worth noting that Resnik’s notion of equivalence
of structures implies that the complete theories of these structures are definitionally
equivalent (cf. end of §3. for discussion of and references on this notion).
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the set of primes. Hence, if one modified the structure-based version of the Logicist
Template so that it was phrased in terms of equivalence classes of structures, then
one could still ask why the natural numbers are a structure in the equivalence class
of the third structure and not in the equivalence class of the second structure.31

§5. Conclusion I want to close by contrasting the nature of the challenges
which I have presented for the theory-based and structure-based versions of the
Logicist Template. A highly abstract version of the Logicist Template may be
presented in terms of the following valid argument:

Base Premise: The logical principles are known.
Representability Premise: It is known that the arithmetical principles are
representable in the logical principles.
Preservation Premise: For all principles P and P ∗, if principles P ∗ are known,
and it is known that P is representable in P ∗, then principles P are known.
Conclusion: The arithmetical principles are known.

This presentation of the Logicist Template obscures many important things –the
role of the epistemic agent, the quality or grade of knowledge –but it serves to
compactly introduce various contrasts. For, expressed in these terms, it seems fair
to say that most of the recent literature on logicism has focused on the Base Premise,
i.e., the epistemic status of Hume’s Principle.

My aim has rather been to draw attention to the manner in which the truth
of the Representability and Preservation Premises vary with the choice of the
notion of representation. For instance, as described in §3, the theory-based notion
of representation given by interpretability of theories renders the Representability
Premise patently true –in this case it just follows directly from Frege’s Theorem. But
this notion of representation seems to make the Preservation Premise susceptible to
counterexamples coming from both the plethora problem and the consistency prob-
lem. Likewise, while the structure-based versions seem to fare better with respect
to some of these problems, it seems difficult to sustain the Representability Premise
in this case. For, as described in §4.1, the circularity problem seemingly requires
evidence that the domain biconditional is known on the basis of a knowledge of
meaning, evidence which does not seem forthcoming. Likewise, as discussed in §4.2,
securing the Representability Premise with respect to an isomorphism-based notion
of representation seems to put one in the position of claiming to have knowledge
of structures and signatures in advance of knowledge of axioms. The challenge is
thus to find a notion of representation which renders both the Representability and

31 If one moves from first-order structures to second-order structures with added standard
second-order parts, then it seems that Resnik’s equivalence relation becomes too coarse.
For instance, with these second-order resources, the real and complex fields will be
able to define the natural numbers, whereas one might have initially thought that the
real and complex fields should be geometric rather than arithmetic in character. To
take another example, most functions from natural numbers to natural numbers that
come up in ordinary mathematics are definable in the natural numbers with these
second-order resources, so that Resnik’s criterion would then have that the addition of
all these functions to this structure does not move one out of this equivalence class.
Perhaps there is some middle-ground inbetween first-order and standard second-order
on which Resnik’s definition would be neither too coarse nor too fine for the purposes
of importation into this logicist project.
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Preservation Premise true, or at least a notion of representation which does not
succumb to the specific problems described here.

§6. Appendix

6.1. Formal Definitions of Hume’s Principle and The Peano Axioms

The purpose of this brief appendix is merely to present formal definitions of Hume’s
Principle and the Peano axioms, that were introduced informally in §1, as well as to
explain some notation related to these theories and their models that will be relevant
for the proofs presented in the subsequent appendices. Formally, Hume’s Principle
is a sentence in an expansion of a second-order logic by a function symbol # from
unary properties of first-order objects to first-order objects. That is, the idea is that
if F is a unary property of first-order objects, then #F is itself a first-order object.
The notion of a “one-one correspondence” can be formally captured with the idea
of a bijection. A map f : F → G is a bijection if it is injective and surjective. The
map f : F → G is injective if f(x) = f(x′) implies x = x′ for all x, x′ from F ,
while the map f : F → G is surjective if for every y in G there is x in F such
that f(x) = y. Hence, formally, Hume’s Principle is the following sentence:

∀ F,G #F = #G↔ ∃ bijection f : F → G (10)

So, as the right-hand side of Hume’s Principle makes clear, the ambient logic of
Hume’s Principle is second-order logic. Moreover, natural renderings of the right-
hand side of Hume’s Principle suggest that we countenance at least two distinct
kinds of second-order entities: unary or one-place properties of objects like F and G,
as well as binary or two-place properties like the graph of the function f . So it
seems most natural to formalize Hume’s Principle in a second-order logic that has a
distinct sort or type for n-place properties of objects for each natural number n ≥ 1.

So formalized, Hume’s Principle would thus be a theory in a many-sorted logic
with a countably infinite number of distinct sorts (cf. discussion of many-sorted logic
in §2.). However, there is an obvious two-sorted alternative formalization available.
In particular, one could posit an injection (x, y) 7→ 〈x, y〉 on pairs of objects, a so-
called “pairing function”. Using this, one could then define an injection (x, y, z) 7→
〈x, y, z〉 ≡ 〈x, 〈y, z〉〉 on triples of objects. In this way, one could treat all n-ary
properties of objects as unary properties of objects consisting of “codes” for n-tuples
of objects, with the coding given by (x1, . . . , xn) 7→ 〈x1, . . . , xn〉. This difference in
formalization makes no difference to the results about Hume’s Principle mentioned
in this paper.
Since Hume’s Principle has sorts designed to model second-order entities, there

are several well-known alternative semantics available. These semantics differ on the
issue of whether one requires that the second-order quantifiers for n-ary relations
range over the entirety of the powerset P (Mn) of the n-th Cartesian product Mn

of the domain M of the first-order quantifiers. The semantics that insists on this
requirement is called the full or standard semantics, while the semantics that does
not insist on this requirement is called the Henkin semantics. None of the important
differences between these semantics matter for the results mentioned in this paper.
However, for the results mentioned in this paper, it is important that the second-
order logic is assumed to have the full comprehension schema. This schema says that
to each n-ary formula there corresponds an n-ary relation such that the relation
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is predicated of all and only those n-tuples of objects of which the formula holds.
The full comprehension schema is needed because one of the theorems discussed
here, namely Frege’s Theorem, does not hold if a more restricted version of the
comprehension schema is used.

Let us now turn from Hume’s Principle to the Peano axioms. The Peano axioms
are given by the following axioms, called the axioms of Robinson’s Q

(Q1) Sx 6= 0 (Q2) Sx = Sy → x = y (Q3) x 6= 0 → ∃ w x = Sw
(Q4) x+ 0 = x (Q5) x+ Sy = S(x+ y) (Q6) x · 0 = 0
(Q7) x · Sy = x · y + x (Q8) x ≤ y ↔ ∃ z x+ z = y

and by the Mathematical Induction Axiom:

∀ F [F (0) & (∀ y, z (F (y) & S(y) = z) → F (z))] → [∀ x F (x)] (11)

The Mathematical Induction Axiom is obviously a second-order principle, since it
begins with a universal quantifier over properties of objects. Hence, what I am
describing in this paper as “the Peano axioms” is second-order Peano arithmetic,
as described and studied in e.g. Simpson (2009). This is to be distinguished from
first-order Peano arithmetic as studied in Hájek & Pudlák (1998), in which one
remains within first-order logic and wherein the Mathematical Induction Axiom
is replaced by the following infinite schema of formulas, where ϕ is a first-order
formula:

[ϕ(0) & (∀ y, z (ϕ(y) & S(y) = z) → ϕ(z))] → [∀ x ϕ(x)] (12)

Against the background of the full comprehension schema for second-order logic,
the Mathematical Induction Axiom in equation (11) is equivalent to a version of the
schema in equation (12) in which ϕ is allowed to be a second-order formula. Hence,
the Peano axioms can be viewed as the result of generalizing the axiom schema of
first-order Peano arithmetic to the second-order setting.
There are two issues concerning the formalization of the Peano axioms that are

specific to logicism. First, in traditional formalizations of the Peano axioms as
in Simpson (2009), the Peano axioms are only formalized in a two-sorted logic,
wherein one sort is for first-order objects and another sort is for second-order unary
properties of objects. This is because the Peano axioms have a natural pairing
functions on objects (cf. Simpson (2009) p. 66). Given that we are formalizing
Hume’s Principle in a many-sorted logic with sorts for n-ary properties of objects
for n ≥ 1, it seems natural to suppose that we are also formalizing the Peano axioms
in this fashion. Since the Peano axioms have this pairing function built-in, anything
that can be proven with the two-sorted version of the Peano axioms can be proven in
the infinitary-sorted version of the Peano axioms (under the obvious translations),
and vice-versa. The second issue pertaining to logicism and the formalization of the
Peano axioms is that in the discussion in §4.1. and §6.1., the successor operation is
written as a binary relation S(y, z) instead of a unary function S(y) = z. This is
because logicism traditionally aims to establish such arithmetical truths like “every
natural number has a successor,” which is presupposed by the functional notation.
Finally, let us first introduce some notation for models of Hume’s Principle and

the Peano axioms which we will use in the subsequent appendices. Models of Hume’s
Principle will be written as follows:

M̂ = (M,S1[M ], S2[M ], . . . ,∈1[M ],∈2[M ], . . . ,#) (13)
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whereinM is a non-empty set serving as the interpretation of the first-order objects,
and Sk[M ] is a non-empty set serving as the interpretation of the k-ary properties
of objects, and ∈k[M ] is a (k + 1)-ary relation serving as the interpretation of the
relation of a k-tuple of objects a1, . . . , an satisfying a k-ary property of objects R,
and written in the object language of M̂ asR(a1, . . . , an). If one says that a structure
as in equation (13) is a model of Hume’s Principle, then it is presumed that it
satisfies Hume’s Principle (10) and the comprehension schema. Further, let us say

that the model M̂ in equation (13) is normal if Sk[M ] ⊆ P (Mk) and ∈k [M ] is
interpreted as the membership relation from the ambient set theory, so that

M̂ |= R(a1, . . . , ak) ⇐⇒ (a1, . . . , ak) ∈ R (14)

In a normal structure M̂ one may omit the relations ∈k[M ] from the specification

of M̂ in equation (13). Further, every structure M̂ ′ isomorphic to a normal struc-

ture M̂ , and so if one is only concerned with structures up to isomorphism, then
one may presume that every structure is normal. Finally, let us say explicitly what
is meant by the cardinality of these many-sorted structures (cf. Manzano (1996) p.
231 and Ebbinghaus (1985) pp. 32, 64):

cardinality of M̂ =
∣∣∣M̂

∣∣∣ = sup{|M | , |Sk[M ]| : k ≥ 1} (15)

Note that this notion of cardinality is from the ambient set theory which serves
as the metatheory, and hence is in general distinct from the notion of cardinality
axiomatized by the #-operator from Hume’s Principle. Finally, let us write models
of the Peano axioms as follows:

N̂ = (N,S1[N ], S2[N ], . . . ,∈1[N ],∈2[N ], . . . , 0N , SN ,+N ,×N ,≤N ) (16)

wherein the conventions on N and Sk[N ] and ∈k[N ] are exactly as above and where

the items 0N , SN ,+N ,×N ,≤N serve as the denotation in the model N̂ of the non-
logical items 0, S,+,×,≤ from the signature Robinson’s Q and the Peano axioms
described above circa equation (11). Likewise, cardinality of N̂ is defined exactly

as the cardinality of M̂ as in equation (15).

6.2. Formal Result Related to Consistency Problem The aim of this
brief appendix is to prove a result discussed in §3., namely there are axioms
containing the anti-Peano axioms that are faithfully interpretable within Hume’s
Principle, and moreover in such a way that the terms n and n are inferentially
indistinguishable and the application constraint Nq from equation (5) is met. Let
us first introduce some terminology on the types of interpretations between theories
that shall be useful in establishing this result. First, when the signatures of both
theories are extensions of that of second-order logic that do not include any new
sorts, it’s natural to focus on interpretations that translate objects by certain kinds
of objects N , unary concepts by subconcepts of N , binary concepts by subconcepts
of N × N , etc. Let us agree to call such interpretations full, and let us empoy
a similar terminology for models. So for instance, if M̂ and M̂ ′ have signatures
that are extensions of that of second-order logic that do not include any new sorts,
then we say that M̂ ′ is fully definable in M̂ if the objects in M̂ ′ are defined as a
class of objects N in M̂ , the concepts of M̂ ′ are defined as concepts in M̂ which
are subconcepts of N , etc. If both M̂ and M̂ ′ are normal (cf. Appendix § 6.1.

for the definition of normality), then M̂ ′ is fully definable in M̂ if M ′ is equal to
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an M̂ -definable subset N of M and Sn(M
′) = Sn(M) ∩ P (Nn). Finally, it will be

useful in what follows to focus on certain kinds of interpretations of extensions of
Robinson’sQ in Hume’s Principle. In particular, if T is an extension of Robinson’sQ
in the signature of the Peano axioms, then let’s say that an interpretation of T in
Hume’s Principle is orderly if whenever M̂ is a model of Hume’s Principle and if N̂
is the model of T induced by the interpretation, then for all all m from N one has
that m = #{k ∈ N : k < m}. For instance, the usual proof of Frege’s Theorem
establishes that there is a full and orderly interpretation of the Peano axioms in
Hume’s Principle.
The other important concept that is needed is that of relative categoricity.

Suppose that T is an extension of Robinson’s Q in the signature of the Peano
axioms. Then let’s say that T is relatively categorical if whenever N̂ is a model
of T and another model N̂ ′ of T is fully definable in N̂ , then N̂ and N̂ ′ are
isomorphic, and moreover an isomorphism g : N̂ → N̂ ′ is definable in the original
structure N̂ using the same parameters as the definition of N̂ ′ in N̂ . The usual
proof of the Dedekind Categoricity Theorem shows that the Peano axioms are
relatively categorical (cf. Parsons (2008) pp. 281 ff or Shapiro (1991) pp. 82 ff).
Recall from §3. that the anti-Peano axioms are simply the Peano axioms but with
the Mathematical Induction Axiom replaced by its negation. That is, since the
Peano axioms are Robinson’s Q plus the Mathematical Induction Axiom Θ and the
full comprehension schema, the anti-Peano axioms are Robinson’s Q plus ¬Θ and
the full comprehension schema. Finally, the anti-Peano∗ axioms are the anti-Peano
axioms plus the supposition that there is exactly one object∞ such that S(∞) = ∞
and that ∞ is greater than all the other numbers and ∞ added to anything is ∞,
and that ∞ · 0 = 0 and ∞ · x = ∞ for all x 6= 0, and that the Mathematical
Induction Axiom holds on the restricted domain of the numbers < ∞. The anti-
Peano∗ axioms have a simple model whose first-order part is {0, 1, 2, . . .} ∪ {ω}
where ω serves as the interpretation of ∞. Just as the Peano axioms are relatively
categorical, so the anti-Peano∗-axioms are relatively categorical, essentially because
they merely result from the relatively categorical Peano axioms by the addition of a
single “infinite number.” Further, just as there is a full and orderly interpretation of
the Peano axioms in Hume’s Principle, so there is a full and orderly interpretation
of the anti-Peano∗-axioms in Hume’s Principle. Finally, just as Hume’s Principle is
fully interpretable in the Peano axioms, so Hume’s Principle is fully interpretable in
the anti-Peano∗ axioms. The desired result then follows directly from these remarks
and the below theorem:

Theorem 6.1. For each n ≥ 0

HP2 ⊢ ∀ F (#F = n↔ ∃=n x Fx) (17)

wherein HP2 is an abbreviation for Hume’s Principle plus full comprehension.
Further, suppose that T is a relatively categorical extension of Robinson’s Q and
that I is an interpretation of T in HP2 that is full and orderly and that there is
a full interpretation B of HP2 into T . Then for all formulas ϕ(x1, . . . , xk) in the
signature of Robinson’s Q and all n1, . . . , nk ≥ 0, we have the following:

T ⊢ ϕ(n1, . . . , nk) ⇐⇒ HP2 ⊢ ϕI(n1, . . . , nk) (18)

wherein ϕ 7→ ϕI is the map from formulas in the signature of the Peano axioms to
formulas in the signature of Hume’s Principle that is compositionally induced by the
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interpretation I, and wherein the terms n and n are as defined in equations (3)-(4)
from §3.

Proof. So suppose that I is an interpretation of T into HP2 that is full and orderly.
First let us note that due to the relative categoricity of T , we have that I is actually
a faithful interpretation of T into HP2. For, suppose that HP2 ⊢ ϕI but that there
is some model N̂ of T + ¬ϕ. Let M̂ be the model of HP2 induced by the action of
interpretation B. Let N̂ ′ be the model of T induced the action of interpretation I
on M̂ , so that N̂ ′ |= ϕ. Since both B and I are full, we have that N̂ ′ is fully definable

in N̂ . Hence, by relative categoricity of T , it follows that N̂ ′ is isomorphic to N̂ ,
so that we have reached a contradiction, since N̂ ′ models ϕ while N̂ models ¬ϕ.
Hence, in fact I is a faithful interpretation of T into HP2.

The other concept that we need to appeal to is the notion of a skolemisation of
a theory. Let’s briefly recall the following standard definition of this notion, where
here we follow Hodges (1993) pp. 88 ff. Suppose that H is a theory in a signature L.
Then there is an expansion of L∗ of the same cardinality as L and an L∗-theory H∗

extending H, called a skolemisation of H, such that (i) every model of H can be
expanded to a model of H∗ and (ii) such that for every L∗ formula ϕ(x1, . . . , xn, y)
there is an L∗-term τ(x1, . . . , xn) such that H∗ proves

∀ x1, . . . , xn [(∃ y ϕ(x1, . . . , xn, y)) → (ϕ(x1, . . . , xn, τ(x1, . . . , xn)))] (19)

Note that a skolemisation H∗ of H is a conservative extension of H for L-sentences.
This follows from clause (i). For, suppose that H∗ proves an L-sentence ϕ but H
does not prove ϕ. Then there is a model of H + ¬ϕ. Then clause (i) requires that
we can expand this model to a model of H∗ and hence H∗ + ϕ.
Now we proceed to the proof of the theorem. Let HP2

∗ be a skolemisation of HP2.
By the results of the two previous paragraphs, we have we have that for all sen-
tences ϕ in the signature of T :

T ⊢ ϕ⇐⇒ HP2
∗ ⊢ ϕI (20)

Since I is a full interpretation of T in HP2, let N(x) be a formula in the signature
of HP2 which serves as the domain of the interpretation and let ψn(x) be the
formula x = n in the signature of T . Then for all n ≥ 0 since T proves ∃!x ψn(x),
we have that HP2 proves ∃!x (N(x)∧ψI

n(x)). Since HP2
∗ is a skolemization of HP2,

there is a term τnI in the signature of HP2
∗ such that HP2

∗ proves N(τnI ) ∧ ψ
I
n(τ

n
I )).

Let n1, . . . , nk ≥ 0. Let ψ be the sentence ϕ(n1, . . . , nk). Then by equation (20),
one has

T ⊢ ψ ⇐⇒ T ⊢ ∃ x1, . . . , xk [(

k∧

i=1

ψni
(xi)) ∧ ϕ(x1, . . . , xk)] (21)

⇐⇒ HP2 ⊢ ∃ x1, . . . , xk [(
k∧

i=1

N(xi) ∧ ψ
I
ni
(xi)) ∧ ϕ

I(x1, . . . , xk)] (22)

⇐⇒ HP2
∗ ⊢ ϕI(τn1

I , . . . , τnk

I ) (23)

where the bottom-to-top direction of last biconditional follows from skolemizations
being conservative extensions of the theories which they skolemize. So we have
established that if ϕ(x1, . . . , xk) is a formula in the signature of T and n1, . . . , nk ≥



ZU064-05-FPR RSL-logicism-final 1 December 2013 21:42

30 Sean Walsh

0, then

T ⊢ ϕ(n1, . . . , nk) ⇐⇒ HP2
∗ ⊢ ϕI(τ1I , . . . , τ

k
I ) (24)

Now fix n ≥ 0 in the metatheory. Then since T extends Robinson’s Q, we have the
following (cf. Hájek & Pudlák (1998) Theorem I.1.6.(4) p. 30):

T ⊢ ∀ x [x < n↔ (

n−1∨

ℓ=0

x = ℓ)] (25)

Let ψ<(x, y) be a formula in the signature of HP2 which serves as the interpretation
of the less-than relation for I. Then by an application of equation (24), we have

HP2
∗ ⊢ ∀ x N(x) → [ψ<(x, τ

n
I ) ↔ (

n−1∨

ℓ=0

x = τ ℓI )] (26)

Suppose that F is a concept such that Fz if and only if
∨n−1

ℓ=0 z = τ ℓI . Then F ⊆ N
and Fz if and only if N(z) ∧ ψ<(z, τ

n
I ). Then since the interpretation I is orderly

we have:

#F = #{z ∈ N : ψ<(z, τ
n
I )} = τnI (27)

So we have just shown that

HP2
∗ ⊢ ∀ F [(∀ z (Fz ↔

n−1∨

ℓ=0

z = τ ℓI )) → #F = τnI ] (28)

Now we argue that this implies

HP2
∗ ⊢ ∀ F (#F = τnI ↔ ∃=n x Fx) (29)

For, suppose that #F = τnI . Let G be a concept such thatGz if and only if
∨n−1

ℓ=0 z =
τ ℓI . Then by equation (28), one has that #G = τnI = #F . Hence, there is a bijection
between G and F . By equation (24) one has that all the τ ℓI for 0 ≤ ℓ ≤ n − 1 are
distinct. Thus ∃=nx Gx and hence ∃=nx Fx. Conversely, suppose that ∃=nx Fx.
Let G be a concept such that Gz if and only if

∨n−1
ℓ=0 z = τ ℓI . Then by equation (28),

one has that #G = τnI . By equation (24) one has that all the τ ℓI for 0 ≤ ℓ ≤ n− 1
are distinct. Hence ∃=n x Gx. Since ∃=n x Fx and ∃=n x Gx, choose a bijection
between F and G. Then we have #F = #G = τnI . So we have just finished verifying
equation (29).
Now, suppose that {ρn : n ≥ 0} is a another sequence of terms in the signature

of HP2
∗ which satisfies:

HP2
∗ ⊢ ∀ F (#F = ρn ↔ ∃=n x Fx) (30)

We argue that HP2
∗ proves that τnI = ρn for all n ≥ 0. Fix n ≥ 0, and work within

a model M̂ of HP2
∗. Choose any concept F with exactly n elements, such as Fz

iff
∨n−1

ℓ=0 z = τ ℓI . This has exactly n elements since by equation (24) one has that all
the τ ℓI for 0 ≤ ℓ ≤ n−1 are distinct. Then since {τnI : n ≥ 0} satisfies equation (29)
and {ρn : n ≥ 0} satisfies equation (30), we have that #F = ρn and #F = τnI and
hence ρn = τnI .
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By this argument and equation (24) and the fact that HP2
∗ is conservative

over HP2 for sentences in the signature of HP2, it suffices to show the following:

HP2
∗ ⊢ [∀ F (#F = n↔ ∃=n x Fx)] ∧ [

∧

i<j≤n

i 6= j] (31)

wherein we adopt the convention that (
∧

i<j≤0 i 6= j) is equivalent to a tautology.
For the case n = 0, clearly this holds by our convention and since Hume’s Principle
implies that #F = #∅ iff there are no F ’s. Suppose that the result holds for n, and
let us attempt to show it for n + 1. Let’s first note that HP2

∗ ⊢
∧

i<n+1 i 6= n+ 1.

For, suppose not. Then letting F = {z :
∨n

ℓ=0 z = ℓ} we have #F = n+ 1 by
the definition of the term n+ 1 and hence #F = n+ 1 = i for some i < n + 1.
Then by induction hypothesis for i, we have that ∃=i z Fz. But this contradicts
the induction hypothesis that HP2

∗ ⊢
∧

i<j≤n i 6= j. Suppose now that

#F = n+ 1 = #{z :
n∨

ℓ=0

z = ℓ} (32)

Since by the induction hypothesis we have that HP2
∗ ⊢

∧
i<j≤n i 6= j, it follows

that ∃=n+1 z Fz. Conversely, suppose that ∃=n+1 z Fz. Choose z such that Fz
and let G = F \ {z}. Then ∃=nz Gz and hence by induction hypothesis #G = n =

#{z :
∨n−1

ℓ=0 z = ℓ}. Since n is distinct from the ℓ for ℓ < n by induction hypothesis,
it follows that #F = #{z :

∨n

ℓ=0 z = ℓ} = n+ 1. �

6.3. Hume’s Principle and the Peano Axioms are neither Biinter-

pretable nor Fully Sententially Equivalent In this section, it is shown that
Hume’s Principle and the Peano axioms are not biinterpretable and that they are
not fully sententially equivalent. These results were mentioned respectively at the
close of §3. and in Footnote 18 of §3. Further, recall that the notions of biinter-
pretability and sentential equivalence were defined respectively in equations (3)-
(6) and (3)-(4)-(5′)-(6′) at the close of §2. Finally, it should be emphasized that
while the full semantics are used in the course of these proofs, the notions of
biinterpretability and full sentential equivalence are purely proof-theoretic notions.
So the use of the full semantics here is similar to how one might use these semantics
to illustrate that a sentence of second-order logic was not a deductive validity. Of
course, the use of the full semantics raises the general question of how rich or strong
the metatheory needs to be to establish these non-interpretability results.

So now let us prove that Hume’s Principle and the Peano axioms are not biin-
terpretable. Suppose, for the sake of contradiction that Hume’s Principle and the
Peano axioms were biinterpretable. Then consider the following normal model of
Hume’s Principle (where, recall, the notion of normality was defined at the close of
§ 6.1.):

M̂ = (M,S1[M ], S2[M ], . . . , |·|) (33)

wherein M = |P (ω)| + 1 and Sk[M ] = P (Mk) and |·| : P (M) → M is simply the
cardinality function of the ambient set theory. In the definition of M , the addition
is ordinal addition from the ambient set theory. This has the consequence that
if X is a member of P (M) then |X| is a member of |P (ω)| + 1 = M . Note that

the cardinality of M̂ is |P (P (ω))|. Now the supposition of biinterpretability (cf.
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equations (3)-(6) of §2.) entails that M̂ defines a model N̂ of the Peano axioms,

that N̂ defines a model M̂ ′ of Hume’s Principle, and that M̂ and M̂ ′ are isomorphic.
Now, using methods familiar from the traditional proof of Frege’s Theorem note that
the standard model of second-order arithmetic is definable in M̂ . Hence, using the
isomorphism from M̂ to M̂ ′, we have that an isomorphic copy Ĉ of the standard
model of second-order arithmetic definable in M̂ ′ and hence in N̂ . By primitive
recursion in N̂ (cf. Simpson (2009) p. 69), there is an N̂ -definable function ι : N →
C such that

ι(0N ) = 0C ι(SN (n)) = SC(ι(n)) (34)

Using induction in N̂ , along with the fact that both N̂ and Ĉ are models of the
axioms of Robinson’s Q, one has that ι : N → C is an injection, so that N is count-
able. From this it follows that the cardinality of N̂ is ≤ |P (ω)| (cf. equation (15)
for the definition of the cardinality of a many-sorted structure). But then we reach

a contradiction. For, the cardinality of M̂ ′ is |P (P (ω))|, while the cardinality of N̂

is ≤ |P (ω)|. Hence, M̂ ′ cannot possibly be definable in N̂ .
Now we show that Hume’s Principle and the Peano Axioms are not fully senten-

tially equivalent. Recall that the notion of sentential equivalence was defined at the
close of §2. and the notion of full interpretations was defined at the opening of § 6.1.
To say that two theories are fully sententially equivalent is just to say that they
are sententially equivalent via full interpretations. Now, let κ be the least infinite
cardinal such that κ = ℵκ. This implies that there is a bijection ι : {|X| : X ⊆
κ} → κ. Define # : P (κ) → κ to be #(X) = ι(|X|), so that # : P (κ) → κ is a
surjection. Then consider the following normal model of Hume’s Principle:

M̂ = (M,S1[M ], S2[M ], . . . ,#) (35)

whereinM = κ and Sk[M ] = P (Mk). Note that the cardinality of M̂ is |P (κ)|. Now

the supposition of sentential equivalence entails that M̂ defines a model N̂ of the
Peano axioms, that N̂ defines a model M̂ ′ of Hume’s Principle, and that M̂ and M̂ ′

are elementary equivalent. Further, the supposition of fullness implies that N ⊆M
and Sk[N ] = P (Nk) and M ′ ⊆ N and Sk[M

′] = P ((M ′)k). Further, let us write

the “number of” function of M̂ ′ as #′. Now, note by construction we have the
following, where Φω is a sentence in the signature of second-order logic which is
true on full models if and only if their first-order domain is countably infinite:

M̂ |= (∀ x ∃ F #(F ) = x) & ¬Φω (36)

Since M̂ and M̂ ′ are elementarily equivalent, we have that

M̂ ′ |= (∀ x ∃ F #′(F ) = x) & ¬Φω (37)

Let λ = |M ′|. Since M̂ ′ |= ¬Φω, we have that λ > ω. We claim that λ = κ.
Choose a bijection π : λ → M ′ and the induced bijection π : P (λ) → P (M ′) given
by π(X) = {π(x) : x ∈ X}. Consider the map ι′ : {|X| : X ⊆ λ} → λ given
by ι′(|X|) = π−1(#′(π(X))). By construction ι′ is an injection and by the previous
equation, ι′ is a surjection, so that ι′ is a bijection. Hence we have

|{|X| : X ⊆ λ}| = λ (38)
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Since λ > ω we have that

|{|X| > ω : X ⊆ λ}| = λ (39)

Then we claim that λ = ℵλ. For, suppose not. Then λ ≤ ℵα for some least α < λ.
Consider the injection j : {|X| > ω : X ⊆ λ} → (α+1) satisfying |X| = ℵj(|X|). But
this is a contradiction, since it implies that λ ≤ |α| and we know that |α| < λ. So
indeed λ = ℵλ. By the definition of κ as the smallest infinite cardinal satisfying κ =
ℵκ, we indeed have that λ = κ. So choose a bijection θ :M ′ →M and extend to a
bijection θ : P (M ′) → P (M). Then define a bijection π′ :M ′ →M by

π′(#′(F )) = #(θ(F )) (40)

This function is well-defined and injective because:

M̂ ′ |= #′(F ) = #′(G) ⇔ |F | = |G| ⇔
∣∣θ(F )

∣∣ =
∣∣θ(G)

∣∣ ⇔ M̂ |= #(θ(F )) = #(θ(G))
(41)

It has domain M ′ because of equation (37), and it is surjective because of equa-

tion (36). Further to show that π′ : M̂ ′ → M̂ is an isomorphism it suffices to show
that

#(π′(F )) = π′(#′(F )) (42)

But we show this by arguing for the identity from right-to-left

π′(#′(F )) = #(θ(F )) = #(F ) = #(π′(F )) (43)

Hence, in fact M̂ and M̂ ′ are isomorphic. Now we may argue as in the proof of
biinterpretability.

6.4. Provable Equivalence of Mathematical Induction and Domain Bi-

conditional So here we prove an equivalence mentioned in §4.1, namely that the
Mathematical Induction Axiom is equivalent to the domain biconditional against
the background of the zero and successor biconditionals and the supposition that
zero is a natural number and that successors of natural numbers are natural num-
bers. This latter supposition can be rendered symbolically as:

N(0) & (∀ y, z (N(y) & S(y, z)) → N(z)) (44)

Further, for ease of verification, we reproduce here the definability biconditionals,
which again we respectively call the domain biconditional, the zero biconditional,
and the successor biconditional:

∀ x [N(x) ↔ N∗(x)] ∀ y [y = 0 ↔ Z∗(y)] ∀ y, z [S(y, z) ↔ [N(y) & S∗(y, z)]]
(7)

For the purposes of the proof, the exact specifications of Z∗ and S∗ are immaterial.
However, the proof depends crucially on the traditional specification of N∗, which
again we repeat here for the ease of verification:

N∗(x) ≡ ∀ F [(∀ y Z∗(y) → Fy) & (∀ y, z (Fy & S∗(y, z)) → Fz)] → F (x) (8)

Again, the way to read this equation is to note that the variable x appears on
the right-hand-side only in the last consequent, so that N∗(x) says that x has all
properties F which satisfy a certain condition, namely, containing the ersatz of
zero and being closed under the ersatz of successor. Further, we can formulate the
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Mathematical Induction Axiom as:

∀ F [F (0) & (∀ y, w (F (y) & S(y, w) → F (w))] → [∀ x (N(x) → F (x))] (45)

This differs from usual textbook presentations of the Mathematical Induction Ax-
iom, such as we gave in Appendix 6.1., in that successor is treated as a relation
instead of a function. This is because in the context of the definability bicondition-
als, one does not want to assume that the successor operation is total, since part of
what the logicist seeks to do is to certify the logical credentials of this arithmetical
knowledge. However, nothing in the below proof depends on this, and the reader
can easily verify that everything goes through if the relational expression S(y, z) is
systematically replaced with the functional expression S(y) = z.
Now first let us note that our background knowledge suffices to straightfor-

wardly deduce the right-to-left direction of the domain biconditional. For, suppose
that N∗(a) holds, and let us attempt to show that N(a) holds. Since N∗(a) holds,
by substituting N for the variable F in equation (8), we see that it suffices to show
that

[(∀ y Z∗(y) → Ny) & (∀ y, z (Ny & S∗(y, z)) → Nz)] (46)

To verify this, first suppose that Z∗(y). Then by the right-to-left direction of zero bi-
conditional, it follows that y = 0 and thus N(y) by equation (44). To complete the
verification, suppose that Ny & S∗(y, z). Then by the right-to-left direction of the
successor biconditional, it follows that S(y, z) and thus N(z) by equation (44).
It follows that we have finished verifying (46). So this is why the background
knowledge implies the right-to-left direction of the domain biconditional, which
we may abbreviate symbolically by N∗ ⊆ N .
Now it remains to show that against this background knowledge, we have that the

Mathematical Induction Axiom is equivalent to the domain biconditional. So first
suppose that the Mathematical Induction Axiom holds. By the result of the previous
paragraph, it suffices to show the left-to-right direction of the domain biconditional,
or in symbols N ⊆ N∗. Now, the next step in the proof is to substitute N∗ for F in
the Mathematical Induction Axiom in equation (45). Formally, what justifies this
procedure is an instance of the full comprehension schema, which would say that
there is a property corresponding to the formula N∗. As mentioned in Appendix
§6.1., we’re assuming the full comprehension schema here since there are simply
fewer results like Frege’s Theorem if one restricts the comprehension schema. Now,
substituting N∗ for F in the Mathematical Induction Axiom in equation (45) in
this manner, we see that it suffices to verify:

[N∗(0) & (∀ y, w (N∗(y) & S(y, w))) → N∗(w))] (47)

To verify this, we first show that N∗(0). By definition of N∗ in equation (8), this
means we have to verify:

∀ F [(∀ y Z∗(y) → Fy) & (∀ y, z (Fy & S∗(y, z)) → Fz)] → F (0) (48)

So suppose that F satisfies the antecedent of this equation. By the left-to-right
direction of the zero biconditional, it follows that Z∗(0) and thus F (0), which
is exactly the consequent of this equation. So we have shown that N∗(0). Now
suppose that N∗(y) & S(y, w), and we try to show that N∗(w). By definition of N∗
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in equation (8), it again suffices to show that

∀ F [(∀ y Z∗(y) → Fy) & (∀ y, z (Fy & S∗(y, z)) → Fz)] → F (w) (49)

So suppose that F satisfies the antecedent of this equation. Since N∗(y) holds, we
see from the definition in equation (8) that F (y). Since S(y, w), it follows from
the left-to-right direction of the successor biconditional that S∗(y, w). Since F (y)
and S∗(y, w), it follows that F (w) since F satisfies the antecedent of equation (49).
Thus, we have succeeded in verifying equation (47), so that we may indeed conclude
that N ⊆ N∗. Combining this with our earlier knowledge that N∗ ⊆ N , we have
that N and N∗ are coextensive, which is exactly what the domain biconditional ex-
presses.
Finally we want to show that from the background knowledge and the domain bi-

conditional, we can deduce the Mathematical Induction Axiom in equation (45).
So suppose that F is such that

[F (0) & (∀ y, w F (y) & S(y, w) → F (w))] (50)

We must show that all the natural numbers have property F , or symbolically
that N ⊆ F . Let G be the conjunction of F and N . Thus, it suffices to show
that N ⊆ G. So suppose that N(a). Then N∗(a) by the left-to-right direction of
the domain biconditional. By substituting G for the variable F in the definition
of N∗ in equation (8), to conclude that G(a), it suffices to show that

[(∀ y Z∗(y) → Gy) & (∀ y, z (Gy & S∗(y, z)) → Gz)] (51)

Suppose then that Z∗(y). By the right-to-left direction of the zero biconditional, it
follows that y = 0 and thus the hypothesis of F (0) from equation (50) implies F (y).
Likewise, since y = 0 and we have N(0) from equation (44), we thus have N(y).
Since F (y) and N(y), one has G(y). To finish the verification of equation (51), sup-
pose that Gy & S∗(y, z). Then Ny & S∗(y, z). By the right-to-left direction of the
successor biconditional, one has that S(y, z). SinceG(y) one also has F (y) & S(y, z).
But from the hypothesis in equation (50) we can conclude that F (z). Further, from
equation (44) we have that Ny & S(y, z) implies N(z), so that it follows that G(z),
which finishes the verification of equation (51).
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