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stonefly genus Suwallia (Plecoptera: Chloroperlidae) revealed by 
ultraconserved genomic elements

Derek D. Houstona,*, Jordan D. Satlerb, Taylor K. Stacka, Hannah M. Carrollb,c, Alissa M. 
Bevana, Autumn L. Moyaa, Kevin D. Alexandera

aDepartment of Natural and Environmental Sciences, Western Colorado University, Gunnison, 
CO, USA

bDepartment of Ecology Evolution and Organismal Biology, Iowa State University, Ames, IA, USA

cDepartment of Earth Planetary and Space Sciences, University of California-Los Angeles, CA, 
USA

Abstract

Evolutionary biologists have long sought to disentangle phylogenetic relationships among taxa 

spanning the tree of life, an increasingly important task as anthropogenic influences accelerate 

population declines and species extinctions, particularly in insects. Phylogenetic analyses are 

commonly used to identify unique evolutionary lineages, to clarify taxonomic designations of 

the focal taxa, and to inform conservation decisions. Advances in DNA sequencing techniques 

have increasingly facilitated the ability of researchers to apply genomic methods to phylogenetic 

analyses, even for non-model organisms. Stoneflies are non-model insects that are important 

bioindicators of the quality of freshwater habitats and landscape disturbance as they spend 

the immature stages of their life cycles in fresh water, and the adult stages in terrestrial 

environments. Phylogenetic relationships within the stonefly genus Suwallia (Insecta: Plecoptera: 

Chloroperlidae) are poorly understood, and have never been assessed using molecular data. We 

used DNA sequence data from genome-wide ultraconserved element loci to generate the first 

molecular phylogeny for the group and assess its monophyly. We found that Palearctic and 

Nearctic Suwallia do not form reciprocally monophyletic clades, and that a biogeographic history 

including dispersal, vicariance, and founder event speciation via jump dispersal best explains the 

geographic distribution of this group. Our results also strongly suggest that Neaviperla forcipata 
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(Neave, 1929) is nested within Suwallia, and the concept of the genus Suwallia should be revised 

to include it. Thus, we formally propose a new taxonomic combination wherein Neaviperla 
forcipata (Neave, 1929) is reclassified as Suwallia forcipata (Neave, 1929). Moreover, some 

Suwallia species (e.g., S. amoenacolens, S. kerzhneri, S. marginata, S. pallidula, and S. starki) 
exhibit pronounced cryptic diversity that is worthy of further investigation. These findings provide 

a first glimpse into the evolutionary history of Suwallia, improve our understanding of stonefly 

diversity in the tribe Suwallini, and highlight areas where additional research is needed.
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UCEs; Phylogenetics; Biodiversity; Stoneflies; Aquatic insects

1. Introduction

Evolutionary biologists have long sought to disentangle phylogenetic relationships among a 

wide variety of organisms, and phylogenetic trees fundamentally inform our understanding 

of evolutionary processes. Gaining a better understanding of biodiversity is increasingly 

important as anthropogenic influences such as habitat fragmentation, climate change, exotic 

species introductions, overexploitation, and pollution contribute to population declines in 

biological populations and reduce biodiversity (Diamond, 1989; Isbell, 2010; Maxwell et al., 

2016). Insects are particularly at risk, and have exhibited steep declines in recent decades 

(Thomas et al., 2004; Hallmann et al., 2017; Sánchez-Bayo and Wyckhuys, 2019), although 

these declines may be more pronounced in terrestrial than in freshwater insects (van Klink et 

al., 2020).

Stoneflies (Insecta: Plecoptera) belong to an ancient, circumglobal order of aquatic insects 

that originated in the Permian, and extant suborders are postulated to have evolved 

corresponding with the break-up of Pangaea (Stewart and Ricker, 1997; Zwick, 2000; 

Ding et al., 2019). Unsurprisingly, speciation events that have occurred more recently are 

also common within the group (Zwick, 2000). Order Plecoptera contains more than 3,700 

species, with many more being described each year (Fochetti and de Figueroa, 2008; DeWalt 

and Ower, 2019). Rapid rates of stonefly species descriptions in China and South America 

highlight our general lack of knowledge of, as well as our need to better understand, the 

diversity of this group in the face of the looming biodiversity crisis. Indeed, many existing 

plecopteran phylogenies need additional molecular data to be more accurately reconstructed 

(Wang et al., 2018). Recent phylogenomic research has provided important insights into 

family-level relationships of North American plecopterans (South et al., 2021). However, 

inter- and intra-generic relationships among many stonefly taxa remain poorly understood.

The chloroperlid genus Suwallia is distributed across Nearctic and eastern Palearctic regions 

(Alexander and Stewart, 1999; Cary and Jacobi, 2008; Kondratieff et al., 2019; Fig. 1). 

Suwallia is postulated to be a monophyletic group based on distinctive morphological 

characteristics (e.g., morphology of genitalia, wing venation patterns, coloration; Surdick, 

1985). There are currently 26 described Suwallia species (Alexander and Stewart, 1999; 

Chen and Du, 2015; Chen, 2019; DeWalt et al., 2020) (see Table 1). Another member 
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of the tribe Suwallini, Neaviperla forcipata, was synonymized with Suwallia due to low 

diagnostic characters across various life stages (Alexander and Stewart, 1999). It was 

later re-established as a valid genus (Baumann and Lee, 2014). Clearly, the phylogenetic 

relationships and taxonomic status of these genera warrant additional scrutiny. Molecular 

data from some members of the genus Suwallia have been included in higher-level 

phylogenetic studies of the Plecoptera (Terry, 2004; Wang et al., 2018; Ding et al., 2019; 

South et al., 2021), as representatives used in proof-of-concept studies using DNA barcoding 

primers (Hebert et al., 2003), and in comparative analyses examining speciation rates in 

high elevation areas in tropical vs. temperate ecosystems (Polato et al., 2018). However, a 

comprehensive phylogenetic analysis of the genus based on molecular data has yet to be 

conducted.

In this study, we used ultraconserved elements (UCEs) to infer phylogenetic relationships 

within the genus Suwallia and to assess the validity of the genus Neaviperla using museum 

specimens. Ultraconserved elements are genomic regions that are highly conserved across 

evolutionarily disparate taxa that are flanked by increasingly variable DNA sequences (with 

distance from the core region), and are a powerful tool for modern phylogenomic analyses 

(Bejerano et al., 2004; Siepel et al., 2005; Crawford et al., 2012; Faircloth et al., 2012, 

2013, 2020; Smith et al., 2014; Faircloth, 2015; Wachi et al., 2018; Zhang et al., 2019). 

Moreover, this approach has successfully recovered UCEs from older museum specimens 

that were previously considered to be unusable in phylogenetic analyses because of their 

highly degraded DNA (Burrell et al., 2015; Blaimer et al., 2016; Jones and Good, 2016; 

McCormack et al., 2016; Ruane and Austin, 2017; Chen et al., 2018; Wood et al., 2018). We 

used UCE data generated from museum stonefly specimens to test the following hypotheses:

H1: Suwallia species distributed in the Nearctic and those with Palearctic 

distributions will form reciprocally monophyletic clades, and the historical 

biogeography of the group is best explained by vicariant events.

H2: Previously unrecognized cryptic genetic diversity, in the form of non-

monophyly, will be recovered within Suwallia, particularly in species with broad 

geographic distributions.

H3: Phylogenetic analyses based on UCE sequences will place Neaviperla forcipata 
within Suwallia, rendering the genus paraphyletic.

2. Materials & methods

2.1. Sampling and DNA extraction

Ethanol-preserved Suwallia specimens housed in the Faunal Museum in the Department 

of Natural and Environmental Sciences at Western Colorado University were used in this 

study. Samples were collected between the years 1941–2018 (Table 1). All specimens were 

identified to species multiple times by coauthor K. Alexander, an expert on chloroperlid 

stoneflies. Four morphotypes were classified a priori as Suwallia species a, b, d, and e, 

representing either undescribed species, or populations displaying morphological variation 

within described species. When possible, we included multiple individuals from distinct 

geographic sampling localities (Fig. 1), but multiple samples were not available for all 
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species (Table 1). To reduce the negative consequences of destructive sampling, we digitally 

photographed each specimen (dorsal, ventral, and side views, against both white and black 

backgrounds) using a Leica S9i stereo macroscope prior to DNA extraction. These images 

have been made available in a Dryad repository (see Data Accessibility below).

Specimens were air-dried to let ethanol completely evaporate from the tissues, then we 

used a Qiagen DNeasy Blood and Tissue Kit to extract whole genomic DNA following the 

manufacturer’s recommended protocol. At the onset of the DNA extraction procedure, we 

placed whole air-dried specimens into their respective lysis buffer/proteinase K solutions, 

then pierced each abdomen with a sterilized dissecting pin prior to the first incubation step 

of the protocol to facilitate lysis of internal organs. Following DNA extractions, we retrieved 

exoskeletons, rinsed them with ethanol, then placed them into labeled, ethanol filled vials for 

long-term storage as vouchers in case external morphology needed reassessment.

Whole genomic DNA quality was visually assessed via gel electrophoresis in 1.5X agarose 

gels stained with GelRed nucleic acid dye. We then quantified DNA concentrations using a 

Qubit™ 1X dsDNA HS Assay Kit. Following quantification, we concentrated samples with 

low concentrations by drying them in a vacuum centrifuge, then rehydrated them in 120 

μL of AE buffer, after which we quantified concentrations a second time using the same 

Qubit™ kit.

2.2. UCE sequencing

DNA quality varied among samples, so we employed three different approaches to ensure 

that DNA fragments were within the appropriate size range (300–600 bp) for Illumina 

sequencing: 1) We sheared samples with high molecular weight DNA using a Covaris 

ME220 Focused-Ultrasonicator (with the following settings, depending on apparent DNA 

quality: D70, PP50, DF10, CB1000, T 20°C for the highest quality samples; D63, PP50, 

DF10, CB1000, T 20°C for slightly degraded samples; D40, PP25, DF10, CB1000, T20°C 

for more degraded samples that still had bright bands of high molecular weight). After 

sonication, we performed a double size selection by first removing large fragments (greater 

than 800 bp) using a 0.6X SPRI bead cleanup, then increasing the SPRI bead concentration 

in the sample to 1.5X to remove small fragments (<150 bp) (Bronner et al., 2009). 2) For 

genomic samples with bright bands within the appropriate size range, and only faint bands 

of high molecular weight DNA, we bypassed sonication and only used a 0.6X-1.5X SPRI 

bead double cleanup. 3) Highly degraded samples were included ‘as is’ to avoid shearing 

already degraded DNA to unusable small fragments, but the smallest (i.e., unusable) 

fragments were removed using a 1.5X SPRI bead cleanup. After shearing and size selection, 

we again visually assessed size distributions following gel electrophoresis as described 

above.

DNA libraries were prepared in half reactions using KAPA Hyperprep Kits (KAPA 

Biosystems) following the manufacturer’s protocol that included detailed instructions for 

end repair and A-tailing, ligating adaptors, cleaning samples post-ligation, amplifying 

libraries, and cleaning the libraries post-amplification. Glenn et al. (2019) provide a 

comprehensive overview of this procedure.
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Currently, there are no published bait kits designed for target enrichment of UCEs in 

Plecoptera, but the protocol is robust, only requiring an ~80% match between baits and 

the targeted UCE to be effective (Faircloth, 2015, 2017; Branstetter et al., 2017). A recent 

bioinformatic analysis (Bossert and Danforth, 2018) predicted that baits originally designed 

for hymenopterans (Branstetter et al., 2017) should also capture ~300 loci in plecopterans. It 

was also suggested that baits developed for hemipterans (Faircloth, 2017) could capture loci 

in plecopterans (Brant Faircloth, personal communication with DDH). Hence, we opted to 

use both the Hymenoptera 2.5Kv2 bait design (Branstetter et al., 2017) and the Hemiptera 

2.7Kv1 bait design (Faircloth, 2017) to capture UCE loci in situ. Both the hymenopteran 

and hemipteran bait designs were commercially synthesized as RNA target capture arrays 

(myBaits, MYcroarray, Arbor Biosciences).

To capture targeted UCEs, we pooled libraries in equimolar amounts and conducted 

hybridization capture in 1/8th reactions. We captured UCEs in separate reactions for each 

pool of eight samples using probe sets Hymenoptera 2.5Kv2 and Hemiptera 2.7Kv1, 

following the steps outlined in the myBaits protocol 4.0.1. We subsequently pooled the 

captured hymenopteran and hemipteran targets, assessed DNA size, quantity and quality 

using an Agilent 2100 Bioanalyzer, then conducted one last size selection step using 

BluePippin before sending the pooled sample to GENEWIZ (South Plainfield, NJ) for 

Illumina sequencing. We sequenced libraries in parallel in a single lane of an Illumina HiSeq 

4000 with 150-cycle paired end reads.

2.3. Phylogenetic inference

We analyzed UCE data following the PHYLUCE v1.6.7 pipeline (Faircloth, 2015). In brief, 

we trimmed raw sequence reads using illumiprocessor v2.0.9 (https://github.com/faircloth-

lab/illumiprocessor) a wrapper around trimmomatic v0.39 (Bolger et al., 2014), assembled 

and aligned contigs using SPAdes v3.12.0 (Bankevich et al., 2012; Nurk et al., 2013), 

matched UCEs to the hymenopteran and hemipteran probe sets, extracted UCE loci and 

aligned them using MAFFT v7.407 (Katoh and Standley, 2013), trimmed matrix edges 

missing sequence data for more than 35% of the taxa, and removed ambiguously aligned 

internal sites using Gblocks v0.91b (Castresana, 2000). Because the baits used were not 

specifically developed for plecopterans, the number of UCEs captured was expected to 

be lower than a typical data set with taxon-specific baits. To strike a balance between 

minimizing missing data and maximizing sampled loci, we retained UCEs containing 

sequences for at least 50% of the individuals. A visual representation of presence/absence of 

UCE data is displayed in Fig. 2.

For phylogenetic analysis, we first estimated a concatenated maximum likelihood (ML) 

phylogeny in IQ-TREE v1.6.12 (Nguyen et al., 2015). We partitioned the dataset by UCE 

locus, using a GTR + γ model per partition, and generated nodal support values through 

1000 repetitions of the ultrafast bootstrap approximation (Hoang et al., 2018). We also used 

two coalescent-based species tree approaches for phylogeny estimation. First, we estimated 

a species tree with ASTRAL-III v5.7.3 (Zhang et al., 2017). As this method uses gene trees 

as input data, we estimated ML gene trees for each locus with IQ-TREE, using ModelFinder 

(Kalyaanamoorthy et al., 2017) to estimate a model of best substitution with BIC, and 
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generating nodal support values as described above. Following recommendations by Zhang 

et al. (2017), poorly supported nodes (bootstrap values < 10) were collapsed in each ML 

gene tree. Nodal support values were generated for the ASTRAL species tree with local 

posterior probabilities (Sayyari and Mirarab, 2016). Next, we estimated a species tree with 

SVDQuartets (Chifman and Kubatko, 2015) as implemented in PAUP* v4.0a166 (Swofford, 

2003). SVDQuartets uses site patterns in the nucleotide data to estimate a species tree 

under the multispecies coalescent model. We evaluated all quartets and conducted standard 

bootstrapping to generate nodal support values. For both species tree approaches, the a 
priori designation of individuals to species was informed by a combination of taxonomy 

and monophyly in the ML concatenated tree. For samples where species designations were 

unclear, we treated them as their own operational taxonomic unit (OTU).

To visualize the presence and absence of UCEs across taxa, we created a list of all UCEs 

in our 50% data matrix. We concatenated the nexus files into a data frame containing all 

individuals and coded them for the presence (1) or absence (0) of each UCE. We then color-

coded the cells marked ‘present’ in each individual to match the colors for the corresponding 

genus in Fig. 3. The visualization was created using the color2D.matplot function in the R 

package plotrix v.3.7–8 (Lemon, 2006) in R v.4.0.2 (R Core Team, 2020).

2.4. Biogeographic history

To infer the biogeographic history of this group of stoneflies and identify an appropriate 

biogeographic model for the data, we conducted a biogeographic analysis using the R 

package BioGeoBEARS v.1.1.2 (Matzke, 2013) in R v.4.0.2 (R Core Team, 2020). We 

designated each species by its contemporary geographic range, defined very broadly as 

occurring in the Nearctic or the Palearctic. We calculated geographic centroids for all 

Nearctic and all Palearctic samples, respectively, and measured the Haversine distance 

between centroids using the R package geosphere v.1.5–10 (Hijmans et al., 2019). That 

distance (8,129 km) was then used in the matrix included in the BioGeoBEARS distance 

file. We used the phylogeny estimated from IQ-TREE as input data. First, we pruned tips 

from the phylogeny using the R package ape v.5.4.1 (Paradis and Schliep, 2019), resulting in 

a tree with one representative per species (or monophyletic group, for the species exhibiting 

cryptic lineage diversity). We then used the chronos function in ape applying the correlated 

rate model (Sanderson, 2002) to convert the pruned tree to an ultrametric chronogram. 

We then used the chronogram to test the following biogeographic models: DEC, a dispersal-

extinction-cladogenesis biogeographic model (Ree and Smith, 2008; Matzke, 2014; Massana 

et al., 2015); DIVALIKE, a maximum likelihood-based biogeographic model similar to 

DIVA (Ronquist, 1997); BAYAREALIKE, a maximum likelihood-based biogeographic 

model similar to Bay Area (Landis et al., 2013); and all of these models with an additional 

parameter (+J) that accounts for founder event speciation via jump dispersal (i.e., DEC+J, 

DIVALIKE+J, and BAYAREALIKE+J). Note that the DEC+J model has been critiqued for 

not adequately modelling founder event speciation (Ree and Sanmartín, 2018).
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3. Results

3.1. Sampling and DNA extraction

We extracted DNA from 66 individual stoneflies representing 25 species from 5 genera 

(Table 1), including 20 of 26 Suwallia species, 4 unidentified Suwallia species (S. sp. a, S. 
sp. b, S. sp. d, and S. sp. e, designated as such because they may represent putative cryptic 

species, or they may represent slight morphological variants of described Suwallia species; 

K. Alexander personal observation), N. forcipata, and outgroups from the chloroperlid 

genera Alloperla, Plumiperla, Sweltsa, and Triznaka (Fig. 1; Table 1).

3.2. UCE sequencing

Illumina sequencing of 64 Suwallia samples produced a total of 407,352,395 total reads 

from a single lane (Appendix A). Raw sequences have been deposited in the NCBI 

Sequence Read Archive (BioProject PRJNA667287). The number of reads sequenced varied 

among samples from 1,062,265 (S. sp. a [Su50]) to 22,887,098 (T. signata [Su63]) (Fig. 2; 

Appendix A). In total, we captured and sequenced 1412 UCE loci (1241 using hemipteran 

baits, 171 using hymenopteran baits) with a length of 248,705 bp and a total of 23,361 

informative sites. Of those loci, 296 UCEs comprised the 50% sampling matrix (272 

hemipteran, 24 hymenopteran). The number of UCEs per sample ranged broadly (Appendix 

A), from 87 (S. amoenacolens [Su09]) to 826 (S. sp. e [Su05]). Missing data in the 50% 

sampling matrix can be visualized in Fig. 2.

3.3. Phylogenetic inference

A lineage tree generated by IQ-TREE using the concatenated UCE loci (Appendix B) shows 

several species as non-monophyletic (e.g., S. amoenacolens, S. kerzhneri, S. marginata, 
S. pallidula, S. starki, and N. forcipata). This phylogeny also reveals that N. forcipata 
renders Suwallia paraphyletic. These results are consistent with the results of our coalescent-

based species tree reconstructions (see below). Notably, S. sp. a does not appear to be 

monophyletic, S. sp. b is nested within a clade that contains S. lineosa and one S. pallidula 
individual (Su16), S. sp. d is indistinguishable from S. salish, and S. sp. e is fully nested 

within S. nipponica.

Our estimated species tree for the genus Suwallia is depicted in Fig. 3. Species tree estimates 

were consistent between the two coalescent-based approaches. The only differences between 

species trees generated by Astral (Fig. 3) and SVDQuartets (Appendix C) were the 

placement of S. sierra, the position of a S. marginata and S. starki clade, and the 

relationships between S. lineosa, S. sp. b, and S. pallidula (Su16). In the Astral tree, S. 
lineosa was sister to S. sp. b (with S. pallidula sister to S. lineosa/S. sp. b), but S. sp. b 

was sister to S. pallidula (Su16) in the SVDQuartets species tree (with S. lineosa sister to 

S. sp. b/S. pallidula). Moreover, the placement of S. starki (Su27, Su28, Su29, Su30) and S. 
marginata (Su14, Su15) differs slightly between Astral and SVDQuartets species trees (Fig. 

3; Appendix C) because the node that places them as sister to S. autumna, S. talalajensis and 

S. wardi is not well supported in the Astral tree.

Houston et al. Page 7

Mol Phylogenet Evol. Author manuscript; available in PMC 2022 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Notably, in our species trees (Fig. 3; Appendix C), two N. forcipata samples (Su31, Su37) 

form a well-supported clade that is nested well within Suwallia, and is sister to a clade 

containing S. dubia, S. species b, S. lineosa, and one of the S. pallidula samples (Su16). The 

other N. forcipata individual (Su65) is in a different clade containing six Suwallia samples, 

S. decolorata (Su49), two S. sp. a individuals (Su50, Su52), one S. pallidula individual 

(Su20), S. sachalina (Su48), and two of the presumed outgroup taxa, Plumiperla diversa 
(Su64) and Triznaka signata (Su63). Moreover, one S. amoenacolens individual (Su10) is in 

a clade with a priori defined outgroups Alloperla fraterna (Su60) and Sweltsa oregenensis 
(Su61, Su62).

Suwallia that are distributed in the Palearctic and Nearctic do not form reciprocally 

monophyletic groups (Fig. 3; Appendix D). Similarly, some a priori designated species 

do not form monophyletic groups. The five S. pallidula samples included herein are 

in five different positions in the tree (Fig. 3). Similarly, the S. marginata sample from 

Virginia (Su13) differs in phylogenetic placement from S. marginata samples from Canada 

(Su14, Su15), which are sister to four S. starki samples (Su27, Su28, Su29, Su30). 

However, two other S. starki (Su26, Su66) individuals are sister to S. pallidula (Su17), 

and are more closely related to S. salish (Su34, Su35), S. species d (Su55, Su56, Su57), 

S. thoracica (Su33), S. amoenacolens (Su09, Su11, Su12), and S. sublimis (Su41) than 

to the aforementioned S. starki individuals (Fig. 3; Appendix C). Suwallia kerzhneri 
samples (Su32 and Su58) also exhibit vast phylogenetic distance. Similarly, some of the 

unidentified species do not form monophyletic groups. For example, S. sp. a does not form a 

monophyletic group; instead, all three individuals extend from nodes of a clade that includes 

S. decolorata (Su49), S. kerzhneri (Su32), S. pallidula (Su20), S. sachalina (Su48), N. 
forcipata (Su65), P. diversa (Su64), and T. signata (Su63) (Fig. 3). Suwallia species b forms 

a well-supported monophyletic group that is closely related to S. lineosa and one S. pallidula 
individual (Su16), but these relationships differed in the SVDQuartets and Astral trees (Fig. 

3, Appendix C). Suwallia species d individuals are non-monophyletic, with individuals that 

are closely related to S. salish, S. starki (Su26, Su66), and one S. pallidula individual (Su17) 

(Fig. 3). Suwallia species e is fully nested within S. nipponica (Fig. 3), although, S. species 

e and S. nipponica were sister taxa in the concatenated lineage tree generated by IQ-TREE 

(Appendix B).

3.4. Biogeographic history

Palearctic and Nearctic Suwallia do not form reciprocally monophyletic clades (Fig. 3; 

Appendix D). BioGeoBEARS results show that DIVALIKE+J has the best likelihood score 

(Table 2), making it the most appropriate model for these data, especially considering that 

DEC+J does not model jump dispersal well (Ree and Sanmartín, 2018), even though the 

likelihood scores of both models were similar. The DIVALIKE+J biogeographic model 

accounts for anagenetic dispersal (i.e., range expansion), vicariance, and founder event 

speciation via jump dispersal (Matzke, 2014). There appear to have been at least four jump 

dispersal events from the Nearctic to the Palearctic (S. talalajensis, S. thoracica, S. sachalina, 

and a S. kerzhneri/jezoensis/teleckojensis ancestor followed by speciation), and at least one 

dispersal event from the Palearctic to the Nearctic (a common ancestor to T. signata, S. 
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sachalina, N. forcipata [Su65], P. diversa, and S. pallidula [Su20]) followed by speciation 

(see Fig. 3; Appendix D).

4. Discussion

Herein, we used genome-wide sequence data to present the first molecular phylogeny for 

the chloroperlid stonefly genus Suwallia (Fig. 3). This phylogeny contains representatives 

from 20 of the 26 described species (~77%), and allows us to make some inferences about 

the group’s taxonomy and evolutionary history. These results refute our first hypothesis 

after revealing that Palearctic and Nearctic Suwallia species did not form reciprocally 

monophyletic clades. Rather, some clades that primarily comprise species distributed 

in the Palearctic or Nearctic include lineages from the opposite hemisphere (Fig. 3; 

Appendix D), with our biogeographic modeling approach suggesting a complex history 

including dispersal, vicariance, and jump dispersal. This suggests that multiple, potentially 

bidirectional dispersal events across the Bering Land Bridge have occurred. Unfortunately, 

fossil data that could be used for molecular clock calibrations for molecular dating in 

this group are lacking. Only two chloroperlid stoneflies, †Dipsoperla kunikanensis and 

†Dipsoperla serpentis, are known from the fossil record (Sinitshenkova, 1987, 1990; 

Nicholson et al., 2015; DeWalt et al., 2020), both occurring in the Palearctic, but neither 

are members of the Suwallini, and thus could not be used to calibrate this phylogeny 

given our limited sampling of chloroperlid stoneflies. Adult stoneflies are winged and 

capable of flight, but tend to be poor dispersers that mostly disperse within stream corridors 

and exhibit little overland dispersal among separate drainage basins (Nebeker and Gaufin, 

1968; Schultheis et al., 2002; Kauwe et al., 2004; Petersen et al., 2004; Macneale et al., 

2005; Elbrecht et al., 2014; Sproul et al., 2014). However, periodic dispersal events across 

freshwater drainage systems on the Bering Land Bridge would be plausible. In fact, long-

distance dispersal has been shown to be important in the biogeography of some stoneflies 

(Kauwe et al., 2004; Nelson, 2008; DeWalt and South, 2015; Kondratieff et al., 2019). The 

BioGeoBEARS results suggest that rare jump dispersal events resulting in new genetically 

isolated lineages (Matzke, 2014) have been important in Suwallia’s biogeographic history. 

Stoneflies belong to an ancient insect order that is known to be approximately 300 million 

years old (at least) based on fossil evidence from Pennsylvanian strata (Béthoux et al., 

2011). Stoneflies subsequently diversified following the break-up of the supercontinent of 

Pangaea, but the evolution of most extant lineages was probably much more recent, with 

the earliest fossils representing extant families dating to the Jurassic Period (Zwick, 2000). 

While Pleistocene events have influenced stonefly diversification through vicariance in some 

areas (McCulloch et al., 2010), it has been postulated that montane forest-dwelling insects, 

including chloroperlids, would not have had access to the Bering Land Bridge during the 

Pleistocene (Zwick, 2009), but it is also hypothesized that trans-Beringian dispersal has 

been relatively common in stoneflies (Stewart and Ricker, 1997). If so, dispersal between 

Palearctic and Nearctic regions may have been during earlier episodes of low sea levels 

that exposed the land bridge. Hence, additional fossil discoveries or better understanding of 

mutation rates would be necessary for molecular clock calibrations to estimate the timing of 

diversification within this group.

Houston et al. Page 9

Mol Phylogenet Evol. Author manuscript; available in PMC 2022 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Several Suwallia species do appear to exhibit cryptic genetic diversity, supporting our 

second hypothesis. For example, individuals identified as S. pallidula, S. starki, S. 
marginata, S. sp. a, S. kerzhneri, and S. amoenacolens are not monophyletic (within 

described species), but appear in multiple places in the phylogeny. Whereas some of these 

phylogenetic placements may be attributable to missing data, this result requires further 

investigation. Suwallia species typically occur at high elevations, so broadly distributed 

taxa may represent evolutionarily divergent groups that are currently considered a single 

species. For example, S. pallidula is distributed in the Rocky Mountains, Sierra Nevada, 

and Cascade Range in North America, as well as some mountains in the Basin and Range 

Province (Alexander and Stewart, 1999; Baumann et al., 2017). The S. pallidula samples 

included herein were collected from New Mexico, Colorado, Oregon, and Montana (Table 

1), and do not form a monophyletic clade (Fig. 3). Rather, all five S. pallidula samples we 

included are more closely related to other Suwallia species than to the other S. pallidula 
samples (Fig. 3). Similarly, S. starki, which occupies the largest geographic range of all 

North American Suwallia species (Alexander and Stewart, 1999; Baumann et al., 2017), 

occupies two phylogenetically disparate clades (Fig. 3). Indeed, many of the cryptic lineages 

are from populations that are separated by broad geographic distances (see Fig. 1). Given 

that stoneflies tend to be poor dispersers, and many of these populations occupy sky islands 

that are surrounded by uninhabitable terrain at low elevations, many of these populations 

may have been on independent evolutionary trajectories for much longer than previously 

recognized. Increased geographic sampling is necessary to better understand species limits 

and species distributions in these stoneflies.

The monospecific chloroperlid N. forcipata renders Suwallia paraphyletic, supporting our 

third hypothesis. Therefore, we reject the hypothesis that Neaviperla is a valid genus, as 

postulated by Baumann and Lee (2014), and propose a new classification following the 

classification previously published by Alexander and Stewart (1999), with N. forcipata 
reclassified as Suwallia forcipata. It is unclear why one Neaviperla (hereafter S. forcipata) 

sample (Su65) did not cluster with the other two conspecifics (Su31 and Su37). This 

could be due to sample misidentification, an artifact of missing data, unrecognized cryptic 

diversity within the species, or a hybridization event. As Suwallia forcipata has a unique 

morphology, we do not think that a misidentification is likely as these identifications 

were confirmed multiple times throughout this study for all included taxa. Missing data 

may be playing a role. However, of the three S. forcipata samples included, all three 

were represented in 37 UCE loci in the final data set, and they were not monophyletic 

in any of those 37 gene trees (Appendix E). Broader sampling efforts are necessary to 

evaluate cryptic species diversity and possible intergeneric hybridization. Regardless, all 

three Suwallia forcipata samples exhibit phylogenetic affinities for other Suwallia species 

rather than standing as a unique monospecific genus, and therefore we have reclassified 

Neaviperla forcipata (Neave, 1929) as Suwallia forcipata (Neave, 1929).

Finally, this research demonstrates that UCE baits designed for specific taxa can be 

useful in other groups. In our dataset, overwhelmingly more UCEs were captured using 

hemipteran baits (Faircloth, 2017) than by hymenopteran baits (Branstetter et al., 2017), 

but the total loci captured were only a fraction (~10%) of the number that is possible 

with UCE sequencing. While the hymenopteran and hemipteran baits were undoubtedly 
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useful, this highlights a need for plecopteran specific baits for stonefly phylogenetics using 

UCEs, which could be developed effectively using the workflow described by Faircloth 

(2017) and publicly available stonefly genomes (e.g., Amphinemura sulcicollis [Macdonald 

et al., 2016], Isoperla grammatica [Macdonald et al., 2016], Lednia tumana [Hotaling et 

al., 2019]). As previously mentioned, missing data resulting from our use of UCE baits 

developed for other taxonomic groups may have influenced phylogenetic relationships 

among some samples (Brown and Thomson, 2017; Smith et al., 2020), particularly those 

with the lowest numbers of UCEs sequenced, but theory states that maximum-likelihood 

models can properly accommodate missing data (Yang and Rannala, 2012), and studies have 

shown that phylogenetic position can still be accurate for taxa with extensive missing data 

if enough characters are included in the analyses (Wiens and Morrill, 2011; Roure et al., 

2013; Streicher et al., 2016; Molloy and Warnow, 2018). For example, two S. amoenacolens 
samples (Su09, Su10) did not form a monophyletic clade with the other two (Su11, Su12) 

that were monophyletic (Fig. 3), but one of those samples (Su09) had the fewest UCE loci 

sequenced (87 total; 50 included in the 50% data matrix) (Fig. 2; Appendix A), casting some 

doubt on its phylogenetic position herein if the missing data were non-randomly distributed. 

Similarly, several samples (S. pallidula [Su20], S. kerzhneri [Su32], S. sachalina [Su48], S. 
decolorata [Su49], S. sp. a [Su50-52], and N. forcipata [Su65]) grouped with the outgroup 

taxa P. diversa and T. signata (Fig. 3), yet all had large numbers of missing UCE loci 

(Fig. 2; Appendix A). We anticipate that some of these relationships would shift with a 

more complete data matrix. Nevertheless, these data still provide important insights into the 

evolution of the group.

5. Conclusions

In conclusion, based on sequence data from hundreds of genome-wide UCE loci, we have 

reconstructed the first molecular phylogeny for the chloroperlid stonefly genus Suwallia, 

and we make the taxonomic revision to include the monospecific genus Neaviperla within 

Suwallia. We have also demonstrated that Palearctic and Nearctic stoneflies within the genus 

do not form reciprocally monophyletic groups, and that a biogeographic history of dispersal, 

vicariance, and jump dispersal has been important in shaping the distribution of these 

chloroperlid stoneflies. It is well understood that comprehensive sampling is fundamental 

to obtaining accurate estimations of phylogenies (Heath et al., 2008). Indeed, additional 

taxonomic and geographic sampling (including broader sampling of chloroperlid stoneflies) 

coupled with stonefly specific UCE baits would greatly enhance our understanding of the 

evolution of this group of stoneflies, particularly in evaluating apparent cryptic genetic 

diversity within several Suwallia species.

The new taxonomic combination is:

Suwallia forcipata (Neave, 1929), new combination

Alloperla forcipata Neave, 1929:160. Holotype ♂ (Canadian National Insect Collection), 

Lake Edith, Jasper National Park, Canada

Alloperla (Neaviperla) forcipata: Ricker, 1943:142
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Neaviperla forcipata: Illies, 1966:448

Suwallia forcipata: Alexander & Stewart, 1999:202.

Suwallia forcipata: Stewart & Stark, 2002:280

Suwallia forcipata: Stark, 2012

Suwallia forcipata: Stewart and Stark in Merritt et al., 2008

Suwallia forcipata: DeWalt et al., 2014

Neaviperla forcipata: Baumann and Lee, 2014.
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Appendix A

Sample ID numbers, species designations, number of raw reads, number of UCEs 

sequenced for each sample, and number of loci included in the 50% matrix used for 

phylogenetic analyses. SRA accession numbers are also provided, all archived in BioProject 

PRJNA667287.

Sample ID Species # Raw Reads # UCE loci (total) # UCE loci (50% 
matrix)

SRA Accession #

Su01 S. sp. b 9,621,103 817 243 SAMN16364912

Su02 S. sp. b 5,460,742 661 250 SAMN16364913

Su03 S. jezoensis 17,405,980 385 200 SAMN16364914

Su04 S. jezoensis 5,066,132 376 172 SAMN16364915

Su05 S. sp. e 5,270,887 826 234 SAMN16364916
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Sample ID Species # Raw Reads # UCE loci (total) # UCE loci (50% 
matrix)

SRA Accession #

Su06 S. sp. e 4,633,904 795 251 SAMN16364917

Su07 S. lineosa 5,769,877 173 104 SAMN16364918

Su08 S. lineosa 18,585,408 310 175 SAMN16364919

Su09 S. amoenacolens 3,471,908 87 50 SAMN16364920

Su10 S. amoenacolens 3,986,371 529 168 SAMN16364921

Su11 S. amoenacolens 5,173,006 791 248 SAMN16364922

Su12 S. amoenacolens 5,571,647 613 226 SAMN16364923

Su13 S. marginata 3,198,631 330 165 SAMN16364924

Su14 S. marginata 5,524,143 670 279 SAMN16364925

Su15 S. marginata 5,870,195 711 269 SAMN16364926

Su16 S. pallidula 6,194,234 324 168 SAMN16364927

Su17 S. pallidula 6,500,823 418 225 SAMN16364928

Su18 S. pallidula 3,262,714 265 138 SAMN16364929

Su20 S. pallidula 3,045,210 505 201 SAMN16364930

Su21 S. pallidula 3,809,120 149 85 SAMN16364931

Su22 S. dubia 5,118,206 570 242 SAMN16364932

Su23 S. dubia 4,848,552 521 244 SAMN16364933

Su24 S. dubia 2,707,569 343 206 SAMN16364934

Su25 S. dubia 3,719,401 344 184 SAMN16364935

Su26 S. starki 8,349,147 583 251 SAMN16364936

Su27 S. starki 6,594,121 316 155 SAMN16364937

Su28 S. starki 3,068,870 386 199 SAMN16364938

Su29 S. starki 3,095,095 568 253 SAMN16364939

Su30 S. starki 4,242,406 619 253 SAMN16364940

Su31 N. forcipata 3,857,093 218 136 SAMN16364941

Su32 S. kerzhneri 3,579,753 228 126 SAMN16364942

Su33 S. thoracica 4,437,823 167 94 SAMN16364943

Su34 S. salish 11,132,286 287 168 SAMN16364944

Su35 S. salish 11,574,416 290 166 SAMN16364945

Su36 S. nipponica 10,633,259 431 204 SAMN16364946

Su37 N. forcipata 4,944,469 556 204 SAMN16364947

Su38 S. sierra 6,284,883 333 160 SAMN16364948

Su39 S. sierra 14,493,519 512 192 SAMN16364949

Su40 S. autumna 1,621,942 303 180 SAMN16364950

Su41 S. sublimis 5,278,587 219 108 SAMN16364951

Su42 S. bimaculata 4,732,589 287 135 SAMN16364952

Su43 S. talalajensis 8,383,318 361 178 SAMN16364953

Su44 S. wardi 21,251,072 766 217 SAMN16364954

Su45 S. teleckojensis 4,140,311 451 191 SAMN16364955

Su46 S. teleckojensis 5,118,397 625 246 SAMN16364956

Su47 S. teleckojensis 4,091,373 409 196 SAMN16364957
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Sample ID Species # Raw Reads # UCE loci (total) # UCE loci (50% 
matrix)

SRA Accession #

Su48 S. sachalina 6,371,823 200 101 SAMN16364958

Su49 S. decolorata 3,363,545 305 159 SAMN16364959

Su50 S. sp. a 1,062,265 135 85 SAMN16364960

Su51 S. sp. a 1,308,734 232 140 SAMN16364961

Su52 S. sp. a 1,365,260 131 68 SAMN16364962

Su53 S. nipponica 4,523,713 392 179 SAMN16364963

Su55 S. sp. d 3,861,324 534 240 SAMN16364964

Su56 S. sp. d 6,065,241 480 240 SAMN16364965

Su57 S. sp. d 2,387,687 327 191 SAMN16364966

Su58 S. kerzhneri 1,955,395 442 194 SAMN16364967

Su59 S. nipponica 8,753,119 242 138 SAMN16364968

Su60 A. fraterna 2,150,629 433 176 SAMN16364969

Su61 S. oregonensis 5,589,427 492 163 SAMN16364970

Su62 S. oregonensis 5,106,527 560 176 SAMN16364971

Su63 T. signata 22,887,098 469 181 SAMN16364972

Su64 P. diversa 18,530,268 658 184 SAMN16364973

Su65 N. forcipata 6,932,370 196 115 SAMN16364974

Su66 S. starki 10,417,478 751 264 SAMN16364975

Total 407,352,395

Appendix B

Lineage tree generated by concatenated UCE sequences using IQ-TREE. Genera are color 

coded as follows: Suwallia (maroon), Neaviperla (blue), and a priori defined outgroups 

(black).
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Appendix C

Coalescent-based species tree produced by our SVDQuartets analysis. Branches are colored 

by a priori species designations: Suwallia (maroon), Neaviperla (blue), and outgroups 

Alloperla, Plumiperla, Triznaka, and Sweltsa (black).
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Appendix D

Results of BioGeoBEARS analysis, for which the model DIVALIKE+J was most 

appropriate for these data. Contemporary Nearctic distributions are designated at the tips 

of the phylogeny as green squares containing the letter N, and contemporary Palearctic 

distributions are designated as blue squares containing the letter P. The most probable 

ancestral distributions are designated using circles filled with the same colors, but nodes 

with more uncertainty are labelled with pie charts that display the probabilities for all 

possible ancestral ranges (including a probable Nearctic/Palearctic ancestral distribution at 

the basal node, colored in white).
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Appendix E

The total number of gene trees (GT) shared among individuals with the same a priori 
species designations, along with the proportion of those gene trees for which that species 

is monophyletic (PM). Only the species with N > 1 are included herein (monophyly could 

not be tested for species where N = 1), and species that were missing for a locus were not 

counted for that gene tree. Individual gene trees are from the IQ-TREE analysis. Columns 

where N = 2 through N = 6 represent different thresholds for the number of individuals for a 

species in order to be tested. Dashed lines mark cells where the threshold for n is higher than 

the number of individuals included in our sampling (e.g., we included four S. amoenacolens 
individuals overall, so monophyly where N = 5 and N = 6 is not possible to test for that 

species). Bolded values represent the maximum available threshold for a particular species. 

Interpretation is as follows for three examples: Example 1 - S. amoenacolens. There were 

21 gene trees where all four S. amoenacolens samples amplified and sequenced, and of 

those, none had S. amoenacolens forming a monophyletic group. There were 137 gene trees 

where three S. amoenacolens individuals amplified and sequenced for those loci (but not 

the same three individuals for each gene), and of those, 2% had S. amoenacolens forming 

a monophyletic group, and those were likely the gene trees that did not include the most 

divergent S. amoenacolens individual (Su10), that grouped with S. oregonensis and A. 
fraterna in our species tree. Example 2 - N. forcipata. There were 37 gene trees that included 

all three Neaviperla samples. Of those, none had the species as a monophyletic group. 

However, 19% of the 155 gene trees that included two Neaviperla samples had Neaviperla 
forming a monophyletic group, and in those cases, the two samples included were the two 

that claded together in the species tree (Su31 and Su37). Example 3 - S. nipponica. There 

were 63 gene trees that included all three S. nipponica samples, and S. nipponica formed 

a monophyletic group in 14% of those. This is because S. nipponica and S. sp. e were 
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considered as separate species a priori, yet S. sp. e is nested within S. nipponica in our 

results (and therefore is not a separate species).

Tests of Monophyly for Individual Gene Trees

N = 2 N = 3 N = 4 N = 5 N = 6

GT PM GT PM GT PM GT PM GT PM

S. amoenacolens 246 0.14 137 0.02 21 0.00 – – – –

S. dubia 269 0.23 213 0.23 102 0.20 – – – –

S. jezoensis 123 0.16 – – – – – – – –

S. kerzhneri 88 0.00 – – – – – – – –

S. lineosa 70 0.06 – – – – – – – –

S. marginata 277 0.34 144 0.15 – – – – – –

S. nipponica 187 0.30 63 0.14 – – – – – –

S. pallidula 259 0.00 191 0.00 66 0.00 9 0.00 – –

S. salish 105 0.10 – – – – – – – –

S. sierra 108 0.38 – – – – – – – –

S. starki 294 0.00 287 0.00 259 0.00 181 0.01 59 0.02

S. teleckojensis 232 0.22 114 0.17 – – – – – –

S. sp. a 80 0.03 25 0.00 – – – – – –

S. sp. b 214 0.28 – – – – – – – –

S. sp. d 250 0.04 132 0.02 – – – – – –

S. sp. e 212 0.67 – – – – – – – –

N. forcipata 155 0.19 37 0.00 – – – – – –

S. oregonensis 115 0.65 – – – – – – – –
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Fig. 1. 
Map showing locations where museum samples were collected. Sampling localities that 

are in close proximity in Japan and in western North America are expanded for clarity. 

Inset: Suwallia teleckojensis (Photo Credit: C. Riley Nelson, used with permission) from 

the Ulastai River, Mongolia (Judson and Nelson, 2012). Suwallia species are represented by 

assorted shapes and colors (see key). Genera other than Suwallia are represented by gray 

shapes.
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Fig. 2. 
Data matrix showing UCE presence/absence data by specimen. Filled squares represent 

UCEs that were captured, sequenced, and included in our analyses, whereas white squares 

represent missing UCEs. Individual stoneflies are listed on the y-axis according to sample 

numbers provided in Table 1, and UCEs are listed on the x-axis. UCEs with a prefix of 

000 in the number are from the hemipteran bait set, whereas those with a prefix of 111 

are from the hymenopteran bait set. Colors represent the same scheme as depicted in Fig. 

3: Suwallia (maroon), Neaviperla (blue), outgroup taxa (black). Note that Su19 and Su54 

are not included in this panel, because one library failed (Su54; S. autumna), and the other 

(Su19; S. pallidula) was excluded because we were limited to 64 samples due to budgetary 

constraints, and we already had five other samples representing that species, including 

another representative from the same population. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Species tree generated by ASTRAL-III for the chloroperlid stonefly genus Suwallia based 

on DNA sequence data from 296 UCE loci. Sample numbers are provided in parentheses 

following species names, and in cases where all samples representing a species formed a 

monophyletic group, all sample numbers are included. Support values above nodes are from 

SVDQuartets, and support values below nodes are local posterior probabilities from Astral. 

The only differences between species trees generated by each analysis were the placement 

of S. sierra, the relationships between S. lineosa, S. sp. b, and S. pallidula (Su16), wherein 

S. lineosa was sister to S. sp. b (instead of S. sp. b and S. pallidula [Su16] being sister taxa 

in the SVDQuartets species tree], and the placement of the S. marginata (Su14, Su15) and 

S. starki (Su27, Su28, Su29, Su30) clade (see Supplementary Files in GitHub). Branches 

are color coded by genus, and contemporary biogeographic distributions are denoted by 

purple triangles (Nearctic) and orange diamonds (Palearctic) at the tips. The most probable 

ancestral distributions are designated using circles filled with the same colors, but nodes 

with more uncertainty are labelled with pie charts that display the probabilities for all 

possible ancestral ranges (including a probable Nearctic/Palearctic ancestral distribution at 

the basal node, colored in white). Species that are not monophyletic, currently containing 

individuals that are separated by large phylogenetic distances and thus exhibiting putative 

cryptic genetic diversity, are marked using assorted symbols. (For interpretation of the 
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references to color in this figure legend, the reader is referred to the web version of this 

article.)
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