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Abstract 

Microalgae that are of interest for applications in biofuel production must be able to tolerate 

environmental changes that occur in outdoor cultivation systems. While algal cultures may 

experience daily temperature fluctuations and seasonal environmental changes, the underlying 

mechanisms that control and regulate physiological responses and adaptation to environmental 

pressures are largely unknown. Systems-level characterization enabled by functional genomics 

can help identify biochemical pathways that promote stability and productivity of algae in 

various environmental conditions. Monoraphidium minutum 26B-AM, a freshwater green 

microalga, was identified as a top performer in biomass production in winter season screens. We 

sequenced the genome of M. minutum 26B-AM and applied our multi-omics pipeline to profile 

this high potential strain under high salt and cold temperature perturbations. Through 

comparative analysis, including other green algae in the class Chlorophyceae, we identified gene 

families unique to the genus Monoraphidium, including a desaturase that has been linked to cold 

tolerance in plants. We observed that osmolytes, such as trehalose, proline and betaine, 

accumulate under salt stress, coinciding with upregulation of genes involved in biosynthesis of 

these metabolites. From the genome annotation, we reconstructed a metabolic model to provide a 

detailed map of the metabolic pathways and can be used to simulate growth and reaction fluxes. 

This multi-omics analysis provides a foundation to explore algal strain potential for biofuel 

applications, guides strain engineering, and expands our understanding of metabolic and 

regulatory mechanisms of algae in applied systems. 
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1. Introduction 

Marine microalgae are being developed for a myriad of industrial applications due to their ability 

to sustainably convert carbon dioxide into renewable products. Recently, large-scale screening 

efforts in photobioreactors and outdoor ponds have evaluated strains from public, academic, and 

industrial culture collections with suitable characteristics for industrial deployment [1]. Through 

an integrated screening platform, it was found that Monoraphidium minutum 26B-AM exhibited 

the highest biomass productivity in winter season simulations [1,2] and in outdoor field trials 

over the winter season (December through February) [3]. 

 

Originally collected as a pond contaminant of Chlorella sorokiniana as part of the National 

Association for the Advancement of Bioproducts and Biofuels (NAABB) program, M. minutum 

26B-AM was first identified as Kirchneriella cornuta by morphology and was re-designated as a 

close relative of M. minutum based on high sequence similarity (97-99%) of the 18S small 

subunit ribosomal RNA genes (NCBI accession: AY846380) [2]. M. minutum is a member of the 

order Sphaeropleales and family Selenastraceae. Many species within the Sphaeropleales, 

including other Monoraphidium strains [4–6], have previously been investigated for their 

potential as biofuel feedstocks due to their high lipid production. Yet, published genomic data for 

members of the family Selenastraceae is sparse, with published sequences for only two other 

nuclear genomes (Monoraphidium neglectum [4] and Messastrum gracile [7]) and several 

organellar genomes, including M. neglectum [4], Kirchneriella aperta, and Ourococcus 

multisporus [8]. An additional genome sequence of Monoraphidium sp. 549 is publicly available 

without an annotation (Genbank accession: NMUB00000000.1). Thus, additional genome 
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sequencing of these understudied algal lineages, including annotation of novel and extremophilic 

strains, is needed to help fill existing knowledge gaps. 

 

Microalgal strains that exhibit halotolerance are of particular interest, given that these strains can 

be cultivated in sea or brackish water, eliminating the need for freshwater-based cultivation. 

However, increasing salinity for many strains results in biomass productivity losses and can alter 

lipid composition [9]. Similarly, changes in temperature inherent to outdoor cultivation may also 

impact productivity and biomass composition [10,11]. A detailed understanding of how algal 

strains can adapt to abiotic stress on both the molecular and genetic level can help identify 

pathways that can be modified for enhanced stability and productivity under changing 

environmental conditions.  

 

Here, we present the genome sequence and gene annotations of M. minutum, as well as the 

transcriptomic and metabolomic profiling for two different perturbations, salt and low 

temperature. Our multi-omics investigation and metabolic modeling identified transcriptional 

changes in stress response genes and metabolic changes in the levels of common osmolytes 

under high salinity. In addition, unique and expanded gene families reflect differences in 

genomic content compared to other green algae that may be related to cold tolerance. By 

generating these omics datasets for an industrially relevant strain like M. minutum, we’ve 

identified specific genes, pathways, and metabolites affected by stress to guide future strain 

improvement studies. 
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2. Materials and Methods 

2.1 Salinity Challenge 

M. minutum 26B-AM was grown in Erlenmeyer flasks of DISCOVR medium [1] in temperature-

controlled chambers and stirred at a constant 120 rpm. The chambers maintained a constant 

temperature of 27 °C, a 14:10 light:dark cycle, and 3000 ppm of CO2. In brief, three flasks 

containing unamended DISCOVR medium with a salinity of 5 ppt (control) and three flasks 

containing amended DISCOVR medium with a salinity of 20 ppt (salt) were inoculated with M. 

minutum. Sampling for sequencing and metabolomic analysis began 24 hours post inoculation 

and occurred every 24 hours for 6 days. Growth was monitored with optical density for 8 days 

(Supplementary Figure 1A). 

 

2.2 Temperature Challenge 

M. minutum 26B-AM was grown in Erlenmeyer flasks of DISCOVR medium [1] in temperature-

controlled chambers and stirred at a constant 120 rpm. Sixteen flasks containing DISCOVR 

medium were inoculated with M. minutum and kept at a constant temperature of 27 °C, a 14:10 

light:dark cycle, and 3000 ppm of CO2 for 24-hours. After 24 hours, 8 flasks were moved to a 

chamber with a constant temperature of 17 °C, a 14:10 light:dark cycle, and 3000 ppm of CO2 

for an additional 24 hours. Sampling (in quadruplicate) for metabolomic analysis occurred at 6, 

12, 24, and 48 hours and sampling (in triplicate) for RNA extraction and sequencing occurred at 

12, 24, and 48 hours. Growth was determined by optical density and monitored for 8 days 

(Supplementary Figure 1B).  
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2.3 DNA Extraction  

Genomic DNA (gDNA) was extracted as previously described [12]. In brief, algal cells digested 

in agarose plugs to enable extraction of high molecular weight DNA. The gDNA extract was 

purified using a High Salt-Phenol:Chloroform:IsoAmyl Alcohol protocol recommended by 

Pacific Biosciences (Pacific Biosciences of California, USA, https://www.pacb.com/wp-

content/uploads/2015/09/Shared-Protocol-Guidelines-for-Using-a-Salt-Chloroform-Wash-to-

Clean-Up-gDNA.pdf), followed by precipitation of the gDNA with ethanol. Purified gDNA was 

concentrated using AMPure PB beads (Pacific Biosciences, Menlo Park, USA). Qubit 1 

Fluorometer (Invitrogen, USA) was used to measure the DNA concentration. The DNA purity 

ratios were assessed using the NanoDrop 1000 instrument (Thermo Scientific, USA). The DNA 

fragment size was determined on TapeStation 4200 (Agilent, Germany). 

 

2.4 Genome assembly 

5 μg of genomic DNA was sheared to >10kb using Covaris g-Tubes. The sheared DNA was 

treated with exonuclease to remove single-stranded ends and DNA damage repair mix followed 

by end repair and ligation of blunt adapters using SMRTbell Template Prep Kit 1.0 (Pacific 

Biosciences, Menlo Park, CA). The library was purified with AMPure PB beads. PacBio 

Sequencing primer was then annealed to the SMRTbell template library and sequencing 

polymerase was bound to them using Sequel Binding kit 3.0. The prepared SMRTbell template 

libraries were then sequenced on a Pacific Biosystem's Sequel sequencer using v3 sequencing 

primer, 1M v3 SMRT cells, and Version 3.0 sequencing chemistry with 600-minute sequencing 

movie run times. 
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Filtered subread data was assembled together with Falcon version (pb-assembly 0.0.2, 

falcon-kit 1.2.3, pypeflow 2.1.0) (https://github.com/PacificBiosciences/FALCON) to generate 

an initial assembly. Substantial contamination by several bacterial species was detected using 

BLAST vs. NCBI refseq, analysis of GC/coverage, and principal components analysis of 

tetranucleotide frequencies (Supplementary Table 1).  Two of the bacteria (Aquimonas and 

Pseudomonas) were observed at substantially higher coverage than the algal genome. These 

bacteria were assembled individually by subsampling preads to target their respective coverages 

using BBtools version 38.47 [reformat.sh samplerate={0.1,0.2}] targeting a coverage of 100x, 

and assembled with Flye version 2.4 [--pacbio-corr --genome-size {5m,6m} --asm- coverage 

50].  Reads that did not recruit to either of these bacteria were then assembled with Flye version 

2.4.1 [-pacbio-corr --genome-size 75m --asm-coverage 50], resulting in a main assembly with a 

third bacterial contaminant (Microbacteriaceae). This third bacterium was assembled by 

recruiting preads with BBtools version 38.47 [bbduk.sh k=31 mm=f mkf=0.05] to the identified 

contaminant contigs and a related reference genome downloaded from NCBI (NZ_CP031423.1), 

and subsequently assembled with Flye version 2.4.1 [--pacbio-corr --genome-size 3.5m --asm-

coverage 50].  Finally, preads were recruited to the three assembled bacteria using BBtools 

version 38.47 [bbduk.sh k=31 mm=f mkf=0.05] and those preads that did not match any 

contaminant bacterium (47.59% of the original preads) were assembled with Flye version 2.4.1 

[flye --pacbio-corr --genome-size 75m --asm-coverage 50].  Residual bacterial contamination 

was then identified using BLAST vs. NCBI refseq, GC/coverage, and tetranucleotide frequency, 

and removed from the main assembly. This round of contaminant removal resulted in a fourth 

nearly-complete bacterial genome (Nitratireductor). The algal nuclear genome and organelle 

contigs were polished with Arrow version SMRTLink v6.0.0.47841 
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(https://github.com/PacificBiosciences/GenomicConsensus). Contigs less than 1000 bp were 

excluded. 

 

2.5 Genome annotation and analysis 

The nuclear genome assembly was annotated using the Joint Genome Institute (JGI) annotation 

pipeline [13,14]. The annotation pipeline starts with masking the assembly for repeats using 

RepeatMasker [15] with the RepBase library [16] and the most frequent (>150) repeats 

recognized by RepeatScout [17]. Next, protein-coding gene models were predicted using ab 

initio Fgenesh [18], homology-based Fgenesh+, homology-based GeneWise [19] seeded by 

BLASTx alignments against the NCBI NR database and transcriptome-based Fgenesh. 

Automated filtering selected the best model at each genomic locus based on homology and 

transcriptome support. Predicted proteins were functionally annotated using SignalP [20] for 

signal sequences, TMHMM [21] for transmembrane domains, InterProScan [22], and protein 

alignments to NCBI NR, SwissProt [23], KEGG [24], KOG [25] and TCDB for transporter 

classifications [26]. Hits from InterPro and SwissProt were used to map Gene Ontology terms 

[27]. Completeness of the genome annotation was evaluated using BUSCO v 4.1.4 in protein 

mode on the Chlorophyta ortholog dataset (chlorophyta_obd10; 11-20-19)  [28]. The isoelectric 

point was computed using the Biopython package v1.79 [29] based on the methods of Bjellqvist 

[30,31]. Orthologous gene families were predicted using the OrthoFinder software package v 

2.3.8 [32]. 

 

2.6 Phylogenetic analysis 
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The species tree was estimated from putative single-copy orthologs from Chlorophyta genomes 

identified using OrthoFinder software package v 2.3.8 [32]. The genomes annotations were 

accessed from the JGI Algal Genome Portal PhycoCosm [33]: Chlamydomonas reinhardtii 

(Chlre5_6), Chlamydomonas eustigma (Chleu1), C. zofingiensis (Chrzof1), Dunaliella salina 

(Dunsal1_1), Gonium pectorale (Gonpec1), M. neglectum (Monneg1), R. subcapitata (Rapsub1), 

Scenedesmus obliquus UTEX 393 (Sobl393_1), Scenedesmus obliquus DOE0152z (Sceobl1), 

Scenedesmus sp. NREL 46B-D3 (Scesp_1), Tetrabaena socialis NIES-571 (Tetso1) and Volvox 

carteri (Volca2_1). Using single-copy orthologs, the trimmed alignments were concatenated into 

a single alignment, and the phylogenetic tree was inferred under maximum-likelihood (RAxML 

v 8.2.8) using automated bootstrapping, which converged after 100 bootstrap replicates 

(arguments: -f a -m PROTGAMMAWAGF) [34]. The tree was visualized using FigTree v 1.4.4 

(http://tree.bio.ed.ac.uk/software/figtree/). 

 

The phylogenetic tree of the putative sphingolipid delta-4 desaturase gene was built using protein 

sequences identified by Blastp search of the UniprotRep90 database [35] and PhycoCosm [33] 

with the M. minutum DES4 sequence. Protein sequences were aligned using MAFFT [36], and 

the tree was inferred under maximum-likelihood with IQ-TREE v 1.6.12 [37]. Support values 

were estimated using ultrafast bootstrapping (1,000 bootstraps) [38], and the tree was visualized 

using the iTOL web server [39]. 

 

2.7 RNA extraction and sequencing 

RNA was extracted and sequenced as previously described [12].  In brief, RNA was extracted 

from 54 samples (36 salt and 18 cold) using the Omega E.Z.N.A. Plant RNA Kit (Omega Bio-
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Tek, Norcross, GA) following manufacturer’s protocols with the addition of 3 rounds of liquid 

nitrogen freeze, thaw, and grinding for cell lysis [40]. The concentration of total RNA was 

obtained using the Qubit RNA BR Assay Kit (Thermo Fisher Scientific, Waltham, MA) and the 

quality of the RNA was determined by the Agilent RNA 6000 Pico Kit (Agilent Technologies, 

Santa Clara, CA). 5 μg of total RNA was depleted of ribosomal RNA using the Ribo-Zero 

H/M/R kit (Illumina Inc., San Diego, CA). The ribosomal RNA depleted samples were then 

processed using the NEBNext Poly(A) mRNA Magnetic Kit (New England Biolabs Inc., 

Ipswich, MA) to select for polyadenylated RNA. The resulting poly(A) selected RNA was 

prepared for sequencing using the ScriptSeq v2 Library Preparation Kit (Illumina Inc., San 

Diego, CA). All libraries were multiplexed and sequenced on a NextSeq 500 to generate paired-

end 151 bp reads using the NextSeq 500/550 High Output Kit v2.5 Kit (300 cycles) (Illumina, 

Cat. #20024908).  RNA-seq data is available in the Sequence Read Archive under Bioproject 

PRJNA812585.   

 

2.8 Transcriptomic analysis  

Following Illumina sequencing, resulting demultiplexed forward and reverse fastq files were 

filtered and trimmed for quality and artifacts. Using BBDuk, raw reads were evaluated for 

artifact sequence by kmer matching (kmer = 25), allowing 1 mismatch and detected artifact was 

trimmed from the 3' end of the reads. RNA spike-in reads, PhiX reads and reads containing any 

Ns were removed. Quality trimming was performed using the phred trimming method set at Q6.  

Finally, following trimming, reads under the length threshold were removed (minimum length 25 

bases or 1/3 of the original read length - whichever is longer). Filtered reads from each library 

were aligned to the reference genome using HISAT2 v 2.1.0 [41]. Strand-specific coverage 
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bigWig files (fwd and rev) were generated using deepTools v 3.1 [42], and featureCounts [43] 

was used to generate the raw gene counts. DESeq2 (v 1.18.1) [44] was subsequently used to 

determine which genes were differentially expressed between treatment and control samples at 

equivalent timepoints. A gene is considered differentially expressed between conditions when 

the adjusted p-value < 0.05 and |Log2FC| > 1. Functional enrichment analysis was performed on 

the differentially expressed genes at each time point for both upregulated and downregulated 

groups. Enrichment for GO terms and KOG domains was calculated and visualized using 

clusterProfiler v 3.18.1 [45]. 

 

2.9 Metabolomics 

2.9.1 Metabolite extraction 

Prior to extraction, algae biomass (~20 mg) was first lyophilized dry (FreeZone 2.5 Plus, 

Labconco) then powderized by bead-beating with a 3.2 mm stainless steel bead in a bead-beater 

(Mini-Beadbeater-96, BioSpec Products) for 5 seconds (2x).   

 

2.9.2 Lipid extraction 

To extract lipids, a chloroform-based lipid extraction was performed using a modified Bligh-

Dyer approach [46]. Here, 300 µL methanol (MeOH), 150 µL CH3Cl and 120 µL water was 

added to the powderized pellet (final ratio of 2:1:0.8 MeOH:CH3Cl:H2O), vortexed and sonicated 

in a water bath for 10 minutes, then an additional 150 µL each of CH3Cl and MeOH was added 

(final ratio of 1:1:0.9 MeOH:CH3Cl:H2O), which was followed by a brief vortex and 10 minute 

incubation in a sonic water bath. Samples were centrifuged for 5 minutes at 5000 rpm, and the 

bottom lipid-enriched chloroform phase was transferred to a new tube. An addition of 300 µL of 
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chloroform was added, followed by another vortex, sonication, and centrifugation. The bottom 

chloroform phase was then combined with the previously collected extract. Lastly, chloroform 

extracts of lipid were dried in a SpeedVac (SPD111V, Thermo Scientific) and stored at -20 ºC. 

 

Polar metabolite extraction. To extract polar metabolites, 450 µL methanol was added to 

powderized pellets, vortexed and sonicated in a water bath for 10 minutes, stored at -20 ºC for 2 

hours, and finally vortexed and sonicated for 10 minutes. After centrifuging for 5 minutes at 

5000 rpm, 200 µL of supernatant was transferred to a separate tube. Extracts were then dried in a 

SpeedVac (SPD111V, Thermo Scientific) and stored at -80 ºC.   

 

2.9.3 Liquid chromatography tandem mass spectrometry 

Liquid chromatography tandem mass spectrometry (LC-MS/MS) was performed on extracts of 

algae biomass using both normal and reverse phase chromatography for polar and lipid 

metabolites, respectively. Chromatography was performed using an Agilent 1290 LC stack, with 

MS and MS/MS data collected using a Q Exactive Orbitrap MS (Thermo Scientific, San Jose, 

CA). 

 

2.9.4 Reverse phase chromatography 

Extracted lipids from 20 mg wet algae biomass were resuspended in 240 µL 3:3:4 

isopropanol:acetonitrile:methanol (IPA:ACN:MeOH) containing a 4 µM internal standard 

mixture of deuterium-labeled lipids (Lysophosphatidylcholine (17:1) - #110905, 

Phosphatidylglycerol-d5 (16:0/18:1) - #110899, Diacylglyceryl-trimethylhomoserine-d9 

(16:0/16:0) - #857463P, oleic acid (18:1-d9) - #861809O, Phosphatidylserine (16:0-d31/18:1) - 
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#110922, Phosphatidic acid (16:0-d31/18:1) - #110920, Phosphatidylethanolamine (16:0-

d31/18:1) - #110921, Phosphatidylcholine (16:0-d31/18:1) - #110918, Diacylglycerol-d5 (1,3-

16:1) - #110579, Triacylglycerol-d5 (17:0/17:1/17:0) - #110544; Avanti Polar Lipids) and 1 

µg/mL 2-Amino-3-bromo-5-methylbenzoic acid (Sigma, M9508). One hundred twenty 

microliters of this were centrifuge-filtered through a 0.22 µm hydrophilic PVDF membrane 

(#UFC30GV00, Millipore) and transferred to a glass LC-MS vial. Full MS spectra were 

collected from m/z 132-1500 at 70,000 resolution in both positive and negative ion mode, with 

MS/MS fragmentation data acquired using stepped 10, 20, and 40 eV collision energies at 17,500 

resolution. Chromatography was performed using a C18 column (Agilent ZORBAX Eclipse Plus 

C18, Rapid Resolution HD, 2.1 x 50 mm, 1.8 µm) at a flow rate of 0.4 mL/min with a 2 µL 

injection volume. To detect lipids, samples were run on the C18 column at 55 ºC equilibrated 

with 100% buffer A (60:40 H2O:ACN with 5 mM ammonium acetate and 0.1% formic acid) for 

1 minute, diluting buffer A down to 45% with buffer B (90:10 IPA:ACN w/ 5 mM ammonium 

acetate and 0.1% formic acid) over 2 minutes, down to 20% A over 8 minutes, then down to 0% 

A over 1.5 minutes, followed by isocratic elution in 100% buffer B for 1.5 minutes. Samples 

consisted of 3 biological replicates each and 3 extraction controls, with sample injection order 

randomized and an injection blank (2 µL of 3:3:4 IPA:ACN:MeOH) run between each sample. 

 

2.9.5 Normal phase chromatography 

Extracted polar metabolites from 25-105 mg wet algae biomass were resuspended in 100% 

methanol containing 10 µM internal standard (5-50 µM of 13C,15N Cell Free Amino Acid 

Mixture, #767964, Sigma), with the resuspension volume varied for each sample to normalize by 

biomass weight.  One hundred fifty microliters of this were centrifuge-filtered through a 0.22 µm 
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hydrophilic PVDF membrane (#UFC30GV00, Millipore) and transferred to a glass LC-MS vial. 

Full MS spectra were collected from m/z 70-1050 at 70,000 resolution in both positive and 

negative mode, with MS/MS fragmentation data acquired using stepped 10, 20 and 40 eV 

collision energies at 17,500 resolution. Chromatography was performed using a hydrophilic 

interaction liquid chromatography (HILIC) column (Agilent InfinityLab Poroshell 120 HILIC-Z, 

2.1 x 150 mm, 2.7 µm, #673775-924) at a flow rate of 0.45 mL/minute with a 2 µL injection 

volume.  To detect metabolites, samples were run on the HILIC column at 40 ºC equilibrated 

with 100% buffer B (95:5 ACN:H2O with 5 mM ammonium acetate) for 1 minute, diluting 

buffer B down to 89% with buffer A (100% H2O with 5 mM ammonium acetate and 5 µM 

methylenediphosphonic acid) over 10 minutes, down to 70% B over 4.75 minutes, then down to 

20% B over 0.5 minutes, followed by isocratic elution in 80% buffer A for 2.25 minutes. 

Samples consisted of 3 biological replicates each and 3 extraction controls, with sample injection 

order randomized and an injection blank (2 µL MeOH) run between each sample. 

 

2.9.6 Metabolomic identification 

Metabolites were identified based on exact mass and comparing retention time (RT) and MS/MS 

fragmentation spectra to that of standards run using the same chromatography and MS/MS 

method. LC-MS data was analyzed using custom Python code [47].  Each detected feature 

(unique m/z coupled with RT) was assigned a score (0 to 3) representing the level of confidence 

in the metabolite identification. Metabolites given a positive identification had detected m/z ≤ 5 

ppm or 0.001 Da from theoretical as well as RT ≤ 0.5 minutes compared to a pure standard run 

using the same LC-MS method. A compound with the highest level of positive identification 

(score of 3) also had matching MS/MS fragmentation spectra compared to either an outside 



15 

database (METLIN) [48] or internal database generated from standards run and collected on a Q 

Exactive Orbitrap MS. MS/MS mismatches to the standard invalidated an identification. 

 

For a detected lipid compound, lipid class was determined based on characteristic fragment ions 

or neutral loss, and coupled with exact mass to determine specific lipid identity (number of 

carbons in fatty acid tails and degree of unsaturation). In POS mode, MGDG and DGDG lipids 

ionized as [M+NH4]+ with a neutral loss of 179 and 341 [49], respectively, and TAGs as 

[M+NH4]+ with fatty acid tails detected in the MS/MS spectra [50]. Lipid standards run 

separately (DGDG (18:3/18:3) - #840524P, MGDG (18:3/16:3) - #840523P; Avanti Polar 

Lipids, Inc.) and deuterated internal standards of DG and TAG were used to verify fragmentation 

pattern and elution times of each lipid class. Owing to lipid degradation over total sample 

runtime, detected intensity for peak height was normalized to the deuterated DG internal 

standard for MGDG and DGDG lipids, and to the deuterated TAG internal standard for TAG 

lipids. 

 

2.10 Metabolic model construction 

Enzyme commission numbers (EC numbers) were generated using various homology based 

tools, specifically: PRIAM [51], eggNOGmapper [52], KOFAM [53] and the BioCyc database 

[54]. The EC numbers were examined and curated manually to generate a comprehensive 

consensus gene to EC number table. Model construction was performed using the COBRApy 

toolbox [55] following the general procedure outlined in [56]. Gap filling of the metabolic model 

was attempted using MENECO [57] and using the approach described in [58]. Iterations of 

manual curation were performed to fill remaining gaps and to ensure biosynthesis of core 
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metabolic precursors using information about biomass composition from other published models 

for algae and plants [59]. The model was exported in SBML format [60] and subsequent analysis 

such as flux balance analysis, flux variability analysis and phenotypic phase plane analysis were 

conducted using COBRApy and the Sybil [61] package. The MEMOTE package was used to 

detect errors and aid in the curation of the model [62]. 

 
 
3. Results and Discussion 

3.1 Genome analysis 

The M. minutum 26B-AM genome was sequenced using Pacific Biosciences technology. The 

genome was assembled into 512 contigs with a size of 68.17 Mbp, which is of similar size to 

other public Selenestraceae genome assemblies (51 Mbp to 75 Mbp, Supplementary Figure 2, 

Supplementary Table 2). Assessment of genome completeness based on BUSCO suggests that 

the genome assembly and annotation are high-quality and nearly complete [28]. BUSCO analysis 

based on the Chlorophyta set (chlorophyta_odb10; 11-20-19) estimated the completeness of the 

annotation at 96.8%, and over 90% of 26B-AM RNA-seq reads were mapped to the genome. The 

phylogenetic tree based on single-copy orthologous genes places M. minutum among the other 

sequenced Sphaeropleales, including M. neglectum, Raphidocelis subcapitata [63], 

Chromochloris zofingiensis [64] and Scenedesmus species (Figure 1). The predicted 15,341 

genes are comparable in number to other Sphaeropleales genomes but fewer than in other 

Scenedesmus strains which also have larger genome assemblies (22,378 in UTEX 3031 

estimated haplotype [65] and 17,406 in NREL 46B-D3 estimated haplotype [12]). Previously 

sequenced Monoraphidium genomes were both produced using Illumina short-read technology, 

and only M. neglectum has a published genome annotation. Although the number of genes in the 
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M. minutum annotation is fewer than the number of genes in the M. neglectum annotation, the 

gene models are more complete and longer in sequence on average; 95% of genes have complete 

CDS in M. minutum compared to 85% of genes with complete CDS in M. neglectum. In addition, 

the average protein length in the M. minutum annotation is 485 amino acids, as compared to an 

average of 348 amino acids in M. neglectum, which likely reflects the difference in genome 

assembly quality and not true divergence in amino acid length within Monoraphidium. The GC 

content of the M. minutum genome is relatively high at 72.1%, which is higher than most 

Chlorophyta genomes, including M. neglectum, and closest to the GC content in Raphidocelis 

subcapitata (71.6%).  

 

 
Figure 1. Phylogenetic tree based on single-copy ortholog genes (left) and comparison of genome 
statistics (right) showing assembly size, number of contigs, number of genes in a single haplotype, GC 
content, and BUSCO scores (Chlorophyta_odb10). 
 

We analyzed the amino acid composition of the M. minutum protein sequences (Supplementary 

Figure 3A). Overall, the frequencies of the 20 standard amino acids in M. minutum proteins were 

similar to the frequencies observed across the M. neglectum and R. subcapitata proteins, but the 
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frequency of glutamine was lower in the proteome of M. minutum than in M. neglectum. 

Compared to Scenedesmus, the amino acid composition observed in M. minutum proteins had 

lower frequencies of alanine, glycine, arginine and proline. In addition to amino acid 

composition, we calculated the isoelectric point (pI) of M. minutum proteins and compared the 

distribution to other Chlorophyta species (Supplementary Figure 3C, Supplementary File 1). The 

distribution of pI across the M. minutum proteome has a significantly larger number of proteins 

with high pIs compared to other species, including M. neglectum. There are 2,152 M. minutum 

proteins with a pI greater than 11.5, representing over 14% of its proteome and four times as 

many as found in the M. neglectum proteome. Most of the high pI proteins are hypothetical 

proteins, which lack known protein domains (fewer than 4% have Pfam domains) and do not 

have detectable orthologs. These proteins are typically short in length (an average length of 225 

amino acids) yet are transcribed according to the RNAseq data. The high pI proteins also have a 

distinct amino acid composition characterized by high frequencies of arginine and proline 

compared to the rest of the proteome (Supplementary Figure 3B). There are several studies 

showing examples of highly basic proteins linked to stress response, including cold acclimation, 

in other organisms [66–69]. While most of these high pI proteins in M. minutum have no 

functional annotation and no known function, they could be important for cold temperature 

adaptation. Further investigation is needed to functionally characterize these hypothetical 

proteins and explore the link to stress tolerance. 

 

We compared orthologs that were annotated as salt-responsive and cold-responsive in the 

Arabidopsis thaliana genome to identify genes that show conserved function in responding to 

abiotic stress. We downloaded the sequences of 738 protein-coding genes annotated as salt stress 
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responsive and 830 protein-coding genes annotated as cold stress responsive from The 

Arabidopsis Information Resource (TAIR) database [70]. Orthologs to the Arabidopsis salt stress 

and cold stress responsive genes were identified in the M. minutum genome using Orthofinder. 

244 salt stress orthologs and 331 cold stress orthologs were found in M. minutum, with 60 genes 

belonging to both sets (Supplementary File 2).  

 

To identify patterns of conserved genes across green algae, we performed a comparative analysis 

of the M. minutum genome with 12 other Chlorophyta genomes (Chlamydomonas reinhardtii, 

Chlamydomonas eustigma, C. zofingiensis, Dunaliella salina, Gonium pectorale, M. neglectum, 

R. subcapitata, Scenedesmus obliquus UTEX 393, Scenedesmus obliquus DOE0152z, 

Scenedesmus sp. NREL 46B-D3, Tetrabaena socialis NIES-571 and Volvox carteri) by 

clustering genes into homologous gene families using the OrthoFinder software [32]. Clustering 

of these genes detected a total of 8,731 families identified in M. minutum, including 2,848 gene 

families conserved across all the Chlorophyta genomes included in this analysis (Figure 2A). 

3,251 gene families were identified as unique to M. minutum, representing over a third of all 

gene families and consisting of 3,576 individual genes. The majority of the species-specific gene 

families were single-copy genes (3,110), and the remaining 141 gene families had multiple gene 

copies. Of the species-specific gene families, less than 4% were annotated with Pfam domains 

(114 out of 3,251) (Figure 2B), but many of these gene models were supported by RNA-seq 

evidence, which could reflect the large number of new gene functions to be discovered. Of the 

species-specific gene families with annotations (Supplementary Table 3), some of these unique 

families contain Pfam domains that are associated with regulation, such as protein kinase 

domains (PF00069, PF007714) and DNA-binding domains (PF00097, PF01753) and domains of 
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unknown function (PF04765, PF005336, PF03235). There were also a few species-specific genes 

annotated with domains with metabolic functions, including a taurine catabolism dioxygenase 

(PF02668), a type III polyketide synthase-like protein (PF08392), an acyl transferase (PF00698) 

and a citrate synthase (PF00285). Most of the high pI proteins were encoded by single-copy 

species-specific genes (2,005 out of 2,152 genes). While only 179 gene families were specific to 

the genus Monoraphidium, nearly a third of the genus-specific families contained Pfam domains 

(57 out of 179). Similar to the species-specific gene families, some of genus-specific families 

contains domains that may be related to regulation and signaling, such as the AP2 domain 

(PF00847), MYND finger (PF01753), and protein kinase domains (PF00069, PF07714). Other 

domains were associated with transport, including a ZIP Zinc transporter (PF02535), an ABC 

transporter (PF00005, PF01061), and a sugar transporter (PF00083). Related to lipid metabolism, 

there were domains in the genus-specific gene families annotated with a sphingolipid delta-4-

desaturase (PF08557) and a methyltransferase (PF13489). 

 

 
Figure 2. Homologous gene families across Chlorophyceae genomes. A) Upset plot of gene families of shared gene 
families. Top of the plot shows the number of gene families present, and the bottom shows intersections where gene 
families are present in the Chlorophyceae genomes, indicated by the filled circle. B) Percent of gene families with 
Pfam annotations for gene families specific to M. minutum, gene families specific to Monoraphidium genomes, gene 
families conserved in Sphaeropleales genomes, and gene families conserved in Chlorophyceae genomes. The 
numbers show the fraction of gene families with Pfam annotations.  
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3.2 Sphingolipid desaturase domains in Monoraphidium 

One of the Monoraphidium-specific gene families includes a gene present in M. minutum 

(Protein ID: 384353) that is annotated with a sphingolipid delta-4 desaturase domain (PF08557) 

and a fatty acid desaturase domain (PF00487) (Figure 3A). The ortholog in M. neglectum shares 

78% sequence identity and contains the fatty acid desaturase domain, but lacks the sphingolipid 

delta-4 desaturase (DES4) domain. However, the M. neglectum gene is located at the end of a 

short scaffold and is likely a fragmented model. Desaturases catalyze the introduction of double 

bonds into fatty acid chains or long chain bases, and different desaturases can be highly specific 

for the position at which they modify the chemical bonds [71]. Other sphingolipid desaturase 

genes are present in the M. minutum genome, including two copies annotated as sphingolipid 

delta-8 desaturase (DES8). The DES8 proteins also contain two Pfam domains, a cytochrome b5-

like domain (PF00173) and a fatty acid desaturase domain (PF00487) (Figure 3A). Comparing 

the pattern of the sphingolipid desaturase genes in other Chlorophyta genomes based on the 

presence of these domains, the DES8 gene is conserved in many other Chlorophyta and across 

the class Chlorophyceae (Figure 3B). In contrast, the DES4 gene is present in genomes outside 

of the Chlorophyceae, but within the Chlorophyceae, it is only found in the two Monoraphidium 

genomes.  

 

Sphingolipid desaturases have been previously associated with cold tolerance in plants [72–74] 

and similarly, could be important for cold stress tolerance in Monoraphidium. Sphingolipids are 

often associated with signaling and regulatory roles that could be essential for stress responses. 

Modifications of these molecules could impact how this alga responds to environmental 
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stressors, including cold temperature. Using the M. minutum DES4 gene as a query sequence, we 

searched for similar protein sequences in the public databases PhycoCosm [33] and UniProt [23] 

and constructed a phylogenetic tree of related desaturase genes from diverse organisms (Figure 

3C). The M. minutum DES4 is placed in a clade separate from all other green algal sequences, 

aside from the M. neglectum ortholog. Instead, the clade contains Rhodophyta genes from 

Porphyra umbilicalis and Gracilariopsis chorda and a gene from a Sphaeroforma arctica, a 

cold-adapted marine Ichthyosporea protist. While the functions of the putative proteins in this 

cluster have not been characterized, the annotation of functional domains support a role in lipid 

desaturation. The placement of the Monoraphidium DES4 gene in the tree suggests that it may 

have been acquired through a horizontal gene transfer event and could confer traits for stress 

tolerance that distinguish it from other green algae. Convergent evolution of sphingolipid 

desaturases associated with cold tolerance may have occurred in plants [73]. Similarly, our 

phylogenetic analysis suggests that the DES4 gene may have originated from outside of the 

green algae evolutionary lineage. Furthermore, the DES4 gene in the arctic Chlorella vulgaris 

NJ-7 was found to be under positive selection compared to its mesophilic relative, suggesting 

that this enzyme plays a role in adaptation to cold environments [75]. 
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Figure 3. Phylogeny of sphingolipid delta-4 desaturase and sphingolipid delta-8 desaturase genes. A) 
Pfam domain content in genes annotated as a putative sphingolipid delta-4 desaturase (DES) and a 
putative sphingolipid delta-8 desaturase/delta-6 fatty acid desaturase. B) Presence of predicted 
sphingolipid delta-4 desaturase and sphingolipid delta-8 desaturase genes in Chlorophyta genomes based 
on Pfam domains. C) Phylogenetic tree of putative sphingolipid delta-4 desaturase genes determined by 
maximum likelihood. Leaves are labeled by organism name and colored by taxonomy. The black arrow 
shows where the Monoraphidium minutum delta-4 DES gene is located on the tree. 
 
 
3.3 Perturbation studies under high salt and cold temperature conditions 

In addition to the genomic analysis, we profiled the transcriptomic and metabolic response of M. 

minutum under two perturbation conditions to understand how this algal strain responds to 

different abiotic stressors. Cultures of M. minutum were grown in photobioreactors under salt 

stress (5 vs. 20 ppt) and cold temperature stress (17°C vs 27°C, approximately 10 degrees lower 

than temperature that induced the optimum maximum specific growth rate [1]). Growth was 

monitored by optical density during the sampling period (Supplementary Figure 1). At 20 ppt 
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salt concentration, decreased growth relative to the control was observed starting at day 2. The 

cultures at 17°C did not show a significant difference in growth compared to the control samples 

grown at 27°C over the period monitored. Samples for transcriptomic and metabolomic profiling 

were taken once a day over the course of six days for the salt perturbation and over the course of 

a 48-hr period for the cold temperature perturbation, along with control samples (salinity of 5ppt 

and 27°C). 

 

3.4 Differentially expressed genes identified by transcriptomics 

Using principal component analysis (PCA) performed on the transcriptome counts, the high salt 

samples were clustered separately from the control samples. Over the time course, there were 

2,860 (18.6%) differentially expressed genes (DEGs) in at least one of the high salt samples 

compared to the control samples using a |Log2FC| greater than 1 and an adjusted p-value < 0.05 

(Supplementary File 3). However, fewer than 100 genes were differentially expressed at all time 

points, suggesting variation in expression over the six-day time period.  

 

The expression levels of the Arabidopsis salt stress and cold stress responsive ortholog genes 

were compared in the perturbation experiments to control samples (Figure 4). While only a 

subset of the orthologs of Arabidopsis stress responsive genes are differentially expressed in M. 

minutum, upregulation of multiple transcription factors, including the cold shock DNA-binding 

domain protein (Protein ID: 115409) an SRF-type transcription factor (Protein ID: 456447), and 

other regulatory proteins, some suggest that there may be shared regulatory pathways across 

distant lineages. Orthologs that may be involved in signaling pathways were also differentially 
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expressed including a histidine kinase (Protein ID: 492346), a Ser/Thr protein kinase (Protein ID: 

458027), and a protein phosphatase (Protein ID: 387870). 

 

A membrane-associated gene (Protein ID: 443680) showed consistent upregulation in both the 

salt stress and cold stress samples and encodes for a 59-amino acid long protein annotated as a 

proteolipid membrane potential (PMP) modulator that is a homolog of the stress responsive 

RCI2A gene in Arabidopsis thaliana (AT3G05880) [76]. The Arabidopsis RCI2A gene is 

induced under multiple different stress conditions, including low temperature, dehydration, salt 

stress, and abscisic acid (ABA) [76,77]. Differential expression of the PMP gene in M. minutum 

suggests that it acts through a conserved mechanism response to abiotic stress. Genes annotated 

as chlorophyll A/B binding proteins associated with photosystem I showed upregulation in salt 

stress. Although the chlorophyll binding proteins were annotated as cold-responsive in 

Arabidopsis, these genes were upregulated across multiple time points in the salt stress and early 

in the cold stress response.  

 

Functional enrichment analysis using KOG and GO annotations was performed on the 

upregulated and downregulated DEGs at each time point. No KOG terms were enriched across 

all time points in the salt stress samples, but KOG terms for Ca2+-dependent lipid-binding protein 

CLB1 (KOG1012), Ca2+-transporting ATPase (KOG0202), and dyneins (KOG3595) were 

enriched at multiple time points in upregulated genes (Figure 5A-B). Genes annotated as 

fasciclin and related adhesion glycoproteins (KOG1437) were also found to be enriched in the 

set of upregulated DEGs across all three time points in the cold samples. GO terms that were 

enriched in the upregulated DEGs under high salt are associated with photosynthesis and 
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chlorophyll biosynthesis, and downregulated DEGs under high salt were enriched with GO terms 

associated with general transporter activity and chitin metabolism (Supplementary Figure 4). 

Both the high salt and cold temperature samples showed downregulated DEGs enriched with GO 

terms associated with the ribosome and translation, indicative of slowing protein production 

under stress. 

 

 
Figure 4. Fold change in expression of genes with stress-responsive orthologs in Arabidopsis thaliana. 
Heatmap rows are ordered by hierarchical clustering of Log2FC. Inset: Subset of genes that show 
upregulation across salt stress samples. Colored bars to the left of the heatmap indicate genes with a salt 
stress ortholog (black) or cold stress ortholog (cyan) in Arabidopsis. 
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Figure 5. Functional enrichment of protein domains in differentially expressed genes under salt and cold 
stresses. A) Enrichment of KOG domains in upregulated genes in each treatment compared to control at 
the equivalent time point. B) Enrichment of KOG domains in downregulated genes in each treatment 
compared to control. C) Log2FC in gene expression of genes annotated with fasciclin-like domains (Pfam 
domain PF02469) in M. minutum in salt stress and cold stress samples relative to controls at respective 
time points. 
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roles in cell adhesion and various stress responses in other algae and plants [78–81]. There are 35 

genes with the Pfam annotation (PF02469) present in the M. minutum genome. The number and 

proportion of fasciclin-annotated genes in Sphaeropleales genomes is larger than in other 

Chlorophyceae genomes (Supplementary Figure 5). Genes annotated with the KOG annotation 

for fasciclin-like domains were statistically enriched in upregulated genes under cold stress. 

Fourteen of the fasciclin genes were upregulated at the initial 12-hr time point under cold stress 

(Figure 5C). Several of the fasciclin genes continue to exhibit increased gene expression through 

the rest of the 48-hr sampling period. Three fasciclin genes were upregulated in the salt stress 

relative to control at multiple time points (Protein IDs: 215181, 450375, 443894), and two 

fasciclin genes decreased in expression (Protein IDs: 464270, 415159). One of these genes 

(Protein ID: 450375) shares sequence similarity with an astaxanthin-binding fasciclin protein in 

Scenedesmus sp. strain Ki-4 that is involved in protection from photooxidative stress [78]. Given 

that fasciclin domains are associated with flocculation [82], polysaccharide binding [83] and 

other extracellular interactions [80], protective effects are likely derived from extracellular 

polysaccharide matrix (EPM) and/or palmelloid (or palmelloid-like cell clustering events) 

formation known to be protective in high salinity environments [84,85]. While most well studied 

in salinity response, EPM or palmelloid formation could also be protective in cold environments 

by reducing convective heat loss. Therefore, the transcriptional changes of genes containing 

fasciclin domains may play an important role in adaptation to stress in M. minutum. 

 

3.6 Changes in metabolites levels in response to stress 

Metabolomic profiling was performed under the perturbation conditions to investigate changes in 

carbon, nitrogen, and amino acid metabolism in M. minutum. Over a hundred unique metabolites 

were identified based on their exact mass and comparison with the retention time and spectra of 
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internal standards. Out of the detected metabolites, 45 were significantly different in abundance, 

measured by ion intensity (peak height), across multiple perturbation samples relative to the 

control (Figure 6A). The metabolites in the salt stress samples showed a more consistent pattern 

over time, whereas the changes in metabolite abundance were more transient in the cold stress 

sample during the period monitored. Under salt stress, there was an increase in levels of common 

osmolytes, betaine, proline, and trehalose. In addition, some amino acids, like arginine, orthinine, 

asparagine, glutamine, and aspartic acid showed an increase in abundance in the salt stress 

samples. A metabolite putatively identified as ophthalmic acid, a tripeptide analogue of 

glutathione, was also increased in abundance in the salt stress samples. Ophthalmic acid has been 

associated with oxidative stress in plant species, which is linked to salt stress due to 

accumulation of reactive oxygen species [86]. 

 

Accumulation of osmolytes coincided with increased expression of some genes directly involved 

in the synthesis of these metabolites. Several genes in proline biosynthesis were upregulated 

under the salt stress, including pyrroline 5-carboxylate reductase (Protein Id: 450819) with an 

average Log2FC of 0.69 and pyrroline 5-carboxylate synthase (Protein Id: 222064) with an 

average Log2FC of 1.19. Choline dehydrogenase (Protein id: 420590), which catalyzes the 

conversion of choline to betaine aldehyde, was also upregulated under salt stress with an average 

Log2FC of 1.27. 



30 

 
Figure 6. Metabolomic profiling by liquid chromatography tandem mass spectrometry under salt stress 
and cold stress over time. A) Fold change of metabolite levels comparing treatment samples to controls at 
the corresponding time points. † indicates that metabolites were putatively identified. B) Abundance 
measured by ion intensity (peak height) of triacylglycerols (TAGs) at each sampling time point under salt 
perturbation (left) and cold temperature perturbation (right). C) Abundance measured by ion intensity 
(peak height) of monogalactosyl diacylglycerols (MGDGs) at each sampling time point. D) Abundance 
measured by ion intensity (peak height) of digalactosyl diacylglycerols (DGDGs) at each sampling time 
point. Midline of box plots show the median, and individual points represent 3-4 biological replicates. 
 

Levels of triacylglycerols (TAGs), monogalactosyl diacylglycerols (MGDGs), and digalactosyl 

diacylglycerols (DGDGs) were measured using reverse phase liquid chromatography and 

MS/MS (Figure 6B). In the salt stress experiment, lipids increased in overall abundance after the 

first day of the sampling period in both high salt and control samples. In the cold stress 

experiment, lipids dropped in abundance after 6h. The cold stress samples and control samples 
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showed minimal differences in abundance at corresponding time points. The distribution of 

abundance for each detected lipid species under the stress condition compared to control is 

shown in the Supplementary Figures 6-9. No noticeable pattern was observed comparing 

individual lipid levels in the samples grown under salt and cold stress conditions to the control 

samples. While these conditions did not result in accumulation of lipids in M. minutum, it is 

possible that more extreme conditions or different types of stress could induce changes in lipid 

metabolism. 

 

TAG composition varies across different microalgae strains [87], and the fatty acid profile can 

affect the biofuel properties, such as oxidative stability and viscosity [88]. Previous work 

investigating lipid levels in Scenedesmus sp. NREL 46B-D3 showed an increase in abundance of 

some TAGs in response to temperature stress [12]. The TAG, MGDG, and DGDG composition 

of M. minutum differed from the NREL 46B-D3 strain (Supplementary Figure 10A-C). In M. 

minutum, several of the most abundant TAG species, such as TAG(54:2), TAG(54:3), 

TAG(54:4), TAG(54:5), TAG(54:6), and TAG(56:4), had a higher proportion of the total TAG 

composition compared to the NREL 46B-D3 strain (Supplementary Figure 10A). Other TAG 

species, TAG(50:1), TAG(52:3), and TAG(52:4), had a higher proportion of the total TAG 

composition in the 46B-D3. For some MGDGs and DGDGs, the proportions in 46B-D3 under 

cold stress appeared more similar to the proportion observed in M. minutum (Supplementary 

Figure 10B-C). The most abundant MGDG in M. minutum, MGDG(34:7) at 57% of total 

MGDGs on average, made up a higher percentage of total MGDGs than the percentage observed 

in the 46B-D3 strain. However, the percentage of MGDG(34:7) out of the total MGDGs in the 

46B-D3 strain was 38% in the cold samples, which was increased relative to the percentage in 
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the control samples at 10% of total MGDGs. MGDG(34:4), MGDG(34:5), and DGDG(34:4) 

were lower in proportion in the cold samples than in the control samples in the NREL 46B-D3 

strain, which is more similar to the relative proportions observed in the cold and control samples 

in M. minutum. While M. minutum showed minimal changes in lipid composition in response to 

cold stress, Scenedesmus sp. NREL 46B-D3 had an altered composition when exposed to colder 

temperatures. As lipid composition has been shown to be important for cold tolerance [89,90], 

the composition of M. minutum may be better suited for adaptation to cold temperature 

 

3.7 Metabolic modeling 

The functional annotations, transcriptomics and metabolomics information were utilized to 

construct a metabolic model for M. minutum. A total of 3,738 proteins were annotated with a 

particular enzymatic activity, spanning a total of 1,496 unique Enzyme Commission numbers 

(Supplementary File 4). The metabolic model contained 2,661 metabolic reactions and 3,048 

metabolites (Supplementary Figure 11). Flux Balance Analysis (FBA), commonly utilized to 

model the behavior of metabolic models under various scenarios, assumes conservation of mass 

and that all reactions are under steady state (at equilibrium) [91]. We used FBA to investigate the 

completeness of metabolic reconstruction to identify important reactions linked to metabolites of 

interest. FBA solutions using linear programming showed that the model is able to simulate algal 

biomass synthesis. To understand the metabolism of the osmolytes detected in the metabolomics 

analysis, choline and proline, using phenotypic phase analysis [92] we explored the production 

envelopes of key reactions involving these metabolites considering nitrogen as a limiting factor 

and their impact on the biomass objective function (Supplementary Figure 12). The feasible 
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solution space observed shows that the production of these metabolites is likely to be impacted 

under nitrogen limitation with slightly different outcomes for the optimal growth of the alga.  

 

3.8 in silico gene deletion analysis 

To detect proteins that are crucial for growth (or limited the growth function), flux modeling was 

conducted after gene knockout simulations via the Linear Minimization of Metabolic Adjustment 

(LMOMA) algorithm [93,94]. 354 essential genes were detected which drastically impaired 

growth. When compared with the stress-responsive ortholog genes (Figure 4) and metabolites 

(Figure 6), several key metabolic enzymes were identified, such as sucrose synthase (EC: 

2.4.1.13; Protein ID: 454733), arginine decarboxylase (EC: 4.1.1.19; Protein ID 452877), and 

trehalose-phosphatase (EC: 3.1.3.12, Protein ID: 385325). While some of these enzymes did not 

show a high fold change difference across conditions (Supplementary File 5), when combined 

with the metabolomics evidence (Figure 6) and metabolic modeling, it is likely that they play an 

important role in the survival and growth of the algae under salt stress.  Furthermore, metabolic 

modeling suggests that membrane transporters play an important role in the salinity stress, 

including the glucose/fructose:H+ symporter, STP13, AtMRP2 glutathione transporter, and the 

AKT1 potassium channel. These transporters have documented roles in salinity and stress 

responses in plants [95–98]. Another key enzyme identified through flux modeling that has a 

well-known role in salinity homeostasis in Arabidopsis is the salt-sensitive 3'-phosphoadenosine-

5'-phosphatase HAL2/SAL1 (EC: 3.1.3.7; Protein ID 399370). This enzyme is responsible for 

counteracting the toxic levels of sodium and potassium inside the cell and has been shown to 

play multiple roles in salinity regulation in plants [99]. Taken together, metabolic modeling 

(while still at its infancy in non-model algal species) offers an opportunity to integrate gene 
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expression and metabolomics data beyond standard analysis of differential expression and was 

therefore useful to pinpoint candidate genes involved in conferring stress resistance or increasing 

biomass yields under certain conditions, especially given that many of the metabolic pathways 

may only show subtle gene expression differences or complex regulatory behavior [100]. 

  

4. Conclusions 

By sequencing and annotating the genome of M. minutum and performing global transcriptomic 

and metabolomic profiling to determine genes and pathways implicated in stress response, we 

identified over 3,000 strain-specific gene families and functional domains related to gene 

regulation unique to Monoraphidium. Genes like the sphingolipid delta-4 desaturase, which are 

absent in other related Chlorophyceae outside of this genus, and fasciclin-like proteins, which are 

upregulated under stress, may be important for its stress tolerant phenotype. Differential 

expression of M. minutum genes with stress-responsive orthologs in Arabidopsis identified some 

conserved responses under salt stress. The accumulation of osmolytes in response to salt stress 

coincided with increased expression of genes involved in proline and betaine biosynthesis. 

Metabolic modeling and flux balance analysis revealed a set of essential genes for the growth 

and survival of Monoraphidium minutum, corroborating findings of gene expression and 

metabolomics analyses. This multi-omics characterization of M. minutum along with a genome-

scale metabolic modeling can facilitate strain improvement, leading to the development of robust 

algal strains for deployment in large-scale outdoor cultivation systems.  
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