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Abstract

Image Retrieval, Classification and Object Recognition Using

Local Invariant Features in High Resolution Remote Sensing

Imagery

Yang Yang

High resolution remote sensed image data continues to become more accessible. One

consequence of this is that novel geographic information system are playing an increas-

ingly important role not only for academia, but also for daily human business and life.

Nevertheless, to automate the understanding of the exponentially growing geographic

image data repositories remains by-and-large an unsolved problem. In this dissertation,

we put forward efforts to tackle the most important and comprehensive problems in un-

derstanding the remotely sensed image data: image retrieval, classification and object

recognition.

In the interest of high resolution overhead images, we adapt and extend techniques

that have been highly developed in generic vision tasks. We investigate the applica-

tions of low-level local descriptors to the remote sensed image analysis. In particular,

we evaluate how local invariant descriptors perform compared to proven global texture

as well as color features for similarity retrieval. We further investigate how different

similarity measurements and sizes of the set of interest points used to represent images

influence the retrieval. In addition, we extend our work to image classification using bag-

of-visual-words models. Moreover, we explore the potential for increased synergy between

two complementary data sources: gazetteers and overhead imagery. We explore ways in
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which these two data sources can be integrated to more fully automate geographic data

management. In particular, we propose a hieararchial model to estimate the spatial ex-

tents of archived geospatial objects from gazetteers such that their spatial representations

can be extended from a single latitude/longtidue pair to a bounding box.
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Chapter 1

Introduction

1.1 Background

Remote sensing imagery has been of interest to researchers in geography, the envi-

ronmental sciences, and the military, and continues to accumulate at an increasing rate.

Higher resolution imagery is available at more affordable or sometime no cost. Excit-

ing new geographic information platforms, such as Google Earth and Microsoft Virtual

Earth, have become accessible to the public at no charge, allowing more and more people

to access these images. However, these systems only allow users to view the raw im-

age data. A much richer interaction would be enabled by the integration of automated

techniques for annotating the image content. Services such as classification, similarity

retrieval, and spatial data mining would not only satisfy known demands but would also

spawn new unthought-of applications.

The increased spatial resolution and coverage of overhead imagery from satellites

and aircraft provides novel opportunities for advancing the field of remote sensing image

analysis, particularly with regard to automated image understanding. A greater range
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Chapter 1. Introduction

(a) (b) (c) (d)

Figure 1.1: Images with resolutions of (a) 30m, (b) 1m, (c) 2ft (approximately 60cm), (d) and 1ft (ap-
proximately 30cm). The increased resolution of newer imagery supports analysis methods
that were not possible before such as approaches based on local features which characterize
individual objects and their components instead of patterns.

of objects and spatial patterns can be observed than ever before due to the increased

resolution. Figures 1.1(a) through 1.1(d) show images with spatial resolutions of 30m,

1m, 2ft (approximately 60cm), and 1ft (approximately 30cm). The image in Figure 1.1(a)

is from Landsat V which was launched in 1999. The images in figures 1.1(b) and 1.1(c) are

aerial images with approximately the same resolutions as IKONOS which was launched

in 2000 and Quickbird which was launched in 2001. Imagery with the resolution of the

aerial image in 1.1(d) or even higher is now available for large geographic regions.

1.2 Related Work

Automated remote sensing image analysis remains by-and-large an unsolved problem.

There has been significant effort over the last several decades in using low-level image

descriptors, such as spectral, shape and texture features, to make sense of the raw image

data. For example, textures features have been used to classify land motifs [5] and to
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perform similarity retrieval [6][7][8]. Unsalan et al. [9] take advantage of the shapes

of rectangular buildings by detecting straight lines to classify urban and rural regions.

Similar work on using building detectors to classify urban and rurual regions can be found

in [10][11]. Gamba et al. [12] use edge information to detect urban areas. Benediktsson

et al. [13] use morphological transformations to detect similar distributions of pixel

intensities in order to find houses, but the technique is applied to only a few classes. Zhong

et al. [14][15] introduce a conditional random field (CRF) framework and incorporate

multilevel structural information to detect urban areas. These works represent some of

the recent results in automated remote sensing image analysis. While there has been

noted successes for specific problems, ample opportunities remain.

1.2.1 Local Invariant Features

Most of the work above has two key steps: first, compute a representation of the

image; and second, analyze this representation. The representations, which are usually

called features, should capture the salient characteristics of the image. Features can be

generally categorized into global features and local features. Global features capture the

overall representation of an image using a single vector. The simplest global feature is

a vector composed of all the pixel values. Other global features include a histogram

representing the distribution of the pixel intensities of the image, or the outputs of a

bank of filters applied to the whole image. Local features, by contrast, are extracted

from localized regions in the image. They capture the local structure of the image and

thereby are potentially richer and more discriminative than global features.
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The recent emergence of local features, also termed interest point descriptors, has

revitalized several research areas in computer vision and have shown to be effective for

a range of computer vision problems. They have been successfully applied to a number

of problems including image stereo pair matching, object recognition and categorization,

robot localization, panorama construction, and image retrieval. Excellent comparisons of

different interest point detectors and descriptors can be found in [16] and [17] respectively.

1.2.2 Desirable Properties

There are generally two steps to using local invariant features for image analysis. First,

a detection step identifies interesting locations in the image usually according to some

measure of saliency. These are termed interest points. Second, a descriptor is computed

for each of the image patches centered at the interest points. The following describes

the properties of the detection and descriptor that contribute to the effectiveness of local

invariant features.

Local

The local property of the features makes their use robust to two common challenges in

image analysis. First, they do not require the challenging preprocessing step of segmen-

tation. The descriptors are not calculated for image regions corresponding to objects or

parts of objects but instead for image patches at salient locations. Second, since objects

are not considered as a whole, the features provide robustness against occlusion. They

have been shown to reliably detect objects in cluttered scenes even when only portions
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of the objects are visible. Note that occlusion includes the case where part of an object

is hidden as well as the case where the object is cropped by the edge of the image.

Invariance

Local image analysis has a long history including corner and edge detection [18].

However, the success of the more recent approaches to local analysis is largely due to the

invariance of the detection and descriptors to geometric and photometric image trans-

formations. Note that it makes sense to discuss the invariance of both the detector and

descriptor. An invariant detector will identify the same locations independent of a partic-

ular transformation. An invariant descriptor will remain the same. Often, the detection

step estimates the transformation parameters necessary to normalize the image patch (to

a canonical orientation and scale for example) so that the descriptor itself need not be

completely invariant. Geometric image transformations result from changes in viewing

geometry and include translation, Euclidean (translation and rotation), similarity (trans-

lation, rotation, and uniform scaling), affine (translation, rotation, non-uniform scaling,

and shear), and projective, the most general linear transformation in which parallel lines

are not guaranteed to remain parallel. While affine invariant detectors have been devel-

oped [19], we choose a detector that is invariant up to similarity transformations only

for two reasons. First, remote sensing imagery is acquired at a relatively fixed viewpoint

(overhead) which limits the amount of non-uniform scaling and shearing. Second, affine

invariant detectors have been shown to perform worse than similarity invariant descriptors

when the transformation is restricted to translation, rotation, and uniform scaling [19].
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Invariance to translation and scale is typically accomplished through scale-space analysis

with automatic scale selection [20]. Invariance to rotation is typically accomplished by

estimating the dominant orientation of the gradient of a scale-normalized image patch.

We construct the evaluation dataset in the experiments below to contain regions and ob-

jects that occur at arbitrary and varying orientations as is generally the case in overhead

imagery.

Photometric image transformations result from variations in illumination intensity

and direction. Photometric invariance is typically obtained in both the detection and

descriptor by simply modelling the transformations as being linear and relying on changes

in intensity rather absolute values. Utilizing intensity gradients accounts for the possible

non-zero offset in the linear model and normalizing these gradients accounts for the

possible non-unitary slope. We construct the dataset used in the experiments below to

contain images acquired under a range of different illumination conditions and from a

number of different optical sensors.

Robust Yet Distinctive

The features should be robust to other image transformations for which they are not

designed to be invariant through explicit modelling. The detection and descriptor should

not be greatly affected by modest image noise, image blur, discretization, compression

artifacts, etc. Yet, for the features to be useful, the detection should be sufficiently

sensitive to the underlying image signal and the descriptor sufficiently distinctive. Com-
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prehensive evaluation [17] has shown that local invariant features achieve this balance.

The evaluation dataset below contains images of varying quality.

Density

While detection is image dependent, it typically results in a large number of features.

This density of features is important for robustness against occlusion as well as against

missed and false detections. Of course, the large number of features that result from

natural images present representation and computational challenges. The histograms of

quantized descriptors used in this work have shown to be an effective and efficient method

to help mitigate the associated costs.

Efficient

The extraction of local invariant features can be made computationally very efficient.

This is important when processing large collections of images, such as is common in

geographic image analysis, as well as for real-time applications. Real-time object detec-

tion using local features has been demonstrated in prototype systems [21] as well as in

commercial products such as the SnapTell camera-phone recognition application [22].

1.2.3 Limitations

One of the main drawbacks of local features is that they do not provide information

about local scales and shapes. Since the local features are extracted from points or small

patches, they do not characterize the shape or contour of local regions. Segmentation or
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region based features can be regarded as a complimentary approach. However, they are

sensitive to noise and are generally unstable.

Another limitation of local features is that they usually lack semantic meaning. Some

local features may represent meaningful parts of the objects in the image, but in general

the extraction of local features is a bottom-up approach and thus local features can only

be seen as low level features. Combined with top-down approaches, local features may

result in intermediate level representations which are semantically meaningful.

1.2.4 Computing the Similarity Between Images

One of the most important tasks in computer vison, as well as in the analysis of remote

sensing image data, is computing the similarity between images. With global descriptors,

each image is represented by a single vector, and therefore standard distance metrics

such as the Euclidean distance can be used to measure the similarity between images.

With local features, computing similarity is not as straightforward. Local features allow

a more versatile description of an image than the global features, but are more difficult

to compare. For example, different images may contain different numbers of features but

may be perceptually very similar; the consistency of locations of features extracted from

different images may not imply their correspondence in the feature space; and due to

variable scale and orientation, features may be duplicated. In this case, standard metrics

that are used to compare global features may not be suitable for local features.

Two widely-used methods for comparing images using interest point features are 1)

voting strategies and 2) matching based on histograms of quantized features. Mikolajczyk

8



Chapter 1. Introduction

et al. [23] introduced a voting algorithm to search for the most similar image in a database

to a query based on interest point features. If the distance between two features falls

below a threshold, a vote is added to the corresponding database image. The database

image with the highest number of votes is considered to be the most similar one. Similar

work can be found in [24]. This method is computationally expensive, and considers each

feature independently. In contrast, histogram matching based on quantized features takes

into account the joint distribution of the local features. It applies vector quantization

to the features to generate a so called bag of words, and then represents the image by

the frequency counts of those words. This strategy can be found in [25][26]. The key

issues for this method are the codebook design, namely the number and the selection

of the words, and the histogram similarity measure. A fundamental contribution of our

work is an extensive exploration of the effects of these design parameters [27]. To our

knowledge, ours is the most extensive such exploration to date and while the focus is on

remote sensing images, our results should generalize to other types of images.

1.3 Motivation

Perhaps the most popular local invariant feature is Lowe’s SIFT (Scale-Invariant Fea-

ture Transform) features [28] which are essentially histograms of gradient information at

salient locations. A number of other local features have been propsed however. Belongie

et al. [29] developed a local descriptor termed shape context that is a histogram of edge

information with respect to a salient location. Kadir et al. [30] developed an algorithm
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that can find salient locations based on entropy theory. Mikolajczyk et al. [19] developed

the Harris-Affine detector that is modification of the Harris detector that is scale and

affine invariant. We utilize SIFT features in our work. We expect our results, however,

to hold for other local invariant features.

Due to their discrmination ability, robustness to changes in scale, orientation, and

illumination, SIFT features have been successfully applied to a range of computer vision

problems, including object recognition [28], video tracking [31], gesture recognition [32],

and 3D modeling [33] [34]. Schmid et al. [17] has shown that SIFT features outper-

form a number of other local features in matching under different image transformations.

However, until recently, the resolution of remote sensing imagery was not high enough

to support local features and the analysis focused on “stuff” rather than things. This

changed as very high resolution imagery became available, and techniques that have been

applied to generic vision problems have become appropriate. Our investigation on local

invariant features for analyzing high resolution remote sensing imagery is thus timely

since it only recently became possible.

While local features have potential for analyzing high resolution remote sensing im-

agery, there has not been much work in this area. Porway et al. [35] used edge features,

color histograms, and SIFT features to represent several classes of objects, and combined

those features in a hierarchical and contextual model to learn different scenes. However,

they mainly focus on urban areas, especially commercial areas, thus their approach can

only learn objects such as trees, cars, roofs, roads, and parking lots. Sirmacek et al.

[36] modeled each house in an image as a subgraph in which SIFT features are taken as
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vertices. Recognition is then formulated as a subgraph matching and graph cuts problem.

Their images are extracted only from uniform residential areas and their method is mainly

based on the affinity of the appearances of different houses. In reality, the appearance of

houses may vary a lot, thus their strategy may become restrictive and unrealistic.

1.4 Overview of the Dissertation

This thesis focuses on the automatic understanding of remote sensing imagery, demon-

strating how local invariant features are effective for the analysis of remotely sensed im-

ages in three major aspects: image retrieval, classification, and object detection. The

following chapter shows the application of local features to image retrieval and investi-

gates how different settings and similarity metrics can affect the retrieval performance.

Chapter 3 empirically evaluates the employment of local features for classifying different

land-use/land-cover (LULC) classes and investigates how spatial information can improve

the overcall classification. Chapter 4 presents a framework in which non-image data and

image data can fuse together to detect complex geospatial objects. The last chapter

concludes this dissertation.

1.5 Summary of Contributions

The contribution of this dissertation can be summarized as follows:
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• The first study of local invariant features for content-based geographic image re-

trieval, in particular showing their superiority over standard features such as color

and texture.

• The most thorough investigation of the effects of different design parameters of

quantized local invariant features for any image analysis problem, not just overhead

imagery.

• A first-of-its-kind 21 land-use/land-cover dataset made publicly available to other

researchers. We anticipate this will serve as a standardized dataset for evaluating

different techniques, which has largely been lacking in the field of analyzing remote

sensing imagery.

• The proposed spatial pyramid co-occurrence approach which characterizes both the

absolute and relative spatial layout of images.

• The investigation of the potential synergy between gazetteers and overhead imagery

for estimating the spatial extents of complex geospatial object and a novel frame-

work which integrates both non-image and image data for solving this problem.

• A hierarchical model that represents the appearance of complex geospatial objects

using latent land-use/land-cover classes.

12
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Image Retrieval

The work presented in this chapter was published as peer-reviewed full conference

papers at the International Symposium on Visual Computing in 2007 [37] and the ACM

International Symposium on Advances in Geographic Information Systems in 2007 [38],

and as a journal paper in the IEEE Transactions on Geoscience and Remote Sensing in

2012 [27].

2.1 Background

Content-based image retrieval (CBIR) has been an active research area in computer

vision for over a decade with IBM’s Query by Image Content (QBIC) system from 1995

[39] being one of the earliest successes. A variety of image descriptors have been inves-

tigated including color, shape, texture, spatial configurations, and others. A survey of

CBIR is available in [40].

Similarity based image retrieval has been proposed as an automated method for

managing and interacting with the the growing collections of remote sensing imagery.
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As in other domains, a variety of descriptors have been investigated including spectral

[41, 42], shape [43], texture [6–8, 44, 45], and combinations such as multi-spectral texture

[46]. While the most effective descriptor is problem dependent, texture features have en-

joyed success since, unlike spectral features, they incorporate spatial information which

is clearly important for remote sensing imagery but avoid the difficult pre-processing step

of segmentation needed to extract shape features.

In this chapter, we investigate the application of interest points, or local invariant

features, to remote sensing image retrieval. Interest point descriptors have enjoyed sur-

prising success for a range of traditional computer vision problems. The application of

interest point detectors and descriptors to image retrieval has focused primarily on re-

trieving images of the same object or scene under different conditions. Examples include

finding additional appearances of a given object in scenes or shots in a video [26], find-

ing images of 3D objects acquired from different viewpoints [47–49] or against different

backgrounds [50], finding images belonging to distinct, homogeneous semantic categories

[48, 51], finding frames of the same scene in a video [52], and finding images of the same

indoor scene for localization [53]. There has been little application to finding similar

images or image regions. Further, there has been little research into applying interest

point detectors and descriptors to the problem of similarity retrieval in large collections

of high resolution remote sensing imagery.

In this chapter, our investigation is done in the context of similarity retrieval. In

particular, we compare interest point descriptors to global texture features, which have

been shown to be particularly effective for remote sensing image retrieval, as well as color

14
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histogram features. Similarity retrieval is not only an interesting application but also

serves as an excellent platform for evaluating the overall descriptiveness of a descriptor.

Many of the findings will likely inform other image analysis. Indeed, computing image

similarity is fundamental to kernel based methods such as non-linear support vector

machines.

2.2 Image Features

2.2.1 Global Features

We consider Gabor texture features as the global features. Texture features, and in

particular Gabor texture features, have proven to be effective for performing content-

based similarity retrieval in remote sensing imagery [6–8, 44–46]. The MPEG-7 Multi-

media Content Description Interface [54] standardized Gabor texture features after they

were shown to outperform other texture features for similarity retrieval. One of the

evaluation datasets used in the competitive standardization process consisted of remote

sensing imagery.

Gabor texture analysis is accomplished by applying a bank of scale and orientation

selective Gabor filters to an image. Gabor functions are Gaussians functions modulated

by a sinusoid. Two dimensional spatial filters based on Gabor functions can be made

orientation and scale selective by controlling this modulation. While the choice of the

number of orientations and scales is application dependent, experimentation has shown
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that a bank of filters tuned to combinations of five scales, at octave intervals, and six

orientations, at 30-degree intervals, is sufficient for the analysis of remote sensing imagery.

A Gabor texture feature vector is formed from the filter outputs as follows [55]. Ap-

plying a bank of Gabor filters with R orientations and S scales to an image results in a

total of RxS filtered images:

f ′
11 (x, y) , . . . , f

′
RS (x, y) . (2.1)

A single global feature vector for the original image is formed by computing the first and

second moments of the filtered images. That is, a 2RS dimension feature vector, hGABOR,

is formed as

hGABOR = [µ11, σ11, µ12, σ12, . . . , µ1S, σ1S, . . . , µRS, σRS ] , (2.2)

where µrs and σrs are the mean and standard deviation of f ′
rs (x, y). Finally, to normalize

for differences in range, each of the 2RS components can be scaled to have a mean of

zero and a standard deviation of one across the entire dataset.

2.2.2 Local Invariant Features

We choose David Lowe’s SIFT [28, 56] as the local feature. SIFT-based descriptors

have been shown to be robust to image rotation and scale, and to be capable of matching

images with geometric distortion and varied illumination. An extensive comparison with
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other local descriptors found that SIFT-based descriptors performed the best in an image

matching task [17]. Like most interest point based analysis, there are two components

to SIFT-based analysis. First, a detection step locates points that are identifiable from

different views. This process ideally locates the same regions in an object or scene regard-

less of viewpoint, illumination, etc. Second, these locations are described by a descriptor

that is distinctive yet also invariant to viewpoint, illumination, etc. In short, SIFT-based

analysis focuses on image patches that can be found and matched under different image

acquisition conditions.

The detection step is designed to find image regions that are salient not only spatially

but also across different scales. Candidate locations are initially selected from local

extrema in Difference of Gaussian (DoG) filtered images in scale space. The DoG images

are derived by subtracting two Gaussian blurred images with different σ

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) . (2.3)

where L(x, y, σ) is the image convolved with a Gaussian kernel with standard deviation

σ, and k represents the different sampling intervals in scale space. Each point in the

three dimensional DoG scale space is compared with its eight spatial neighbors at the

same scale, and with its nine neighbors at adjacent higher and lower scales. The local

maximum or minimum are further screened for minimum contrast and poor localization

along elongated edges. The last step of the detection process uses a histogram of gradient

directions sampled around the interest point to estimate its orientation. This orientation
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is used to align the descriptor to make it it rotation invariant. We refer to the standard

approach described above as saliency-based feature extraction.

A feature descriptor is then extracted from the image patch centered at each interest

point. The size of this patch is determined by the scale of the corresponding extremum

in the DoG scale space. This makes the descriptor scale invariant. The feature descriptor

consists of histograms of gradient directions computed from a 4x4 spatial grid. The

interest point orientation estimate described above is used to align the gradient directions

to make the descriptor rotation invariant. The gradient directions are quantized into eight

bins so the final feature vector has dimension 128 (4x4x8). This histogram-of-gradients

descriptor can be roughly thought of a summary of the edge information in the image

patch centered at the interest point.

An alternative way to extract SIFT descriptors is to use a fixed grid. This approached

is refered as grid-based feature extraction. It is often all called dense sampling as it

typically results in a larger number of descriptors since interest points are not detected

in non-salient regions (of uniform intensity for example).

2.2.3 Color Features

Color histogram features are computed in three color spaces: red green blue (RGB),

hue lightness saturation (HLS), and CIE Lab. Each dimension is quantized into eight

bins for a total histogram feature length of 512. The histograms are normalized to sum

to one (L1 norm equal to one). Given a color image, this results in three different color

histogram features: fRGB, fHLS, and fLab.

18



Chapter 2. Image Retrieval

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 2.1: Two examples from each of the groundtruth classes in the IKONOS dataset. (a) Aqueduct.
(b) Commercial. (c) Dense residential. (d) Desert chaparral. (e) Forest. (f) Freeway. (g)
Intersection. (h) Parking lot. (i) Road. (j) Rural residential.

2.3 Groundtruth Datasets

Two groundtruth datasets were created to conduct quantitative analyses: the IKONOS

dataset and the USGS dataset.

2.3.1 IKONOS Dataset

The first groundtruth dataset was created from a collection of IKONOS 1-m panchro-

matic satellite images of the United States. Ten sets of 100 64-by-64 pixel grayscale

images were manually extracted from 22 large IKONOS images covering major cities in

the US for the following LULC classes: aqueduct, commercial, dense residential, desert

chaparral, forest, freeway, intersection, parking lot, road, and rural residential. Figure

2.1 shows two examples from each of these ten classes.
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2.3.2 USGS Dataset

The second groundtruth dataset consists of images of 21 LULC classes selected from

aerial orthoimagery with a pixel resolution of one foot. Large images were downloaded

from the United States Geological Survey (USGS) National Map of the following US

regions: Birmingham, Boston, Buffalo, Columbus, Dallas, Harrisburg, Houston, Jack-

sonville, Las Vegas, Los Angeles, Miami, Napa, New York, Reno, San Diego, Santa

Barbara, Seattle, Tampa, Tucson, and Ventura. 100 images measuring 256 × 256 pixels

were manually selected for each of the following 21 classes: agricultural, airplane, base-

ball diamond, beach, buildings, chaparral1, dense residential, forest, freeway, golf course,

harbor, intersection, medium density residential, mobile home park, overpass, parking

lot, river, runway, sparse residential, storage tanks, and tennis courts. These classes were

selected because they contain a variety of spatial patterns, some homogeneous with re-

spect to texture, some homogeneous with respect to color, others not homogeneous at

all, and thus represent a rich dataset for our investigation.

Five samples of each class are shown in figure 2.2. The images downloaded from the

National Map are in the RGB colorspace. Both RGB and grayscale versions of the 2100

groundtruth images are used where Gray = 0.299 ∗R + 0.587 ∗G+ 0.114 ∗B.

A significant benefit of using aerial orthoimagery from the USGS National Map is that

the data is already in the public domain. Thus, our 21 class LULC dataset is the largest

dataset of its kind that can be made publicly available to other researchers. The dataset

1This class might be more appropriately labelled “desert scrub”.
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is available free of charge on our research group’s website. Our server logs indicate this

dataset has been downloaded over 100 times.

2.4 Experiments

2.4.1 Similarity Retrieval

The metrics to measure the performance of different features in the similarity retrieval

are as follows. Let T be a collection of M images; let hm be the feature vector extracted

from image m, where m ∈ 1, . . . ,M ; let d(·, ·) be a distance function defined on the

feature space; and let hquery be the feature vector corresponding to a given query image.

Then, the image in T most similar to the query image is the one whose feature vector

minimizes the distance to the query’s feature vector:

m∗ = argmin
1≤m≤M

d(hquery, hm) . (2.4)

Likewise, the k most similar images are those that result in the k smallest distances when

compared to the query image. Retrieving the k most similar items is commonly referred

to as a k-nearest neighbor (kNN) query.

Given a groundtruth dataset, there are a number of ways to evaluate retrieval per-

formance. One common method is to plot the precision of the retrieved set for different

values of k. Precision is defined as the percent of the retrieved set that is correct and can

be computed as the ratio of the number of true positives to the size of the retrieved set.

21



Chapter 2. Image Retrieval

(a) Agricultural (b) Airplane

(c) Baseball Diamond (d) Beach

(e) Buildings (f) Chaparral

(g) Dense Residential (h) Forest

(i) Freeway (j) Golf Course

(k) Harbor (l) Intersection

(m) Medium Density Residential (n) Mobile Home Park

(o) Overpass (p) Parking Lot

(q) River (r) Runway

(s) Sparse Residential (t) Storage Tanks

(u) Tennis Courts
Figure 2.2: The groundtruth dataset contains 100 images from each of 21 LULC classes. Five samples

from each class are shown above.
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It is straight forward and meaningful to compute and compare the average precision for

a set of queries when the groundtruth sizes are the same. (It is not straight forward to

do this for precision-recall curves.)

Plotting precision versus the size of the retrieved set provides a graphical evalua-

tion of performance. A single measure of performance that not only considers that the

groundtruth items are in the top retrievals but also their ordering can be computed as

follows [54]. Consider a query q with a groundtruth size of NG(q). The Rank(k) of

the kth groundtruth item is defined as the position at which it is retrieved. A number

K(q) ≥ NG(q) is chosen so that items with a higher rank are given a constant penalty

Rank(k) =



















Rank(k), if Rank(k) ≤ K(q)

1.25K(q), if Rank(k) > K(q)

. (2.5)

K(q) is commonly chosen to be 2NG(q). The Average Rank (AVR) for a single query q

is then computed as

AV R(q) =
1

NG(q)

NG(k)
∑

k=1

Rank(k) . (2.6)

To eliminate influences of different NG(q), the Normalized Modified Retrieval Rank

(NMRR)

NMRR(q) =
AV R(q)− 0.5[1 +NG(q)]

1.25K(q)− 0.5[1 +NG(q)]
(2.7)

is computed. NMRR(q) takes values between zero (indicating whole groundtruth found)

and one (indicating nothing found) irrespective of the size of the groundtruth for query
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q, NG(q). Finally, the Average Normalized Retrieval Rate (ANMRR) can be computed

for a set NQ of queries

ANMRR =
1

NQ

NQ
∑

q=1

NMRR(q) . (2.8)

2.4.2 Comparing Global and SIFT Features on the IKONOS

Dataset

Dissimilarity Measures

Gabor Texture Features The (dis)similarity between two images is measured by

computing the Euclidean distance between their texture features

d(h1, h2) = ‖h1− h2‖2 =

√

√

√

√

2RS
∑

i=1

(h1i − h2i)2 . (2.9)

This results in an orientation (and scale) sensitive similarity measure. Orientation invari-

ant similarity is possible by using the modified distance function

dRI(h1, h2) = min
r∈R

‖h1<r> − h2‖2 (2.10)
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where h<r> represents h circularly shifted by r orientations:

h<r> = [(hr1, hr2, · · · , hrS), (h(r+1)1, h(r+1)2, · · · , h(r+1)S),

· · · , (hR1, hR2, · · · , hRS), (h11, h12, · · · , h1S),

· · · , (h(r−1)1, h(r−1)2, · · · , h(r−1)S)] . (2.11)

Parentheses have been added for clarity. Conceptually, this distance function computes

the best match between rotated versions of the images without repeating the feature

extraction. The granularity of the rotations is of course limited by the filter bank con-

struction.

SIFT Features Rather than work with the full 128 dimension SIFT feature vectors,

we adopt a standard approach, termed bag-of-visual-words (BOVW) [26], to summarize

the descriptors without regard to where they appear in an image. The analogy to repre-

senting text documents as word count frequencies is made possible by quantizing the 128

dimension SIFT descriptors. We clustered a large sampling of the features and labelled

the full SIFT feature set with the label of the closest cluster center. Representing the

features using the cluster labels has been shown to be effective in other image retrieval

tasks [26]. The clustering was performed using the standard k-means algorithm.

The final interest point descriptor used to compute the similarity between two images

is composed of the frequency counts of the labelled SIFT feature vectors. That is, hINT

25



Chapter 2. Image Retrieval

for an image, is

hINT = [t0, t1, . . . , tk−1] , (2.12)

where ti is number of occurrences of SIFT features with label i in the image. hINT is

similar to a term vector in document retrieval. The cosine distance has shown to be

effective for comparing documents represented by term vectors [57] so we use it here to

compute the similarity between images:

d(h1, h2) =

k−1
∑

i=0

h1ih2i
√

k−1
∑

i=0

h12i
k−1
∑

i=0

h22i

. (2.13)

The cosine distance measure ranges from zero (no match) to one (perfect match). To

make it compatible with the distance function used for comparing the global Gabor

texture features, for which zero is a perfect match, we use one minus the cosine distance

to perform similarity retrieval using interest point descriptors.

Datasets

The IKONOS groundtruth dataset is used to conduct the quantitative analyses and

perform the comparisons. In addition, a separate dataset was created for the qualitative

analyses. Two large IKONOS images of the Phoenix and Los Angeles areas were parti-

tioned into non-overlapping 64-by-64 pixel tiles. The Phoenix image measures 21,248-by-

11,328 pixels for a total of 58,764 tiles and the Los Angeles image measures 10,560-by-
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Figure 2.3: Image patches corresponding to two of the 50 clusters used to label the SIFT features. The
top row shows a cluster that has captured corner-like patches. The bottom row shows a
cluster that has captured grid-like patches.

10,624 pixels for a total of 27,390 tiles (86,154 tiles in total). The images have a resolution

of 1m and are grayscale, which is the same as the IKONOS groundtruth dataset.

Feature Extraction

For the qualitative analyses, a single Gabor texture feature was extracted from each

tile from the two large IKONOS images using a filterbank tuned to R = 6 orientations and

S = 5 scales. The interest points descriptors were extracted and assigned to the tiles as

follows. First, interest points and SIFT features were extracted from the complete images,

resulting in 4,880,415 features for the Phoenix image and 2,406,787 features for the Los

Angeles image. 100,000 features were sampled from the combined set and clustered into

50 clusters using k-means clustering. Figure 2.3 shows sample image patches for two of

the 50 clusters. Each of the 7,287,202 features in the large images was labelled based

on the clustering results and assigned to the tile containing the interest point location.

Thus, the 86,154 tiles contained 84.6 labelled SIFT features on average. Finally, a single

interest point descriptor consisting of the label counts was assigned to each tile.

For the quantitative analyses, a single Gabor texture feature was extracted for each of

the 1,000 groundtruth images of the IKONOS dataset, again using a filterbank tuned to
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 2.4: The interest point locations for the images in figure 2.1.

R = 6 orientations and S = 5 scales. Interest points and SIFT features were also extracted

from each image and labelled using the clustering from the larger dataset above (thus

the clustering and labeling was not tuned to the groundtruth dataset). A single interest

point descriptor consisting of the label counts was assigned to each image. The images

here contained an average of 59.1 labelled features (fewer than above since the SIFT

features were extracted from the small images placing an upper bound on the scale of

the interest points). Figure 2.4 shows the locations of the detected interest points for the

sample images in figure 2.1. It is worth pointing out the different feature extraction times

for the groundtruth dataset. It took approximately 51 seconds to extract and label the

interest points and approximately 353 seconds to extract the Gabor texture features for

the 1,000 images in the groundtruth dataset (on a typical desktop workstation). While the

extraction software was not optimized and the timing measurements were not scientific,

we believe this order-of-magnitude difference between the two features is to be expected.

Efficient extraction is a noted strength of SIFT features.
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Qualitative Analysis

A Geographic Image Retrieval (GIR) demonstration application was used for the

qualitative analysis. The GIR demo allows a user to navigate large IKONOS images

and select 64-by-64 pixel tiles as query images. The user can then perform a k-nearest

neighbor query using either the interest points or the global Gabor texture features. The

most similar k tiles in the result set is displayed in order of decreasing similarity. This

demo turns out to be a valuable tool for evaluating the descriptive power of a feature.

Figure 2.5 shows a screen capture of the GIR demo in which the user has selected a tile

from a dense residential region in the center of the displayed IKONOS image of Phoenix.

The user is now ready to perform a 128-nearest neighbor query in the 86,154 tile Los

Angeles and Phoenix image dataset. Figure 2.6 shows the top 32 retrievals in order of

decreasing similarity for this query tile for each of the three approaches.

Quantitative Analysis

The quantitative analysis involved a comprehensive set of similarity retrievals using

each of the 1,000 images in the groundtruth dataset as a query. Precision was computed

for each query as a function of retrieved set size from 1 to 1,000. These precision values

were then averaged over the 100 queries from each of the ten groundtruth classes. This

was performed three times: 1) for the interest point descriptors; 2) for the global Gabor

texture features using the standard orientation sensitive distance measure; and 3) for

the global Gabor texture features using the modified rotation invariant (RI) distance
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Figure 2.5: The Geographic Image Retrieval demo which allows users to perform similarity retrieval in
remote sensing imagery.

measure. Figure 2.7 shows the averaged precision curves for the ground truth datasets.

The optimal case is also plotted for comparison.

The Average Normalized Modified Retrieval Rate (ANMRR) described in section 2.4.1

was also computed for each of the three similarity retrieval methods, for each of the ten

groundtruth classes. Table 2.1 shows these values which range from zero for all the

groundtruth items retrieved in a result set the size of the groundtruth to one for none of

the groundtruth items retrieved.

Again, the interest point descriptors were more computationally efficient, this time

in terms of how long it took to perform all 1,000 queries. On average, using the interest

point descriptors took only two seconds, using the global Gabor texture features took 12
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(a)

(b)

(c)

Figure 2.6: Examples of similarity retrieval using the GIR demo. The query tile (top left) and the
top 32 retrieved images in order of decreasing similarity for (a) interest point descriptors,
(b) global Gabor texture features, and (c) global Gabor texture features using the rotation
invariant similarity measure.
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Figure 2.7: Precision as a function return set size for the three similarity retrieval methods for the
groundtruth classes. (RI=rotation invariant) (a) Aqueduct. (b) Commercial. (c) Dense
residential. (d) Forest. (e) Freeway. (g) Intersection. Not shown are desert chaparral
(methods perform comparably), parking lot (curves are similar to forest), road (curves are
similar to aqueduct), and rural residential (curves are similar to commercial).

seconds, and using the texture features with the rotation invariant distance measure took

60 seconds. This variation could be critical for supporting interactive similarity retrieval.

Discussion

The qualitative analysis provided by the GIR demo showed the interest point descrip-

tors support effective similarity retrieval. Retrieval results for the interest points, such

as the example in figure 2.6, are rotation invariant, and when compared to the global

features, are less sensitive to differences in scale. This makes sense because the interest
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Table 2.1: Average Normalized Modified Retrieval Rate (ANMRR). Lower value is better.

Groundtruth Interest pts Global Global RI
Aqueduct 0.494 0.417 0.243
Commercial 0.604 0.432 0.385
Dense residential 0.413 0.314 0.280
Desert chaparral 0.023 0.015 0.020
Forest 0.188 0.327 0.368
Freeway 0.458 0.761 0.430
Intersection 0.438 0.358 0.420
Parking lot 0.358 0.502 0.460
Road 0.637 0.623 0.485
Rural residential 0.463 0.413 0.454
Average 0.408 0.416 0.354

points are normalized for scale during the detection step. We also observed that they are

more robust to variation in the spatial configurations of the groundtruth classes. Notice

that the retrieved set for the interest point descriptors in figure 2.6 exhibits greater vari-

ability in the arrangement of the houses and streets than the retrieved sets for the global

texture features.

None of the approaches was shown to clearly outperform the others in the quantitative

analysis. Both the precision curves and the ANMRR values indicate that different de-

scriptors are better for different groundtruth classes. The following general observations

can be made from the precision curves in figure 2.7. The interest points descriptors have

difficulty with the aqueduct, commercial, and road classes (the precision curves for the

road class are not shown but are very similar in shape to those for the aqueduct class).

These classes tend to be very structured which presents a challenge for the interest point

descriptors. The interest point descriptors perform the best for the forest and parking

lot classes (the curves for parking lot are similar to those for forest). Again, these classes
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exhibit less structure–forest is a stochastic rather than a regular pattern, and the parking

lots vary in how full they are. The rotation invariance of the interest point descriptors

makes them perform comparable to the rotation invariant global texture approach for

the freeway class. Finally, the rotation sensitive global texture approach performs the

best for the intersection and rural residential classes (the curves for rural residential are

similar to those for forest). Due to the nature of the IKONOS images, these classes tend

to be similarly oriented thus providing an advantage to an approach that exploits this.

The ANMRR values in table 2.1 are in agreement with these observations. The

ANMRR averaged over all groundtruth classes indicates the rotation invariant global

texture approach performs the best overall, followed by the interest points, and last is

the rotation sensitive global texture features.

This work represented an initial investigation into using interest point descriptors for

content-based analysis of remote sensing imagery. These features were shown to perform

comparably to proven approaches to similarity retrieval, such as texture.

2.4.3 Further Investigation on Image Retrieval Using SIFT Fea-

tures

As an extension of the work from the previous section, several methods using interest

point descriptors to perform similarity retrieval are further investigated. We compare the

results of using quantized versus full-length descriptors, of using different descriptor-to-
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descriptor distance measures, and of using different methods for comparing the sets of

descriptors representing the images.

Similarity Measures Using Full Descriptors

This section describes methods for computing the similarity between two images rep-

resented by sets of full interest point descriptors. First, we describe the comparison of

single descriptors and then extend this to sets of descriptors.

Comparing Single Descriptors SIFT descriptors are represented by 128 dimension

feature vectors. We use standard Euclidean distance to compute the similarity between

two SIFT descriptors. Let h1 and h2 be the feature vectors representing two SIFT de-

scriptors. The Euclidean distance between these features is then computed as

dEuc(h1, h2) =
√

(h1 − h2)T (h1 − h2) . (2.14)

We also consider using the Mahalanobis distance to compare single descriptors. The

Mahalanobis distance is equivalent to the Euclidean distance computed in a transformed

feature space in which the dimensions (feature components) have uniform scale and are

uncorrelated. The Mahalanobis distance between two feature vectors is computed as

dMah(h1, h2) =
√

(h1 − h2)TΣ−1(h1 − h2) (2.15)

where Σ is the covariance matrix of the feature vectors.
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Comparing Sets of Descriptors Since images are represented by multiple interest

point descriptors, we need a method to compute the similarity between sets of descriptors.

We formulate this as a bipartite graph matching problem between a query and target

graph in which the vertices are the descriptors and the edges are the distances between

descriptors computed using either the Euclidean or Mahalanobis distance.

We consider two different methods for making the graph assignments. In the first

method, we assign each query vertex to the target vertex with the minimum distance,

allowing many-to-one matches. Let the query image contain the set ofm descriptors Hq =

{hq1, ..., hqm} and the target image contain the set of n descriptors Ht = {ht1, ..., htn}.

Then, we define the minimum distance measure between the query and target image to

be

Dmin(Q, T ) =
1

m

m
∑

i=1

dmin(hqi, T ) (2.16)

where

dmin(hqi, T ) = min
1≤j≤n

d(hqi, htj) (2.17)

and d(·, ·) is either the Euclidean or Mahalanobis distance. The factor of 1/m normalizes

for the size of the query descriptor set.

We also consider the optimal complete (perfect) assignment between query and target

vertices. In this assignment we allow a query vertex to be assigned to at most one target

vertex. In the case where there are fewer target than query vertices, we allow some of the

query vertices to remain unassigned. We define the complete distance measure between
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the query and target image to be

Dcomp(Q, T ) = min
f

m
∑

i=1

d(hqi, htf(i)) (2.18)

where f(·) is an assignment which provides a one-to-one mapping from (1, ..., m) to

(1, ..., n). Again, d(·, ·) is either the Euclidean or Mahalanobis distance. In the case

where m > n, we allow m−n values not to be mapped and not contribute to the distance

summation. We find the optimal mapping using the Hungarian algorithm [58] which runs

in polynomial time in m and n. Finally, we normalize for the number of descriptors by

dividing the distance by min(m,n).

Similarity Measures Using Quantized Descriptors

As an alternate to using the full 128 dimension descriptors, quantized features are also

used. The 128 dimension descriptors were quantized using the k-means algorithm and

labelled using both the Euclidean and Mahalanobis distance measures for comparisons.

The quantized descriptor is defined by equation 2.12 and the similarity between a query

image and a target image is defined by equation 2.13.

Dataset

The IKONOS groundtruth dataset is used for evaluation. Each groundtruth image is

represented by the following:

• A set of full interest point descriptors.
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• Quantized feature counts based on clustering using Euclidean distance.

• Quantized feature counts based on clustering using Mahalanobis distance.

Results

The retrieval performance of the different representations and similarity measures is

evaluated by performing a comprehensive set of k-nearest neighbor similarity searches

using each of the 1,000 images in the groundtruth dataset as a query. In particular, the

following six methods were compared:

1. Quantized descriptors based on Euclidean clustering. Cosine distance.

2. Quantized descriptors based on Mahalanobis clustering. Cosine distance.

3. Full descriptors. Minimum distance measure using Euclidean distance.

4. Full descriptors. Minimum distance measure using Mahalanobis distance.

5. Full descriptors. Complete distance measure using Euclidean distance.

6. Full descriptors. Complete distance measure using Mahalanobis distance.

These methods will be referred to by number in the rest of this section.

Similarity retrieval using the quantized descriptors was compared for cluster counts

c ranging from 10 to 1000. The clustering was performed on 100,000 points selected at

random from the large IKONOS images that was used for qualitative analysis in section

2.4.2. We computed the average ANMRR over the ten groundtruth classes. This was

done ten times for each value of c since the clustering process is not deterministic. Figure
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Figure 2.8: Retrieval performance of descriptors quantized using k-means clustering for different num-
bers of clusters c. Shown for clustering with Euclidean and Mahalanobis distances. Image-
to-image similarity is computed using the cosine distance measure.

2.8 shows the ANMRR values for different numbers of clusters. Error bars show the first

standard deviation computed over the ten trials for each c. Again, ANMRR values range

from zero for all the groundtruth items retrieved in a result set the size of the groundtruth

to one for none of the groundtruth items retrieved.

We make two conclusions from the results in Figure 2.8. One, that it is better to

quantize the descriptors using Euclidean k-means clustering; and two, that the optimal

number of clusters is 50. We use this optimal configuration in the remaining comparisons.

Figure 2.9 plots precision (the percent of correct retrievals) versus result set size for

the different methods. These values are the average over all 1,000 queries. Quantized

descriptors are shown to outperform full descriptors for all result set sizes. The minimum

distance measure is shown to outperform the complete distance measure for comparing

sets of full descriptors. Finally, as above, Euclidean distance is shown to outperform
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Figure 2.9: Retrieval performance in terms of precision versus size of result set.

Mahalanobis distance, this time when used for full descriptor-to-descriptor comparison.

Table 2.2 lists the ANMRR values for the specific image categories. The values are the

average over all 100 queries in each category. These results confirm that the quantized

descriptors outperform the full descriptors on average. It is interesting to note, however,

that no single method performs best for all categories.

Table 2.2: Average Normalized Modified Retrieval Rate (ANMRR). Lower value is better.

Ground-truth Method 1 Method 3 Method 4 Method 5 Method 6
Aqueduct 0.488 0.655 0.573 0.621 0.577
Commercial 0.575 0.668 0.703 0.761 0.896
Dense residential 0.432 0.412 0.795 0.670 0.959
Desert chaparral 0.015 0.002 0.062 0.003 0.493
Forest 0.166 0.131 0.764 0.338 0.940
Freeway 0.497 0.384 0.290 0.401 0.307
Intersection 0.420 0.435 0.672 0.675 0.953
Parking lot 0.314 0.361 0.526 0.301 0.617
Road 0.680 0.494 0.417 0.660 0.680
Rural residential 0.460 0.592 0.833 0.706 0.943
Average 0.405 0.413 0.563 0.514 0.736
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Finally, it is worth comparing the computational complexity of the different meth-

ods. On average, the 1,000 queries took approximately 2 seconds using the quantized

descriptors, approximately 10 hours using the minimum distance measure for sets of full

descriptors, and approximately 14 hours using the complete distance measure for sets of

full descriptors. This significant difference results from the combinatorial expansion of

comparing sets of descriptors and the cost of full descriptor-to-descriptor comparisons

in the 128 dimension feature space. Conversely, comparing two images using quantized

features only requires a single cosine distance computation. These timings were measured

on a typical workstation. No distinction is made between using Euclidean and Maha-

lanobis distances since the latter is implemented by transforming the feature vectors

before performing the queries.

Discussion

We reach the following conclusions based on the results above. Similarity retrieval

using quantized interest point descriptors is more effective and significantly more effi-

cient than using full descriptors. This is true regardless of how the sets of full descriptors

for the images are matched–minimum or complete–and how the individual descriptors

are compared–Euclidean or Mahalanobis. This finding is initially a bit surprising. One

might expect the loss of information from quantizing the descriptors to reduce perfor-

mance. However, it seems that a binary comparison between quantized descriptors is

more effective than an exact (Euclidean or Mahalanobis) comparison between full de-

scriptors. The cosine distance can be viewed as comparing sets of descriptors in which
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individual descriptors are matched if they are quantized to the same cluster. The exact

distance between descriptors does not matter, only that they are in some sense closer

to each other than they are to other descriptors. This actually agrees with how interest

point descriptors are used to determine correspondences between stereo pairs [56]. It is

not the exact distance between a pair of descriptors that is used to assign a point in one

image to a point in another but the ratio of this distance to that of the next closest point.

We showed that the optimal number of clusters used to quantize the descriptors

seems to be around 50. This is lower than we expected. Other researchers [26] found

that a much larger number of clusters, on the order of thousands, performed better for

matching objects in videos. While our application is different it would be interesting

to investigate this further. This finding is significant as a coarser quantization supports

higher scalability since it results in reduced feature representation and faster similarity

comparison.

We found that using the Euclidean distance to compare descriptors is better than

the Mahalanobis distance. This is true for using k-means clustering to construct the

quantization space. It is also true for computing individual descriptor-to-descriptor dis-

tances when comparing sets of full descriptors. This results from the distribution of the

descriptors in the 128 dimension space. This again differs from the findings of other

researchers [26] who used the Mahalanobis distance to cluster descriptors. It is not clear,

however, if the Euclidean distance was considered or if it was just assumed that removing

correlations and scale would improve the quantization induced by the clustering.
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We discovered that when comparing sets of full descriptors, it is better to allow many-

to-one matches; that is, the minimum distance measure outperformed the complete dis-

tance measure. This agrees conceptually with the superior performance of the quantized

descriptors. The cosine distance used to compare quantized descriptors “allows” multiple

matches.

Finally, we found that no method performed the best for all image classes. This

requires additional investigation perhaps with a simpler, more homogeneous groundtruth

dataset. Preliminary observations suggest that some methods are better at discriminating

visually similar classes than others. In particular, the Mahalanobis distance measure

seems better than the Euclidean distance measure at distinguishing the aqueduct, freeway

and road classes which are very similar visually.

2.4.4 Image Retrieval on the USGS Dataset

In the previous section, the performance of local features for image retrieval is evalu-

ated on the IKONOS dataset. The IKONOS dataset limits our evaluation in that: 1) the

images are copyrighted and thus cannot be made available to other researchers; 2) the

images are limited to certain areas and thus only a few LULC classes are present; and 3)

the images were taken more than 10 years ago and thus the resolution is limited to only

1-m. The UGSS dataset can overcome these limitations in that: 1) it is publicly accessi-

ble data; 2) it allows for broader coverage and thus provides more diverse LULC classes

and more images; and 3) the ground resolution is 1-foot, about one third of the IKONOS

images. Due to these merits, in this section an extensive evaluation of local invariant
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features for image retrieval of LULC classes is performed using the USGS groundtruth

dataset. We report on the effects of a number of design parameters on a bag-of-visual-

words representation including saliency- versus grid-based local feature extraction, the

size of the visual codebook, the clustering algorithm used to create the codebook, and

the dissimilarity measure used to compare the BOVW representations. We also perform

comparisons with standard features such as color and texture.

Image Features

To perform a quantitative evaluation of retrieval performance using the USGS dataset,

four image features are considered: simple statistics, global texture, SIFT, and color

histogram features. The global texture and color histogram features are described in

section 2.2.

Simple Statistics Features A two dimensional feature vector is computed for each

image consisting of the mean and standard deviation of the grayscale values:

fSS = (µ, σ) .

This is referred to as the simple statistics feature and serves as a baseline for the experi-

ments.

SIFT Features 128 dimensional local invariant descriptors are extracted for each

groundtruth image using the SIFT descriptor algorithm. Two extraction modes are
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considered: saliency-based extraction using the SIFT detector and grid-based feature ex-

traction. Saliency-based extraction results in a mean of 668 descriptors for each 256 by

256 image over all classes. The runway class tends to have the fewest descriptors per

image with a mean of 218 and the forest class has the most with a mean of 1117. Figure

2.10 indicates the per class means.

Grid-based feature extraction is performed using three different grid spacings, 4-pixel,

8-pixel, and 16-pixel, which result in 3721, 961, and 256 features per image respectively.

The SIFT descriptors are quantized using codebooks resulting from applying k-means

clustering to a large number of SIFT descriptors sampled at random from the large aerial

images from which we created the groundtruth dataset. The 2100 images in the evaluation

dataset represent less than four percent of the total area in the large images. So, for all

practical purposes, there is no overlap between the images used to created the codebooks

and the evaluation dataset. The codebooks are thus not specific to the particular images

in the evaluation dataset. Further, the codebooks are not specific to the 21 classes (as

they are based on SIFT features randomly sampled from the diverse large aerial images)

and we would expect them to generalize to additional classes.

Codebooks are created using k-means for:

• A wide range of different numbers of clusters (k): 10, 25, 50, 75, 100, 125, 150, 175,

200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000,

6000, 7000, 8000, 9000, 10000, 15000, 20000.
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• Different sized sets of randomly sampled points: one hundred thousand and one

million.

• Different distance measures: Euclidean and Mahalanobis.

Each clustering is performed 10 times using a different set of randomly sampled points.

SIFT histogram features are calculated for each groundtruth image by using a code-

book to quantize the SIFT descriptors extracted from the image. The histogram features

thus range in length from 10 to 20000 components. Three versions of the histogram

features are considered: 1) unnormalized SIFT histogram features which simply contain

the codeword counts; 2) L1 normalized SIFT histogram features where the components

are normalized to sum to one; and 3) L2 normalized SIFT histogram features where the

components are normalized so the feature vectors have length one.
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Figure 2.10: The average number of features per class for saliency-based local feature extraction.

46



Chapter 2. Image Retrieval

Dissimilarity Measures

Each image in the groundtruth dataset is represented by a multidimensional feature

vector. This is either a two-dimensional simple statistics feature, a 60-dimensional texture

feature, a 512-dimensional color histogram feature, or a k-dimensional SIFT histogram

feature where k is the size of the codebook used to quantize the SIFT descriptors. The

dissimilarity measure used to compare two images depends on the type of feature. (While

a few of the measures below are technically similarity measures, we refer to them as dis-

similarity measures for consistency. A similarity measure can be treated as a dissimilarity

measure for retrieval by simply reversing the ranking of the retrieved set.)

Simple Statistics The dissimilarity between two images with simple statistics features

f1 and f2 is computed using the L2 or Euclidean distance:

dSS(f1, f2) = ‖f1− f2‖2 =
√

(µ1− µ2)2 + (σ1− σ2)2 .

Texture The dissimilarity between two images with texture features is also computed

using the L2 distance as defined in section 2.4.2. It includes both orientation (and scale)

sensitive and orientation invariant dissimilarity measures.

Color Histogram A number of different histogram distance measures are used to com-

pute the dissimilarity between pairs of images with respect to color histogram features,

including: Bhattacharyya, chi-square, correlation, cosine, inner product, intersection, L1,

L2, and Earth Mover’s Distance. For two images with color histogram features f1 and
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f2 of dimension d, the first eight of these are as follows1:

dBhattacharyya =

√

√

√

√

√

1−
d

∑

i=1

√
f1if2i

√

∑d
j=1 f1j

∑d
k=1 f2k

;

dchi−square =

d
∑

i=1

(f1i − f2i)
2

f1i + f2i
;

dcorrelation =

∑d
i=1 f1

′
if2

′
i

√

∑d
j=1 f1

′
jf2

′
j

where f ′ = f − 1

d

d
∑

i=1

f ;

dcosine =

∑d
i=1 f1if2i

√

∑d
j=1 f1

2
j

∑d
k=1 f2

2
k

;

dinnerproduct =
d

∑

i=1

f1if2i ;

dintersection =
d

∑

i=1

min(f1i, f2i) ;

dL1 = ‖f1− f2‖1 =
d

∑

i=1

|f1i − f2i| ; and

dL2 = ‖f1− f2‖2 =

√

√

√

√

d
∑

i=1

(f1i − f2i)2 .

The Earth Mover’s Distance (EMD) [59] measures the distance between two distributions,

in our case histograms, by viewing the distributions as “piles of dirt” and computing the

cost of turning one pile into another. The cost is the amount of dirt times the distance it is

moved. We consider two cases. One, the default, in which the distance between histogram

1Note: for clarity and simplicity, we herein list all the distances measures. However, it is obvious
some of these measures will be equal when certain conditions are met. For example, when the histograms
are L2 normalized, the cosine distance and the inner product distance will be the same. It is expected
that some of the results in the experiments will carry the same value when the distance measures are
mathematically equal.
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bins is simply the Euclidean distance between the bin indices (the color histograms are

three dimensional). In the other case, a cost-matrix indicates the actual distance between

histogram bins in color space.

SIFT Histogram The same histogram distance measures are used to compare the

SIFT histogram features. Only the cost-matrix version of the EMD is used as the bin

indices of the SIFT histogram features provide no information on the relations between

the bins. The cost-matrix is computed as the Euclidean distances between the 128 di-

mensional centroids corresponding to the bins.

Results

Table 2.3 summarizes the best results for the different features considered in this study

in terms of ANMRR values averaged over all 21 classes. The local invariant features are

shown to perform better than the standard features. The best performance for the texture

features results from using the RI measure to compare unnormalized features. The best

performance for the color descriptors results from using the EMD cost matrix measure

to compare HLS histograms. And, the best performance for the local descriptors results

from using the L1 measure to compare L1 normalized histograms based on a codebook of

15000 words created using k-means clustering with the Euclidean distance and descriptors

extracted using the saliency-based method. Figure 2.11 shows the precision-recall curves

corresponding to these configurations. (Precision is the fraction of correct retrievals and

recall is the fraction of groundtruth items retrieved for a given result set.) Precision and
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Table 2.3: Summary of best results as measured using ANMRR values averaged over the 21 classes.
See section 2.4.4 for the optimal configurations that produced these results.

Feature ANMRR Time (sec.)
Simple Statistics 0.8079 0.3300
Texture 0.6304 40.04
Color Histogram 0.7351 1.654E+05
Local Features 0.5914 193.3

recall are calculated as the number of retrievals is varied from 1 to 2100 and the plots

are the average taken over all 2100 queries. The saliency-based local features result in

higher precision for all but the lowest recall levels.

Table 2.3 also indicates how long the similarity retrievals took in seconds as an em-

pirical comparison of the computational complexity of the different descriptors and their

distance measures. The table shows the number of seconds required to perform 2100

queries in which the pairwise distance between a query and 2100 target images is com-

puted and then used to order the result sets. These are approximate timings on a standard

desktop machine and are provided for comparison purposes.

The remainder of this section describes the performance of the specific features in

more detail.

Global Texture Features Table 2.4 shows the ANMRR values and timings of different

texture feature configurations. The rotation invariant distance measure performs better

than the orientation selective one. This makes sense because the image classes do not have

a preferred orientation: either they do not have a distinct orientation–e.g., chaparral–or,

if they do, it is not consistent–e.g., beach. The rotation invariant measure does take

considerably longer as expected due to its increased computational complexity.
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Figure 2.11: Precision-recall curves for the different features. Saliency-based local invariant features
result in higher precision for all but the lowest recall levels.

The unnormalized texture features perform better than the L2 normalized ones. This

is true for both distance measures. This is an interesting result which, to the best of

our knowledge, has not been investigated or reported before. Previous applications of

texture features based on Gabor filters [55] usually perform L2 normalization to account

for different dynamic ranges between the feature components. However, the design of the

filterbanks [8] includes scaling factors to compensate for the different regions of support

and so our results indicate that further normalization suppresses discriminative frequency

information and results in decreased performance.

Figure 2.13 compares the per-class performance of the optimal texture feature config-

uration with the optimal configurations of the other features (corresponding to table 2.3).

Ignoring the baseline simple statistics, the texture features perform the best on three and

the worst on one of the classes. They perform well on the beach and golf course classes

but poorly on the chaparral class.
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Table 2.4: Performance of Texture Features.

Features Dissimilarity Measure ANMRR Time (sec.)
Unnormalized Orientation Selective 0.6957 0.8500
Normalized Orientation Selective 0.7036 0.8600
Unnormalized Rotation Invariant 0.6304 40.04
Normalized Rotation Invariant 0.6555 40.47

Table 2.5: Performance of Color Histogram Features.

HLS Lab RGB
Dissimilarity Measure ANMRR Time (sec.) ANMRR Time (sec.) ANMRR Time (sec.)
Bhattacharyya 0.7490 37.15 0.7433 37.29 0.7446 34.77
Chi-Square 0.7447 186.7 0.7405 134.5 0.7402 149.2
Correlation 0.7769 15.80 0.7702 15.68 0.7711 15.64
Cosine 0.7765 15.49 0.7700 15.49 0.7711 15.50
EMD 0.7371 1.650E+05 0.7414 5.820E+03 0.7453 1.417E+04
EMD Cost Matrix 0.7351 1.654E+05 0.7414 5.813E+03 0.7453 1.445E+04
Inner Product 0.8005 6.920 0.8335 6.880 0.8016 6.850
Intersection 0.7468 13.99 0.7455 14.06 0.7438 14.01
L1 0.7468 5.56 0.7455 5.56 0.7438 5.57
L2 0.7894 6.14 0.7648 6.13 0.7789 6.13

Figure 2.14 shows the “confusion matrices” for the different features. The rows indi-

cate the query class and the columns the target classes. For each query image, we record

the fraction of images in the top 100 retrievals that are in each of the 21 target classes.

These values are then averaged over all 100 query images and displayed in the confusion

matrices using a grayscale colorbar. For example, a value of 0.72 in row X and column Y

indicates that on average, 72% of the top 100 retrievals had class Y when class X is the

query image. The confusion matrix in figure 2.14(b) indicates the forest, river, and three

residential classes appear very similar to the chaparral class with respect to the texture

features.

Color Histogram Table 2.5 lists the performance of the color histogram features com-

puted in the three different color spaces and compared using different dissimilarity mea-
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sures. While the performance varies with the particular color space and measure, it is

overall much worse than the texture features (compare with table 2.4) and only marginally

better than the baseline simple statistics. This is not unexpected as many of the classes

are spectrally similar and differ mostly spatially. The best results use the EMD distance

with a cost matrix applied in the HLS color space although the increased computational

complexity is evident in the timing.

Interestingly, there is no best color space. The HLS color space is optimal for the two

variants of the EMD and the inner product dissimilarity measures; the Lab color space

is optimal for the Bhattacharyya, correlation, cosine, and L2 dissimilarity measures; and

the RGB color space is optimal for the chi-square, intersection, and L1 dissimilarity

measures.

Likewise, there also is no best dissimilarity measure. The correlation, cosine, and

inner product measures generally perform poorly. The chi-square measure is optimal

for the Lab and RGB color spaces, and second only to the EMD measures for the HLS

color space, and thus could be considered the best measure overall. The L1 measure is

computationally efficient while nearly optimal. (While the intersection measure is equal

to the L1 measure for L1 normalized histograms, the L1 measure is computationally

more efficient since it avoids computing the minimum between feature components.) The

chi-square and L1 measures thus provide a performance-efficiency tradeoff for similarity

retrieval using color histogram features.

Figure 2.13 indicates the optimal color histogram configuration does not perform the

best on any and performs the worst on 14 of the classes (again, ignoring the baseline
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simple statistics). Color histogram features perform poorly on the agricultural, freeway,

and runway classes. The confusion matrix in figure 2.14(c) indicates that, with respect

to color histogram features, the agricultural class appears similar to the golf course class,

the freeway class appears similar to the intersection and overpass classes, and the runway

class appears similar to the airport and freeway classes. This makes sense based on the

sample images in figure 2.2.

Local Features This section first presents some of the more general observations on

the performance of the local invariant features, such as whether the codebooks should be

constructed using k-means clustering based on the Euclidean or Mahalanobis distance.

It then focuses on details such as saliency- versus grid-based feature extraction, the effect

of the codebook size and the choice of dissimilarity measure. Finally, the local features

are compared to the other features considered in this study.

An exhaustive set of experiments is performed using all possible combinations of

codebook construction, feature normalization, and dissimilarity measures. Codebooks

were constructed through k-means clustering using either one hundred thousand or one

million randomly sampled SIFT descriptors using either the Euclidean or Mahalanobis

distance, and for codebook sizes ranging from 10 to 20000. Ten codebooks were created

in each case by randomly sampling different sets of SIFT descriptors. Local feature

histograms with dimension equal to the the size of the codebooks were computed for

each image based on the unnormalized counts of the quantized features. Histograms

of L1 and L2 normalized counts were also computed. Finally, dissimilarity comparison
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was computed using the Bhattacharyya, chi-square, correlation, cosine, inner product,

intersection, L1, L2, and EMD cost matrix measures.

Clustering Using the Euclidean vs. Mahalanobis Distance The experiments

indicate that codebooks constructed through k-means clustering using the Euclidean

distance perform better than those constructed using the Mahalanobis distance. The

Euclidean distance codebooks result in a 1-2% increase in performance on average in-

dependent of all other settings: sample size, codebook size, feature normalization, and

dissimilarity measure. Thus, it appears that the correlations between dimensions in the

128 dimensional SIFT feature space as well as the difference in scales along the dimensions

is important when using k-means clustering to construct the codebooks.

Clustering One Hundred Thousand vs. One Million Points Codebooks con-

structed by applying k-means clustering to a million randomly sampled SIFT descriptors

similarly perform better than those constructed using only one hundred thousand de-

scriptors. The increase is again around 1-2% on average independent of other settings

and can be as high as 5%. Thus, the additional computation of applying k-means to

larger sample sets of points is worthwhile especially since this is a preprocessing step

which does not impact the cost of retrieval.

Saliency-Based vs. Dense Extraction The remainder of the results in this sec-

tion assume codebooks constructed by applying k-means clustering using the Euclidean

distance to one million randomly sampled SIFT descriptors.

The experiments indicate that local invariant features extracted from salient image

locations outperform on average those extracted on a grid. Table 2.6 compares the perfor-
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Table 2.6: ANMRR values for saliency- and grid-based local feature extraction. Values reported corre-
spond to the optimal codebook size and normalization scheme (not listed) for each dissimi-
larity measure.

Feature extraction
Dissimilarity Measure Saliency 4-pixel grid 8-pixel grid 16-pixel grid
Bhattacharyya 0.6178 ± 1.254E-3 0.6326 ± 2.218E-3 0.6461 ± 1.919E-3 0.6688 ± 2.808E-3
Chi-Square 0.6009 ± 1.209E-3 0.6201 ± 2.240E-3 0.6262 ± 3.138E-3 0.6604 ± 6.505E-3
Correlation 0.6055 ± 1.635E-3 0.6430 ± 2.687E-3 0.6679 ± 3.806E-3 0.6964 ± 5.931E-3
Cosine 0.6113 ± 1.665E-3 0.6416 ± 2.045E-3 0.6605 ± 2.103E-3 0.6888 ± 1.783E-3
Inner Product 0.6113 ± 1.665E-3 0.6423 ± 1.814E-3 0.6605 ± 2.103E-3 0.6888 ± 1.783E-3
Intersection 0.5933 ± 9.076E-4 0.6201 ± 2.298E-3 0.6310 ± 1.998E-3 0.6647 ± 2.157E-3
L1 0.5933 ± 9.076E-4 0.6201 ± 2.278E-3 0.6310 ± 1.986E-3 0.6644 ± 2.171E-3
L2 0.6113 ± 1.665E-3 0.6423 ± 1.814E-3 0.6605 ± 2.103E-3 0.6888 ± 1.783E-3

mance of saliency- to grid-based feature extraction for different grid spacings. Saliency-

based extraction is shown to be optimal for all dissimilarity measures. This reconfirms

the benefit of extracting features at locations based on the image content that was the

original motivation behind the SIFT and similar detectors. The SIFT detector is designed

to identify the same object components regardless of where they appear in the image and

thus is not affected by possible misalignment problems that result from using a fixed

grid. Further, saliency-based extraction only considers image locations where there is

meaningful image information. We note that other researchers have found the opposite,

that grid-based extraction is optimal. However, this was for image classification and not

retrieval and was not for geographic images. Per-class comparisons between the optimal

saliency- and grid-based configuration are shown in figure 2.13. The optimal grid-based

configuration was found to be using the L1 dissimilarity measure to compare unnormal-

ized histograms created using 20000 codewords extracted from a 4-pixel grid. The best

ANMRR for this configuration was 0.6179.

Codebook Size and Dissimilarity Measure
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Figure 2.12: The effect of codebook size on retrieval performance for different dissimilarity measures.
Results are shown for (a) unnormalized histogram features, (b) L1 normalized histogram
features, and (c) L2 normalized histogram features. These results are for saliency-based
feature extraction.
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Figure 2.12 summarizes the performance of the different dissimilarity measures by

plotting ANMRR values for codebook sizes ranging from 10 to 20000. These results

correspond to saliency-based feature extraction–the plots have similar shapes for grid-

based feature extraction but are shifted up (worse ANMRR). Three plots are shown.

Figure 2.12(a) shows the results for unnormalized histogram features, figure 2.12(b) for L1

normalized histogram features, and figure 2.12(c) for L2 normalized histogram features.

Error bars indicate the standard deviation of the ANMRR values over the ten different

codebooks (again, corresponding to clustering different random sets of SIFT descriptors).

The results corresponding to the EMD cost matrix measure were significantly worse than

any other measure and are thus not included in the detailed analysis.

The best results correspond to using the L1 measure to compare L1 normalized fea-

tures for larger codebook sizes. Much more can be observed from these plots however.

Interestingly, the effect of codebook size on performance generally falls into two categories.

Either the performance improves with increasing size, in most cases in a monotonic fash-

ion until gently peaking for large codebooks of size around 15000; or the performance

improves sharply for small codebook sizes but then decreases steadily for larger sizes.

The behavior of a specific dissimilarity measure depends on the feature normalization.

These findings are significant because they show that the range of optimal codebook sizes

depends greatly on the choice of normalization and measure. Larger codebooks tend to

result in increased performance. However, there are some important cases where a narrow

range of small codebook sizes is nearly optimal which is important since retrieval and

storage costs are often a concern.
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The best performance for unnormalized features results from the correlation measure

applied to a codebook of size 15000 (see figure 2.12(a)). This performance is not signifi-

cant since it is still worse than the best results corresponding to normalized features and

correlation is one of the more computationally expensive measures. The performance of

the L1, L2, and chi-square measures does peak for small codebook sizes but not suffi-

ciently to make the application of these measures to unnormalized features a competitive

configuration.

The best performance for L1 normalized features results from the L1 or, equivalently,

intersection measure applied to a codebook of size 15000 (see figure 2.12(b)). The per-

formance of the L2 distance does peak for small codebook sizes but again not sufficiently.

The best performance for L2 normalized features results from the chi-square measure

applied to a codebook of size only 150 (see figure 2.12(c)). The chi-square performance

peaks for a narrow range of small codebook sizes. The next best performance is the

correlation measure applied to a codebook of size 15000. Also noteworthy is the L1

measure which also peaks for small codebook sizes and whose optimal performance for

a codebook of size 150 is only slightly worse than the optimal chi-square and correlation

results but is significantly more efficient.

Table 2.7 shows the optimal performance for each of the dissimilarity measures. Since

each measure/codebook-size/feature-normalization combination is evaluated using ten

codebooks corresponding to different random sets of SIFT descriptors, this table reports

both the results from the best codebook in the column labelled “ANMRR (best)” as well

as the average and standard deviation over the ten codebooks in the column labelled
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Table 2.7: Results for different dissimilarity measures for histograms of quantized local features. These
results are for saliency-based feature extraction.

Dissimilarity Measure ANMRR (best) # Codewords Time (sec.) ANMRR (overall) Normalization
Bhattacharyya 0.6161 20000 1518 0.6178 ± 1.254E-3 Unnormalized
Chi-Square 0.5989 20000 835.1 0.6009 ± 1.209E-3 L1
Correlation 0.6018 15000 439.5 0.6055 ± 1.635E-3 Unnormalized
Cosine 0.6070 15000 432.3 0.6113 ± 1.665E-3 Unnormalized
Inner Product 0.6070 15000 201.3 0.6113 ± 1.665E-3 L2
Intersection 0.5914 15000 377.8 0.5933 ± 9.076E-4 L1
L1 0.5914 15000 193.3 0.5933 ± 9.076E-4 L1
L2 0.6070 15000 197.4 0.6113 ± 1.665E-3 L2
Chi-Square 0.6014 150 13.43 0.6034 ± 1.510E-3 L2
L1 0.6045 150 1.770 0.6068 ± 1.288E-3 L2

“ANMRR (overall)”. The ranking of the dissimilarity measures is the same for both.

Also shown in the last two rows is the results for the chi-square and L1 measures for

small codebooks of size 150 of L2 normalized histogram features. These configurations

perform slightly worse than the optimal configuration resulting in performance reductions

of 1.7% and 2.2% respectively. However, they are significantly more efficient, requiring

histogram features that are two orders of magnitude smaller and retrieval times that are

one and two orders of magnitude faster respectively. They are still more effective and

more efficient than the optimal configurations of the texture and color histogram features

shown in table 2.3, and thus represent an excellent efficiency-performance trade off.

Figure 2.13 indicates the optimal local feature configuration for sparse-based extrac-

tion performs the best on eight and the worst on five of the classes. This configuration

performs particularly well on the chaparral, harbor, and parking classes when compared

to the other methods. The optimal local feature configuration for grid-based extraction

performs the best on ten and the worst on one of the classes (but still performs worse than

sparse-based extraction when averaged across all classes). This configuration performs

particularly well on the forest class when compared to the other methods.
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Figure 2.13: The per class performance corresponding to the optimal feature configurations.

Figure 2.15 presents select retrieval results corresponding to the optimal local feature

configuration for sparse-based extraction. The results are shown for queries from 11

classes ordered by decreasing performance based on average ANMRR.

Discussion

It is worthwhile discussing the performance of the local features in the context of

the desirable properties described in section 1.2.2. The experimental results indicate the

saliency-based local features perform well on the chaparral, dense residential, harbor,

mobile home park, and parking classes. These classes are characterized by repeated

occurrences of a specific object–i.e., parking lots consist of cars parked in varying spatial

arrangements–which leads to hypothesize the following. The local property enables the
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(a) simple statistics features
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(b) texture features
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(c) color histogram features
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(d) saliency-based local features

Figure 2.14: Confusion matrices corresponding to (a) simple statistics features, (b) texture features,
(c) color histogram features, and (d) saliency-based local features. The rows indicate the
query class and the columns the target classes. For each query image, we record the
fraction of images in the top 100 retrievals that are in each of the 21 target classes. These
values are then averaged over all 100 query images.
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(a) Chaparral: ANMRR=0.0316

(b) Harbor: ANMRR=0.2757

(c) Agricultural: ANMRR=0.3537

(d) Mobile Home Park: ANMRR=0.5202 (1: Buildings; 3: Dense Residential; 7: Buildings; 8: Buildings)

(e) Overpass: ANMRR=0.5786 (2: Tennis Courts; 3: Freeway; 4: Buildings; 5: Runway; 6: Buildings; 8: Airplane; 9:
Freeway; 10: Runway)

(f) Dense Residential: ANMRR=0.6 (6: Medium Density Residential; 7: Medium Density Residential; 9: Intersection)

(g) Buildings: ANMRR=0.6771 (1: Tennis Courts; 6: Airplane; 7: Dense Residential; 10: Tennis Courts)

(h) Baseball Diamond: ANMRR=0.7507 (2: Storage Tanks; 4: Runway; 5 Overpass; 6: Freeway; 7: Runway; 10: Runway)

(i) Beach: ANMRR=0.7828 (1: Chaparral; 2: Chaparral; 3: Chaparral; 4: Chaparral; 5: Chaparral; 6: Chaparral; 7:
Chaparral; 9: Chaparral; 10: Chaparral)

(j) Medium Density Residential: ANMRR=0.7998 (2: Tennis Courts; 3: Dense Residential; 4: Dense Residential; 6:
Dense Residential; 7: Sparse Residential; 8: Airplane; 9: Dense Residential)

(k) Storage Tanks: ANMRR=0.8451 (5: Baseball Diamond; 7: Beach; 8: Buildings; 9: Baseball Diamond; 10: Overpass)

Figure 2.15: Sample retrievals for different classes corresponding to the optimal local feature configura-
tion for sparse-based extraction. The classes are ordered in increasing average ANMRR.
The leftmost image is the query image in each case and the remaining images are the top
ten retrievals in decreasing order of similarity. The captions indicate the average ANMRR
for the classes as well as the rank and class of the incorrect retrievals for the specific query.
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features to detect the individual object instances as opposed to characterizing the gestalt

or overall essence of an image. The invariance property enables the objects to be detected

regardless of where or in what orientation they appear in an image. It also enables them

to be detected independent of photometric variations such as illumination intensity and

density as well as differences in color. The features are shown to be robust to other image

variations such as the amount of the noise in the images and the quality of the different

camera systems in terms of visual acuity (see, for example, the variation in the images of

the parking lot class in figure 2.2). The density of the features allows them to be robust

against occlusion caused by shadows, trees, etc. It also allows them to be robust against

missed detections which is important for detecting the large number of object occurrences.

The local features are efficient which is import for realtime application or use in large

image datasets. The appropriate pairing of small codebooks and dissimilarity measures

resulted in retrieval performance times that were an order of magnitude or faster than

competitive features.

The saliency-based local features perform poorly on the baseball diamond, beach, golf,

and runway classes. Saliency-based feature extraction results in relatively few features

in these classes as indicated in figure 2.10 as they tend to contain large uniform regions.

The sparseness of the resulting BOVW histograms reduces their discrimination ability.

The texture features perform well on the beach, baseball diamond, golf course, inter-

section, river, and the sparse and medium density residential classes. The grid-based local

features also perform well on these classes. This correlation is likely due to the fact that

extracting SIFT descriptors–which are after all summaries of local edge information–on
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a regular grid is similar to applying Gabor filters which can also be considered local edge

detectors.

Finally, it is interesting that the saliency-based local features perform better than the

texture features on the classes which upon first inspection appear more “texture” like.

For example, the rows of cars in the parking lots or the boats in the harbor result in the

kinds of regular patterns suitable for representation by frequency based texture features.

However, upon closer examination, these patterns do vary at the microscopic level in

that the elements are often missing, such as empty boat slips, or are arranged at different

angles with respect to each other such as the parked cars. The patterns also vary at the

macroscopic level in that the rows do not necessarily have the same spacing from one

image to another. Saliency-based local features are more invariant to these micro- and

macroscopic variations since they instead detect the individual objects or parts thereof.

These irregularities can also explain why the grid-based local features perform poorly on

these classes.

Conclusion

An investigation into local invariant features for overhead image retrieval is presented.

It is demonstrated that local invariant features are more effective than standard features

such as color and texture for image retrieval of LULC classes in high resolution aerial

imagery. We also quantitatively analyzed the effects of a number of design parameters

on a BOVW representation including saliency- versus grid-based feature extraction, the

size of the visual codebook, the clustering algorithm used to create the codebook, and
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the dissimilarity measure used to compare the BOVW representations. Such a study

is timely given the increased interest by the remote sensing community in using local

features for image analysis. While the focus is on image retrieval, the insights on the

effects of the design parameters is informative for other applications such as detection

and classification.

2.5 Summary

In this chapter, we compare interest point descriptors to global texture features as well

as color histogram features in the context of similarity retrieval. We have shown that sim-

ilarity retrieval serves as an excellent platform for evaluating the overall descriptiveness

of a descriptor.

Our comparison confirms that local invariant features show great promise for remote

sensing image analysis and outperform proven global texture features as well as color

features in image similarity retrieval. This finding paves the way for our further inves-

tigation of the application of local invariant features to image classification and object

detection in remote sensing imagery. These are considered in the following chapters of

this dissertation.
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Chapter 3

Land-use/Land-cover Classification

In the previous chapter, we explored content-based image retrieval of remote sensing

imagery using local invariant features. In this chapter, we turn to image classification.

A richer set of LULC classes are observable in satellite imagery than ever before due to

the increased sub-meter resolution. Individual objects, such as cars and houses, are now

recognizable. This chapter considers local invariant features for labelling LULC classes

characterized by identifiable objects. We provide a series of experiments to empirically

evaluate the effectiveness of local features on two groundtruth datasets. We investigate

BOVW approaches to LULC classification and in addition, investigate how spatial infor-

mation can improve the BOVW model. We first investigate the spatial pyramid matching

kernel in the LULC classification which characterizes the absolute spatial arrangement of

local features, and then propose a spatial co-occurrence kernel which takes into account

the relative spatial arrangement of the local features. And finally, we propose a spa-

tial pyramid co-occurrence kernel which captures both the absolute and relative spatial

arrangement of the local features.
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The work in this chapter was published as peer-reviewed full conference papers at

the IEEE International Conference on Image Processing in 2008 [60], the SIGSPATIAL

International Conference on Advances in Geographic Information Systems in 2010 [61],

and the IEEE International Conference on Computer Vision in 2011 [62].

3.1 Comparing SIFT Descriptors and Gabor Texture

Features

The first experiment is to compare SIFT features against the state-of-the-art Gabor

texture features for classifying complex LULC classes using the IKONOS groundtruth

dataset described in section 2.3.1.

3.1.1 Image Features

The SIFT and Gabor features are described in section 2.2. Again, 128 dimension

local SIFT descriptors were extracted from the images. The local SIFT descriptors were

quantized by assigning the label of the closest cluster center. The frequency counts of

these labels form the global SIFT descriptors. Previous work in section 2.4.3 showed

that 50 clusters was optimal for content-based image retrieval using quantized SIFT

descriptors on the IKONOS dataset. Our global SIFT features thus have dimension 50.

Gabor texture features were extracted from the images using a filterbank tuned to five

scales and six orientations. The 30 dimension feature vectors, one at each pixel location,

68



Chapter 3. Land-use/Land-cover Classification

form the local Gabor texture features. The mean and standard deviation of each filter

output form the 60 dimension global Gabor texture features (see equation 2.2).

Each groundtruth image is thus represented by:

• A set of 128 dimension SIFT descriptors. Each image has 59.1 descriptors on

average.

• A 50 dimension global SIFT descriptor.

• A set of 30 dimension local Gabor texture features, one at each pixel location.

• A 60 dimension global Gabor texture feature.

3.1.2 Classification Methods

Maximum A Posteriori

Image classification based on local features is performed using maximum a posteriori

(MAP) classifiers. An image with the set of local features, x, is assigned to class c∗ where

c∗ = argmax
1≤c≤C

P (c|x) . (3.1)

The feature distributions of the classes are modelled by Gaussian mixtures so that the

posterior probabilities, p(c|x), are computed using Bayes’ rule where the class-conditioned

probabilities, p(x|c), are

p (x|c) =
J
∑

j=1

P (j|c) p (x|j, c) . (3.2)
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The class- and mixture-conditioned probabilities for a single feature vector are

p (x|j, c) = 1

(2π)d/2 |Σj |1/2
e−

1

2
(x−µj)

TΣj(x−µj) (3.3)

where µj is the mean vector and Σj is the covariance matrix of the jth mixture for class

c. The local features are considered to be independent so the joint probability of a set

of features is computed as the product of the individual probabilities. The Gaussian

mixture model (GMM) parameters, µj and Σj , are learned from a training set using the

expectation-maximization (EM) algorithm [63].

Design decisions for the MAP classifiers include the number of mixtures in the GMMs

and the form of the covariance matrices. We investigate these in the experiments below.

Support Vector Machines

The global features are classified using support vector machines (SVMs). When ap-

plied to classification, SVMs seek the optimal separating hyperplane between two classes,

typically in a higher dimensional space than the original features. In our multi-class

problem, we use a “one-against-one” strategy wherein a binary classifier is trained for

each pair of classes. Unknown samples are classified using a majority voting strategy

among the binary classifiers. We use the LIBSVM package [64] in the experiments below.
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3.1.3 Results

The feature and classifier combinations are evaluated by ten-fold cross validation. The

IKONOS groundtruth dataset is split into ten partitions each containing ten images from

each of the ten classes. Ten rounds of training and testing are performed in which nine

partitions are used for training and the remaining partition is used for testing. Each round

uses a different partition for testing. A single classification rate is computed indicating

the percent of the 1,000 images that are assigned to the correct class.

The MAP classifiers use the local features. A separate classifier is trained for each

class. All of the local SIFT descriptors for an image are used in training and testing. Due

to the large number of local Gabor texture features–4,096 for a 64-by-64 pixel image–only

a random sampling of 100 features per image is used. Using a larger number of samples

did not have a significant effect on the classification rates.

We first investigated the number and shapes of the Gaussians in the mixture models.

We found that the classification rates did not vary significantly between spherical Gaus-

sians (diagonal covariance matrix with the same value at each entry), elliptical Gaussians

with axes aligned with the dimensions of the feature space (diagonal covariance ma-

trix with possibly different values), and elliptical Gaussians with axes at any orientation

(covariance matrix with possibly non-zero off diagonal entries). Since the minimum de-

scription length principle favors fewer parameters, spherical Gaussians are used in the

remainder of the results. Training via the EM algorithm is also significantly faster in the

spherical case.
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Figure 3.1: MAP classification rate versus number of mixtures.

Figure 3.1 plots the MAP classification rate versus the number of mixtures in the

GMMs. The rate peaks at around five mixtures for both features. We therefore use five

mixtures in the remainder of the results.

The SVM multi-class classifiers use the global features. One classifier is trained and

tested during each round of the ten-fold cross validation. We use a linear kernel. Ini-

tial investigation into using other kernels, such as polynomial and radial bases function

produced similar classification rates.

Table 3.1 shows the classification rates for four different combinations of features

and classifiers: 1) local SIFT descriptors classified using MAP classifiers; 2) local Gabor

texture features classified using MAP classifiers; 3) global SIFT descriptors classified

using SVMs; and 4) global Gabor texture features classified using SVMs.

Table 3.1: Classification rates for different feature and classifier combinations.

SIFT Gabor
MAP 84.5% 73.9%
SVM 76.2% 89.8%
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3.1.4 Discussion

The groundtruth dataset used in the experiments contains substantial within class

variability, as illustrated in Figure 2.1, so classification rates nearing 90% are significant.

A recent retrospective on satellite image classification reports that the average classifi-

cation rate over the last 15 years is only 76.19% with a standard deviation of 15.59%

[65]. Of course, the classification rate depends on the difficulty of the problem so talking

about an average rate across problems is not that meaningful. Nonetheless, some of the

feature and classifier combinations presented above have rates at the top of this distribu-

tion, a result underscored by the fact that only spatial information is used. Incorporating

spectral information would certainly improve the results.

The best results are achieved by Gabor texture features and SVM classification. How-

ever, the next best combination, SIFT descriptors and MAP classification, perform com-

parably so that the order of magnitude difference in feature extraction speed could be

a deciding factor especially for realtime application. These two best results are also

achieved with features that are fundamentally different representations. A global Gabor

texture feature is associated with a well-defined region, usually rectangular in shape.

The local SIFT descriptors can represent more general regions. While both are applied

here to classifying entire images, they could enable different techniques when applied to

classifying regions within larger images.
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3.2 Bag-of-visual-words Model and Spatial Exten-

sions

The experimental results on the IKONOS groundtruth datasets build an important

foundation for the work in this section. We investigate BOVW approaches to LULC clas-

sification on the USGS dataset. We also consider two spatial extensions, the established

spatial pyramid match kernel which considers the absolute spatial arrangement of the

local image features, as well as a spatial co-occurrence kernel we developed that considers

the relative arrangement. These extensions are motivated by the importance of spatial

structure in geographic data.

3.2.1 Bag-of-visual-words Model

The BOVW approach usually quantizes local invariant image descriptors using a vi-

sual dictionary typically constructed through a clustering algorithm. The set of visual

words is then used to represent an image regardless of their spatial arrangement simi-

lar to how documents can be represented as an unordered set of words in text analysis.

The quantization of the often high-dimensional local descriptors provides two important

benefits: it provides further invariance to photometric image transformations, and it al-

lows compact representation of the image such as through a histogram of visual word

counts and/or efficient indexing through inverted files. The size of the visual dictionary

used to quantize the descriptors controls the tradeoff between invariance/efficiency and

discriminability.
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A BOVW representation can be used in kernel based learning algorithms, such as non-

linear support vector machines, by computing the intersection between histograms. Given

BOVW 1 and BOVW 2 corresponding to two images, the BOVW intersection kernel is

computed as:

KBOVW (BOVW 1, BOVW 2) =

M
∑

m=1

min
(

BOVW 1(m), BOVW 2(m)
)

. (3.4)

The intersection kernel is a Mercer kernel which guarantees an optimal solution to kernel-

based algorithms based on convex optimization such as nonlinear support vector ma-

chines.

3.2.2 Spatial Extensions to BOVW

The BOVW approach does not consider the spatial locations of the visual words in an

image (just as a BOW approach in text analysis does not consider where words appear

in a document). Our main goal is to explore spatial extensions to the BOVW approach

for LULC classification. We are motivated by the obvious fact that spatial structure is

important for geographic data and its analysis. As Walter Tobler stated in his so-called

first law of geography in the early 1970’s, all things are related, but nearby things are

more related than distant things [66]. Since our objective is LULC classification in high-

resolution overhead imagery of the earth’s surface, this law motivates us to consider the

spatial distribution of the visual words. In particular, we consider two extensions of the

BOVW representation: the spatial pyramid match kernel and the spatial co-occurrence
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kernel. The spatial pyramid match kernel has shown to be successful for object and

scene recognition in standard (non-overhead) imagery. It considers the absolute spatial

arrangement of the visual words. By contrast, the spatial co-occurrence kernel, which we

developed, considers the relative spatial arrangement.

Spatial Pyramid Match Kernel

The spatial pyramid match kernel (SPMK) was introduced by Lazebnik et al. in 2006

[1]. It is motivated by earlier work termed pyramid matching by Grauman and Darrell

[67] on finding approximate correspondences between sets of points in high-dimensional

feature spaces. The fundamental idea behind pyramid matching is to partition the feature

space into a sequence of increasingly coarser grids and then compute a weighted sum over

the number of matches that occur at each level of resolution. Two points are considered

to match if they fall into the same grid cell and matched points at finer resolutions are

given more weight than those at coarser resolutions. The SPMK applies this approach in

the two-dimensional image space instead of a feature space; that is, it finds approximate

spatial correspondence between sets of visual words in two images.

More specifically, suppose an image is partitioned into a sequence of spatial grids at

resolutions 0, . . . , L such that the grid at level l has 2l cells along each dimension for a

total of D = 4l cells. Let H1
l and H2

l be the histograms of visual words of two images

at resolution l so that H1
l (i,m) and H2

l (i,m) are the counts of visual word m contained

in grid cell i. Then, the number of matches at level l is computed as the histogram
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intersection:

I
(

H1
l , H

2
l

)

=
D
∑

i=1

M
∑

m=1

min
(

H1
l (i,m) , H2

l (i,m)
)

. (3.5)

Abbreviate I (H1
l , H

2
l ) to Il. Since the number of matches at level l includes all matches

at the finer level l + 1, the number of new matches found at level l is Il − Il+1 for

l = 0, . . . , L − 1. Further, the weight associated with level l is set to 1
2L−l which is

inversely proportional to the cell size and thus penalizes matches found in larger cells.

Finally, the spatial pyramid match kernel for two images is given by:

KL = IL +
L−1
∑

l=0

1

2L−l
(Il − Il+1) (3.6)

=
1

2L
I0 +

L
∑

l=1

1

2L−l+1
Il. (3.7)

The SPMK is a Mercer kernel. The SPMK is summarized in Figure 3.2.

Spatial Co-occurrence Kernel

We take further motivation from early work on pixel-level characterization of LULC

classes in overhead imagery from Haralick et al.’s seminal work [68] on gray level co-

occurrence matrices (GLCM) and the set of 14 derived textural features which represents

some of the earliest work on image texture. A GLCM provides a straightforward way to

characterize the spatial dependence of pixel values in an image. We extend this to the

spatial dependence of the visual words.
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Figure 3.2: Toy example of a three-level spatial pyramid (adapted from [1]). The image has three visual
words and is divided at three different levels of resolution. For each level, the number of
words in each grid cell is counted. Finally, the spatial histogram is weighted according to
equation 3.7.

More formally, given an image I containing a set of n visual words ci ∈ C at pixel

locations (xi, yi) and a binary spatial predicate ρ where ciρcj ∈ {0, 1}, we define the

visual word co-occurrence matrix (VWCM) as

VWCMρ(u, v) = ‖(ci, cj)| (ci = u) ∧ (cj = v) ∧ (ciρcj)‖. (3.8)

That is, the VWCM is a count of the number of times two visual words satisfy the

spatial predicate. The choice of the predicate ρ determines the nature of the spatial

dependencies. While this framework provides the flexibility for variety of dependencies,

we focus on proximity and, given a distance r, define ρ to be true if the two words appear
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within r pixels of each other:

ciρproxcj =



















1, if
√

(xi − xj)2 + (yi − yj)2 ≤ r;

0, otherwise.

(3.9)

The VWCMs computed thus represent the number of times pairs of words appear near

to each other.

A fundamental challenge to using GLCMs or our proposed counterparts, VWCMs,

is their size. For example, given a visual dictionary of size M , the VWCM has dimen-

sion M ×M . Even though a symmetric predicate such proximity results in a symmetric

co-occurrence matrix, its size is still quadratic with respect to the dictionary, contain-

ing M(M + 1)/2 entries. Haralick et al. therefore defined a set of 14 scalar quantities

to summarize the GLCMs. We initially also summarized our VWCMs through six com-

monly used scalar quantities–entropy, maximum probability, correlation, contrast, energy,

and homogeneity–but this did not prove to be effective for characterizing the spatial de-

pendencies between visual words. We thus use the full co-occurrence matrix (up to its

symmetry if applicable) and instead investigate smaller dictionaries.

Given two visual co-occurrence matrices VWCM1
ρ and VWCM2

ρ corresponding to

images I1 and I2, we now compute the spatial co-occurrence kernel (SCK) as the inter-

section between the matrices

KSCK(VWCM1
ρ , V WCM2

ρ ) =
∑

u,v∈C

min(VWCM1
ρ (u, v), V WCM2

ρ (u, v)). (3.10)
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To account for differences between images in the number of pairs of codewords satisfying

the spatial predicate, the matrices are normalized to have an L1 norm of one. Note that

the SCK, as an intersection of two multidimensional counts, is also Mercer kernel and

thus still guarantees an optimal solution in the learning stage of non-linear support vector

machines.

SCK Combined With BOVW

While the proposed SCK can be used by itself, it can also serve as a spatial extension

to the non-spatial BOVW representation. Specifically, given histograms BOVW 1 and

BOVW 2 corresponding to two images, we compute the combined kernel as the sum of

SCK and the intersection of the histograms

KSCK+BOVW ({VWCM1
ρ , BOVW 1}, {VWCM2

ρ , BOVW 2})

= KSCK(VWCM1
ρ , V WCM2

ρ ) +KBOVW (BOVW 1, BOVW 2). (3.11)

Note that the visual dictionary used for the spatial co-occurrence matrices need not be the

same as that used for the BOVW representation. We explore the effect of using different

dictionaries in the experiments below. Again, since this combined kernel is a (positively

weighted) sum of two Mercer kernels, it is itself a Mercer kernel. While it is possible

to weight the spatial and non-spatial components of the combined kernel differently, we

have so far not considered this and leave it for future work.
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3.2.3 Experiments

We use the USGS groundtruth dataset described in section 2.3.2 for the empirical

evaluation. We compare the BOVW representations with color histograms and Gabor

texture features, which are described in section 2.2. Visual dictionaries of varying size

are constructed by applying k-means clustering to over a million SIFT features randomly

sampled from images disjoint from the groundtruth images. These dictionaries are then

used to label SIFT features extracted from the 2,100 groundtruth images.

The approaches are compared by performing multi-class classification. Classifiers are

trained on a subset of the groundtruth images and then applied to the remaining images.

The classification rate is simply the percentage of the held-out images that are labelled

correctly.

The premise behind our experiments is that once a classifier has been trained on a

labelled dataset, it could be used to classify novel image regions. One of the benefits of

a local feature based approach is that the regions need not be constrained to rectagonal

or other regular shapes. Note that an image region need not be assigned one of the class

labels and can instead be assigned a null-label if the classifier provides a confidence or

similar score. Such is the case for support vector machines.

We use SVMs to perform the classification. Multi-class classification is implemented

using a set of binary classifiers and taking the majority vote. Non-linear SVMs incorpo-

rating the kernels described above are trained using grid-search for model selection. For

the histogram intersection type kernels–BOVW, SPMK, SCK, BOVW+SCK, and color
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histogram–the only parameter is C, the penalty parameter of the error term. The RBF

kernel used for homogeneous texture contains an addition width parameter γ. Five-fold

cross-validation is performed in which the groundtruth dataset is randomly split into five

equal sets. The classifier is then trained on four of the sets and evaluated on the held-out

set. The classification rate is the average over the five evaluations. Most results are

presented as the average rate over all 21 classes. The SVMs were implemented using the

LIBSVM package [64].

We compare a variety of difference configurations for the BOVW approaches:

• Different sized visual dictionaries for the BOVW and SPMK approaches: 10, 25,

50, 75, 100, 125, 150, 175, 200, 250, 300, 400, 500, 1000, and 5000.

• Different numbers of pyramid levels for the SPMK approach: 1 (essentially standard

BOVW), 2, 3, and 4.

• Different sized visual dictionaries used to compute the co-occurrence matrices for

the SCK approach: 10, 50, and 100.

• Different sized radii for the spatial predicate used to compute the co-occurrence

matrices for the SCK approach: 20, 50, 100, and 150 pixels.
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Figure 3.3: Comparison of BOVW, SPMK, and BOVW+SCK for different visual dictionary sizes. The
size of visual dictionary used to derive the co-occurrence matrices for the SCK is as follows:
10 when the BOVW dictionary has size 10 or 25; 50 when the BOVW dictionary has size
50 or 75; and 100 otherwise. The radius used to derive the co-occurrences matrices is fixed
at 150.

3.2.4 Results

Overall

Table 3.2 shows the best average classification rate across all 21 classes for the different

approaches. The best rates result from the following settings: for BOVW, a dictionary

size of 1000; for SPMK, a dictionary size of 500 and a three level pyramid; for SCK, a

co-occurrence dictionary size of 100 and a radius of 150; and for BOVW+SCK, a BOVW

dictionary size of 1000, a co-occurrence dictionary of size 100, and a radius of 150. Overall,

these results are impressive given that chance classification for a 21 class problem is only

83



Chapter 3. Land-use/Land-cover Classification

4.76%. Interestingly, the average rate is similar for all the approaches with perhaps color

histograms computed in the CIE Lab colorspace as the one outlier. Section 3.2.4 below

compares the per-class rates which exhibit more variation between approaches.

Color histograms computed in the HLS colorspace perform the best overall, achieving

a rate of 81.19%. This was somewhat unexpected because several of the classes exhibit

significant inter-image color variation. But, the color and BOVW approaches are orthog-

onal in that the interest point descriptors are extracted using only the luminance channel

so that a combined approach is likely to perform even better. This is possible future

work.

The results from the BOVW approaches–BOVW, SPMK, and BOVW+SCK–for dif-

ferent sized dictionaries are compared visually in Figure 3.3 and in tabular form in table

3.3. The SPMK performs best for smaller dictionaries with 150 visual words or less.

Smaller dictionaries correspond to a coarser quantization of the interest point feature

space–that is, each visual word is less discriminative–so that the spatial arrangement of

words is more important. But, as the dictionary size increases, the absolute spatial repre-

sentation of SPMK actually leads to decreased performance over the non-spatial BOVW

approach.

Significantly, BOVW+SCK outperforms BOVW for all dictionary sizes indicating that

the relative spatial representation of SCK is complementary to the non-spatial informa-

tion of BOVW. Therefore, a fundamental conclusion is that the SCK extension improves

the BOVW approach for LULC classification. This is particulary true for smaller dic-

tionary sizes which is significant from a computational viewpoint since the increased
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performance provided by the extension is almost equal to that which results from an

order-of-magnitude increase in dictionary size for the non-spatial BOVW approach.

BOVW

As shown in table 3.3, a larger dictionary results in improved performance for the

non-spatial BOVW up to around 1000 words. Very small dictionaries do not provide

sufficient discrimination even though they might appeal from a computational and storage

viewpoint. That performance decreases for very large dictionaries likely indicates that

the visual words are too discriminative; that is, they are no longer robust to image

perturbations caused by noise, blurring, discretization, etc. This decreases the likelihood

that similar image patches are labelled as the same word.

SPMK

Figure 3.4 and table 3.4 provide further insight into the SPMK. Our results here

confirm the findings of the originators of the method in that a spatial pyramid consisting

of three levels tends to be optimum [1]. This remains true for dictionaries up to size 250

after which a single level pyramid which is the same as the non-spatial BOVW performs

best. This indicates that the absolute spatial configuration of highly discriminative visual

words is not effective for distinguishing the LULC classes.
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Figure 3.4: The effect of the number of levels used in the SPMK method.

SCK

Figure 3.5 shows the effect of the size of the dictionary and the radius of the spatial

predicate used to compute the co-occurrence matrices for the SCK. The optimal config-

uration is a dictionary of size 100 and a radius of 150 pixels. We did not try dictionaries

larger than 100 since the SCK representation grows quadratically with the number of

visual words but the plots indicate that a slightly larger dictionary should increase per-

formance. The results for the different radii indicate that longer range spatial interactions

are significant for distinguishing the LULC classes. In particular, since our dataset has a

ground resolution of one foot per pixel, the co-occurrence of visual words as far apart as

100 feet is discriminating. There seems to be little improvement past 100 feet though.
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Figure 3.5: The effect of co-occurrence radius and dictionary size on the SCK method.

The SCK outperforms the BOVW for dictionaries of sizes 10, 50, and 100 for radii

of 100 or 150 pixels (see table 3.3 for the BOVW values). It is unlikely, however, that

this trend would continue for larger dictionaries (and it would be computationally and

storage intensive) which motivates combining the BOVW and SCK approaches, possibly

using different sized dictionaries for each.

BOVW+SCK

Section 3.2.4 above already showed that extending BOVW with SCK results in im-

proved performance for all BOVW dictionary sizes. We now examine the effects of the

SCK co-occurrence dictionary size and predicate radius on the combined method. Figure

3.6 and table 3.5 indicate that larger co-occurrence dictionary sizes result in improved
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Figure 3.6: The effect of co-occurrence dictionary size on the BOVW+SCK method. The radius used
to derive co-occurrence matrices is fixed at 150.

performance although there is no clear winner between 50 and 100 visual words. Fig-

ure 3.7 and table 3.6 indicate that a larger spatial predicate radius results in improved

performance again with little difference between radii of 100 and 150 pixels. All these

observations are consistent with those of the SCK only method (see section 3.2.4 above)

with the slight difference that a co-occurrence dictionary size of 100 does not consistently

result in improved performance over a size of 50.

Per-Class Classification Rates

So far, we have only considered average classification rates over all classes. Figure 3.8

compares the per-class rates for the best configurations of the different methods. Not only

is there significant variation between classes but there is also variation between methods
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Figure 3.7: The effect of co-occurrence radius on the BOVW+SCK method. The size of the co-
occurrence dictionary is fixed at 100.

within a class even though the methods do comparably when averaged over all classes.

We summarize our observations as follows.

Easiest Classes Chaparral, harbor, and parking lot, and to a certain extent forest, are

the classes with the highest classification rates. These classes tend to be very homoge-

neous with respect to both color and texture. The variation between cars does result

in color histogram features performing slightly worse than the other approaches on the

parking lot class.

Most Difficult Classes Storage tanks and tennis courts, and to a degree the three

residential classes, baseball diamond, and intersection, are the classes with the lowest

classification rates. Indeed, these are the classes which have the most complex spatial
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arrangements as well as large inter-image variation. It is for many of these classes that

color histograms outperform the other approaches since, as global features, they are

invariant to spatial arrangement.

BOVW BOVW proves to be a robust “middle-of-the-pack” approach, never significantly

outperforming nor underperforming the other techniques.

SPMK SPMK performs better than the other visual word approaches on the beach,

building, runway, and tennis courts classes. This is due to the absolute spatial arrange-

ment of these classes being important. Even though the coastline may be oriented differ-

ently in the beach images, for any particular orientation, the sand and the surf will be in

the same image regions. The same is true for the runway images. SPMK performs the

worst of all methods on the freeway class. While this class is similar to runway, this result

is likely due to the different locations that the vehicles occur as well as the variation in

the shoulders, medians, and road widths.

SCK SCK performs the best of all techniques on the forest and intersection classes.

These are the classes for which relative spatial arrangement is important. It additionally

performs better than SPMK on the agricultural, freeway and river classes, and when

compared with SPMK also restricted to dictionary of size 100 (results not shown), this list

also includes buildings, golf course, harbor, parking lot, and runway. These are the classes

for which relative spatial arrangement is more important than absolute arrangement.

BOVW+SCK Extending the non-spatial BOVW approach using SCK maintains the

robustness of BOVW while improving results for 12 of the 21 classes. If the common

underlying BOVW component is restricted to a dictionary size of 100, BOVW+SCK
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outperforms BOVW for 16 of the 21 classes. This improvement is most significant for

the beach and intersection classes. The SCK extension does result in a notable decrease

in performance for the baseball diamond class (although this decrease is marginal for the

smaller BOVW dictionary). This again supports one of the fundamental conclusions that

the SCK extension improves the BOVW approach for LULC classification.

Color As mentioned above, the performance of color histograms extracted in the HLS

colorspace was somewhat unexpected. HLS histograms perform significantly better than

the other methods on the baseball diamond, golf course, medium density residential,

river, sparse residential, and storage tanks classes. This advantage over methods which

only consider luminance is a result of the large intra-class homogeneity with respect to

color. This advantage is compounded when HLS histograms are compared to the spatial

methods since many of these classes have complex spatial arrangements often with large

intra-class variation.

Texture Texture performs the best on the agricultural, airplane, freeway, and runway

classes. These results are consistent with our previous use of homogeneous texture de-

scriptors based on the outputs of Gabor filters for analyzing remote sensing imagery

[45].

3.2.5 Conclusion

We evaluated BOVW and spatial extensions for LULC classification on the USGS

dataset. While the BOVW-based approaches do not perform better overall than the

best standard approach, they represent a robust alternative that is more effective for
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Figure 3.8: Per-class classification rates corresponding to the optimal configuration for each method.
BOVW uses a dictionary size of 1000. SPMK uses a dictionary size of 500 with three levels.
SCK uses a co-occurrence dictionary size of 100 and radius of 150. BOVW+SCK uses a
BOVW dictionary size of 1000 and a co-occurrence dictionary size of 100 and radius of 150.
The color histograms are computed in the HLS colorspace.

Table 3.2: Best classification rates for different approaches. See text for details.

BOVW SPMK SCK BOVW+SCK Color–RGB Color–HLS Color–Lab Texture
Rate 76.81 75.29 72.52 77.71 76.71 81.19 66.43 76.91

certain classes. We also proposed a spatial extension termed spatial co-occurrence kernel

and showed that it consistently improves upon a BOVW baseline. Potential extensions

of this work may include further investigation into which classes interest point based

approaches are the most appropriate for and integrating interest point and color analysis

since they are complementary.

Table 3.3: Classification rates for BOVW, SPMK, and BOVW+SCK for different visual dictionary
sizes. The size of visual dictionary used to derive the co-occurrence matrices for the SCK is
as follows: 10 when the BOVW dictionary has size 10 or 25; 50 when the BOVW dictionary
has size 50 or 75; and 100 otherwise. The radius used to derive the co-occurrences matrices
is fixed at 150.

10 25 50 75 100 125 150 175 200 250 300 400 500 1000 5000
BOVW 50.05 61.91 66.81 69.19 71.86 71.48 72.81 72.52 73.62 74.10 74.43 74.81 75.76 76.81 76.10
SPMK 59.71 67.86 71.29 72.62 74.00 73.00 74.52 72.76 74.62 74.67 74.19 74.29 75.29 73.81 72.29
BOVW+SCK 50.71 63.19 68.00 72.33 72.10 74.62 74.76 75.10 75.76 75.71 75.95 76.43 76.86 77.71 76.62
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Table 3.4: The effect of the number of levels used in the SPMK method.

10 25 50 75 100 125 150 175 200 250 300 400 500 1000 5000
1 50.05 61.91 66.81 69.19 71.86 71.48 72.81 72.52 73.62 74.10 74.43 74.81 75.76 76.81 76.10
2 51.86 63.14 67.33 70.29 70.91 72.52 72.81 71.95 73.81 73.81 74.71 74.24 75.52 74.24 74.10
3 59.71 67.86 71.29 72.62 74.00 73.00 74.52 72.76 74.62 74.67 74.19 74.29 75.29 73.81 72.29
4 59.05 67.48 69.52 71.62 71.62 71.52 71.76 71.05 72.05 72.52 71.76 72.90 72.90 71.19 71.19

Table 3.5: The effect of co-occurrence dictionary size on the BOVW+SCK method. The rows corre-
spond to the size of the dictionary used to derive the co-occurrence matrices. The columns
correspond to the size of the dictionary for the BOVW component. The radius used to
derive the co-occurrence matrices is fixed at 150.

10 25 50 75 100 125 150 175 200 250 300 400 500 1000 5000
10 50.71 63.19 66.95 70.62 71.00 72.48 72.71 73.10 74.24 73.90 74.86 75.24 75.62 75.52 73.90
50 67.86 69.10 68.00 72.33 73.62 73.76 75.10 74.71 74.76 75.90 75.95 76.86 76.81 77.14 76.67
100 70.52 69.71 72.10 73.95 72.10 74.61 74.76 75.10 75.76 75.71 75.95 76.43 76.85 77.71 76.62

Table 3.6: The effect of co-occurrence radius on the BOVW+SCK method. The rows correspond to
the radius used to derive the co-occurrence matrices. The columns correspond to the size of
the dictionary for the BOVW component. The size of the co-occurrence dictionary is fixed
at 100.

10 25 50 75 100 125 150 175 200 250 300 400 500 1000 5000
20 67.62 69.86 71.29 73.14 72.43 73.57 74.57 74.19 74.81 74.52 74.81 75.71 75.76 76.38 75.05
50 69.33 69.62 71.05 73.19 72.52 74.19 74.48 74.86 74.48 74.48 75.33 75.86 76.57 77.05 75.86
100 70.29 69.86 71.81 73.52 72.95 74.33 74.95 75.24 74.86 76.00 75.86 76.33 76.86 77.62 76.67
150 70.52 69.71 72.10 73.96 72.10 74.62 74.76 75.10 75.76 75.71 75.96 76.43 76.86 77.71 76.62
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3.3 Spatial Pyramid Co-occurrence

This section describes a novel image representation termed spatial pyramid co-occurrence

which characterizes both the relative and absolute spatial arrangement of the local fea-

tures. Specifically, the co-occurrences of visual words–quantized local invariant features–

are computed with respect to spatial predicates over a hierarchical spatial partitioning

of an image. The local co-occurrences combined with the global partitioning allows the

proposed approach to capture both the relative and absolute layout of an image.

We are motivated again by the problem of analyzing overhead imagery. This imagery

generally does not have an absolute reference frame and thus the relative spatial arrange-

ment of the image elements often becomes the key discriminating feature. We evaluate

our approach using the USGS groundtruth dataset. Our approach is shown to result in

higher classification rates on the USGS dataset than a non-spatial bag-of-visual-words ap-

proach as well as a popular approach for characterizing the absolute spatial arrangement

of visual words, the spatial pyramid representation.

3.3.1 Related Work

The major drawback of the BOVWmodel is that it discards all the spatial information

of local features. The spatial pyramid representation [1] which characterizes the absolute

location of the visual words was one of the first works to address the lack of spatial

information in the BOVW representation.
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Saverese et al. [69] propose a model which instead characterizes the relative loca-

tions. Motivated by earlier work on using correlograms of quantized colors for indexing

and classifying images [70], they use correlograms of visual words to model the spatial

correlations between quantized local descriptors. The correlograms are three dimensional

structures which in essence record the number of times two visual words appear at a

particular distance from each other. Correlogram elements corresponding to a particu-

lar pair of words are quantized to form correlations. Finally, images are represented as

histograms of correlations and classified using nearest neighbor search against exemplar

images. One challenge of this approach is that the quantization of correlograms to corre-

lations can discard the identities of associated visual word pairs and thus may diminish

the discriminability of the local image features.

Ling and Soatto [3] also characterize the relative locations of visual words. Their

proximity distribution representation is a three dimensional structure which records the

number of times a visual word appears within a particular number of nearest neighbors

of another word. It thus captures the distances between words based on ranking and not

absolute units. A corresponding proximity distribution kernel is used for classification in

a SVMs framework. However, since proximity kernels are applied to the whole image,

distinctive local spatial distributions of visual words may be overshadowed by global

distributions.

Liu et al. [71] extend the BOVW framework by calculating spatial histograms where

the co-occurrences of local features are calculated in circular regions of varying distances.

However, the spatial histograms are only extracted for select visual words determined
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through an additional feature selection algorithm. Also, the spatial histograms are gen-

erated by averaging the counts of co-occurrences throughout the entire image and thus

may also fail to capture distinctive local spatial arrangements.

Researchers have also proposed shape based approaches [72][73][74] to characterizing

the spatial arrangement of visual words. Object boundaries play an important role here.

They rely heavily on the shapes while do not take into account the appearances of objects.

Yuan et al [75] select less ambiguous co-occurrence of visual words but require exhaustive

search due to spatial overlaps.

Our proposed spatial pyramid co-occurrence differs from the above approaches in the

following ways:

• It characterizes both the absolute and relative spatial layout of an image.

• It can characterize a greater variety of local spatial arrangements through the under-

lying spatial predicate. For example, combined proximity and orientation predicates

can capture the general spatial distribution of visual words as well as the shape of

local regions.

• The approach is simple in that it does not require learning a complex model.

• The representation can be easily combined with other representations such as a non-

spatial bag-of-visual-words. And, since the representations are fused late, visual

dictionaries of different sizes can be used for the spatial (co-occurrence) and non-

spatial components of the combined representation. This allows the non-spatial

component to leverage the increased discriminability of the larger dictionary while
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limiting the computational costs associated with storing and comparing the co-

occurrence structures.

3.3.2 Methods

Spatial Co-occurrence Revisited and Combining Multiple Spatial Predicates

The spatial pyramid co-occurrence builds upon the spatial co-occurrence described

in section 3.2.2. Given two visual co-occurrence matrices VWCM1ρ and VWCM2ρ

corresponding to two images, the SCK is defined by equation 3.10.

Multiple binary spatial predicates can be combined as follows. Given co-occurrence

matrices VWCM1ρA(u, v) and VWCM2ρA(u, v) corresponding to predicate ρA for two

images, and co-occurrence matrices VWCM1ρB(u, v) and VWCM2ρB(u, v) correspond-

ing to predicate ρB for the same two images, a single SCK is computed as the sum of the

individual SCKs

KSCKρA+ρB
= KSCKρA

(VWCM1ρA , V WCM2ρA) +KSCKρB
(VWCM1ρB , V WCM2ρB).

(3.12)

Spatial Pyramid Co-occurrence Kernel

Again, as described in section 3.2.2, suppose an image is partitioned into a sequence

of spatial grids at resolutions 0, . . . , L such that the grid at level l has 2l cells along each

dimension for a total of D = 4l cells. The spatial co-occurrence of visual words is then
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computed separately for each cell in the multiresolution grid. Specifically, given a binary

spatial predicate ρ, compute

VWCM l
ρ(k, u, v) = ‖(ci, cj)| (ci = u) ∧ (cj = v) ∧ (ciρcj)‖

where the visual words ci are restricted to those in grid cell k at pyramid level l.

A spatial pyramid co-occurrence kernel (SPCK) corresponding to the spatial pyramid

co-occurrences for two images VWCM1ρ and VWCM2ρ is then computed as

KSPCK(VWCM1ρ, V WCM2ρ) =
L
∑

l=0

wl

D
∑

k=1

∑

u,v∈M

min(V WCM1lρ(k, u, v), V WCM2lρ(k, u, v))

where the weights wl are chosen so that the sum of intersections has the same maximum

achievable value for each level; e.g., wl = 1/4l. As a sum of intersections, the SPCK is a

Mercer kernel.

Note that the spatial pyramid co-occurrence representation captures both the abso-

lute and relative spatial arrangements of the visual words. The pyramid decomposition

characterizes the absolute locations through the hierarchical gridding of the image and

the VLCMs characterize the relative arrangements within the individual grid cells.

Multiple binary spatial predicates can again be combined by summing the SPCKs

corresponding to the individual predicates.
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Extended SPCK

The SPCK and the non-spatial BOVW representations are complementary and so it

is natural to consider combining them. We thus form an extended SPCK representation,

termed SPCK+, as the sum of the individual kernels:

KSPCK+({VWCM1ρ, BOVW1}, {VWCM2ρ, BOVW2}) =

KSPCK(VWCM1ρ, V WCM2ρ) +KBOVW (BOVW1, BOVW2).

Note that since the spatial and non-spatial components of our representation are fused

late, the visual dictionary used to derive the spatial co-occurrence matrices need not be

the same as that used to derive the BOVW histograms. Indeed, the experiments below

show that smaller co-occurrence dictionaries are preferable for SPCK+ as the spatial

predicates become more specialized. This helps reduce the computational complexity of

the proposed approach.

Since SPCK and SPMK are also complementary in how they characterize spatial de-

pendencies, we also consider a second extended SPCK representation, termed SPCK++,

as the sum of the SPCK and SPMK kernels:

KSPCK++ = KSPCK +KSPMK . (3.13)
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Computational Complexity

We compare the computational costs of BOVW, SMPK, and SPCK in terms of the

sizes of the different representations and the operations required to evaluate the kernels.

For a dictionary of size M , the BOVW representation has size M and evaluating the

BOVW kernel requires M min computations (plus M − 1 additions). For the same sized

dictionary, an SPMK representation with levels 0, . . . , L has size

SSPMK =

L
∑

l=0

l4
∑

k=1

M

and evaluating the SPMK kernel requires the same number of min computations. For

L = 2, SSPMK = 21M .

A VLCM corresponding to a co-occurrence dictionary of size N has N2 entries (this

reduces to N(N +1)/2 unique entries for symmetric spatial predicates such as those used

in the experiments below). So, a SPCK representation with levels 0, . . . , L has size

SSPCK =

L
∑

l=0

l4
∑

k=1

N2

and evaluating the SPCK kernel requires the same number of min computations. For

L = 2, SSPCK = 21N2. In the case where N ≤
√
M , the computational complexity of

SPCK in terms of storage and kernel-evaluation is O(M), the same as for BOVW and

SPMK. This remains true when combining multiple spatial predicates. This is significant
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with respect to the finding in the experiments below that greatly reduced co-occurrence

dictionaries are sufficient or even optimal for the extended SPCK representations.

3.3.3 Experiments

We evaluate the spatial pyramid co-occurrence representation using SIFT features

on three datasets: 1) the USGS groundtruth dataset, 2) the publicly available Graz-01

object class evaluation dataset, and 3) the publicly available 15-Scene evaluation dataset.

Spatial Predicates

We consider two types of spatial predicates: proximity predicates which characterize

the distance between pairs of visual words, and orientation predicates which characterize

the relative orientations of pairs of visual words.

Proximity The first predicate is the proximity predicate defined by equation 3.9. We

believe nearby things are more informative than distant things and use the VWCM

corresponding to ρprox indicates the number of times pairs of codewords appear within r

pixels of each other in a given image or region. Figure 3.9(a) shows an example of where

ρprox evaluates to F for two words.

Orientation The SIFT detector provides the orientation of the interest points used to

derive the visual words. We postulate that these orientations are indicative of the local

shape of image regions and thus derive orientation predicates ρorien which consider the

relative orientations of pairs of visual words.
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Given visual words ci and cj with (absolute) orientations θi and θj with respect to

some canonical direction such as the x-axis, we define a pair of orientation predicates,

one which evaluates to true when the visual words are in-phase (pointing in the same

direction) and another which evaluates to true when the visual words are out-of-phase

(pointing in opposite directions):

ciρorien21cj =



















T, if cos(θi − θj) ≥ 0;

F, otherwise

and

ciρorien22cj =



















T, if cos(θi − θj) < 0;

F, otherwise

where −π < θi, θj ≤ π. Figure 3.9(b) shows an example of where ρorien21 evaluates to T

and ρorien22 evaluates to F for two words.

We also define a set of four orientation predicates ρorien41,...,4 which partition the

phase space into four bins. That is, the four predicates separately evaluate to true for

{
√
2/2 ≤ cos(θi − θj)}, {0 ≤ cos(θi − θj) <

√
2/2}, {−

√
2/2 ≤ cos(θi − θj) < 0}, and

{cos(θi − θj) < −
√
2/2}.

We characterize the relative instead of absolute orientation of pairs of visual words

since overhead imagery generally does not have an absolute reference frame.

102



Chapter 3. Land-use/Land-cover Classification

cj
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Figure 3.9: We consider spatial predicates which characterize (a) the distance between pairs of visual
words, and (b) the relative orientation of pairs of visual words.

Experiments On the USGS Dataset

We use SVMs to perform the classification in the same way as in section 3.2.3. We

also use the same visual dictionaries derived in section 3.2.3.

We compare the following approaches:

• The “baseline” non-spatial BOVW kernel.

• The spatial pyramid match kernel [1]

• The proposed spatial pyramid co-occurrence kernel (SPCK) (sec. 3.3.2).

• The extended SPCK+ and SPCK++ representations (sec. 3.3.2).

We also compare the following configurations:

• A proximity predicate alone. This is referred to as SP1 below. We consider distances

of r = 20, 50, 100, and 150 pixels.
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• A proximity predicate combined with orientation predicates corresponding to a

two-bin phase space. This is referred to as SP2 below.

• A proximity predicate combined with orientation predicates corresponding to a

four-bin phase space. This is referred to as SP3 below.

• Visual dictionary sizes of 10, 50, and 100 for the co-occurrence component of the

SPCK.

• Different numbers of pyramid levels in the SPCK.

Results On the USGS Dataset

Table 3.7 compares the best classification rates of the different approaches for the

USGS dataset. A visual dictionary size of 100 is used for the BOVW and SPMK ap-

proaches as well as the BOVW and SPMK extensions to SPCK. Visual dictionary sizes

of 100, 10, and 50 are used for the co-occurrence components of SPCK, SPCK+, and

SPCK++. Combined proximity plus 4-bin orientation predicates (SP3) are used for

SPCK, SPCK+, and SPCK++.

Table 3.7: Classification rates for the USGS dataset. See text for details.

BOVW SPMK [1] SPCK SPCK+ SPCK++
71.86 74.00 73.14 76.05 77.38

The USGS dataset is challenging and so the improvement that the proposed SPCK+

and SPCK++ provide over SPMK is significant. In particular, SPCK++ improves per-

formance over SPMK by more than what SPMK itself improves over the non-spatial
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BOVW. And, SPCK+ provides about the same improvement. Note that since SMPK in-

cludes BOVW by construction, SPCK+ is a suitable comparison since it is simply SPMK

combined with BOVW.

We pick a relatively small BOVW and SPMK dictionary size of 100 for the sake of

comparison. SPCK+ and SPCK++ provide a similar improvement over BOVW and

SPMK for larger dictionary sizes.
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Figure 3.10: The effect of co-occurrence dictionary size on SPCK and SPCK+.

Co-occurrence Dictionary Size Table 3.8 and Figure 3.10 show the effect of co-

occurrence dictionary size on SPCK and SPCK+. The significant result here is that

smaller co-occurrence dictionaries become sufficient or even optimal as the SPCK+ spa-

tial predicates become more specialized. In particular, a co-occurrence dictionary of just
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Table 3.8: The effect of co-occurrence dictionary size (rows) on SPCK and SPCK+. Results
are shown for the three different spatial predicate configurations (SP1=proximity only,
SP2=proximity+2-bin orientation, SP3=proximity+4-bin orientation), and for the baseline
SPCK and extended SPCK+.

SP1 SP2 SP3
SPCK SPCK+ SPCK SPCK+ SPCK SPCK+

10 58.86 72.33 61.48 74.76 66.43 76.05
50 71.57 74.43 70.90 74.90 73.00 76.00

100 72.62 72.86 72.57 73.14 73.14 74.05

Table 3.9: The effect of the spatial predicate proximity distance (rows) on SPCK. Results are shown
for different spatial predicate configurations and different co-occurrence dictionary sizes
(columns).

SP1 SP2 SP3
10 50 100 10 50 100 10 50 100

20 58.00 66.52 67.19 60.67 66.38 66.38 62.19 65.71 64.76
50 58.76 69.24 70.81 60.43 69.76 69.81 65.57 70.14 69.14
100 58.62 70.76 72.00 61.38 70.48 72.38 66.29 72.62 72.43
150 58.86 71.57 72.62 61.48 70.90 72.57 66.43 73.00 73.14

10 codewords provides better SP3 (SPCK+) performance than one with 50 or 100 code-

words. This reduces the computational complexity of SPCK+ to be of the same order as

SPMK.

Proximity Distance Table 3.9 and Figure 3.11 show the effect of the spatial predicate

proximity distance (r in Eq. 3.9) on SPCK. Results are shown for the three different

spatial predicate configurations as well as for different co-occurrence dictionary sizes.

The clear trend is that larger distances improve performance. This indicates that even

long range spatial interactions between visual words is important for characterizing the

USGS classes.

Pyramid Levels Table 3.10 and Figure 3.12 shows the effect of the number of pyramid

levels on SPCK. Results are shown for just level 0, just level 1, just level 2, and for
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Figure 3.11: The effect of the spatial predicate proximity distance on SPCK. Results are shown for two
different spatial predicate configurations as well as for different co-occurrence dictionary
sizes.

all three levels combined. While combining all three levels usually performs best, the

interesting trend is that the order of the individual levels depends on the size of the co-

occurrence dictionary. In particular, level 0 performs best for a co-occurrence dictionary

of size 100 while level 2 performs best for a dictionary of size 10. We will investigate this

further in future work.

Results On Generic Image Datasets

Even though our primary objective is analyzing overhead imagery, we also apply our

approach to datasets of generic images. We demonstrate that our approach performs
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Table 3.10: The effect of the number of pyramid levels on SPCK. The rows indicate just level 0, just
level 1, just level 2, and all three levels combined. The columns indicate different spatial
predicate configurations and co-occurrence dictionary sizes.

SP1 SP2 SP3
10 50 100 10 50 100 10 50 100

0 52.05 69.81 72.52 55.10 70.19 72.52 60.57 72.57 74.19
1 51.81 66.05 68.00 52.86 65.86 67.57 58.23 67.52 68.33
2 55.01 66.05 66.00 58.52 63.52 62.00 61.19 62.48 59.00

0+1+2 58.86 71.57 72.62 61.48 70.90 72.57 66.43 73.00 73.14
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Figure 3.12: The performance of the individual pyramid levels on SPCK. Results are shown for two
different spatial predicate configurations as well as for different co-occurrence dictionary
sizes.
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competitively on the Graz object class evaluation dataset and the 15-Scene evaluation

dataset.

Graz-01 Dataset We also apply our approach to the publicly available dataset Graz-

01 [2]. This dataset contains 373 images of category bike, 460 images of category person,

and 270 background images as category “counter-class”. All the images measure 640x480

pixels and the objects come in different scales, poses, and orientations. This dataset is

challenging due to high intra-class variation and have been broadly used as an evaluation

dataset in the computer vision community. We evaluate our approach using the same

experimental set up as in [2]. In particular, our training set contains 100 positive images

(bike or person) and 100 negative images from the other two categories, where half are

from the background and half are from the other object category. Our test set consists

of 100 images with a similar distribution to the training set. We report equal error rates

averaged over ten runs.

Table 3.11 compares our technique with other approaches that characterize the spatial

arrangement of visual words, namely the Boosting+SIFT approach of Opelt et al. [2],

the SPMK approach of Lazebnik et al. [1], the proximity distribution kernel (PDK)

approach of Ling and Soatto [3], and the naive Bayes nearest neighbor (NBNN) approach

of Boiman et al. [4] (while NBNN is not a spatial based approach, we include it here for

completeness). Our SPCK+ is shown to perform comparably to the other approaches.

15-Scene Dataset Finally, we apply our approach to the publicly available 15-Scene

dataset [1]. This dataset contains a total of 4485 images in 15 categories varying from
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Table 3.11: Evaluation using the Graz-01 dataset. Comparison of the proposed SPCK+ approach with
Boosting+SIFT [2], SPMK [1], PDK [3], and NBNN [4].

[2] SPMK [1] PDK [3] NBNN [4] SPCK+
Bike 86.5 86.3±2.5 90.2±2.6 90.0±4.3 91.0±4.8
Person 80.8 82.3±3.1 87.0±3.8 87.0±4.6 87.2±3.8

Table 3.12: Results on the 15-Scene dataset.

SPMK [1] SPCK++
Classification Rate 81.40±0.50 82.51±0.43

indoor scenes such as store, bedroom, and kitchen, to outdoor scenes such as coast, city,

and forest. Each category has between 200 to 400 images and each image measures

approximately 300x300 pixels. Following the same experiment setup as [1], we randomly

pick 100 images per category for training and use the rest for testing. Table 3.12 compares

our results with those of SPMK. We see again that SPCK++ performs comparably to

SPMK.

The images in the 15 Scene dataset tend to be strongly aligned so that local spatial

arrangement tends to be less important than global layout. The proposed approach thus

results in only a modest improvement over SPMK (and does not beat the best published

results) on this dataset since it is designed to distinguish between image classes that

possibly differ only in their relative spatial arrangements such as the USGS dataset above.

The global alignment of the 15 Scene dataset is a much stronger signal for discriminating

between classes than relative spatial arrangement. It is for these same reasons that SPCK

is not appropriate for strongly aligned object class datasets such as Caltech-101.
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3.3.4 Conclusion

Our experimental results showed that the spatial pyramid co-occurrence representa-

tion captures both the absolute and relative spatial arrangements of visual words and can

characterize a wide variety of spatial relationships through the choice of the underlying

spatial predicates.

We performed an empirical evaluation using the USGS dataset and the spatial pyra-

mid co-occurrence representation was shown to perform better on this dataset than a

non-spatial bag-of-visual-words approach as well as a popular approach for characteriz-

ing the absolute spatial arrangement of visual words. And, while our primary objective

is analyzing overhead imagery, we also demonstrated that the approach performs com-

petitively on the Graz-01 object class dataset as well as the 15-Scene dataset.

3.4 Summary

In this chapter, we provided a series of experiments to empirically evaluate the effec-

tiveness of local invariant features for labelling LULC classes characterized by identifiable

objects in overhead imagery, in comparsion to texture and color features. We investigated

BOVW approaches to LULC classification as well as how the incorporation of spatial ar-

rangements of local invariant features can improve the standard BOVW model.
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Geospatial Object Detection

In the previous two chapters, we have been focused on content-based image retrieval

and LULC classificaion using local invariant features. In this chapter, we turn to object

detection in overhead imagery. In particular, our goal is to estimate the spatial extents

of complex geospatial object such as high schools and golf courses. We first explore

the potential synergy between gazetteers and overhead imagery for solving this problem

and then propose a novel framework that uses readily available high resolution overhead

imagery to estimate the boundaries of known object instances in order to update the

gazetteers. We perform an empirical evaluation of our approach using a manually labelled

dataset of geospatial objects.

The work in this chapter was published as peer-reviewed full conference papers at the

SIGSPATIAL International Conference on Advances in Geographic Information Systems

in 2008 [76] and the IEEE Workshop on Applications of Computer Vision in 2012 [77].
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4.1 Background

Thanks to advances in technology, our ability to capture and store remote sensing

imagery continues to improve. Unfortunately, our ability to analyze this imagery has not

scaled proportionally and so automated methods are needed to realize the true value of

this data. Fully automated image understanding based only on the image content–the

pixel values–is likely to remain an unsolved problem. Even the most effective system

we know of, the human visual system, relies heavily on experience, context, and other

information external to an image. One approach that is proving particularly promising

for making progress on automated image understanding is to leverage non-image data

associated with the images. The nature of this meta-data varies not only in the richness

of its description but also in how directly it is related to the image content. Extremes

range from a well-annotated set of images in which keywords are associated with specific

image regions, to the co-occurrence of large sections of text and multiple images in the

same document without explicit correspondences, such as on a Web page. Our goal

therefore, is to investigate how different modalities of geographic data can be integrated

to automate information discovery that would not be possible through any one modality

alone.
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4.2 Related Work

4.2.1 Multimodality Integration in Multimedia Data

Multimodal data integration has been successfully applied to other information dis-

covery problems particularly in multimedia analysis. Researchers have exploited connec-

tions between image and non-image data such as image annotations or video transcripts

to improve image understanding and other challenging tasks.

Content based image retrieval (CBIR) is limited by the semantic gap between the low-

level image features, such as color and texture, and the kind of higher-level annotation

needed to support meaningful search. Researchers have explored various ways to overcome

this by incorporating other sources of information. CBIR systems for the World Wide

Web (WWW) often query associated text, such as an image’s ALT tag or text near the

image, in addition to the low-level image features. The CORTINA system of Quack et

al. [78] combines text and image context to search over 3 million images on the WWW.

Other systems exploit the structure of the WWW, such as Newsam et al.’s category based

image retrieval system [79] which makes use of the hierarchical structure of the WWW

pages containing the images in addition to associated text. Other approaches enable

keyword search by tackling the more difficult problem of assigning keywords to images.

Barnard and Forsyth in [80] learn the statistical associations between image regions and

words in a large corpus of annotated images. The learned associations can then be used

to annotate new images. (Interestingly, this association also enables the complementary

task of auto-illustration.)
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Computer vision researchers have exploited various forms of meta-data associated

with image collections to learn visual object models. Berg et al. in [81] data mine a large

collection of captioned images of faces from online news sources to train a recognition

system for commonly occurring people. Barnard et al. in [82] develop an object recognizer

using 10,000 images of works of art along with associated free text which varies greatly

from physical description to interpretation and mood. And, Li et al. in [83] turn the

search paradigm around by using search results from the Google image search engine to

learn visual models for a variety of object categories.

Closer to the work presented in this chapter is the idea of using spatial and tempo-

ral meta-data to organize personal photo collections. Researchers have explored ways in

which access to large collections of snapshots can be improved by classifying and group-

ing photographs using not only the time stamps of individual photographs but also the

temporal spacing between photographs [84]. The advent of hand held global positioning

systems (GPS) and even on-camera GPS now allows photographs to be organized geospa-

tially. While research continues in this area, such as Yahoo Research’s ZoneTag project

[85, 86], many of the online photo sharing portals, such as Flickr [87], already offer this

capability.

4.2.2 Multimodality Integration in Geographic Data

Researchers working in the geographic information sciences have proposed a number of

ways to leverage non-image data sources to improve remote sensing image understanding.

Using satellite or aerial imagery to maintain road networks has always held great appeal
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but automatically extracting roads is a challenging task. An obvious way to improve road

extraction, at least for known roads, is to use existing vectorized road networks as seeds

[88–90]. Researchers have also incorporated other information to improve road extraction,

such as using digital surface models to account for gaps between road segments due to

shadows [91]. Automated building extraction is another appealing use of remote sensing

imagery. Agouris et al. [92] propose a SpatioTemporal Gazetteer that incorporates

aerial imagery as well as existing vector datasets of extracted outlines and thematic

datasets (building blueprints, building usage records) to automatically detect changes to

the spatial footprints of buildings using template matching.

There has been research effort on using non-image GIS data to recognize a broader

variety of object classes but largely without implementation or experimental results.

Bailloeul et al. in [93] describe the theoretical aspects of a system which uses a priori

knowledge in form of outdated urban maps to control contour- and region-based segmen-

tation of new imagery. And, Baltsavias in [94] discusses a wide range of ways in which

“knowledge” can improve image analysis but, as he indicates, his definition of non-image

information is extremely broad and includes concepts such as rules, models, and context,

in additional to specific GIS data. (He notes that very few of the works he surveyed use

priori knowledge in the form of maps, GIS or other geodatabases.) Walter and Fritsch in

[95] do provide results from using GIS data to automatically derive appearance models

which are then applied to imagery to verify the GIS data but their application is at the

level of land use classification.
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Note that the discussion above, and the context of the work in this chapter, concerns

techniques for integrating multiple data sources, one of which is unprocessed image data.

This is different from approaches which assume the image analysis has already been

carried out such as the interesting recent work by Michalowski et al. [96] on combining

street vector data, phone-book records and building outlines to map postal addresses.

4.3 Motivation

We contend that there is significant opportunity for exploiting connections between

image and non-image geographic data due to 1) location being simple yet powerful key for

associating widely varying data modalities; and 2) the growing available of data annotated

with location information either explicitly or implicitly.

We focus on combining high-resolution aerial imagery with gazetteers. Our work is

motivated by the fact that current gazetteers, geographic dictionaries of what-is-where on

the surface of the Earth, are deficient in that the spatial extents of the archived objects are

limited to a single point, a latitude/longitude pair. While the systems include provisions

for storing at least a bounding box representation, this information has simply never been

acquired or computed. As the development team of the University of California at Santa

Barbara Alexandria Digital Library (ADL) gazetteer points out [97], “for a digital library

application, the spatial extent of the feature, either approximately with a bounding box or

more accurately with a polygonal representation, is better, but there are no large sets of

gazetteer data with spatial extents.” They go on to state that “establishing the standards
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that will enable the sharing of gazetteer data will help harvest data from many sources,

but ultimately deriving spatial locations and extents from digital mapping products and

other sources automatically will be needed.” The long-term goal of this work is to do

just as the ADL gazetteer development teams proposes, leverage readily available high

resolution overhead imagery to estimate the spatial extents of known object instances

with minimal user supervision.

4.4 Integrating Gazetteers and Remote Sensing Im-

agery

We first explore the potential for synergy between gazetteers and overhead imagery.

We propose a framework for using prior knowledge in the form of gazetteer records to

learn appearance models for a variety of geospatial objects in an unsupervised fashion.

We then propose how to use appearance models to improve the spatial extent associated

with geospatial objects in a gazetteer.

4.4.1 Data Sources

This section describes the two data sources being considered for integration, gazetteers

and high-resolution remote sensing imagery.
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Gazetteers

A gazetteer is a geographic directory. It contains records indicating what-is-where on

the surface of the earth. The what varies greatly both in terms of the class of object as

well as its physical characteristics, such as its spatial extent. While the minimal set of

fields is a name and a point location, gazetteers typically include both proper names (e.g.,

San Francisco Internal Airport) and object classification (e.g., Airport), more complex

spatial extents, such as a bounding box or higher-order polygon, and relations to other

records (e.g., part of San Francisco County). Gazetteers are not a new concept but

advances in information technology have enabled them to become more extensive, thanks

to automated aggregation, and more accessible, thanks to the Internet, than ever before.

One of the gazetteers we consider is the Alexandria Digital Library (ADL) gazetteer

[98] which is part of the ADL project at the University of California at Santa Barbara.

The ADL gazetteer is an exemplar of modern gazetteers. It was created by aggregating

the United States Geological Survey’s Geographic Names Information System (GNIS)

and the National Imagery and Mapping Agency’s Geographic Names Processing System

(GNPS) [97]. It has an online browser-based map interface for interactive querying. More

important for our work is the ADL Gazetteer Service Protocol which supports remote

query and response functions using standard HTTP XML-formatted requests.

The ADL gazetteer contains almost six million records and thus represents one of the

most extensive and diverse collections of its kind. It covers the entire world although due

to the nature of its original sources, its coverage is more complete for the US. It cata-
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logs over 200 different classes of geographic features. Further, a feature class thesaurus

maps almost 1,000 non-preferred terms to these primary classes. The feature classes are

organized hierarchically under the following six root classes: administrative areas, hydro-

graphic features, land parcels, manmade features, physiographic features, and regions.

Table 4.1 contains a list of the primary feature classes and their total counts.

While the ADL gazetteer is an impressive collection of geographic data, it has several

shortcomings. Some of these could potentially be compensated for by advances in auto-

mated image analysis such as the techniques we propose in this chapter. At the moment,

the spatial extent of the records is limited to a single point, a longitude/latitude pair.

While the system includes provisions for at least a bounding box representation, this

information was not present in the original sources and post-ingest manual specification

is prohibitively expensive.

Remote Sensing Imagery

We believe that remote sensing image analysis is poised to undergo a paradigm shift

thanks to the growing availability of wide area coverage submeter pixel resolution data.

The domain is faced with the prospects and challenges of object level analysis on a scale

not possible before. The higher resolution imagery greatly increases the variety of objects

that are now observable, at least according to theoretical bounds such as Shannon’s sam-

pling theorem. This aligns the problem more closely with the well researched computer

vision challenge of generic object recognition and allows it to leverage the many advances

made over the past several decades in that area. In particular, given the work from the
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Table 4.1: Object classes indexed by the ADL gazetteer along with counts.
Class Count Class Count Class Count
administrative areas 2,126,610 cemeteries 64,535 dunes 5,270
military areas 813 disposal sites 247 flats 4,722
parks 20,408 fisheries 45 gaps 15,762
political areas 32,623 fortifications 2,471 isthmuses 79
countries 165 historical sites 66,228 karst areas 113
countries, 1st order div 3,328 archaeological sites 1,654 ledges 644
countries, 2nd order div 14,602 hydrographic structures 123,991 mesas 5,529
countries, 3rd order div 13,115 breakwaters 101 mineral deposit areas 667
countries, 4th order div 1,330 canals 21,482 moraines 39
populated places 2,000,821 dam sites 45,828 mountains 362,194
cities 273 harbors 5,250 mountain ranges 526
capitals 271 levees 726 mountain summits 21,401

reference locations 42,597 marinas 45 ridges 21,916
reserves 4,704 offshore platforms 58 natural rock formations 2,154
tribal areas 4,183 piers 403 arches (natural formation) 446
hydrographic features 636,5 64 reservoirs 49,976 plains 7,171
bays 34,898 waterworks 82 plateaus 1,165
fjords 1,656 landmarks 545 playas 4
channels 13,874 mine sites 24,070 reefs 8,270
deltas 66 monuments 8,560 seafloor features 2,112
drainage basins 208 oil fields 4,834 continental margins 140
estuaries 424 recreational facilities 7,526 ocean trenches 252
floodplains 4 amusement parks 18 seamounts 1,025
gulfs 420 camps 3,744 submarine canyons 590
guts 932 performance sites 312 tectonic features 476
ice masses 3,569 sports facilities 1,948 earthquake features 345
glacier features 3,492 storage structures 11,969 faults 127
lakes 94,758 telecom features 12,240 fracture zones 123
seas 273 towers 14,423 folds (geologic) 4
oceans 42 transportation features 77,933 anticlines 4
ocean currents 24 airport features 24,814 valleys 36,815
streams 480,921 heliports 3,802 canyons 18,706
rivers 15,907 seaplane bases 451 volcanic features 2,262
bends (river) 1,637 aqueducts 101 lava fields 391
rapids 3,095 bridges 4,709 volcanoes 1,819
waterfalls 4,945 locks 259 regions 120,132
springs (hydrographic) 3,016 parking sites 5 biogeographic regions 44,782
thermal features 407 pipelines 186 barren lands 11

land parcels 12,424 railroad features 34,029 deserts 588
manmade features 858,145 roadways 578 forests 19,476
agricultural sites 174,912 trails 7,582 petrified forests 2
buildings 243,448 tunnels 761 woods 871
capitol buildings 29 wells 71,680 grasslands 4,419
commercial sites 2,711 windmills 171 habitats 56
industrial sites 1,465 physiographic features 575,964 oases 362
power generation sites 26 alluvial fans 66 shrublands 1,900

court houses 664 arroyos 45,359 snow regions 77
institutional sites 189,02 badlands 17 tundras 6
correctional facilities 32 banks (hydrographic) 2,014 wetlands 17,887
educational facilities 14,885 bars (physiographic) 12,167 coastal zones 165
medical facilities 5,558 basins 8,957 economic regions 8
religious facilities 78,26 3 storage basins 20 firebreaks 8
library buildings 2,134 beaches 3,584 land regions 70,094
museum buildings 886 bights 590 continents 3
post office buildings 11,16 capes 19,707 islands 70,088
research facilities 339 caves 966 map regions 2,311
data collection facilities 14 cirques 196 map quadrangle regions 2,311
residential sites 22,719 cliffs 5,557 research areas 195
housing areas 21,756 craters 435 uncategorized 20,719
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previous two chapters, it can leverage local invariant descriptors, which have proven ef-

fective at modelling the appearances of diverse categories of objects viewed under widely

varying conditions.

Meter (e.g. IKONOS) and submeter (e.g. Quickbird) pixel resolution satellite imagery

has been available commercially now for nearly a decade. GeoEye-1, which launched in

August of 2008, provides 0.41 meter/pixel imagery. This is in addition to the growing col-

lection of aerial imagery which boasts even higher resolution. Automated image analysis

is needed to realize the full potential of these information rich data sources. We believe

the integration of gazetteers and remote sensing imagery represents a promising step in

this direction.

4.4.2 Geospatial Object Modelling

This section describes the framework that uses prior knowledge in the form of gazetteer

records to learn appearance models in an unsupervised fashion. First, we use the ADL

gazetteer to locate and extract image regions corresponding to 13 different classes of

geospatial objects in a large collection of IKONOS satellite imagery. We then extract

high-dimensional image features from these regions and show they are clustered in the

feature space, a potentially sufficient condition for learning object models. We then inves-

tigate classification strategies to further demonstrate that we are able to learn appearance

models of geospatial objects in an unsupervised fashion through integration of a gazetteer

and remote sensing imagery.
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Data

Thanks to a generous grant from Lockheed Martin Corporation, we have access to a set

of 16 georeferenced IKONOS satellite images which cover over 3,000 square kilometers of

the continental US. While this imagery consists of one meter panchromatic band and four

meter multispectral bands, we only utilize the panchromatic imagery. These IKONOS

images are mostly of metropolitan areas and include coverage of Phoenix, Los Angeles,

New York City, San Diego, San Jose, Washington DC, and El Paso.

We selected a subset of object classes cataloged by the ADL gazetteer (see Table

4.1 for the full list) using the following criteria. First, the spatial extent of the objects

must be limited enough for them to be contained within a single IKONOS image. This

rules out larger objects such as counties. Second, the objects must be visible in the

imagery. This obvious constraint rules out subterranean objects such as caves. Third,

the visual characteristics of the object taken as a whole must be distinctive. This allows

different object types to share some visual features but requires that there should be

some way of discriminating between them visually. Finally, since most of our imagery

is of urban/suburban regions, we focused on manmade objects. This selection process

resulted in the 13 geospatial object classes listed in Table 4.2.

We then used the ADL Gazetteer Service Protocol to identify instances of these 13

geospatial object classes in our IKONOS imagery. This was achieved by issuing XML

formatted queries requesting all instances of a particular object class contained within

the spatial footprint of each of the images separately. Table 4.2 lists the total number
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of instances identified in all 16 images. Table 4.2 also indicates the class ID assignments

that will be used in subsequent tables.

Table 4.2: Appearance models were learned for the following geospatial object classes. The column
labelled count refers to the total number of examples in the IKONOS imagery as found by
querying the ADL gazetteer.

ID Object Class Count
1 Airport Features 24
2 Cemeteries 40
3 Country Clubs 12
4 Educational Facilities 694
5 Golf Courses 23
6 Harbors 6
7 Heliports 50
8 Medical Facilities 70
9 Mobile Home Parks 88
10 Parks 274
11 Railroad Features 9
12 Religious Facilities 126
13 Shopping Centers 147

As mentioned earlier, a shortcoming of the ADL gazetteer (and most gazetteers) is

that it specifies the spatial extents of the objects as only a single point location. Therefore,

even though we can use the gazetteer to identify object instances in the IKONOS imagery,

we know very little about which region in the image actually corresponds to the objects.

Without additional information, the best we can do is extract a square subimage centered

at the gazetteer specified location and assume the object is contained somewhere in this

subimage. At the moment, the size of these subimages is set manually and varies from

300 by 300 pixels for heliports to 1000 by 1000 pixels for airports with most being 600

by 600 pixels. A better estimate of the size of the subimages for different object classes

could be obtained using a dataset with spatial extents. This would reduce the amount of
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background (non-object) regions in the subimages and therefore improve the appearance

modelling.

Figure 4.1 contains two sample subimages from four object classes: educational facili-

ties, golf courses, mobile home parks, and shopping centers. Again, these subimages were

extracted in a completely automated fashion by cropping a fixed sized region from an

IKONOS image centered at the point location specified by the ADL gazetteer. These are

some of the better samples in that 1) the point locations are actually within the objects;

2) the ratio of the object to background is quite high; and 3) the objects are good visual

examples of their classes. Overall, the subimages form a fairly noisy dataset. Frequently,

the ADL specified point location is not within the object due to inaccuracies of the orig-

inal gazetteer data sources and/or the georeferencing process. We can compensate for

this by extracting larger regions but this results in a lower object to background ratio.

There can also be significant variance visually between the samples for a particular class.

The less-than-perfect nature of the subimage dataset make the object modelling task an

interesting challenge.

Image Features

We use the standard SIFT interest point detector and the standard BOVW represen-

tation. We use the cosine distance measure to compute the similarity between images.

We first investigate whether the frequency features belonging to the different object

classes form clusters in the space induced by the cosine distance. We compare the average

within cluster feature distance to the average between cluster feature distance. The results
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.1: Sample subimages of different object classes extracted in an unsupervised fashion from
IKONOS imagery using the ADL gazetteer. Two samples of each of the following classes are
shown in scan order: educational facilities, golf courses, mobile home parks, and shopping
centers.

of this analysis are shown in Table 4.3. We observe that the features for most classes are

more similar to themselves than to the features for other classes.

Classification

We used a classification framework to further show that we are learning discriminative

appearance models for the 13 object classes. We computed average classification rates

using a leave-one-out approach in which we train classifiers using all the features for

an object type except one selected at random which is later used as the test feature.
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Table 4.3: The features belonging to different object classes form clusters in the feature space. The
value at row i, column j is the average distance of the features for object class (ID) i to the
features for object class j. The higher the value, the more similar the features. Note that
the features of most object classes are more similar to themselves than to the features of
other object classes. The entries on the diagonal are emphasized for readability.

1 2 3 4 5 6 7 8 9 10 11 12 13
1 0.854 0.837 0.813 0.847 0.814 0.859 0.835 0.851 0.848 0.839 0.878 0.839 0.870
2 0.837 0.926 0.902 0.922 0.896 0.896 0.853 0.916 0.896 0.913 0.920 0.919 0.907
3 0.813 0.902 0.891 0.896 0.884 0.873 0.836 0.892 0.873 0.889 0.894 0.895 0.885
4 0.847 0.922 0.896 0.938 0.878 0.912 0.865 0.932 0.917 0.924 0.933 0.938 0.929
5 0.814 0.896 0.884 0.878 0.891 0.863 0.830 0.876 0.854 0.875 0.885 0.875 0.869
6 0.859 0.896 0.873 0.912 0.863 0.938 0.869 0.915 0.882 0.903 0.925 0.924 0.921
7 0.835 0.853 0.836 0.865 0.830 0.869 0.841 0.869 0.861 0.857 0.882 0.864 0.880
8 0.851 0.916 0.892 0.932 0.876 0.915 0.869 0.928 0.912 0.919 0.931 0.934 0.928
9 0.848 0.896 0.873 0.917 0.854 0.882 0.861 0.912 0.928 0.902 0.916 0.911 0.920
10 0.839 0.913 0.889 0.924 0.875 0.903 0.857 0.919 0.902 0.912 0.922 0.925 0.915
11 0.878 0.920 0.894 0.933 0.885 0.925 0.882 0.931 0.916 0.922 0.949 0.931 0.937
12 0.839 0.919 0.895 0.938 0.875 0.924 0.864 0.934 0.911 0.925 0.931 0.948 0.930
13 0.870 0.907 0.885 0.929 0.869 0.921 0.880 0.928 0.920 0.915 0.937 0.930 0.938

We explored two types of classifiers, a simple nearest centroid classifier and a maximum

likelihood classifier.

The nearest centroid classifier assigns a test feature to the object class with the closest

centroid as computed using the cosine distance. This centroid is simply the average of

the training features for an object type. A separate classifier is trained for each class.

Table 4.4 shows the confusion matrix for 1,500-fold cross validation. The classification

rates for different object classes vary significantly from a low of 0.02 for parks to 0.69 for

mobile home parks, with several above 0.50. Overall, the fact that we are doing much

better than chance (0.08) confirms we are learning discriminative appearance models, at

least for most of the classes.

We also performed classification using a maximum likelihood classifier to better in-

corporate the spread of the features for an object class. We modelled the distribution of

the features for each class using a von Mises-Fisher (vMF) probability density function.
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Table 4.4: The confusion matrix of classification using a closest centroid classifier. 1,500-fold cross
validation is performed using a leave-one-out approach. The value at row i, column j

indicates the average classification rate that a sample of object class i is classified as class
j. The entries on the diagonal are emphasized for readability. These results confirm that
we are learning discriminative appearance models for most object classes.

1 2 3 4 5 6 7 8 9 10 11 12 13
1 0.58 0.04 0.00 0.09 0.04 0.03 0.00 0.00 0.05 0.04 0.08 0.00 0.04
2 0.00 0.34 0.02 0.03 0.19 0.03 0.00 0.02 0.06 0.05 0.02 0.20 0.04
3 0.00 0.00 0.16 0.00 0.34 0.00 0.00 0.00 0.26 0.00 0.00 0.08 0.15
4 0.04 0.08 0.00 0.27 0.01 0.03 0.01 0.02 0.15 0.03 0.06 0.25 0.05
5 0.00 0.08 0.04 0.00 0.56 0.04 0.00 0.00 0.00 0.13 0.00 0.03 0.12
6 0.00 0.00 0.00 0.00 0.00 0.67 0.16 0.00 0.00 0.00 0.00 0.17 0.00
7 0.13 0.00 0.00 0.04 0.10 0.13 0.33 0.02 0.06 0.03 0.06 0.06 0.06
8 0.06 0.09 0.01 0.11 0.03 0.09 0.05 0.14 0.10 0.03 0.02 0.20 0.08
9 0.01 0.05 0.01 0.07 0.00 0.03 0.03 0.02 0.69 0.01 0.01 0.00 0.08
10 0.02 0.16 0.01 0.17 0.08 0.10 0.02 0.04 0.08 0.02 0.07 0.18 0.05
11 0.21 0.00 0.00 0.00 0.11 0.00 0.00 0.11 0.00 0.11 0.22 0.12 0.11
12 0.00 0.05 0.01 0.08 0.02 0.18 0.01 0.03 0.00 0.03 0.05 0.54 0.01
13 0.07 0.02 0.00 0.06 0.01 0.06 0.08 0.04 0.22 0.01 0.06 0.11 0.27

A vMF density can be thought of as a normal density for points on a unit hyper-sphere

which is appropriate for our features since they are directional (thus compared using the

cosine distance). The probability density function of a vMF distribution has the following

form

p(x|µ, κ) = cd(κ)e
κµT x , (4.1)

where d is the dimension, and µ, the distribution “mean,” and κ, the distribution spread,

are the parameters. We again use a leave-one-out approach in which a separate classifier

is learned for each class by estimating µ and κ from the set of features with one left

out. The left out samples are then classified as the object class which maximizes their

likelihood:

c∗ = arg max
c∈allclasses

p(xsample|µc, κc) . (4.2)
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The results of performing a 1,500-fold cross validation are shown in Table 4.5. Again,

though the classification rates vary significantly between classes, several of the rates are

above 0.5 confirming we are learning discriminative appearance models.

Table 4.5: The confusion matrix of classification using a maximum likelihood classifier. The features
of each object class are modelled using a von Mises-Fisher distribution. 1,500-fold cross
validation is performed using a leave-one-out approach. The value at row i, column j

indicates the average classification rate that a sample of object class i is classified as class
j. The entries on the diagonal are emphasized for readability. These results confirm that
we are learning discriminative appearance models for most object classes.

1 2 3 4 5 6 7 8 9 10 11 12 13
1 0.63 0.04 0.00 0.00 0.04 0.00 0.02 0.22 0.04 0.01 0.00 0.00 0.00
2 0.00 0.45 0.00 0.00 0.14 0.00 0.01 0.21 0.05 0.13 0.00 0.00 0.00
3 0.00 0.17 0.01 0.00 0.36 0.00 0.00 0.08 0.33 0.05 0.00 0.00 0.00
4 0.04 0.12 0.00 0.00 0.01 0.00 0.03 0.50 0.16 0.13 0.00 0.00 0.00
5 0.00 0.13 0.06 0.00 0.49 0.00 0.00 0.18 0.05 0.09 0.00 0.00 0.00
6 0.21 0.00 0.00 0.00 0.00 0.00 0.29 0.34 0.00 0.16 0.00 0.00 0.00
7 0.30 0.02 0.02 0.00 0.07 0.00 0.35 0.11 0.07 0.06 0.00 0.00 0.00
8 0.05 0.13 0.02 0.00 0.01 0.00 0.04 0.52 0.17 0.06 0.00 0.00 0.00
9 0.01 0.06 0.00 0.00 0.00 0.00 0.09 0.06 0.76 0.02 0.00 0.00 0.00
10 0.02 0.19 0.01 0.00 0.05 0.00 0.07 0.45 0.10 0.10 0.00 0.00 0.00
11 0.23 0.19 0.00 0.00 0.01 0.00 0.00 0.51 0.00 0.05 0.00 0.00 0.00
12 0.00 0.09 0.00 0.00 0.01 0.00 0.07 0.68 0.00 0.15 0.00 0.00 0.00
13 0.08 0.03 0.00 0.00 0.00 0.00 0.08 0.44 0.33 0.03 0.00 0.00 0.00

Discussion

This section described a fully automated technique for learning visual appearance

models for geospatial object classes by integrating the ADL gazetteer and high-resolution

IKONOS imagery. Preliminary exploration of the class feature distributions and on

training both a nearest centroid and a maximum likelihood classifier indicates we are

learning discriminative models even though the training images are extremely noisy.

We find the two classifiers perform quite differently. In particular, the maximum

likelihood classifier, which accounts for the variation in feature spread between classes,
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completely miss-classifies educational facilities, harbors, railroad features, religious facili-

ties, and shopping centers. These objects instead are predominantly classified as medical

facilities. Further investigation here is needed although we observed that the estimated

von Mises-Fisher distributions for these classes are more peaked (the value of κ is larger)

and thus classes with wider distributions, such as medical facilities, can “sweep-up” noisy

instances.

4.4.3 Conclusion

In section 4.4, we explored the potential for increased synergy between gazetteers and

remote sensing imagery. We described two specific ways in which these complementary

data sources can be integrated to more fully automate geographic data management. We

presented a novel approach to using gazetteers as a source of semi-supervised training

data for appearance based modelling of geospatial objects.
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4.5 Estimating the Spatial Extents of Geospatial Ob-

jects Using Hierarchical Models

The previous section explores how to use gazetteers to learn appearance models of

geospatial objects in an unsupervised fashion. In this section, we propose a hierarchical

model to represent the appearance of geospatial objects and thus to estimate the spatial

extents when learned. We learn the model in both supervised and semi-supervised fash-

ions and show the potential of our approach to estimate the bounding boxes of archived

geospatial objects in the gazetteer using limited labelled data.

4.5.1 Approach Overview

An overview of the proposed approach is shown in Figure 4.2. First, gazetteers are

queried for object instances, for example all high schools in a geographic region such as a

city. The point locations of these objects are then used to retrieve high resolution images

from online repositories. The spatial extents of the objects are either fully or partially

labelled in a small subset of the images to form a training set which is used to learn

the object models. The model is used to estimate the spatial extents of the objects in

the target images. Finally, the gazetteers are updated with the spatial extents of the

originally queried objects.
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Figure 4.2: An overview of our proposed approach for estimating the spatial extents of geospatial
objects.

4.5.2 Data Sources

Gazetteers

We utilize two gazetteers in the experiment. First GeoNames1, an online world-

wide gazetteer compiled from several dozen sources including other gazetteers such as

the USGS Geographic Names Information System. It contains over 8 million features

(objects) categorized into nine top-level classes which are further subcategorized into 645

feature codes. All the data is accessible free of charge through a number of webservices as

well as a daily database export. The GeoNames web interface allows fuzzy search using

geographic names, locations, features codes, and feature classes. Queries to GeoNames

return a single latitude/longitude point as the spatial extent of an object.

We also treat Google Maps as a gazetteer in that it allows us to perform location-

based searches for geospatial objects such as Costco shopping centers. We further use

the Google Maps Geocoding API2 to translate the street addresses provided by Google

Maps into latitude/longitude points.

1http://www.geonames.org
2http://code.google.com/apis/maps/documentation/geocoding
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Image Repositories

We limit our study area to the US and use the USGS National Map Seamless Data

Server1 interface to automatically download imagery. This interface accepts spatial

queries for a range of data collections including High Resolution Orthoimagery of major

US urban areas at 3-inch, 6-inch, 1-foot, and 2.5-foot spatial resolutions, and the US

Department of Agriculture (USDA) National Agriculture Imagery Program imagery of

the conterminous United States at 1-meter or 2-meter spatial resolutions.

Images are retrieved from the National Map using a simple rectangular query region

specified by its bounding latitude and longitude values. In our case, the single lati-

tude/longitude point from the gazetteer serves as the center of a region whose size is

chosen to ensure that the retrieved image contains the target object. This size is cho-

sen empirically in the experiments below based on the observed sizes of sample objects.

A single size is picked for each object type and then fixed for all the retrievals. Note

that the gazetteer point does not always fall inside the object due to data collection,

geo-registration, or other errors.

4.5.3 Hierarchical Models

The three levels of the hierarchical model are shown in Figure 4.3. We now describe

each of the levels in detail.

1http://seamless.usgs.gov
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Figure 4.3: The three levels of our hierarchical model. Level 1 represents the object using quantized
SIFT features shown here as x’s. BOVW histograms are computed for image tiles and
SVM classifiers are used to assign LULC labels to the tiles in level 2. The distribution of
the LULC classes in level 3 constitutes the final object model.

Level 1 - Local Invariant Features

We use local invariant features to characterize the objects at the lowest level of the

hierarchy. We use SIFT features as our local invariant feature detector and descriptor.

We adopt a standard BOVW approach and construct a visual dictionary by performing

k-means clustering on a large number of SIFT features (from a dataset different from that

used to train the object models). We use 256x256 pixel tiles in all the experiments and

the BOVW histogram is normalized to have unit L1 norm to account for the difference

in the number of interest points between tiles.
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Level 2 - Latent LULC Classes

An intermediate, latent level bridges the gap between the low-level local invariant

features and the high-level objects. Specifically, LULC labels are assigned to image tiles

using support vector machines (SVMs).

We leverage our work on the USGS LULC classification from the previous chapter.

We use a one-against-all strategy to perform multi-class SVM classification. We also use

the probabilistic output option of the LIBSVM package [64]. Specifically, for each tile i

in an image, we compute the probability distribution over the M LULC classes as

P (tilei) = [p1, p2, ..., pM ] ,

where pm corresponds to the probability that tile i is assigned to the mth class by the

SVM classifiers. The SVM classifiers take as input the BOVW histograms from level 1.

We normalize P (tilei) so that
∑M pm = 1.

In order to reduce the effect of tile (mis)alignment, we perform the LULC labeling

on tiles which overlap by 50 percent. Thus, each 128x128 pixel block appears in four

256x256 pixel tiles. We apply a smoothing mechanism to the LULC class distribution at

the block level

P (blockj) =
1

4

∑

P (tilei) , (4.3)

where the sum is taken over the four tiles in which block j appears.
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To summarize, our final representation at level 2 in the hierarchy is a probability

distribution P (blockj) over M LULC classes for each 128x128 pixel block j.

Level 3 - Object Model

The top level of our representation also models the objects as probability distributions

over LULC classes. The distributions corresponding to different object types can be easily

learned from one or more training samples. Given N training samples encompassing a

set of U blocks labelled at level 2, we compute

P (object) =
1

|U|
∑

blockj∈U

P (blockj) , (4.4)

where P (blockj) is computed using equation 4.3 and |U| is the cardinality of U.

4.5.4 Spatial Extent Estimation

The primary goal is to estimate the spatial extent of known object instances. Again,

in the context of this problem, the gazetteer provides a single latitude/longitude point for

the object. This point is used to download a target image T large enough to encompass

the object. An object model P (object) is then used to estimate the spatial extent of the

object as follows.

First, we extract and quantize SIFT features from the target image using the same vi-

sual dictionary as in level 1 of the object model. We then compute the BOVW histograms

for overlapping 256x256 pixel tiles and the multi-class SVM classifiers are used to to com-
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pute the LULC class distributions for each of the tiles. The LULC class distributions are

then computed for each 128x128 pixel block using equation 4.3.

The problem now reduces to determining the contiguous set of blocks that are most

similar to the object model. We simplify this search by 1) scoring overlapping square

windows each containing a fixed number of blocks, 2) applying a threshold to the scores,

and 3) computing the final spatial extent as the union of the selected windows.

Specifically, we slide a square window of size wxw blocks over the image in increments

of one block. For each window location, we compute the probability distribution of the

window over the LULC classes:

P (window) =
1

w2

∑

blockj∈window

P (blockj) , (4.5)

where P (blockj) is computed using equation 4.3. We then compute the similarity between

the window and the object model D(window, object) using the intersection measure

D(window, object) =

M
∑

min(P (window)[m], P (object)[m])) , (4.6)

where [m] indicates the mth component and M is the number of LULC classes. If

D(window, object) is above a threshold θ, we label all the blocks in the window as be-

longing to the target object. (We discuss the setting of θ below.) Finally, after each

window location has been visited, we compute the spatial extent of the object as the

union of all the selected blocks. The key is to learn the object model and two learning
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regimes are employed: fully supervised and semi-supervised. In the fully supervised mode,

the object model is learned using fully manually labelled groundtruth images in which

boundaries of geospatial objectes are delienated. In the semi-supervised mode, the learn-

ing process of the object model makes use of not only labelled groundtruth data, but also

weakly labelled data. We consider the image data retrieved automatically using existing

gazetteers as weakly labelled data as a whole, in that the current gazetteers represent

the spatial extent of the archive geospatial object using only a single latitude/longitude

point and we expect at least part of the image data to contain positive examples of an

object. As for each individual image, it is acutally unlabelled since the object boundary

is not delienated, if the manual groundtruth is not given. To include the unlabelled data

in the training set we assume that unlabelled examples which are similar to labelled ones

should have a similar label. Being able to incorporate unlabelled data is important as

it allows for taking full advantage of the automatically generated data using gazetteers.

For the semi-supervised learning, we use a recent bipartite ranking function which can

incorporate unlabelled data into the learning phase [99]. The goal in bipartite ranking

is to learn a scoring function H which assigns higher scores to relevant instances than

to irrelevant ones. In our problem, we consider regions within the boundaries of the

geospatial objects as being relevant and regions belonging to the background as being

irrelevant. Our goal then is to mark as relevant those regions within the groundtruth

spatial extent of a test image.
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4.5.5 Experimental Results

We evaluate our approach using an groundtruth dataset consisting of four object

types: high schools, golf courses, mobile home parks, and Costco shopping centers.

Dataset

We use the first stage of the framework in Figure 4.2 to identify the locations of target

objects and their corresponding images. The GeoNames gazetteer is used to identify 44

high schools, 27 golf courses, and 23 mobile home parks, and Google Maps is used to

identify 18 Costco shopping centers. The National Map Seamless Data Server is then

used to download 1-foot resolution orthoimagery using a large query region to ensure the

images contain the target objects. The images are in the RGB colorspace.

A groundtruth dataset is created by manually delineating the target objects using a

polygon representation. We also compute the rectangular, axis aligned bounding boxes

of the target objects using the polygonal boundaries.

SIFT features are extracted from each of the images and quantized using a visual dic-

tionary consisting of 100 visual words. A BOVW histogram is computed for overlapping

256x256 pixel tiles.

Tile-level LULC distributions are computed using a set of SVMs corresponding to

18 LULC classes: agricultural, airplane, baseball diamond, buildings, chaparral, dense

residential, forest, freeway, golf course, harbor, intersection, medium density residential,

mobile home park, overpass, parking lot, runway, sparse residential, and tennis courts.
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Finally, block-level LULC distributions are computed using equation 4.3 and object-level

distributions are computed using equation 4.4.

Evaluation

We quantitatively evaluate the results by computing two values. First, how much of

the true spatial extent is selected, and second, how much of the estimated spatial extent

does not belong to the true spatial extent. We want the first to be large and the second

to be small. These values are equivalent to true positive and false positive rates.

Given a target image with groundtruth spatial extent Ltrue, and estimated spatial

extent Lest corresponding to a specific setting of the relevancy threshold θ, we compute

precision as the fraction of the estimated region that actually belongs to the true spatial

extent:

precision =
|Lest

⋂

Ltrue|
|Lest|

(4.7)

We compute recall as the fraction of the true spatial extent that appears in the estimated

region:

recall =
|Lest

⋂

Ltrue|
|Ltrue|

, (4.8)

In these equations, | · | indicates the area of a region in pixels and
⋂

indicates set inter-

section. As usual, precision and recall range from 0 to 1.

We consider two cases of our problem. First, where the groundtruth spatial extent

is a polygon. In this case, Ltrue is the set of 128x128 pixel blocks contained within the
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groundtruth polygon (a block is considered to be inside a polygon if the majority of its

area is) and Lest is the set of blocks computed in section 4.5.4. We also consider the case

where the groundtruth spatial extent is a bounding box (derived from a the groundtruth

polygon). In this case, Lest is the bounding box encompassing the set of blocks computed

in section 4.5.4.

Experiments

We compare two different learning regimes. First, the fully supervised case where

the object models learned using strongly labelled groundtruth data only; i.e., images in

which the spatial extent of an object has been manually delineated. And, second, the

semi-supervised case where the object model is learned using a combination of strongly

and weakly labelled training data. The weakly labelled data are images in which the

object has not been delineated. The significance here is that such weakly labelled training

data can be automatically generated using existing gazetteers even though they represent

the spatial extent using only a single latitude/longitude point. This point can be used to

retrieve imagery from the National Map or other image repository which should contain

the object roughly centered. The query region is chosen to be larger than the typical size

of the particular object type.

To know how much the improvement can be provided by the weakly labelled data,

the strongly labelled data consists of only one manually labelled image in both learning

regimes. The LULC distribution of the groundtruth region as computed using equation
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4.4 is the single relevant example. The LULC distributions over windows outside the

object region are the irrelevant examples.

The unlabelled examples in the semi-supervised learning regime are the LULC dis-

tributions over windows from a set of weakly labelled images. We equally weight the

labelled and unlabelled data in the learning as described in [99].

We evaluate performance using cross-validation. Each image in the groundtruth

dataset is taken separately as the labelled image. The rest of the images are sepa-

rated equally into unlabelled training data and test data. Both learning regimes see the

single labelled image. The semi-supervised regime also sees the unlabelled training data.

The ranking function is then applied to each of the test images separately. For each

test image, a set of precision-recall values are computed as the relevancy threshold θ is

varied. The final set of precision-recall values is computed by averaging over all trials in

the cross-validation (one for each image in the groundtruth dataset). We also compute a

single average precision value from this final set.

Results

Qualitative Results Using Supervised Learning Results for three samples of each

object type are shown in figures 4.4-4.7. In these results, the yellow polygons indicate

the groundtruth spatial extents and the union of the red regions indicate the estimated

spatial extents for the empirically chosen threshold value θ. Overall, our object model is

shown to be effective especially given that only one groundtruth image is available during

the training process.
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(a) (b) (c)

Figure 4.4: Three sample images of high schools. The yellow polygons indicate the manually delineated
groundtruth spatial extents. The union of the red regions indicate the estimated spatial
extents using a single labelled training image in a fully supervised learning framework.

(a) (b) (c)

Figure 4.5: Three sample images of golf courses. The yellow polygons indicate the manually delineated
groundtruth spatial extents. The union of the red regions indicate the estimated spatial
extents using a single labelled training image in a fully supervised learning framework.
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(a) (b) (c)

Figure 4.6: Three sample images of mobile home parks. The yellow polygons indicate the manually
delineated groundtruth spatial extents. The union of the red regions indicate the esti-
mated spatial extents using a single labelled training image in a fully supervised learning
framework.

(a) (b) (c)

Figure 4.7: Three sample images of Costco shopping centers. The yellow polygons indicate the man-
ually delineated groundtruth spatial extents. The union of the red regions indicate the
estimated spatial extents using a single labelled training image in a fully supervised learn-
ing framework.
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Qualitative Comparision between Supervised and Semi-supervised Learning

Figures 4.9 through 4.12 shows the results for one instance of each object class. The left

panel in each of these figures indicates the manually delineated groundtruth, the middle

panel shows the results of the fully supervised case, and the right panel shows the results of

the semi-supervised case. The rectangles in the middle and right panels are the bounding

boxes of the windows detected for an empirically chosen relevancy threshold. (The same

threshold value is used for the fully and semi-supervised cases.) These bounding boxes

could be used to revised the gazetteer entries for these objects which currently specify

the middle of the image as the spatial extent. Clearly, the bounding boxes computed

using the proposed semi-supervised approach are a more accurate estimate of the spatial

extents of the objects than those computed using the fully supervised approach.

Quantitative Comparision between Supervised and Semi-supervised Learning

Figure 4.8 shows the precision-recall curves for the four object types. Our results show

that incorporating the weakly labelled training samples provided by the gazetteers im-

proves the object appearance models and thus the the spatial extent estimation. The

results for the fully supervised learning regime are shown using blue x’s. The results for

the semi-supervised regime are shown using red squares. The proposed semi-supervised

regime results in higher precision at almost all values of recall, the exceptions being at

very high recall values where there is not much difference.
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Table 4.6: Average precision values for the two learning regimes.

Learning HS GC MHP Costco
Fully Supervised 0.316 0.460 0.260 0.190
Semi-Supervised 0.401 0.518 0.340 0.260

The average precision for the four object types are listed in Table 4.6. These results

again demonstrate that the semi-supervised regime improves over the fully supervised

one.

Discussion

The most salient aspect of the hierarchical model is the latent intermediate level. First,

by characterizing the LULC classes that constitute an object, it allows our approach to

bridge the gap between the low-level features and the high-level objects. Second, it allows

us to model complex objects which are composed of multiple LULC classes. And, finally,

its effectiveness is due as much to it modeling the LULC classes that do not appear

in an object as those that do. In particular, the large number of LULC classes allows

the windowing step to readily reject background regions that have high proportions of

classes which do not appear in the object. Such discrimination would not be possible

using binary single-class LULC classifiers (and then again, would only be applicable to

homogeneous objects). The results above show the potential of use our object model

to estimate the spatial extents of geospatial objects. While not perfect, this level of

accuracy for the spatial extent is a big improvement over the single latitude/longitude

point currently present in gazetteers. The results also demonstrate that by incorporating
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Figure 4.8: Precision-recall curves for the four object types. The results for the fully supervised learning
regime are shown using blue x’s. The results for the proposed semi-supervised regime are
shown using red squares.

weakly labelled training data the standard supervised framework can be improved upon.

This is significant for the integration of gazetteer and image data.

4.6 Conclusion

In this chapter, we have explored the potential synergy between gazetteers and over-

head imagery and proposed a framework to integrate them together. Further, we have
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proposed a hierarchical model that can use image data generated from the latitude/longitude

point locations from the gazetteers to estimate the spatial extents of geospatial objects

and thus to update the gazetteers with a bounding box presentation.

(a) (b) (c)

Figure 4.9: Results for an instance of the high school class. (a) The manually delineated groundtruth.
(b) The bounding box as detected using the fully supervised appraoch. (c) The bounding
box as detected using the proposed semi-supervised approach.

(a) (b) (c)

Figure 4.10: Results for an instance of the golf course class. (a) The manually delineated groundtruth.
(b) The bounding box as detected using the fully supervised approach (here, two sets
of connect windows are detected and thus two bounding boxes are generated). (c) The
bounding box as detected using the proposed semi-supervised approach.
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(a) (b) (c)

Figure 4.11: Results for an instance of the mobile home park class. (a) The manually delineated
groundtruth. (b) The bounding box as detected using the fully supervised approach. (c)
The bounding box as detected using the proposed semi-supervised approach.

(a) (b) (c)

Figure 4.12: Results for an instance of the Costco shopping center class. (a) The manually delineated
groundtruth. (b) The bounding box as detected using the fully supervised approach. (c)
The bounding box as detected using the proposed semi-supervised approach.
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Conclusion

This dissertation has explored the use of local invariant features in the analysis of

remote sensed imagery in three aspects: image retrieval, LULC classification, and detec-

tion of geospatial objects. It has been demonstrated that the local features can meet the

challenges of analyzing higher resolution, cheaper-to-get, and easier-to-access overhead

images that has become available over the last decade.

We have performed an extensive evaluation of local invariant features for image re-

trieval of LULC classes. We have empirically evaluated the effects of a number of design

parameters on a BOVW representation including feature extraction, the size of the visual

codebook, and the dissimilarity measure used to compare the BOVW representations. We

have also performed comparisons with standard features such as color and texture.

The second problem this work addresses is using local invariant features to label LULC

classes. We have applied the BOVM approach to LULC classification and proposed to

capture the geometric aspect of images by taking into account the spatial arrangement

of local features which is usually neglected by the standard BOVM approach. The pro-

posed SPCK approach was motivated by the fact that overhead images generally do not
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have an absolute reference frame and thus the relative spatial layout may be key in dis-

criminating among different LULC classes. To this end, we have proposed to compute

the co-occurrences of visual words with respect to spatial predicates over a hierarchical

partitioning of an image such that both the absolute and relative layout of the image can

be captured.

One of the fundametal contributions of this work is the construction of a first-of-its-

kind LULC groundtruth dataset. The dataset offers 21 classes and 100 images of each

class, the largest of its kind. The dataset consists of royalty free images and has been

made publicly available to other researchers through our lab’s website. We anticipate

this will serve as a standardized dataset for analyzing different techniques in the remote

sensing community.

In addition, we have also explored the potential synergy between non-image and image

geospatial data. We have proposed a novel framework to fuse together gazetteers and

overhead images such that the information can flow both ways: on one hand, the images of

archived instances in the gazeteers retrieved around the latitude/longitude point locations

provided by the gazetteers can be treated as either strongly or weakly labelled samples

through which the appearance model of the archived complex geospatial objects can be

learned; on the other hand, the trained appearance model can be used to estimate the

spatial extents of geospatial objects of the same type so that the point representation

in the gazetteers can be replaced by a bounding box. This helps enable fully automatic

geographic information management and integration.
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