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Abstract.

The first satellite-based global retrievals of terrestrial sun-induced chlorophyll fluorescence (SIF) were achieved in 2011.

Since then, a number of global SIF datasets with different spectral, spatial and temporal sampling characteristics have become

available to the scientific community. These datasets have been useful to monitor the dynamics and productivity of a range

of vegetated areas worldwide, but the coarse spatio-temporal sampling and low signal-to-noise ratio of the data hamper their5

application over small or fragmented ecosystems. The recent advent of the Copernicus Sentinel-5P TROPOMI mission and the

high quality of its data products promise to alleviate this situation, as TROPOMI provides daily global measurements at a much

denser spatial and temporal sampling than earlier satellite instruments. In this work, we present a global SIF dataset produced

from TROPOMI measurements within the TROPOSIF project funded by the European Space Agency. The current version

of the TROPOSIF dataset covers the time period between May 2018 and April 2021. Baseline SIF retrievals are derived10

from the 743–758 nm window. A secondary SIF dataset derived from an extended fitting window (735–758 nm window) is

included. This provides an enhanced signal-to-noise ratio at the expense of a higher sensitivity to atmospheric effects. Spectral

reflectance spectra at seven 3-nm windows devoid of atmospheric absorption within the 665–785 nm range are also included in

the TROPOSIF dataset as an important ancillary variable to be used in combination with SIF. The methodology to derive SIF

and ancillary data as well as results from an initial data quality assessment are presented in this work. The TROPOSIF dataset15

is available through the following Digital Object Identifier (DOI) https://doi.org/10.5270/esa-s5p_innovation-sif-20180501_

20210320-v2.1-202104 (Guanter et al., 2021).
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1 Introduction

The sun-induced fluorescence (SIF) signal emitted by the chlorophyll-a of terrestrial vegetation has been shown to be a closer

indicator of vegetation functioning than other variables traditionally derived from optical remote sensing data (Mohammed20

et al., 2019). Global retrievals of SIF from space were first achieved in late 2011 from the GOSAT mission (Frankenberg

et al., 2011b; Joiner et al., 2011; Guanter et al., 2012). Since then, a number of global SIF datasets have been produced from

spaceborne spectrometers originally intended for atmospheric research, such as GOME-2 (e.g. Joiner et al., 2013; Köhler

et al., 2014; van Schaik et al., 2020), SCIAMACHY (Köhler et al., 2014; Khosravi et al., 2015; Joiner et al., 2016), OCO-2

(e.g. Frankenberg et al., 2014; Sun et al., 2018), and TanSat (e.g. Du et al., 2018; Yao et al., 2021). The SIF data from those25

missions have been typically used to investigate the spatial and temporal patterns of the gross primary production (GPP) of

different ecosystems (e.g. Frankenberg et al., 2011b; Guanter et al., 2014; Yoshida et al., 2015; Sun et al., 2017; Luus et al.,

2017; Walther et al., 2017; Jeong et al., 2017; Smith et al., 2018; Zuromski et al., 2018; Wu et al., 2018).

The main limitations of those SIF datasets for scientific work are the high precision errors and the low spatial resolution

and/or sparse spatial sampling. ESA’s FLuorescence EXplorer mission, scheduled for launch in >2025, will enable a break-30

through in the spatial resolution of space-based SIF datasets (Drusch et al., 2017). Before that, the advent of the TROPOspheric

Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5P mission in October 2017 is already helping to sub-

stantially reduce those limitations in spatio-temporal sampling and signal-to-noise ratio. TROPOMI combines a global contin-

uous spatial sampling with a 3.5×7.5 km2 pixel size at nadir in the near-infrared (3.5×5.5 km2 since August 2019) with a daily

revisit time, which leads to a large increase in the number of clear-sky measurements per day in comparison to earlier missions.35

In addition, it measures with a high signal-to-noise ratio, a spectral resolution of 0.37 nm, and a wide spectral coverage in the

near-infrared window. These all enable high-performance SIF retrievals (see Fig. 1). The high potential of TROPOMI for SIF

monitoring was first anticipated by the sensitivity analysis performed by Guanter et al. (2015), and later demonstrated by the

first SIF retrievals from real TROPOMI data recently published by Köhler et al. (2018) and Köhler et al. (2020) (hereinafter

referred to as the “Caltech product”). The first publications exploiting TROPOMI SIF data for scientific applications are con-40

firming those high expectations on the use of TROPOMI for vegetation monitoring (Turner et al., 2020; Doughty et al., 2019;

Zhang et al., 2019; Yin et al., 2020; He et al., 2020).

Regarding the exploitation of SIF data for scientific applications, the so-called canopy structure effect has to be taken into

account to either disentangle the physiological information in SIF from other confounding variables, to normalize the impact of

illumination-observation geometries, or to quantify GPP from SIF. The structure of the canopy defines wavelength-dependent45

multiple scattering and absorption processes, which determine the amount of SIF photons escaping the vegetation cover and

hence the SIF flux measured at the satellite level (Joiner et al., 2020). A number of studies are proposing the use of spectral

surface reflectance in the red to near-infrared parts of the spectrum to help model those radiative transfer processes (Yang

and van der Tol, 2018; Liu et al., 2019; Zhang et al., 2020; Badgley et al., 2017; Dechant et al., 2020). In addition, spectral

reflectance from the entire 675–775 nm range can be used to derive indicators of the fraction of absorbed photosynthetically50

active radiation (FAPAR), leaf-area index (LAI) and other biophysical parameters and spectral vegetation indices. These can
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Figure 1. Top-of-atmosphere (TOA) radiance spectrum and top-of-canopy SIF spectrum from a green vegetation surface in the 665–785 nm

spectral range covered by TROPOMI’s bands 5 and 6. The TOA radiance spectrum at high spectral resolution is plotted in gray, and the

result of the convolution with TROPOMI’s spectral resolution is shown in blue. The horizontal dashed lines show the span of the baseline

SIF retrieval fitting window (FT-1, 743–758 nm) and the secondary fitting window (FT-2, 735–758 nm). The spectral locations of the 3 nm

macro-channels at which spectral reflectance data are provided in the TROPOSIF product are marked in red. A typical SIF spectrum is

depicted in green.

complement SIF for the characterization of the vegetation condition and functioning. For example, it has been recently shown

that the near-infrared reflectance of vegetation (NIRv) index, or its variation resulting from the multiplication by incoming

sunlight (NIRvP), are good proxies for SIF (Badgley et al., 2017; Dechant et al., 2020, 2021). NIRv and NIRvP could then

represent a powerful variable for the calculation of the SIF yield, which is the variable that can be compared to photosynthetic55

efficiency in studies dealing with vegetation stress. The fact that 675–775 nm spectral reflectance can be derived from the same

TROPOMI spectra as SIF (see Fig. 1), and that this reflectance data are provided at a sufficiently high spatial resolution (e.g.

similar to some MODIS global vegetation products) is another strength of using TROPOMI data for vegetation monitoring

(Guanter et al., 2015).

In this paper, we describe the SIF and spectral reflectance data product derived from TROPOMI in the frame of the60

TROPOSIF project funded by the Sentinel-5p+ Innovation activity of the European Space Agency (ESA)1.

2 Methodology

2.1 SIF retrieval approach

The different SIF retrieval schemes implemented for spaceborne measurements in the last years have relied on the Fraunhofer

line in-filling principle proposed by Plascyk and Gabriel (1975). This principle establishes that the fractional depth of solar65

1https://eo4society.esa.int/projects/sentinel-5pinnovation/
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Fraunhofer lines, which are included in the reflected solar light spectrum, decreases when it is combined with an additive signal

such as SIF. The feasibility of this concept for satellite-based SIF retrieval was first shown by simulations (Sioris et al., 2003;

Frankenberg et al., 2011a) and then applied to all satellite missions for which global SIF data products have been derived.

We can group SIF retrieval strategies into physically-based and data-driven methods. The first group of methods are based

on a physical formulation of the radiative transfer and the instrument’s response for the modeling of top-of-atmosphere (TOA)70

radiance measurements. These types of methods have been applied to instruments with a high spectral resolution, such as

GOSAT and OCO-2 (Frankenberg et al., 2011b; Köhler et al., 2015). In turn, data-driven methods model the input TOA

radiance spectra as a linear combination of spectral functions derived from statistical analysis of SIF-free training sets. The

performance of these methods is conditioned by the arbitrary selection of the training set and several model parameters, but

they are fast and very effective to account for both atmospheric and instrumental effects. Data-driven methods have been used75

with both high and medium spectral resolution instruments (Guanter et al., 2012; Joiner et al., 2013; Köhler et al., 2014; Joiner

et al., 2016; Sanders et al., 2016; Guanter et al., 2015; Köhler et al., 2018; van Schaik et al., 2020).

In this work, we have adapted the data-driven retrieval scheme described in Guanter et al. (2015) for the processing of real

TROPOMI data. The forward model takes the form

F (a,α,Fs) = v1

np∑

i=0

aiλ
i +

nv∑

j=2

αjvj +FshF, (1)80

where λ is the array of measurement wavelengths used for the representation of spectrally-smooth terms such as surface

reflectance and atmospheric scattering, v is the basis of principal components describing the variability in solar irradiance

and atmospheric transmittance, Fs is SIF at the reference wavelength of 740 nm, hF is a fixed spectral function normalized at

740 nm, which accounts for the spectral shape of SIF, np is the order of the polynomial used to represent spectrally-smooth

terms, and nv is the number of principal components representing high spectral frequency variations. The first two terms on85

the right hand side of Eq. 1 are a simplification of the product of
∑np

i=0 aiλ
i and

∑nv
j=1αjvj , which are terms representing

contributions of low and high spectral frequencies to the reflected solar radiation, respectively (Guanter et al., 2013, 2015). The

third term on the right hand side of Eq. 1 is the SIF contribution to the TOA radiance measurement. The absorption of SIF by

the atmosphere between the ground and the TOA can be neglected for fitting windows devoid of strong atmospheric absorption

lines such as the ones selected in this work (see Sect. 2.2), which was justified in Guanter et al. (2015).90

The state vector elements to be estimated in the retrieval process are ai, αj , and Fs, whereas λ, v, and hF are model

parameters. Regarding these, λ is known for each input TOA spectrum. The singular vectors v are calculated through singular

vector decomposition of a training set consisting of TOA radiance spectra extracted from measurements over non-vegetated

areas (mostly, the Sahara desert and Arctic and Antarctic surfaces). The training is done on a per-column basis in order to

account for slight variations in the spectral and radiometric response of different detectors in the across-track direction. Finally,95

the spectral function hF is extracted from spectral libraries (Guanter et al., 2013). The forward model is inverted for each TOA

radiance spectrum using ordinary least squares.
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Figure 2. First 3 singular vectors (vi) and weights of the first 10 vi for the 743–758 fitting window from the singular vector decomposition

of a training set consisting of TROPOMI spectra over non-vegetated areas. The weights of the first 10 vi are also shown for the 735–758 nm

fitting window.

2.2 Retrieval fitting windows

We have chosen to run the TROPOSIF retrieval for two fitting windows, 743–758 nm and 735–758 nm. The first one is purely

based on solar Fraunhofer lines, whereas the second is also slightly affected by water vapor lines in the 735–743 nm range (see100

Fig. 1). These two windows are selected as good compromises between retrieval noise and sensitivity to cloud contamination,

as it was demonstrated in the sensitivity analysis by Guanter et al. (2015): the 735–758 nm window leads to smaller precision

errors than the narrower 743–758 nm window because of the larger number of spectral points, whereas the 743–758 nm window

is more robust against atmospheric effects due to the absence of atmospheric lines. The 743–758 nm window is therefore a

better choice for applications not requiring strict clear-sky observations, as the impact of sub-pixel clouds is lower than for105

the other window and the greater number of observations available compensate for the higher retrieval random errors; for
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applications only relying on clear-sky data, the 735–758 nm window would be a better option, as the lower precision errors

would compensate for the lower number of available measurements and the higher sensitivity to sub-pixel clouds would not be

relevant.

The number of singular vectors nv is set to 4 for the 743–758 nm fitting window and 7 for 735–758 nm. This choice is based110

on the results from the sensitivity analysis by Guanter et al. (2015) and recent tests with real TROPOMI data. Results from

those tests can be seen in Fig. 2, which shows an abrupt drop in the weight of the v after 4 for the 743–758 nm window and

7 for the 735–758 nm window. On the other hand, np is set to 3 in both cases. We have not found major differences in the

retrieval accuracy and precision when using a greater nv or np.

An example of the three first vi and their weights for the 743–758 nm fitting window derived from the singular vector115

decomposition of a particular training set are displayed in Fig. 2. It can be observed that v1 carries most of the weight (i.e.

reproduces most of the variance of the training set), whereas the others may account for low spectral frequency variations in

albedo (e.g. v2) or measurement artifacts like spectral shifts (e.g. v3). This justifies the choice of only multiplying v1 by the

polynomial in wavelength accounting for low-frequency spectral variations in Eq. 1.

2.3 Retrieval random error120

As it was described in Guanter et al. (2015), the retrieval error covariance matrix Se is given by

Se =
(
JT S−1

0 J
)−1

, (2)

where S0 is the measurement error covariance matrix and J the Jacobian matrix, which in the particular case of the retrieval

forward model given in Eq. 1 consists of the terms J(ai) = v1λ
i, J(αj) = vj and J(Fs) = hF. The last element in the diagonal

of the Se matrix contains the squared random error of the retrieved SIF value.125

As a result, the retrieval random error for Fs only depends on measurement noise (i.e. the noise in the input radiance spectra),

which in turn is driven by incoming radiance through photon noise. For the robust and computationally-efficient calculation of

retrieval errors, empirical radiance-σ(SIF) curves have been produced for each fitting window. The 1-σ retrieval errors were

first calculated by means of Eq. 2 for several orbits and grouped into TOA radiance bins of 5 mW m−2 sr−1 nm−1. A 3rd-order

polynomial was then fitted to the binned radiance-σ(SIF) data. The result of this process is shown in Fig. 3. The resulting130

polynomial coefficients are used to predict σ(SIF) as a function of average radiance on a per-pixel basis. With this strategy we

avoid the inversion of the measurement error covariance matrix in Eq. 2, which had proved to be unstable and computationally-

expensive. It must be mentioned that the measurement noise data provided in TROPOMI’s Level 1B (L1B) files suffer from

float number truncation errors from the storage as byte data. This makes that the σ(SIF) that we calculate from the measurement

noise data can affected by the same effect. This manifest as a underestimation of the σ(SIF) values of a varying magnitude135

(from 0 to ∼15%) along the radiance-σ(SIF) curve.
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Figure 3. Empirical radiance-σ(SIF) curves used for the calculation of 1-σ SIF retrieval errors in the operational processing.

2.4 Day-length scaling

The variability in SIF retrievals due to instantaneous illumination conditions must be accounted for when SIF retrievals are

to be compared with other SIF datasets acquired with a different satellite overpass time, or with daily GPP estimates (Zhang

et al., 2018).140

We have followed the approach proposed by Frankenberg et al. (2011b) to generate daily-equivalent SIF (SIFd) estimates in

TROPOSIF. This is based on the calculation of a day-length scaling factor DL as

DL(t0) =

∫ tss

tsr
µs(t)dt

µs(t0)
, (3)

where t0 is the time of the measurement, tsr is the time of sunrise, tss is the time of sunset, and µs(t) is the cosine of the sun

zenith angle. This approach assumes that SIF scales linearly with incoming solar radiation, and that the entire day is cloud-free.145

2.5 Quality value for SIF retrievals

An empirical quality value (qa_value) indicating the reliability of each SIF retrieval is included in the TROPOSIF product.

This value is a score between 0 and 1 (from lowest to highest quality) calculated as the combination of a series of empirical

penalty factors applied in those conditions which are expected to potentially degrade the retrieval quality.

Starting from a maximum qa_value of 1.0, penalty factors are applied on the view zenith angle (VZA), the sun zenith150

angle (SZA), and the reduced χ2 of the fit (χ2
r) as follows:

1. VZA> 60◦ → qa_value=qa_value-0.5

2. SZA> 70◦ → qa_value=qa_value-0.5

7
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3. average TOA radiance /∈ [20, 200] mW m−2 sr−1 nm−1→ qa_value=qa_value-0.5

4. χ2
r /∈ [0.6, 2]→ qa_value=qa_value-1.0155

5. SIF /∈ [-10, 10] mW m−2 sr−1 nm−1→ qa_value=qa_value-1.0

If the final qa_value becomes <0, it is reset to 0.

Cloud contamination is not part of the computation of the qa_value. Cloudy observations are included in the generation

of the singular vectors used by the forward model, so the latter is generally expected to properly represent cloudy spectra. In

those cases in which clouds do degrade the fit quality, this will be captured in the χ2
r value. Further filtering by cloud fraction160

is possible for those applications in which only cloud free acquisitions are used.

Only SIF retrievals with qa_value=1.0 (equivalently, qa_value>0.5) are recommended for use. In practice, this means

that the data point should be discarded if any of the previous conditions applies.

2.6 Spectral reflectance

Spectral reflectance spectra at 7 spectral points in the 665–785 nm range covered by TROPOMI’s band 5 and 6 (namely, 665,165

680, 712, 741, 755, 773 and 781 nm) are included in the TROPOSIF product as an ancillary dataset. Spectral reflectance spectra

are calculated as

ρTOA,i =
π〈LTOA〉i
µs〈Isc〉i

, (4)

where LTOA refers to the TOA radiance measurement (L1B radiance spectra), Isc is an extraterrestrial solar irradiance spectrum

corrected by the Sun-to-Earth distance at the day of the overpass, and 〈〉i refers to the spectral convolution operator, which in170

this case corresponds to a boxcar spectral response function with a 3 nm width, applied at the ith spectral point. The Kurucz

2005 high resolution irradiance spectrum2 (from 300 to 1000 nm, with ∼0.001 nm sampling at 740 nm) resampled at the 7

spectral points with the same 3-nm boxcar function is used for 〈Isc〉. This approach is computationally much simpler than the

alternative of using TROPOMI’s solar irradiance product, and still yields a sufficient accuracy because of the reduce spectral

resolution of the ρTOA,i calculations.175

The 7 spectral points are selected so that they provide both a proper sampling of the red, red-edge and near-infrared parts of

the spectrum and a low sensitivity to atmospheric effects (see Fig. 1). This is important because no atmospheric correction is

performed on the spectral reflectance spectra.

2.7 Processing flow

TROPOSIF’s processing chain starts by reading in TOA radiance data from TROPOMI band 5 and 6 L1B orbit files as180

well as cloud fraction data from the TROPOMI L2 Cloud product. Data acquired over water bodies (identified using the

MODIS MCD12C1 2018 land cover product), with a high cloud fraction (> 0.8) or with a lower quality according to the

2http://kurucz.harvard.edu/sun/irradiance2005/irradthu.dat
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quality_level flag attached to the L1B data (threshold of 80) are screened out from the processing. Spectral band #179

in TROPOMI’s channel 6 is also removed from the processing, since spectral spikes were found for that band in pixels at the

vicinity of clouds.185

The first step in the processing is the generation of the singular vectors. For that, spectra over barren areas worldwide as

identified in the MODIS MCD12C1 2018 dataset are used. Next, TOA radiance data from either a continuous fitting window

(for SIF retrieval) or at certain “macro-channels” at atmospheric windows within the far-red region (for reflectance retrieval)

are read in. SZA and latitude and longitude fields are also extracted for the computation of the DL factor. SIF and reflectance

retrievals are run separately for each column in order to account for column-dependent changes in TROPOMI’s spectral and190

radiometric responses. The output SIF, spectral reflectance and DL are written to a NetCDF file together with other variables

of interest for later data visualization and processing. This NetCDF file has the same structure as the official TROPOMI L2

products (see Appendix A).

2.8 L2B processing

In order to facilitate data download and processing, a final processing step extracts all valid retrievals (qa_value>0.5) from195

the L2 orbit files in a given day and combines them into single daily files, referred to as L2B files. The application of the

qa_value filter substantially reduces the volume of data in the L2B file with respect to the combined L2 dataset. In the case

of spectral reflectance data, only spectra acquired under a cloud fraction smaller than 0.2 are included. For the sake of reducing

the data volume, some information fields in the L2 files are not included in L2B files, such as the χ2
r values, the qa_value,

the day-length factor and the illumination and observation azimuth angles (which are converted into a single relative azimuth200

angle).

3 Results

3.1 Consistency of SIF retrievals

Maps from spatial subsets of different variables derived from the processing of one TROPOMI orbit dataset are displayed in

Fig. 4. The different panels show the spatial distribution of TOA radiance at 743 nm, the cloud fraction in TROPOMI’s L2205

Cloud product, qa_value, the TOA reflectance at 665 nm and 781 nm, the normalized difference vegetation index (NDVI)

derived from those two channels, as well as the retrieved SIF, 1-σ error and the χ2
r of the fit for both 743–758 and 735–

758 nm fitting windows. χ2
r values larger (smaller) than 1 indicate an underestimation (overestimation) of the model-data error

variance.

The following specific points can be highlighted from Fig. 4:210

– The areas with the highest abundance of green vegetation (e.g. the northern Iberian Peninsula, South West France,

Brittany and Normandy) are clearly visible in the SIF and NDVI maps. In the case of SIF, the range of values is within

9
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Figure 4. Subsets of the input data (TOA radiance at 743 nm and cloud fraction) and the results obtained from the processing of TROPOMI’s

09025 orbit (11 July 2019) with the TROPOSIF SIF processor. FW-1 refers to the 743–758 nm fitting window, and FW-2 to 735–758 nm.
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Figure 5. Example of spectral fit for the 743–758 nm fitting window. The fit residual is compared to the noise level included in the input L1B

dataset for the same spectrum. The resulting SIF at 740 nm and χ2
r of the fit are shown in the upper panel.

the expectation for both fitting windows. Slightly higher values are found for the 743-758 nm fitting window in clear-sky

regions.

– Single-retrieval uncertainties are also within the expected range (0.3–0.6 mW m−2 sr−1 nm−1). They are substantially215

lower for the 735-758 nm window.

– For both fitting windows, the χ2
r is typically around 0.8-0.9. This deviation from an ideal case of χ2

r=1 would indicate

that the model is slightly over-fitting the data (χ2
r >1 implies that the model does not model the full variance in the

spectrum). However, the 0–15% truncation errors in the measurement noise input data discussed in Sect. 2.3 could also

explain that χ2
r is in general smaller than 1. On the other hand, the sensitivity to clouds of the 735-758 nm retrieval220

can also be noticed in the χ2
r maps. Relatively high χ2

r values (>1.5) are found for retrievals over cloudy areas for

735-758 nm retrievals, which is explained by the existence of water vapor absorption lines in the 735–743 nm range. No

relevant differences in χ2
r between clear and cloudy areas are found for the 743-758 nm window. More details on the fit

performance can be found in Fig. 5.

– The quality value map indicates that the retrievals are in general performed under the best retrieval conditions (qa_value=1.0).225

Lower quality retrievals are found for the edges of the subset where VZA> 60◦, for some patches in the Sahara desert

where the mean TOA radiance is greater than the 200 mW m−2 sr−1 nm−1 threshold, and for the cloudy areas on the

top-right of the sampled area for which χ2
r >2.
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– Even though the processing is performed on a per-column basis, detector artifacts in the form of striping are present in the

SIF maps, which can be explained by an across-track dependence of TROPOMI’s spectral and radiometric calibration.230

In particular, the processing has not run over some across-track columns which did not pass the quality_level> 80

filter, and higher uncertainty values are found at the swath edges.

3.2 Spatio-temporal composites of the all-sky SIF product

A global composite of SIF data from the 743–758 nm fitting window in a 0.2◦ latitude-longitude grid for the 8–15 July 2019

period and a cloud fraction lower than 0.5 is presented in Fig. 6. A total of 102 orbit files have been used for the composite. Prior235

to cloud filtering, retrievals are filtered using the recommended qa_value>0.5, which corresponds to VZA< 60◦, average

TOA radiance between 20 and 200 mW m−2 sr−1 nm−1, and χ2
r between 0.6 and 2.5 for consistency with the filtering scheme

proposed by Köhler et al. (2018). The number of retrievals used in each 0.2◦ gridbox and the resulting standard error of the

mean (σ), calculated as described in Guanter et al. (2015), are shown in the smaller panels of Fig. 6.

The resulting 8–15 July 2019 SIF map shows the expected SIF global maximum at the U.S. Corn Belt (Guanter et al., 2014).240

High SIF values are also found in Central America, Central Asia and China. The data gap in the southern part of Greenland is

due to the incoming radiance being higher than the 200 mW m−2 sr−1 nm−1 threshold used for quality filtering, and the one

in Southern Argentina is due to SZA>70◦. The effect of cloud filtering on the standard errors of SIF composites is shown in

the σ(SIF) map. It is especially noticeable in regions with persistent cloud cover such as the tropics and the northern part of

Europe and America. Overall, typical standard errors are in the range 0.1–0.2 mW m−2 sr−1 nm−1 for this weekly composite.245

The impact of cloud fraction thresholds on SIF composites (systematic and random errors) has been further investigated.

Fig. 7 displays the differences in SIF and σ(SIF) composites (8-15 July 2019, 743–758 nm fitting window) using either a

strict or a relaxed cloud fraction threshold (0.2 and 0.8, respectively). As expected, the absolute SIF values increase with the

strictness of the cloud filter, as clouds have a shielding effect for SIF photons travelling from the surface to the sensor. At

the same time, the standard errors of SIF composites decrease with the cloud fraction threshold following the increase in the250

number of retrievals per gridbox. For the selected 8-15 July 2019 time period, the greatest impact of clouds in SIF and σ(SIF)

is found in Western Europe. In this region, the change from 0.8 to 0.2 cloud fraction thresholds implies an increase in the

SIF average of about 0.4–0.6 mW m−2 sr−1 nm−1 at the gridbox level, which can be understood as a systematic error in the

SIF composite due to clouds. For the same region, the change of the standard error due to the lower number of retrievals in

the stricter cloud filtering is about 0.25 mW m−2 sr−1 nm−1. This illustrates that the selection of the optimal cloud fraction255

threshold depends on the particular use of the data. A strict cloud filtering (e.g. cloud fraction lower than 0.2) should be applied

if an accurate SIF mean value is needed, whereas a more relaxed cloud filter (e.g. cloud fraction lower than 0.8) could be

applied if smooth spatial and/or temporal signals are needed. The second case is often preferred for SIF, but it must be taken

into account that unfiltered clouds can also introduce noise-like changes in SIF time series. Including cloud fraction data in the

analysis would be needed for a proper interpretation of the SIF signals if a relaxed cloud filtering was applied.260

The seasonal variation of TROPOSIF SIF data is illustrated in Fig. 8, which shows daily and 0.1◦ composites over a set of

instrumented SIF sites (Parazoo et al., 2019) and the entire time period covered by the TROPOSIF product. Two configurations
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Figure 6. Global composites of SIF at 740 nm for the time period 8-15 July 2019 using retrievals from the 743–758 nm fitting window and a

cloud fraction (CF) threshold of 0.5. Data are gridded in 0.2◦ gridboxes. The number of observations and the resulting standard error of the

mean per gridbox are shown in the lower panels.
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Figure 7. Differences of average SIF (left) and σ(SIF) (right) for 0.2 and 0.8 cloud fraction thresholds. Data are from the time period 8-15

July 2019 and the 743–758 nm fitting window.Panel Size?

of fitting window and cloud fraction thresholds are used: 743–758 nm with cloud fraction <0.8 (“all-sky”) and 735–758 nm

with a cloud fraction <0.2 (“clear-sky”) The higher number of daily estimates available for the all-sky case is a result of less

strict cloud filtering. Figure 8 illustrates the lower retrieval uncertainty associated with the clear-sky case (lower error bars and265

less scattering) compared to the all-sky SIF. SIF data derived from the 743–758 nm fitting window are usually greater than

those derived from the broader 735–758 nm window, as indicated by the slope of the linear fit in the scatter plots on the right

hand side of Fig. 8.

It must be stated that the slopes of the scatter plots in Fig. 8 cover the minimum and maximum slope values found in the

analysis of 13 different sites (roughly, 1.0 to 1.5). Further research is needed to understand whether the variations in the slopes270

are due to retrieval biases over some vegetation types or to leaf/canopy radiative transfer effects making the shape of the SIF

emission to depend on the leaf and canopy type. Regarding potential canopy-dependent retrieval biases, we have observed

that the 735–758 nm retrieval produces lower quality fits (χ2
r >2) much more often than the 743–758 nm fitting window. This

is especially the case for densely vegetated areas with fully developed plants, such as the U.S. Corn Belt in July. This effect

accounts for the lower density of 735-758 nm SIF points in the Coles corn field during the summer season (first panel of Fig. 8).275

The reason might be in the limitation of the retrieval forward model to represent the steep reflectance spectra for high LAIs.

Further tests are needed to fully characterize and solve this issue.

3.3 Comparison to Caltech’s TROPOMI and OCO-2 SIF products

The quality of the TROPOSIF SIF product has been investigated through the comparison to the Caltech TROPOMI SIF product

(Köhler et al., 2018) (hereinafter, “Caltech”) and SIF retrievals derived from OCO-2 (Sun et al., 2018). Using the latter products280

as benchmark datasets, TROPOSIF SIF data have been evaluated in terms of absolute SIF values, systematic errors (biases)

and random errors (noise).
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Figure 8. Comparison of SIF retrievals from the 743-758 nm and 735–758 nm fitting windows and 0.2 and 0.8 cloud fraction (CF) thresholds

at three sites (0.1◦ radius) corresponding to different biomes (Parazoo et al., 2019). Left: time series of the daily SIF retrievals for two

combinations of fitting window and cloud screening (743–758 nm data with CF<0.8 and 735–758 nm with CF<0.2) from 05-2018 to 12-

2020. The vertical bars are the averaged 1-σ retrieval errors. Right: Scatterplot between 735–758 nm and 743–758 nm retrievals for CF<0.2.

The coefficient of determination R2 and the linear regression equation are provided.

Comparisons between the TROPOSIF (743-758 nm), Caltech TROPOMI, and OCO-2 SIF estimates were performed at the

global scale for the evaluation of SIF absolute values. The instantaneous SIF retrievals were binned at 0.1◦ and daily resolutions,

with a cloud fraction below 0.2 for those derived from TROPOMI observations. The pixel-to-pixel comparison between each285
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Figure 9. Scatterplots (top row) and histograms (bottom row) of the difference between each pair of SIF dataset, namely TROPOSIF (743–

758 nm window), Caltech TROPOMI and OCO-2 for August 2019 (daily/0.1◦ data, CF<0.2). The linear regression line between two datasets

is shown in orange. The linear regression equations and the correlation coefficient R are provided. A daylength-correction has been applied

to all three datasets.

pair of products shown in Fig. 9 highlights their good agreement. Over the entire year 2019, the highest agreement is found

between the two TROPOMI products (TROPOSIF and Caltech), with the highest correlation (greater than 0.93), and a root

mean square deviation of about 0.09 mW m−2 sr−1 nm−1, while the root mean square deviation between either Caltech or

TROPOSIF with OCO-2 is 0.17 mW m−2 sr−1 nm−1.

The distribution of the differences between Caltech and TROPOSIF data is slightly skewed towards negative values, indi-290

cating that TROPOSIF estimates tend to be greater than Caltech SIF ones. The typical bias between TROPOSIF and Caltech is

about 0.008 mW m−2 sr−1 nm−1 (for the daily-corrected product). Both TROPOSIF and Caltech estimates are slightly lower

than OCO-2 at 740 nm data: The typical bias between TROPOSIF and OCO-2 is about 0.029 mW m−2 sr−1 nm−1, which is

lower than the mean bias between Caltech and OCO-2 (0.036 mW m−2 sr−1 nm−1). The difference between the Caltech and

TROPOSIF SIF estimates is due not only to the difference in the estimation algorithm, but also to the different cloud products295

that are used as input: concomitant cloud fraction data from TROPOMI’s L2 Cloud product for TROPOSIF, when Caltech

relies on cloud data derived from VIIRS (Köhler et al., 2018).
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The existence of potential biases in the TROPOSIF SIF product has firstly been investigated using retrievals over large

non-vegetated areas where it can be assumed that no SIF emission is present (i.e. Sahara, Antarctica and Greenland). The

analysis has been conducted for the TROPOSIF products inferred from the two fitting windows, as well as for the Caltech300

SIF product and for SIF retrievals derived from OCO-2, which both act as benchmark datasets. For each SIF product, the

retrievals for year 2019 were binned at 0.1◦ at a daily scale, screening measurements with cloud fraction above 0.05, and

extracted over the regions of interest. OCO-2 SIF data were scaled at 740 nm using the approach proposed by Köhler et al.

(2018). The distributions of the different SIF product values agree well over the regions considered albeit a lesser consistency

of the OCO-2 data with the TROPOSIF and Caltech estimates is observed over Greenland. It is attributed to fewer available305

OCO-2 observations (hence a lower decrease of the random error for each binned data compared to TROPOMI products, and

an increased mismatch in spatio-temporal sampling between OCO-2 and TROPOMI observations). Over the Sahara, where a

higher number of measurements are available, we estimated the mean yearly bias for all products. The mean bias for the various

TROPOMI SIF estimates is slightly negative: -0.006 mW m−2 sr−1 nm−1 for the daily-corrected TROPOSIF data derived from

the 735-758 nm window (-0.017 for the “raw" SIF data), -0.028 (-0.080) for the 743–758 nm TROPOSIF product, and -0.036310

(-0.105) for the Caltech product. The mean bias for OCO-2 was found to be slightly positive: 0.010 (0.031). All SIF products

exhibit a seasonal variation of the mean bias over the different regions (note there are no OCO-2 observations over Antarctica).

Over Sahara, the magnitude of these seasonal variations is about 0.1 mW m−2 sr−1 nm−1. The origin of this seasonality is still

unclear but it could partly be attributed to directional effects. We discarded that it was the result of a temporal drift by checking

that the level of the SIF biases estimated for June 2018 and June 2020 was similar to the one estimated for June 2019.315

We completed this analysis by characterizing the distribution of the SIF estimates from TROPOSIF and Caltech at a set

of Pseudo Invariant Calibration Sites (PICS). These sites are selected because of their radiometric temporal stability, spatial

homogeneity, and high reflectance, and are used for vicarious calibration of space-borne sensors. Ten sites were considered:

the six endorsed by the CEOS/WGCV/IVOS as Calibration/Validation test sites (Algeria3, Mauritania1, Libya4, Mauritania2,

and Algeria5, which where identified by Cosnefroy et al., 1998), plus four new PICS located in Algeria, Saudi Arabia, Namibia320

and Sudan (Bacour et al., 2019a). The distribution of the daily SIF values for the period 2018-2020 over these sites (data within

the vicinity of 0.1◦) is seen in Fig. 10 for the Caltech product and the two TROPOSIF products. The mean bias is close to

0 mW m−2 sr−1 nm−1 for the three products. The smaller width of the histogram for the TROPOSIF product from the 735—

758 nm window is due to the smaller single-retrieval errors. No temporal drift was detected in the SIF 2018–2020 time series

for any of the sites.325

Over Sahara, we quantified the “averaged value" of the 1-σ retrieval error (square root of the quadratic mean) for the two

TROPOSIF products and the Caltech retrievals (0.1°/daily). The retrieval error for TROPOSIF is typically 0.5 mW m−2 sr−1 nm−1

for the 743-758 nm fitting window estimates and 0.4 mW m−2 sr−1 nm−1 for the product derived from the 735–758 nm win-

dow. These empirical values are consistent with the theoretical retrieval errors, although on the higher end. We found an typical

retrieval error of 0.6 mW m−2 sr−1 nm−1 for the Caltech product.330
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Figure 10. Histogram of all available TROPOMI-based SIF estimates at ten PICS over the 2018-2020 period, for Caltech SIF and TROPOSIF

SIF estimates from the 743–758 nm and 735-758 nm fitting windows. The distributions were fitted using a Gaussian function; the correspond-

ing mean (bias) and standard deviation (std) are provided for each SIF product. The mean slope of the SIF temporal variations over the ten

PICS is given in brackets.

3.4 Evaluation of reflectance-based indices

One of the assets of the TROPOSIF product is the 665–785 nm spectral reflectance spectra attached to the SIF retrievals.

Spectral reflectance data can be used to derive empirical indices and biophysical variables which are complementary to SIF, as

discussed earlier in this paper.

Global composites of two of such empirical indices (NDVI and NIRv) for the 8–15 July 2019 time period are shown in335

Fig. 11. NDVI is calculated using the 665 and 781 nm channels as red and near-infrared bands, respectively. NIRv is calculated

as the product of NDVI and near-infrared reflectance (781 nm channel) (Badgley et al., 2017). The comparison of the spatial

patterns in these two maps with those of SIF in Fig. 6 confirms the high correlation between SIF and NIRv that has already

been reported in recent studies (Badgley et al., 2017; Zeng et al., 2019; Mengistu et al., 2020). In contrast, the dynamic range

of NDVI appears to be smaller than that of NIRv and SIF, since several densely vegetated areas around the world reach the340

highest NDVI values.

These patterns are further illustrated in Fig. 12, which shows a comparison between SIF and vegetation indices for an

ensemble of 0.5◦ pixels representative of several biomes. The pixel selection is described in Bacour et al. (2019b). The NIRvP

is added to the analysis. NIRvP is calculated as the product of NDVI and the average TOA radiance in the SIF retrieval fitting

window (also attached to the TROPOSIF product), which is a good proxy for the product of PAR and near-infrared reflectance345

in the original NIRvP formulation (Dechant et al., 2021). NIRvP is designed so that it mimics SIF dependencies on FAPAR,

PAR and canopy escape fraction, whereas NDVI would only indicate FAPAR, and NIRv the product between FAPAR and

escape fraction. The different plots in Fig. 12 indeed illustrate that SIF compares better to NIRv and NIRvP than to NDVI, with
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Figure 11. Global composites of NDVI and NIRv derived from the TROPOSIF product for the 8–15 July 2019 time period. Data are gridded

in 0.2◦ gridboxes. A cloud fraction threshold of 0.1 is applied for cloud screening.

the latter saturating with respect to SIF. This effect is especially visible for the Boreal Deciduous Broadleaf Forest biome (third

column of Fig. 12). On the other hand, a slightly more linear relationship is found between SIF and NIRv than between SIF350

and NIRvP despite the theoretically higher compatibility between SIF and NIRvP (Dechant et al., 2021). Further exploration

of these relationships will be subject of future work, since the identification of practical approaches to disentangle structural

and physiological contributions to the SIF signal is key to the proper use of SIF data.

4 Discussion

This paper has described the first version of a processing chain for the generation of far-red SIF product from the S5P-355

TROPOMI mission which has been developed within the framework of the ESA TROPOSIF project.

The retrieval is based on a linear forward model fitting TOA radiances in the far-red spectral region. It relies on a data

driven forward model similar to the one initially proposed by Guanter et al. (2012) for GOSAT, later adapted to GOME-2 by

Joiner et al. (2013), and finally applied to simulated and real TROPOMI data by Guanter et al. (2015) and Köhler et al. (2018),

respectively. In these data-driven approaches, a series of orthogonal spectral vectors derived from a so-called training set are360

used to model high spectral frequency features in the spectrum from both solar and atmospheric lines. SIF is estimated through

the inversion of the linear forward model, together with the weights of the singular vectors and the coefficients of a 3rd-order

polynomial used to model low spectral frequency variations in the spectrum, such as those from varying surface reflectance.

Two fitting windows are selected for the retrieval, 743–758 nm and 735–758 nm. The first has shown to be very robust against

atmospheric effects (especially cloud contamination), whereas the second gives smaller precision errors due to the greater365

number of spectral points. The 743–758 nm window has been selected as the baseline retrieval window, as it provides the best

compromise between retrieval precision and sensitivity to clouds. This fitting window is consistent with the one used for the

existing Caltech SIF product (Köhler et al., 2018), which allows a direct comparison between the two datasets. In addition, we
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Figure 12. Comparison of weekly SIF data (743–758 nm, cloud fraction <0.2) with NDVI, NIRv and NIRvP derived from TROPOSIF

spectral reflectance estimates for an ensemble of 0.5◦ pixels representative of Temperate Deciduous Broadleaf Forest (TeDBF), Boreal

Evergreen Needleleaf Forest (BoENF), Boreal Deciduous Broadleaf Forest (BoDBF), and Temperate C3 grass (TeC3GRA) biomes.

have decided to include retrievals from the 735–758 nm fitting window as well. Retrievals from this fitting window have shown

a higher sensitivity to cloud contamination, but also lower precision errors because of the higher number of spectral points in370

the fitting window. Retrievals from the 735–758 nm fitting window can thus be advantageous for those applications using only

clear-sky data.

The first assessment of the consistency of the TROPOSIF SIF data has relied on the comparison with the accurate SIF

retrievals from the OCO-2 mission and with the well-established TROPOMI SIF product from Caltech. A very high similarity

has been found between the two TROPOMI SIF datasets (R usually greater than 0.93, 0.008 mW m−2 sr−1 nm−1 bias), whereas375

the evaluation of precision errors over sand deserts and PICS has shown slightly smaller random errors for the TROPOSIF

product. The retrieval error is typically 0.5 mW m−2 sr−1 nm−1 in the 743–758 nm fitting window and 0.4 mW m−2 sr−1 nm−1

in the 735–758 nm window. The mean bias for the raw SIF estimates are -0.080 (-0.017) mW m−2 sr−1 nm−1 in the 743–758 nm

(735–758 nm) fitting window.
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In addition to SIF, spectral TOA reflectance at 7 spectral points in atmospheric windows within the 665–781 nm window380

of TROPOMI’s channels 5 and 6 are derived and included as meta-data in the output files. These reflectance data can be

useful to derive spectral vegetation indices and biophysical variables that can help interpret and exploit SIF data. This has

been illustrated in this work by the comparison of SIF data to NDVI, NIRv and NIRvP indices, which has shown the different

information content carried by each of them.

5 Data availability385

The dataset is available through the following Digital Object Identifier (DOI) https://doi.org/10.5270/esa-s5p_innovation-sif-20180501_

20210320-v2.1-202104 (Guanter et al., 2021). Additional informative materials are also provided on the project website at

https://s5p-troposif.noveltis.fr/.

6 Conclusions

The TROPOSIF product presented in this document is intended to become a reference data stream for scientific work dealing390

with the global monitoring of vegetation, especially in those studies focused on the dynamics and productivity of terrestrial

ecosystems.

Our evaluation of the TROPOSIF product in this work has shown that it has an overall similar quality to the well-established

Caltech TROPOMI SIF product (Köhler et al., 2018). Two main additional features are included in TROPOSIF: a secondary

SIF dataset from the 735–758 nm fitting window with an enhanced signal-to-noise ratio, and spectral reflectance spectra. In395

the case of 735–758 nm SIF retrievals, however, the first analysis of the data has found potential difficulties of the retrieval

to deal with spectrally-steep radiance spectra, such as in the case of some crops. This issue will be investigated during future

TROPOSIF consolidation activities. Users are recommended to use the baseline 743–758 nm SIF product for the moment.

Feedback from the user community after the first experience with the data is also expected to guide future developments.

In this respect, the TROPOSIF processing chain is being implemented in the Sentinel-5P Product Algorithm Laboratory (S5P-400

PAL)3, which is an ongoing project funded by the European Commission to allow fast and cost-efficient Sentinel-5P prototype

product development. It is expected that the TROPOSIF product will be generated and distributed to users by S5P-PAL in an

operational manner in the near-future.

Appendix A: L2 and L2B file description

The NetCDF4 data files contaning the TROPOSIF product (either L2 or L2B) are structured as follows:405

1. METADATA/ALGORITHM_SETTINGS: It contains information about the processor’s configuration variables, such as

the spectral fitting window or the thresholds used for data filtering.

3https://maps.s5p-pal.com/
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2. PRODUCT: It contains the SIF product itself (SIF), the daily-average corrected SIF (SIF_Corr) and the estimated 1-σ

uncertainty (SIF_ERROR) for the two fitting windows.

3. PRODUCT/SUPPORT_DATA/DETAILED_RESULTS: It contains ancillary data fields for the exploitation or interpre-410

tation of the SIF retrievals, such as day-length correction factor (DayLength_fac), the reduced χ2 (χ2
r) of the fit

(redCHI2) (in the case of L2 files), the average TOA radiance in the fitting window (TOA_RAD), the quality value

(QA_value), and the spectral TOA reflectance and corresponding wavelengths at several spectral points (TOA_RFL

and WVL_RFL) (in the case of L2 and L2B “clear-sky” products).

4. PRODUCT/SUPPORT_DATA/GEOLOCATIONS: It contains data fields describing the acquisition location (latitude and415

longitude bounds for each retrieval) (L2 files) and geometry (viewing and solar angles).

5. PRODUCT/SUPPORT_DATA/INPUT_DATA: It contains geospatial data used as input for the retrieval, such as the

cloud fraction from TROPOMI’s L2 product (cloud_fraction_L2) and the land cover mask used to separate land

and water pixels (LC_mask)
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