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Abstract

Although the interior operators correspond to a special class of neighbourhood operators,

the closure operators are not nicely related to the latter. We introduce and study the

notion of topogenous orders on a category which provides a basis for categorical study of

topology. We show that they are equivalent to the categorical neighbourhood operators

and house the closure and interior operators. The natural notion of strict morphism with

respect to a topogenous order is shown to capture the known ones in the settings of

closure, interior and neighbourhood operators.
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Chapter 1

Introduction

In his book [Csá63] (preceded by a French edition [Csá60]) Á. Császár has introduced the

syntopogenous structures to provide a common generalization of topological, proximity

and uniform structures. The fundamental concept of this theory is the notion of order

relation between subsets of a set. He termed topogenous order < on a set X, a binary

relation on 2X which satisfies the following:

(01) ∅ < ∅ and X < X,

(02) A < B ⇒ A ⊆ B,

(03) A ⊆ B < C ⊆ D ⇒ A < D and

(04) Ai < Bi (i ∈ I) ⇒
⋃
i∈I
Ai <

⋃
i∈I
Bi and

⋂
i∈I
Ai <

⋂
i∈I
Bi if I is finite.

A pair (X;S) consisting of a set X and a non empty family of topogenous orders on X is

called syntopogenous space provided the following hold:

(S1) for every <;<′∈ S there is <′′∈ S with the property that <⊆<′′ and <⊆<′′

(S2) for <∈ S there is <′∈ S with the property that <⊆<′ ◦ <′

A syntopogenous space (X;S) is a proximity provided S = {<} and < satisfies the axiom

below

A < B ⇒ X \B < X \ A (∗):

It is topological if S = {<} and it holds that

Ai < Bi (i ∈ I) ⇒
⋃
i∈I

Ai <
⋃
i∈I

Bi
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and a uniform if (04) hold for any indexed set I and each <∈ S satisfies (∗).

Many researchers have studied syntopogenous structures (see.e.g.[AL97, Tan76, SP64,

Csá83, CM81]). Although the above study was from the set theoretic point of view,

Sadr [Sad68] attemped to introduce the notion of topogenous structures on a category.

However, instead of basing his study on a subobject lattice as one does when studying

closure operators on categories, he departed from an ordered class (C;≤) then studied

the topogenous structures induced by the pair (C∗; J) where C∗ is a category associated to

the class (C;≤) and J is an ideal of C∗. Sadr obtained a number of elementary properties

that Á. Császár proved in [Csá63].

Closure operators themselves were introduced first in analysis by Riez ([Rie09]) and

Moore ([Moo09]). Thereafter, they have then been intensively studied in other branches

of mathematics: Birkhoff ([Bir40]) in lattice theory and Birkhoff ([Bir37]) in Algebra, Ku-

ratowski ([Kur22]) and Cech([Čec37]) in topology, Hertz ([Her22]) and Tarski ([Tar29])in

logic. It was Dikran Dikranjan and Eraldo Giuli who, in their fundamental article

([DG87]), introduced the categorical closure operators. This has unified different im-

portant notions and has led to interesting examples and applications in various areas of

Mathematics. Closure operators has allowed a categorical study of many topological con-

cepts such as separation, compactness, connectedness, perfectness, closedness, regularity

(see e.g.[CGT96, CT97, Cas01, Cle01, GT00, Šla09]) studied in general topology with the

classical Kuratowski closure operator.

In general topology, associated closure and interior operators provide an equivalent

description of the topology. A categorical notion of interior operator was introduced by

Vorster in [Vor00]. However, it is not categorical dual to the notion of closure operator.

One does not obtain a categorical interior operator when taking a closure operator in the

opposite category. The recent paper [DT15] introduces dual closure operators which do

not lead to categorical interior operators. A number of recent papers have been devoted

to the investigation of categorical interior operators: [Cas15, RH14, CM13, HŠ11, HŠ10,

CR10].

One often defines many topological concepts using the Kuratowski closure operator,

but neighbourhoods are intuitive for introducing the notion of convergence on spaces

([Šla12]). This seems to have been the principal motivation for introducing a concept

of neighbourhood with respect to a closure operator in [GŠ09] and [Šla11]. Categorical

neighbourhood operators were introduced in [HŠ11] and subsequently studied in [Raz12a,
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RH14]. This has motivated a further investigation of the interaction between closure,

interior and neighbourhood operators. The paper ([HŠ10]) presents a systematic analysis

of some interactions as well as a framework in which a number of other investigations can

be understood.

In a category with a suitable factorization system, we first define the closure, interior

and neighbourhood operators. Then following [Raz12a] and [HŠ10] we investigate some

interactions between the three operators. We show that interior operators are special

neighbourhood operators and take a closer look at three correspondances between neigh-

bourhood or interior and closure operators. These are not Galois connections in general

unless some restrictions are considered on the subobject lattices on which the operators in-

teract. The equivalent description of the continuity condition of neighbourhood operators

leads us to four different notions of morphisms.

We next introduce the notion of topogenous orders on a category which provides a

unified treatement of closure, interior and neighbourhood operators. We show that to-

pogenous orders are equivalent to categorical neighbourhood operators. Then we proceed

by proving that interior and closure operators correspond to special kind of topogenous

orders. To demonstrate the advantages of working in this more general topogenous order

setting, we define strict subobjects and morphisms with respect to a topogenous order

and show that they agree with the generalization of both closed and open maps. Look-

ing closely at the equivalence between topogenous orders and neighbourhood operators,

we naturally define the notions of open, closed, initial and final morphisms relative to a

topogenous order and study their basic properties.

Our thesis contains this introduction and five chapters with two to three sections each,

organised as follows:

The notion of subobjects on a category is presented in chapter 2. We then slowly

move to the factorization system on the category C which enables us to efficiently deal

with images and pre-images of subobjects. Some definitions and results on closure and

interior operators which will be of use throughout this work are also presented. The

theory of categorical neighbourhood operators is investigated in chapter 3. We explore the

relationship between neighbourhood or interior and closure operators. Then follows some

basic properties of four classes of morphisms with respect to a neighbourhood operator.

Chapter 4 which constitutes the core of this work introduces the theory of topogenous

structures on categories. We demonstrate the equivalence between topogenous orders
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and neighbourhood operators. The interior and closure operators are shown to be nicely

embedded in the topogenous orders. In chapter 5 the strict morphisms with respect to

the topogenous orders are studied. We show that they capture the notions of i-open,

c-closed and �-open morphisms which were studied separately for closure, interior and

neighbourhood operators. The pulback stability of such morphisms inM is also discussed.

Using the equivalence between neighbourhood operators and topogenous orders we present

in chapter 6 an analogue of the notions of open, closed, initial and final morphisms

considered in chapter 3 for neighbourhood operators.

This work is meant for a reader with some knowledge of general topology and cate-

gory theory with little more presupposed from algebra, order and lattices ([Fuc73, DP02,

Eng89]). However, we have recalled the necessary tools which can help the reader to

go smoothly through the work. Our chapters are numbered according to their order of

appearance in the text. The same rule holds for sections in chapters and for propositions,

lemmas, definitions in sections. The main results of this thesis were published in [HIR16]
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Chapter 2

Preliminaries

Throughout the text, we consider a category C and a fixed classM of C-monomorphisms.

The class M is assumed to be closed under composition and contain all isomorphisms.

Our categorical terminology follows [AHS06] as well as [ML98]. We discuss the notions of

subobjects, inverse images and image factorization as they will be needed for the whole

of the thesis. From there we provide some defintions and results on closure and interior

operators that are needed in the remaining chapters.

2.1 M-subobjects, Images and Pre-images

A subobject of an object X in a category C provides a generalisation of notions such as

subsets, subrings, subgroups, subspaces and a lot of other classical sub-structures notions

that appear in mathematics. The subobjects shall be described by special morphisms

m : M −→ X that we think of as generalized inclusion maps m : M ,→ X.

Definition 2.1.1. [DT95] For every object X in C, the class subX of all M-morphisms

with codomain X is called the subobjects of X.

The relation on subX given by m ≤ n if and only if there exists j such that n ◦ j = m

M
j //

m
  

N

n
~~

X

is reflexive and transitive, hence subX is a preordered class. Such j is uniquely de-

termined since n is monic. Furthermore, m ≤ n and n ≤ m if and only if there exists an

isomorphism j with n ◦ j = m: We write m ∼= n in this case. ∼= is an equivalence relation,
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hence subX modulo ∼= is is a partially ordered class for which lattice notations such as∧
,
∨

, ∧, ∨ can be used. We shall use these notations for elements of subX rather than

their ∼= equivalence classes. Indeed for n;m ∈ subX, if the meet exists, n ∧m denotes a

representative in subX of the meet of the ∼= equivalence classes of n and m. If [m] denotes

the ∼=-equivalence class of m, we have that m ≤ n⇔ [m] ⊆ [n] and m ∼= n⇔ [m] = [n]:

For the rest of the thesis, if m;n ∈M and n ∼= m, we shall simply write n = m:

Definition 2.1.2. [DT95] We will say that C has M-pullbacks, if for every morphism

f : X −→ Y and every n ∈ subY a pullback diagram

D

g

��

p

##

q

  
M

m
��

h // N

n

��
X

f
// Y

exists in C with m ∈ subX. This means that n ◦ h = f ◦m, and whenever f ◦ g = n ◦ p

holds in C, then there is a unique morphism q with h ◦ q = p and m ◦ q = g:

The morphism m is uniquely determined up to isomorphism, it is called the inverse

image of n under f and denoted by f−1(n) : f−1(N) −→ X:

The pullback property of the previous definition yields the following

Proposition 2.1.3. [DT95] If C has M-pullbacks, then for each f : X −→ Y the map

f−1(−) : subY −→ subX is an order preserving map.

Proof. Let m : M −→ Y and n : N −→ Y be two subobjects of Y such that m ≤ n.

Then there is a morphism j with m = n ◦ j. We have the following diagram.

f−1(M) h //

k

%%
f−1(m)

��

M
j

��
m

��

f−1(N) l //

f−1(n)
xx

N

n
  

X
f // Y

Since n ◦ (j ◦ h) = f ◦ f−1(m), the universal property of pullbacks yields a unique

morphism k : f−1(M) −→ f−1(N) such that f−1(n) ◦ k = f−1(m); that is

f−1(m) ≤ f−1(n).
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Remark 2.1.4. Although we have included the proof of the monotonicity of f−1(−), we

shall see later (cf. Proposition 2.1.12) that this follows by adjointness.

The notion of adjointness in the context of preordered classes is important for us in

this work.

Definition 2.1.5. [DT95] A pair of mappings ’ : P −→ Q; : Q −→ P between

preordered classes is called adjoint if

m ≤  (n)⇔ ’(m) ≤ n (∗)

holds for all m ∈ P and n ∈ Q.

One says that ’ is left-adjoint to  or  is right-adjoint to ’ and writes ’ a  

Proposition 2.1.6. [DT95] Let ’ : P −→ Q; : Q −→ P be a pair of mappings between

preordered classes, the following are equivalent:

(1) ’ a  ;

(2)  is order preserving, and ’(m) ∼= min{n ∈ Q | m ≤  (n)} holds for all m ∈ P ;

(3) ’ is order preserving, and  (n) ∼= max{m ∈ P | ’(m) ≤ n} holds for all n ∈ Q;

(4) ’ and  are order preserving, and m ≤  (’(m)) and ’( (n)) ≤ n holds for all

m ∈ P; n ∈ Q.

Proof. [DT95] (1)⇒ (2) and (3), put n = ’(m) in (∗), then m ≤  (’(m)). Now let

Qm = {n ∈ Q | m ≤  (n)}

we get that ’ ∈ Qm. Furthermore, for all n ∈ Qm, (∗) gives ’(m) ≤ n; hence

’(m) ∼= minQm:

This formula implies that ’ is an order preserving map since if m ≤ n in P , we have that

m ≤  (’(n)). Thus, by (∗) we get that ’(m) ≤ ’(n). The fact that  is order-preserving

and its formula in (3) are obtained dually.

(2)⇒ (4) If m ≤ n in P then

{p ∈ Q | n ≤  (p)} ⊆ {q ∈ Q | m ≤  (q)}:
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by taking the minimum we get that

’(m) ≤ ’(n)

Thus ’ is monotone. Moreover since ’(m) ∈ Qm, one has m ≤  (’(m)) for all m ∈ P .

Likewise since n ∈ Qψ(n), we get that ’( (n)) ≤ n for all n ∈ Q.

(3)⇒ (4) follows dually.

(4) ⇒ (1) m ≤  (n) ⇒ ’(m) ≤ ’( (n)) ≤ n and ’(m) ≤ n ⇒ m ≤  (’(m)) ≤

 (n).

Proposition 2.1.7. [DT95] Let ’ : P −→ Q; : Q −→ P be a pair of mappings between

preordered classes. If ’ a  then

’(
∨
i∈I

mi) =
∨
i∈I

’(mi) and  (
∧
i∈I

ni) =
∧
i∈I

 (ni)

Proof. [DT95] Let {mi : i ∈ I} ⊆ P be a subclass and m =
∨
i∈I mi . Then ’(m) is an

upper bound of {’(mi) : i ∈ I} by monotonocity of ’.

If n is any other upper bound, one has that mi ≤  (n) for all i ∈ I; hence m ≤  (n)

and so ’(m) ≤ n. This proves that ’ preserves joins. The proof that  preserves meets

follows dually.

We are now ready to define the image of a subobject m of X under a C-morphism.

Definition 2.1.8. [DT95] Let C haveM-pullbacks and for every morphism f : X −→ Y

in C, let f−1(−) : subY −→ subX have a left adjoint f(−) : subX −→ subY . The image

of m : M −→ X in subX under f is the morphism f(m) : f(M) −→ Y in subY . It is

uniquely determined, up to isomorphism, by the following property:

m ≤ f−1(n)⇔ f(m) ≤ n

for all n ∈ subY .

We are interested in right M-factorization to be able to smoothly handle images and

inverse images of subobjects.

Proposition 2.1.9. [DT95] Let C haveM-pullbacks and for every morphism f : X −→ Y

in C, let f−1(−) : subY −→ subX have a left adjoint f(−) : subX −→ subY then there

are morphisms e, m in C such that
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(1) f = m ◦ e with m : M −→ Y in M, and

(1) (Diagonalization) whenever one has a commutative diagram

X u //

e

��

N

n

��

M

w
>>

m

��
Y v

// Z

in C with n ∈M, then there is a uniquely determined morphism w : M −→ N with

n ◦ w = v ◦m and w ◦ e = u.

Proof. Let f : X −→ Y be a C-morphism and f(1X) : f(X) −→ Y . We obtain the

following commutative diagram

X
l //

1X
��

f−1(f(X))

f−1(f(1X)
��

k // f(X)

f(1X)
��

X
1X

// X
f

// Y

The morphism l exists since 1X ≤ f−1(f(1X)). Now, let e = k ◦ l with m = f(1X), we

obtain (1). Let f = m ◦ e and consider the commutative diagram in (2) with n ∈M, one

obtains the following pullback diagram for morphisms v : Y −→ Z and n : N −→ Z

X

f

��

p

&&

t

##
v−1(N)

v−1(n)
��

c // N

n

��
Y v

// Z

thus the morphism t : X −→ v−1(N) with f = v−1(n) ◦ t by pullback property. Also the

same pullback property implies the existence of a unique morphism s : X −→ f−1(v−1(N))

as is seen in the following commutative diagram

X

1X

""

t

))

s

%%
f−1(v−1(N))

f−1(v−1(n))
��

// v−1(N)

v−1(n)
��

X
f

// Y

14

 

 

 

 



with f−1(v−1(n)) ◦ s = 1X i.e 1X ≤ f−1(v−1(n)). Hence m = f(1X) ≤ v−1(n) by

adjointness. We now have the following

M = f(X) h //

m

��

v−1(N)

v−1(n)
��

c // N

n

��
Y

1Y
// X v

// Z

take w = c ◦ h so that n ◦ w = v ◦ m. Since n is monic w is uniquely determined by

w = c ◦ h and w ◦ e = u follows from n ◦ w ◦ e = v ◦m ◦ e = n ◦ u.

Definition 2.1.10. [DT95] A right M-factorization of morphism f : X −→ Y is any

factorization f = m ◦ e such that properties (1) and (2) of Proposition 2:1:9. hold.

With the right M-factorization, the image of a subobject of an object X under a C-

morphism is given as follows.

Definition 2.1.11. [DT95] Let every morphism in C have right M-factorization. For a

morphism f : X −→ Y in C and m : M −→ X, one defines f(m) : (M) −→ Y to be the

M-part of a right M-factorization of the composite f ◦m.

M //

m

��

f(M)

f(m)
��

X
f

// Y

Then f(−) : subX −→ subY is an order preserving map.

We can now prove the following:

Proposition 2.1.12. [DT95] Let C have M-pullbacks and every morphism in C have

right M-factorization. For every morphism f : X −→ Y in C, f(−) and f−1(−) are

adjoint to each other with f(−) being the left adjoint.

Proof. We need to show that, f(m) ≤ n⇔ m ≤ f−1(n) for all m ∈ subX and n ∈ subY .

Assume that f(m) ≤ n, then there is j : f(M) −→ N such that the diagram below

commutes.

M e //

m

��

f(M)

f(m)
��

j // N

n

��
X

f
// Y

1Y
// Y
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This implies that f ◦m = n ◦ j ◦ e and we have the commutative diagram below

X

j◦e

��

m

&&

j1

##
f−1(N)

g

��

f−1(n)
// X

f

��
N n

// Y

The arrow j1 exists by the pullback property of the diagram. So m = f−1(n) ◦ j1 and

j ◦ e = g ◦ j1. Hence m ≤ f−1(n).

On the other hand if m ≤ f−1(n), then there is k : M −→ f−1(N) such that m =

f−1(n) ◦ k. Now consider the diagram below

M k //

m
##

f−1(N)

f−1(n)
��

t // N

n

��
X

f
// Y

Using the diagram in Defintion 2:1:11, we get that f(m)◦e = f◦m = f◦f−1(n)◦k = n◦t◦k.

This gives the diagram below

M t◦k //

e

��

N

n

��

f(M)

h
<<

f(m)
��
Y

1Y
// Y

Since n ∈ M, by right M-factorization there is a unique h : f(M) −→ N such that

f(m) = n ◦ h and t ◦ k = h ◦ e. This implies that f(m) ≤ n.

Thus m ≤ f−1(n)⇔ f(m) ≤ n:

Remark 2.1.13. The fact that f(−) and f−1(−) are monotone maps is not used here. It

follows from adjointness.

One obtains the following formulas from Proposition 2.1.6

(1) m ≤ k ⇒ f(m) ≤ f(k);

(2) m ≤ f−1(f(m)) and f(f−1(n)) ≤ n;

(3) f(
∨
i∈I mi) ∼=

∨
i∈I f(mi);
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(4) f−1(
∧
i∈I ni)

∼=
∧
i∈I f

−1(ni).

Proposition 2.1.14. [DT95] The following assertions are equivalent:

(1) C has M-pullbacks, and every morphism has a right M-factorization;

(2) C has M- pullbacks, and f−1(−) has a left adjoint for every morphism f ;

(3) every morphism has a rightM-factorization, and f(−) has a right adjoint for every

morphism f .

Proof. [DT95] (1) ⇒ (2) follows Proposition 2:1:12 and for (1) ⇒ (3), let f : X −→ Y

be a C-morphism and m ∈ subX. Then by Definition 2:1:2, one obtains the following

pullback diagram

X

m

!!

e

((

t

%%
f−1(f(M))

f−1(f(m))
��

// f(M)

f(m)
��

X
f

// Y

So m ≤ f−1(f(m)). Let n ∈ subY , from the diagonalization property, we get that

f(f−1(n)) ≤ n. Since f−1(−) and f(−) are order preserving maps (cf. Propostion 2:1:3

and Definition 2:1:8), Proposition 2:1:6 gives the adjointness.

(2)⇒ (1) by Proposition 2:1:9.

(3) ⇒ (1) Let f : X −→ Y have a right M-factorization and f−1(−) be the right

adjoint of f(−). Then for every n : N −→ Y in M, one has the following commutative

daigram

f−1(N) c //

f−1(n)
��

f(f−1(N))

f(f−1(n))
��

d // N

n

��
X

f
// Y

1Y
// Y

Now consider the following commutative diagram

Z

g

��

h

&&##
f−1(N)

f−1(n)
��

// N

n

��
X

f
// Y
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and let g = k ◦ e with k : K −→ X ∈M be the right M-factorization of g.

By the diagonalization property, there is a morphism w : K −→ N which makes the

following diagram commute

Z h //

e

��

N

n

��

K

w
>>

k
��
X

f
// Y

Again by the same property, f(k) ≤ n, so k ≤ f−1(n) by adjointness. Thus there is a

morphism j : K −→ f−1(N) with f−1(n) ◦ j = k.

If t = j ◦ e : Z −→ f−1(N), then we get f−1(n) ◦ t = k ◦ e = g. Since n and f−1(n)

are monic, t is uniquely determined and d ◦ c ◦ t = h.

Definition 2.1.15. [DT95] We shall say that C is finitely M-complete if one and then

all of the assertions of the Proposition 2:1:14 hold.

The existence ofM-pullbacks in C implies that the preordered class subX has binary

meets for all X ∈ C. Indeed, if m : M −→ X and n : N −→ X are subobjects of X the

binary meet is given by the diagonal of the following pullback diagram

M ∧N //

��

N

n
��

M m
// X

This means that m ∧ n = m ◦m−1(n) = n ◦ n−1(m).

We are interested in the existence of arbitrary meets in subX as we need subX to be

a complete lattice for each X ∈ C.

Definition 2.1.16. [DT95] We shall say that C has M-intersections if for every family

(mi)i∈I in subX (I may be infinite class or empty), if a multiple pullback diagram

M
γi //

m
  

Mi

mi~~
X

exists in C with m ∈ subX.

In this case m plays the role of the meet of (mi)i∈I in subX, that is m =
∧
{mi | i ∈ I}.

This also implies the existence of the join
∨

of subobjects and in particular the least

subobject oX : 0X −→ X exists for every X ∈ C.
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Definition 2.1.17. We shall say that C is M-complete if it has M-pullbacks and M-

intersections.

We see from the dual of Theorem 15.14 in [AHS06] thatM-completeness implies finite

M-completeness.

The closedness of the classM under composition is of importance. It makes the right

M-factorization symmetric in both factors.

Theorem 2.1.18. [DT95] The following statements are equivalent

(i) every morphism has a right M-factorization, and M is closed under composition;

(ii) there is a class E of morphisms in C such that

(1) every morphism f ∈ C has a factorization f = m ◦ e with m ∈ M and e ∈ E,

and

(2) for every commutative diagram

X
e //

u
��

Y

v
��

w

~~
M m

// Z

with e ∈ E and m ∈M, there is a uniquely determined morphism w : Y −→M

with w ◦ e = u and m ◦ w = v.

Proof. . [DT95] (i) ⇒ (ii) We will say that e is orthogonal to m and write e ⊥ m if for

the commutative diagram in (ii)(2), there is a unique w with w◦e = u and m◦w = v. Let

E be the class M⊥ = {e ∈ C : for all m ∈ M e ⊥ m}. We just need to show that in the

right-M factorization f = m ◦ e of f , e ∈ E . So let e = n ◦ d be the rightM-factorization

and consider the diagram below

X
d //

e

��

N

m◦n

��

M

t
>>

m

��
Y

1Y
// Y

Since m ◦ n ∈M, by diagonalization property of the right M-factorization there is a

morphism t : M −→ N with m ◦ n ◦ t = m. Since m is mono, n ◦ t = 1 and since n is
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mono, it is an isomorphism and so is t. Now consider the following diagram

: d //

d
��

:

p

��

:

k
>>

n

��: v
// :

with u; v arbitrary morphisms and p ∈ M. By the diagonalization property there is k

such that p ◦ k = v ◦ n and k ◦ d = u. This gives the following diagram

: d //

u

��

:
v◦n
��

j

~~: p
// :

where j = k ◦ n−1. Since n is an isomorphism, we get that j is a unique morphism such

that p ◦ j = v ◦ n and u = j ◦ d = j ◦ e. Hence e ∈ E .

(ii) ⇒ (i) We first show that M coincides with the class E⊥ = {m ∈ C : for all e ∈

E e ⊥ m}. M⊆ E⊥ by property (2). To show that E⊥ ⊆M, consider the a factorization

m = k ◦ e with k ∈M and e ∈ E for m ∈ E⊥. One obtains the following diagram

: 1 //

e

��

:
m

��:
k
// :

Since m ∈ E⊥ , there is a morphism w with w ◦ e = 1 and m ◦ w = k. Now w is a monic

since k is monic and so w is an isomorphism. Hence e is an isomorphism. Thus k = m

and the classes E and M determine each other by (ii). It also implies that E⊥ = M is

stable under composition.

Definition 2.1.19. [DT95] A pair (E ;M) satisfying conditions (i) and (ii) of Theorem

2:1:16 is called a (E ;M)-factorization system or simply a factorization system. Condition

(ii) is refered to as the diagonalization property of the (E ;M) factorization system.

One can easily see from condition (ii) of Theorem 2:1:14 that a (E ;M) factorization

for a morphism is essentially unique.

Corollary 2.1.20. Let every morphism f : X −→ Y in C have an (E ;M)-factorization

system. Then f ∈ E if and only if f(1X) = 1Y
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Proof. Consider the following commutative diagram

X
e //

f
��

f(X)

f(1X)
��

Y
1Y

// Y

Since f ∈ E and f(1X) ∈ M, by the diagonalization property of (E ;M) factorizations,

there is a morphism t : Y −→ f(X) such that f(1X) ◦ t = 1Y , that is 1Y ≤ f(1X).

Conversely if 1Y = f(1X), then the commutativity of the above diagram gives f =

f(1X) ◦ e = 1Y ◦ e = e. Hence, f ∈ E

We now give sufficient conditions for the image and pre-image of subobjects to be

partially inverse to each other.

Proposition 2.1.21. [DT95] Let C have M-pullbacks and every morphism in C have an

(E ;M)-factorization. Let f : X −→ Y be a morphism in C.

(1) If f ∈M, then f−1(f(m)) = m for all m ∈ subX.

(2) If f ∈ E and E is stable under pullback then f(f−1(n)) = n for all n ∈ subY

Proof. (1) Consider the diagram

M
e //

m

��

f(M)

f(M)
��

X
f

// Y

Since f ∈M. Then by taking e = 1M , the diagram becomes a pullback. This implies by

Definition 2:1:2 that m is the inverse image of f(m) under f . Thus, f−1(f(m)) = m.

(2) Consider the diagram

f−1(N)
f ′ //

f−1(n)
��

f(X)

n

��
X

f
// Y

with f ∈ E and E is stable under pullback, then f ′ ∈ E . This implies by Definition 2:1:11

that n is the image of f−1(n) under f . Hence f(f−1(n)) = n.

Definition 2.1.22. Let C have M-pullbacks and every morphism in C have an (E ;M)-

factorization. A morphism f : X −→ Y reflects o if f−1(oY ) = oX (equivalently f(m) =

oY ⇔ m = oX).
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The following proposition will also be usefull

Proposition 2.1.23. [DT95] Let C have M-pullbacks and every morphism in C have

an (E ;M)-factorization. Let f : X −→ Y be a morphism in C. For any morphism

g : Y −→ Z in C, one has that (g ◦ f)(−) = g(f(−)) and (g ◦ f)−1(−) = f−1(g−1(−)).

Proof. We first show that (g ◦ f)(m) = g(f(m)) for any m ∈ subX. By Definition 2:1:11,

the following two diagrams commute

M
e1 //

m

��

f(M)

f(m)
��

e2 // g(f(M))

g(f(m))
��

X
f

// Y g
// Z

M
e3 //

m

��

(f ◦ g)(M)

(g◦f)(m)
��

X
f◦g

// Y

So g ◦ f ◦m = (g ◦ f)(m) ◦ e3 and f(g(m)) ◦ e2 ◦ e1 = g ◦ f ◦m

Since (E ;M) factorizations are unique up to isomorphism (see Theorem 2.1.18), there

is an isomorphism h which makes the following square commutes.

M
e3 //

e2◦e1
��

(f ◦ g)(M)

(g◦f)(m)

��

h

ww
g(f(M))

g(f(m))
// Z

Thus (g ◦ f)(m) = g(f(m)):

We next show that (g ◦ f)−1(m) = f−1(g−1(m)) for any m ∈ subZ.

Consider the following diagram

f−1(g−1(M))
h1 //

f−1(g−1(m))
��

g−1(M)

g−1(m)
��

h2 //M

m

��
X

f
// Y g

// Z

Since the two squares are pullbacks, the large square is a pullback and by Definition 2.1.2

(g ◦ f)−1(m) is a pullback of m along g ◦ f . Hence, (g ◦ f)−1(m) = f−1(g−1(m)) by the

uniqueness of pullbacks.

In the sequel, we shall assume that our category C is M-complete and that it is

endowed with (E ;M) factorization system.
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2.2 Closure and Interior operators

This section recalls the basic material on closure and interior operators that will be useful

in the rest of this work.

2.2.1 Closure operators

We shall first recall the definition of closure operator.

Definition 2.2.1. [DT95] A closure operator c on C with respect to M is given by a

family of maps {cX : subX −→ subX | X ∈ C} such that:

(C1) m ≤ cX(m) for all m ∈ subX;

(C2) m ≤ n⇒ cX(m) ≤ cX(n) for all m;n ∈ subX;

(C3) every morphism f : X −→ Y is c-continuous, that is: f(cX(m)) ≤ cY (f(m)) for all

m ∈ subX.

Because of (C1), one has the following commutative diagram for all m ∈ subX

M
jm //

m
  

cX(M)

cX(m){{
X

An equivalent description of the continuity condition is provided by the proposition below.

Proposition 2.2.2. [DT95] Let f : X −→ Y be a C-morphism. Then under (C2), (C3)

is equivalent to cX(f−1(n)) ≤ f−1(cY (n)) for all n ∈ subY .

Proof. If (C3) holds, then by puttingm = f−1(n), one gets f(cX(f−1(n)) ≤ cY (f(f−1(n))).

Now f(f−1(n)) ≤ n and (C2) implies that cY (f(f−1(n))) ≤ cY (n).

Consequently cX(f−1(n)) ≤ f−1(cX(n)) by adjointness. Conversely if cX(f−1(n)) ≤

f−1(cY (n)) for all n ∈ subY , by taking n = f(m), we obtain that cX(f−1(f(m)) ≤

f−1(cY (f(m)). Since m ≤ f−1(f(m)); (C2) implies that cX(m) ≤ cX(f−1(f(m)). Thus,

f(cX(m)) ≤ cY (f(m)) by adjointness.

We note that the class M can be seen as a full subcategory of the category C2 of

morphisms in C. Its objects are the elements of the class M and a morphism (g; f) :
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m −→ n is given by a pair of morphisms in C such that

M
g //

m
��

N

n
��

X
f
// Y

commutes. Now, if g factors as g = p ◦ e with p ∈ M and e ∈ E , then f ◦m = n ◦ p ◦ e

which by definition 2:1:11 implies that f(m) = n ◦ p; that is f(m) ≤ n. On the other

hand if f is a morphism in C such that f(m) ≤ n, then there is an arrow (g; f) in M.

In particular, for any f : X −→ Y in C and m ∈ subX, n ∈ subY , m −→ f(m) and

f−1(n) −→ n always exist by Definitions 2:1:11 and 2:1:2.

The conglomerate of all closure operators on C with respect toM is denoted by CLOS.

It is ordered as follows: c ≤ c′ if cX(m) ≤ c′X(m) for all m ∈ subX and X ∈ C.

Definition 2.2.3. [DT95] A subobject m of X is called c-closed if it is isomorphic to its

closure. m is called c-dense if its closure is isomorphic to 1X .

Some stability properties of these subobjects are listed below.

Proposition 2.2.4. [DT95] Let f : X −→ Y be a C-morphism and c a closure operator.

(1) If n is c-closed in Y , then f−1(n) is c-closed in X.

(2) If m is c-dense in X and f ∈ E, then f(m) is c-dense in Y .

(3) If for monomorphisms m and n, n◦m is a c-closedM-subobject, then m is a c-closed

M-subobject

(4) if mi : Mi −→ X is a family of c-closed subobjects, then the infinimum
∧
mi is

c-closed

Proof. (1)

cY (n) = n⇒ cX(f−1(n)) ≤ f−1(cY (n)) = f−1(n)

⇒ cX(f−1(n)) ≤ f−1(n)

(2) If cX(m) = 1X and f ∈ E , then 1Y = f(1X) = f(cX(m)) ≤ cY (f(m)) ⇒ 1Y ≤

cY (f(m)).
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(3) The following diagram is a pullback since n is a monomorphism.

M
1M //

m
��

M

n◦m
��

X n
// Y

That is n−1(n ◦ m) = m. Thus cX(m) = cX(n−1n ◦ m) ≤ n−1(cY (n ◦ m)) =

n−1(n ◦m) = m

(4) If mi is c-closed for all i, then∧
mi ≤ mi ⇒ cX(

∧
mi) ≤ cX(mi) = mi for all i

⇒ cX(
∧

mi) ≤ mi for all i

⇒ cX(
∧

mi) ≤
∧

mi =
∧

cX(mi) for all i

The following lemma will be important in proving Proposition 2:2:11:

Lemma 2.2.5. [DT95] For a commutative diagram

M
g //

m
��

N

n
��

X
f
// Y

with m;n ∈M, there is a uniquely determined morphism w making the diagram

M
g //

jm
��

N

jn
��

cX(M) w //

cX(m)
��

cX(N)

cX(n)
��

X
f // Y

commute

Proof. [DT95] By the diagonalization property of right M-factorizations, there is a mor-

phism j : f(M) −→ N which makes the following diagram commute.

M
g //

��

N

n

��

f(M)

j
<<

f(m)
��
Y

1Y
// Y
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So f(m) ≤ n⇒ c(f(m)) ≤ c(n)

⇒ f(c(m)) ≤ c(f(m)) ≤ c(n)

⇒ f(c(m)) ≤ c(n)

This gives the following commutative diagram

c(M) e //

c(m)
��

f(c(M))

f(c(m))
��

t // c(N)

c(n)
��

X
f

// Y
1Y

// Y

Thus t ◦ e is the desired morphism. Its uniqueness follows from the fact that c(n) is a

monomorphism.

We will refer to the above lemma as the functorial property of closure operators.

Corollary 2.2.6. [DT95] If m is c-dense and n is c-closed, then there is a unique p for

which the following diagram commutes:

M
m //

u
��

X

v
��

p

~~
N n

// Y

We next present two important properties of closure operators: idempotency and

weakly hereditariness.

Definition 2.2.7. [DT95] A closure operator c is idempotent if cX(m) is c-closed for

every m ∈ subX. It is weakly hereditary if jm is c-dense for every m ∈ subX and X ∈ C

Proposition 2.2.8. [Cas03] If c is weakly hereditary, the class of c-closed suobjects is

closed under composition.

Proof. [Cas03] Assume c is weakly hereditary and consider the following diagram with n

and m c-closed M-subobjects

N
jm◦n//

n

��

c(N)

c(m◦n)
��

d

||
M m

// X
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Then jm◦n is c-dense and so by Corollary 2:2:6 there is a unique morphism d : cX(N) −→

M such that d ◦ jm◦n = n and m ◦ d = c(m ◦ n). Consequently, one obtains the following

commutative diagram

N
jm◦n//

idN
��

c(N)

d
��

t

||
N n

// X

So n ◦ t = d and t ◦ jm◦n = idN . Thus t is a monomorphism and retraction and so an

isomorphism. Hence jm◦n is also an isomorphism, that is m ◦ n is c-closed.

We now turn to c-closed morphisms.

Definition 2.2.9. [DT95] Let c be a closure operator with respect toM. A C-morphism

f : X −→ Y is said to be c-closed (c-preserving) if f(cX(m)) = cY (f(m)) for all m ∈

subX.

Clearly, if f is c-closed then f(m) is c-closed in subY whenever m is c-closed in subX,

the converse holds if c is idempotent.

The c-closed morphisms behave as follows:

Proposition 2.2.10. [DT95] Let c be a closure operator. The following statements are

true:

(1) c-closed morphisms are closed under composition.

(2) If g ◦ f is c-closed and f ∈ E with E stable under pullbback, then g is c-closed.

(3) If g ◦ f is closed and g ∈M, then f is c-closed.

Proof. (1) If f : X −→ Y and g : Y −→ Z are c-closed morphisms. Then for all

m ∈ subX,

(g ◦ f)(cX(m)) = g(f(cX(m))

= g(cY (f(m))

= cZ(g(f(m))
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(2) If f ∈ E with E stable under pullback and g ◦ f is c-closed, then for all m ∈ subY ,

cZ(g(n)) = cZ(g(f(f−1(n))))

= g(f(cX(f−1(n))))

≤ g(f(f−1(cY (n))))

= g(cY (n))

(3) If g ∈M and g ◦ f is c-closed, then for all m ∈ subX,

cY (f(m)) = cY (g−1(g(f(m)))

= g−1(cZ(g(f(m)))

= g−1(g(f(cX(m))))

= f(cX(m))

The fact that every isomorphism is c-closed follows from Proposition 2:2:10(3). The

following establishes a relationship between c-closed subobjects and c-closed morphisms.

Proposition 2.2.11. [CGT96] Let c be a closure operator. The following statements are

true:

(1) Every c-closed morphism in M is c-closed subobject.

(2) If c is weakly hereditary, then every c-closed subobject is a c-closed morphism.

Proof. [CGT96]

(1) If m : M −→ X is a c-closed morphism in M, then it preserves in particular the

closure of 1M , that is m = cX(m).

(2) Let c be weakly hereditary and m : M −→ X be a c-closed subobject. Then for

every k : K −→ M , m ◦ k ≤ m ⇒ cX(m ◦ k) ≤ cX(m) = m. By the functorial

property of closure operators, there is a morphism d making the following diagram
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commute

K k //

jm◦k
��

M

jn
��

cX(K) d //

cX(m◦k)
��

cX(M)

cX(m)
��

X
1X // X

Since m = cX(m); jm = 1M so d ◦ jm◦k = k. Consequently, we have the following

commutative diagram

K
1K //

jm◦k
��

K

jk
��

cX(K) h //

ccX (K)(jm◦k)=1cX (K)

��

cM(K)

cM (k)

��
cX(K) d //M

jk = h ◦ jm◦k and cM(k) ◦ h = d ◦ 1cX(K) = d.

This implies that

cX(m ◦ k) = cX(m) ◦ d

= m ◦ d

= m ◦ cM(k) ◦ h

Hence cX(m ◦ k) ≤ m ◦ cM(k) that is m is a c-closed morphism

2.2.2 Interior operators

We first give the definition.

Definition 2.2.12. [Cas15] An interior operator i on C with respect to M is given by a

family of maps {iX : subX −→ subX | X ∈ C} such that

(I1) iX(m) ≤ m for every m ∈ subX and X ∈ C;

(I2) m ≤ n⇒ iX(m) ≤ iX(n) for every m;n ∈ subX;X ∈ C;
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(I3) every morphism f : X −→ Y in C is i-continuous, f−1(iY (n)) ≤ iX(f−1(n)) for each

n ∈ subY .

We denote by INT the conglomerate of all interior operators on C with respect toM.

It is ordered as follows: i ≤ i′ if iX(m) ≤ i′X(m) for all m ∈ subX;X ∈ C.

Concerning the arbitrary joins and meets in INT , we offer the following.

Proposition 2.2.13. [Raz12a] Let {ik | k ∈ K} ⊆ INT . Then

i?X(m) =
∧
{(ik)X(m) | k ∈ K}

for all m ∈ subX;X ∈ C is an interior operator and if any join of subobjects commutes

with the pullback, then

i�X(m) =
∨
{(ik)X(m) | k ∈ K};

for all m ∈ subX;X ∈ C is also an interior operator.

Proof. [Raz12a] (I1) and (I2) are satisfied by construction of i� and i?. To prove (I3),

we take any C-morphism f : X −→ Y and m ∈ subY . Then

f−1(i?Y (m)) = f−1(
∧
{(ik)Y (m) | k ∈ K})

=
∧
{f−1((ik)Y (m)) | k ∈ K}

≤ i?X(f−1(m))

Similarly if pre-images commute with joins of subobjects, we have

f−1(i�Y (m)) = f−1(
∨
{(ik)Y (m) | k ∈ K})

=
∨
{f−1((ik)Y (m)) | k ∈ K}

≤ i�X(f−1(m))

As for c-closed subobjects and c-closed morphisms, i-open subobjects and i-open mor-

phisms deserve our attention.
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Definition 2.2.14. [Cas15] A subobject m of X is said to be i-open if m = iX(m). We

shall say that i is idempotent provided that iX(m) is i-open for every m ∈ M and X ∈ C.

Proposition 2.2.15. [Cas15] Let i be an interior operator. The following holds true:

(1) The pre-image of an i-open subobject is i-open.

(2) If n and m are monomorphisms such that n◦m is i-open subobject then m is i-open.

(3) If mi : Mi −→ X is a family of i-open subobjects, then the supremum
∨
mi of mi is

i-open.

Proof. Similar to (1); (3) and (4) of Proposition 2:2:4

Definition 2.2.16. [Cas15] An interior operator is grounded if iX(1X) = 1X for all X ∈ C.

It is additive if for any X ∈ C; iX(m ∧ n) = iX(m) ∧ iX(n).

Definition 2.2.17. [Cas15] A morphism f : X −→ Y is i-open if f−1(iY (n)) = iX(f−1(n))

for any n ∈ subY or equivalently f(iX(m)) ≤ iY (f(m)) for any m ∈ subX.

If f is an i-open morphism, f(−) sends i-open subobjects to i-open subobjects. The

converse holds if i is idempotent. The i-open morphisms behave in a similar way to the

c-closed.

Proposition 2.2.18. [Cas15] Let i be an interior operator. The following statements are

true:

(1) Every isomorphism in C is i-open.

(2) i-open morphisms are closed under composition.

(3) If g ◦ f is i-open and g ∈M, then f is i-open.

(4) If g ◦ f is i-open and f ∈ E with E stable under pullbback, then g is i-open

Proof. (1) Let f : X −→ Y be a C-isomorphism with inverse g : Y −→ X and n ∈ subY ,

then

iX(f−1(n)) = (g ◦ f)−1(iX(f−1(n)))

= f−1(g−1(iX(f−1(n))))

≤ f−1(iY (g−1(f−1(n))))

= f−1(iY (n))

31

 

 

 

 



(2) If f : X −→ Y and g : Y −→ Z are i-open morphisms, then for all m ∈ subZ;

(g ◦ f)−1(iZ(m)) = f−1(g−1(iZ(m)))

= f−1(iY (g−1(m)))

= iX(f−1(g−1(m)))

= iX((g ◦ f)−1(m))

(3) If g ∈M and g ◦ f is i-open then for all n ∈ subY ,

iX(f−1(n)) = iX(f−1(g−1(g(n)))

= (g ◦ f)−1(iZ(g(n)))

= f−1(g−1(iZ(g(n))))

≤ f−1(iY (g−1(g(n))))

= f−1(iY (n))

(4) If f ∈ E with E stable under pullback and g ◦ f is i-open, then for all n ∈ subZ;

iY (g−1(n)) = f(f−1(iY (g−1(n))))

≤ f(iX(f−1(g−1(n))))

= f((g ◦ f)−1(iZ(m))))

= f(f−1(g−1(iZ(m))))

= g−1(iZ(m))

Definition 2.2.19. [Cas15] An interior operator i is called weakly hereditary if for every

pair of M-subobjects n ≤ m with m i-open, one has that iX(n) = m ◦ iM(nm) where nm

is the unique morphism such that m ◦ nm = n. It is easy to see that nm = m−1(n).

We have the following:

Proposition 2.2.20. [Cas15] Given an interior operator i, the following statements are

true:
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(1) If i is standard, then every i-open morphism in M is an i-open subobject.

(2) If i is weakly hereditary then every i-open subobject is an i-open morphism.
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Chapter 3

Neighbourhood operators

In 1902 Hilbert published his paper, Foundations of geometry, which perhaps deserves

to be considered as the beginning of ideas of neighbourhoods in topology. These ideas

continued through the work of Frechet(1906). While Frechet defined abstract spaces in

terms of convergent sequences and Riez in terms of accumulations points(1907); Weyl,

in Die Idee der Riemannschen F läche, proposed a study in terms of neighbourhood

systems ([Wil70]. A satisfactory axiomatization of Weyls neighbourhoods was proposed by

Hausdorff in 1914 in his book Grundzüge der Mengenlehre which according to Bourbaki

([AL97]) commences general topology as it is today. This chapter presents the theory of

categorical neighbourhood operators. Introduced in ([HŠ11]) only half a decade ago, the

categorical neighbourhood operator has been developed in ([HŠ10, Raz12b, RH14]. We

shall define the operator at the subobject level and show that the interior operators are

special neigbhourhoods. This leads us to the correspondence between neighbourhood (or

interior) and closure operators. The chapter ends with the description of four classes of

morphisms with respect to a neighbourhood operator.

3.1 Neighbourhood or Interior and Closure opera-

tors

We start with the following definition given in [Raz12b], which is equivalent to the ones

in [HŠ10, HŠ11]).

Definition 3.1.1. A neighbourhood operator � on C with respect to M is a family of

maps {�X : subX −→ P (subX) | X ∈ C} such that
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(N1) n ∈ �X(m)⇒ m ≤ n for every m ∈ subX and X ∈ C;

(N2) m ≤ n⇒ �X(n) ⊆ �X(m) for every m;n ∈ subX and X ∈ C;

(N3) p ∈ �X(m) and p ≤ q then q ∈ �X(m) for every m; p; q ∈ subX and X ∈ C;

(N4) every morphism f : X −→ Y in C is �-continuous, n ∈ �Y (f(m))⇒ f−1(n) ∈ �X(m)

for every m ∈ subX and n ∈ subY .

The congolomerate of all neighbourhood operators on C with respect toM is denoted

by NBH. It is ordered as follows: � ≤ � ⇒ �(m) ⊆ � ′(m) for all m ∈ M and X ∈ C.

As observed in the previous chapter, for any morphism f : X −→ Y in C;m ∈ subX and

n ∈ subY ; if there is an arrow m −→ n in M which involves f , then f(m) ≤ n. This

implies that �(n) ⊆ f(�(m)) by (N2) or equivalently f−1(�(n)) ⊆ �(m) by adjointness

and since the arrows m −→ f(m) and f−1(n) −→ n always exist, the �-continuity can

equivalently be expressed by the proposition below.

Proposition 3.1.2. [Raz12a] Let � be a neighbourhood and f : X −→ Y be a C-morphism.

Let n ∈ subY and m ∈ subX. The following are equivalent in expressing the �-continuity.

(i) f−1(�(n)) ⊆ �(f−1(n));

(ii) f−1[�(f(m))] ⊆ �(m);

(ii) �(n) ⊆ f(�(f−1(n))).

Since its introduction in [HŠ11], the categorical neighbourhood operator has been

shown to be strongly related to the interior operator. In [RH14], the relationship was

established in the form of an adjunction. We next establish the interaction between the

two operators, both acting on the subobject lattice.

Definition 3.1.3. [Raz12a] A neighbourhood operator � is said to be left-adjoint if it

satisfies the following axiom.

(L) For any X ∈ C and G ⊆ subX, if m ∈ �X(g) for every g ∈ G, then m ∈ �X(
∨
G)

for m ∈ subX.

We shall denote by LNBH the class of all left-adjoint neighbouhood operators, ordered

pointwise, on C with respect to M.
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NBH is a large complete lattice, that is, it has arbitrary joins and arbitrary meets.

Indeed, if {�i | i ∈ I} ⊆ NBH, the supremum is given by

�∗(m) =
⋃
{�i(m) | i ∈ I};

for all m subX;X ∈ C and the infinimum is provided by

�?(m) =
⋂
{�i(m) | i ∈ I};

for all m subX;X ∈ C

If each �i satisfies (L), then �? satisfies also (L).

Proposition 3.1.4. [Raz12a, HŠ10] LNBH is order isomorphic to INT . For a left-

adjoint neighbourhood operator � and an interior operator i, the inverse assignments are

given by

�i(m) = {n | m ≤ i(n)} and iν(m) =
∨
{n | m ∈ �(n)}

Proof. Clearly by construction iν satisfies (I1) and (I2). To show continuity consider

any C-morphism f : X −→ Y and n ∈ subX. Then n ∈ �Y (iνY (n)) by Definition 3.1.3

and by (N4), f−1(n) ∈ �X(f−1(iνY (n)) that is f−1(iνY (n)) ≤ iνX(f−1(n)). On the other

hand for any m ∈ subX, �i is left-adjoint since for any G ⊆ subX, g ≤ i(m) for all

g ∈ G ⇒
∨
G ≤ i(m)⇒ n ∈ �i(

∨
G) and

(N1) n ∈ �i(m)⇒ m ≤ n by (I1).

(N2) If m ≤ n and n ≤ i(p) then m ≤ iX(p). Hence �i(n) ⊆ �i(m).

(N3) If p ∈ �i(m) and p ≤ q then m ≤ i(p) ≤ i(q)⇒ m ≤ i(q)⇒ q ∈ �i(m)

(N4) Let f : X −→ Y be a C-morphism and n ∈ subY . Then n ∈ �i(f(m)) ⇒ f(m) ≤

i(n)⇒ m ≤ f−1(f(m)) ≤ f−1(i(n)) ≤ i(f−1(n)). Thus f−1(n) ∈ �i(m).

The assignments preserve order since,

If � ⊆ � ′ in LNBH then

{p | m ∈ �(p)} ⊆ {p | m ∈ � ′(p)} ⇒
∨
{p | m ∈ �(p)} ≤

∨
{p | m ∈ � ′(p)}.

Thus iν(m) ≤ iν(m). On the other hand if i ≤ i′ in INT then {p | m ≤ i(p)} ⊆

{p | m ≤ i′(p)}. Hence �i(m) ⊆ �i(m).

Finally, they are inverse to each other:

If i ∈ INT and m ∈ subX, then
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iν
i

(m) =
∨
{n | m ∈ �i(n)} =

∨
{n | n ≤ i(m)} = i(m):

Conversely if n ∈ �iν (m) then m ≤ iν(n) and since � ∈ LNBH, n ∈ �(iν(n)) ⊆ �(m).

Also if n ∈ �(m) then m ≤ i(n) by definition and so n ∈ �iν (m).

Closure and neighbourhood are naturally related in topology, a point x in a space X

belongs to the closure of a subset A of X if and only if there is an neighbourhood of

x which meets A. This relationship between closure and neigbhourhood aquire another

meaning once points are no longer present. Due to the fact that they are intuitive in

introducing the notion of convergence, neighbourhoods were introduced with respect to a

closure. It turns out that there is a closure operator on C, which emerged from the study

of convergence, naturally associated to a neighbourhood operator �.

[HŠ11] Let m be a subobject of X;X ∈ C. For a neighbouhood operator put

cνX(m) =
∨
{n | (∀n′ ≤+ n); m ∧ �X(n′) > oX}

where the relations m ∧ �X(n′) > oX means that for any k ∈ �X(n′) we have that

m ∧ k > oX and the relation n′ ≤+ n means oX < n′ ≤ n.

Proposition 3.1.5. [Raz12a, HŠ11] (cX)X∈C is a closure operator on C and the assign-

ment � −→ cν is order reversing.

Proof. It is easily seen that cν satisfies (C1).

(C2) If m ≤ p then {n | (∀n′ ≤+ n);m ∧ �(n′) > oX} ⊆ {q | (∀q′ ≤+ q); p ∧ �(q′) >

oX} ⇒
∨
{n | (∀n′ ≤+ n);m ∧ �(n′) > oX} ≤

∨
{q | (∀q′ ≤+ q); p ∧ �(q′) > oX}

that is cνX(m) ≤ cνX(p).

(C3) Let f : X −→ Y;Cn = {f(n) | (∀n′ ≤+ n);m ∧ �(n′) > oX}, and Cp =

{p | (∀p′ ≤+ p); f(m) ∧ �(p′) > oY }. If f(n) ∈ Cn;∀n′ ≤+ n; f(n′) ≤+ f(n) and

m ∧ �(n′) > oX ⇒ oY < f(m ∧ �(n′)) ≤ f(m) ∧ f(�(n′))

⇒ oY < f(m) ∧ f(�(n′))

⇒ oY < f(m) ∧ �(f(n′)) by �-continuity

Thus f(n) ∈ Cp . This implies that
∨
Cn ≤

∨
Cp ; that is f(cνX(m)) ≤ cνY (f(m)).

Clearly, if � ≤ � ′ then, cν ≤ cν
′
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In point-set settings, one moves from closure to interior and back via complements.

With this intuition in mind, the restriction to the class of LNBH or INT suggests other

possibilities of getting a notion of closedness from a neigbhourhood or interior operator.

Definition 3.1.6. [HŠ10] Let i be an interior operator and m ∈ subX. We shall say that

m is:

(1) Ai-closed if i(m ∨ n) ≤ m ∨ iX(n) for all n ∈ subX.

(2) Bi-closed if m ∨ n = 1X ⇒ m ∨ iX(n) = 1X for all n ∈ subX.

(3) Ci-closed if m is pseudocomplemented and m∗ = iX(m∗) where the pseudocomple-

ment of m is a subobject m∗ such that for any n ∈ subX, n ≤ m∗ ⇔ m ∧ n = oX

Clearly if C = Top, category of topological spaces and continuous maps, and i the usual

interior then the three notions coincide. Our next proposition establishes the relationship

between the above three notions. As one can notice, the validity of the proposition

depends on the existence of (pseudo)complements.

Proposition 3.1.7. [HŠ10] Let i be an interior operator and m ∈ subX.

(1) m is Ai-closed⇒ m is Bi-closed if i is grounded.

(2) m is Bi-closed⇒ m is Ci-closed if subX is Boolean algebra.

(3) m is Ci-closed⇒ m is Ai-closed if subX is Boolean algebra and i is additive.

Proof. (1) [HŠ10]

1X = m ∨ n = iX(m ∨ n) i is grounded

≤ m ∨ iX(n) Definition 3.1.6(1)

⇒ m ∨ iX(n) = 1X

(2) Let subX be a boolean algebra. Then m = m∗ with m ∈ subX the complement of m;

that is m ∧m = oX and m ∨m = 1X
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Now

m ∨m∗ = 1X ⇒ m ∨ iX(m∗) = 1X

⇒ m∗ ≤ iX(m∗)

⇒ m∗ = iX(m∗)

(3) For any n ∈ subX,

iX(m ∨ n) ∧m = iX(m ∨ n) ∧ iX(m) subX is Boolean

= iX((m ∨ n) ∧m) i is additive

= iX((m ∧m) ∨ (n ∧m))

= iX(n ∧m)

= iX(n) ∧ iX(m) additivity of i

= iX(n) ∧m Definition 3.1.6(3)

Now; iX(m ∨ n) = iX(m ∨ n) ∧ 1X

= iX(m ∨ n) ∧ (m ∨m)

= (iX(m ∨ n) ∧m) ∨ (iX(m ∨ n) ∧m)

≤ m ∨ (iX(n)) ∧m)

= (m ∨ iX(n)) ∧ (m ∨m)

= (m ∨ iX(n)) ∧ 1X

= (m ∨ iX(n))

One perfoms the following technique, the so-called construction of closure operator

depending on the parameter F , and apply Definition 3.1.6 to obtain three different types

of closure operators.

[HŠ10] For a class F ⊆ M, we form F∗ = {f−1(m) | m ∈ F ; f ∈ C}, the smallest

pullback stable class containing F . Given a subobject m of X, the assignment
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cFX(m) =
∧
{n ∈ F∗ | m ≤ n}

defines a closure operator. (C1) and (C2) are trivially satisfied by construction of cF :

For (C3), let f : X −→ Y be a C-morphism. Then

{f−1(n) : n ∈ F∗ | m ≤ n} ⊆ {n ∈ F∗ | f−1(m) ≤ n}

This implies that∧
{n ∈ F∗ | f−1(m) ≤ n} ≤

∧
{f−1(n) : n ∈ F∗ | m ≤ n}

that is cF(f−1(m)) ≤ f−1(cF(m)).

Definition 3.1.8. [Raz12a, HŠ10] Let i be an interior operator, we shall denote by �i; �i,

i the closure operator obtained by considering for the class F , the classes of Ai -closed,

Bi-closed, Ci -closed subobjects, respectively.

The assignments i 7−→ �i and i 7−→ i define order reversing maps from INT (or

LNBH) to NBH. In fact, if i(m) ≤ i′(m), then {n | n is Bi-closed and m ≤ n} ⊆

{n | n is Bi′-closed and m ≤ n} since for all p ∈ subX, if n ∨ p = 1X ⇒ n ∨ iX(p) =

1X then n ∨ i′X(p) = 1X . This implies that
∧
{n | n is Bi′-closed and m ≤ n} ≤∧

{n | n is Bi-closed and m ≤ n}, that is �i
′
(m) ≤ �i(m).

Similarly, for all m ∈ subX, if i(m) ≤ i′(m), then {n | n is Ci-closed and m ≤

n} ⊆ {n | n is Ci′-closed and m ≤ n} since for all p ∈ subX, if n is pseudocomple-

mented and n∗ = iX(n∗), then n∗ ≤ i′X(n∗) which gives n∗ = iX(n∗). This implies

that
∧
{n | n is Ci′-closed and m ≤ n} ≤

∧
{n | n is Ci-closed and m ≤ n}, that is

i
′
(m) ≤ i(m).

The assignment i 7−→ �i does not respect order in general. Indeed, if any morphism

in C reflects o and i an interior operator such that i(m) = oX , i′ an interior operator

with i′(m) = m for all m, then for any n ∈ subX, n is Ai-closed and Ai
′
-closed and

so �i(m) = m and �i
′
(m) = m: This behaviour explains why �i is not part of a Galois

connection.

Now given a closure operator c on C with respect toM, one associates a neighbourhood

operator. Guided by the intuition from topological spaces, we get the following definition.

Definition 3.1.9. [HŠ10] Let c be a closure operator and m ∈ subX, X ∈ C. We shall

say that m is:
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(1) Ac-open if m ∧ cX(n) ≤ cX(m ∧ n) for all n ∈ subX.

(2) Bc-open if m ∧ n = oX ⇒ m ∧ cX(n) = oX for all n ∈ subX.

(3) Cc-open if m is pseudocomplemented and m∗ = cX(m∗).

A similar operation as the one for interior operator can also be performed for a closure

operator c and get three different neighbourhood operators by applying Defintion 3.1.9.

Given a class F ⊆M,

�F(m) = {n ∈M | (∃ p ∈ F∗);m ≤ p ≤ n}

is clearly a neighbourhood operator. �F is regular if it holds that for any G ⊆ F∗;
∨
G ∈

F∗:

Definition 3.1.10. [Raz12a, HŠ10] Given a closure operator c, we denote by ac; bc; cc, the

neighbourhood operators obtained by considering respectively for the class F the class of

Ac, Bc, Cc-open subobjects.

Analogously to �i; �i and i, the assignments c 7−→ bc and c 7−→ cc are clearly order-

reversing while the assignment c 7−→ ac behave like �i, that is, it does not respect any

order.

The correspondances we have looked at in this section between INT ( or NBH) and

CLOS do not offer a natural way of moving from interior or neighbourhood to closure

and back in the sense that they are not Galois connections in general. However, if the

subobject lattices on which the operators interact are boolean algebras, then the pairs

(�; a); (�; b); (; c) are Galois connection between NBH or INT and CLOS. A rather

natural way of treating the three operators in one setting will be later introduced.

3.2 The classes of Morphisms

Although considered implicitly for a long time in topos theory, c-open morphisms were

explicity introduced in ([DT95]) as morphisms whose inverse image commutes with the

closure (cf.[GT00]). In this paper (see also [Cle01, CGT01, CT01]) the behaviour of these

morphisms together with the c-initial morphisms and their duals, namely the c-closed

and c-final morphisms are studied. This section investigates four types of morphisms

with respect to a neighbourhood operator. These are crucial to understanding topological
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constructions such as formation of subspaces, quotients etc. In contrast to our approach

which considers neighbourhood operators to act on subobject lattices, a lax approach to

neighbourhood operators is used in [RH16] to study these classes of morphisms. We shall

mainly define the morphisms and study some of their basic properties which will be useful

in the remaining chapters.

Definition 3.2.1. [Raz12a] Let � be a neighbourhood operator. We say that a morphism

f : X −→ Y in C is:

(i) �-closed if for any n ∈ subY ,

�X(f−1(n)) = f−1(�Y (n))

(ii) �-initial if for any m ∈ subX,

�X(m) = f−1(�X(f(m)))

One uses Theorem 1.4.12 in [Eng89] to see that in the category Top of topological

spaces and continuous maps if we consider the neighbourhood operator

NX(A) = {B | A ⊆ O ⊆ B for some open O ⊆ X}

for all A ⊆ X and X a topological space, a �-closed morphism coincides with a closed

map and a �-initial coincides with an initial continous map, that is a continuous map

whose domain carries the initial topology induced by the map itself from its domain.

Our next two propostions describe the behaviour of �-closed and �-initial morphisms

respectively.

Proposition 3.2.2. [Raz12a] Let � be a neighbourhood operator. The following state-

ments are true.

(1) Every isomorphism in C is �-closed.

(2) �-closed morphisms are closed under composition.

(3) If g ◦ f is �-closed and g ∈M, then f is �-closed.

(4) If g ◦ f is �-closed and f ∈ E with E stable under pullback, then g is �-closed.
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Proof. (1) Let f : X −→ Y be an isomorphism in C with inverse g : Y −→ X then for all

n ∈ subY ,

�(f−1(n)) = �(g(n)) ⊆ g(�(n)) = f−1(�(n))

(2) Let f : X −→ Y and g : Y −→ Z be �-closed morphisms. Then for all n ∈ subY ,

�((g ◦ f)−1(n)) = �(f−1(g−1(n)))

= f−1(�(g−1(n)))

= f−1(g−1(�(n)))

= (g ◦ f)−1(�(n)))

(3) If g ◦ f is �-closed and g ∈M, for all n ∈ subY ,

�(f−1(n)) = �(f−1(g−1(g(n))))

= (g ◦ f)−1(�(g(n))

⊆ f−1(�(g−1(g(n))) = f−1((n))

(4) Let g ◦ f be �-closed and f be in E with E stable under pullback. Then

�(g−1(n)) = (f(f−1�(g−1(n))))

⊆ f(�(f−1(g−1(n))))

= f(�(g ◦ f)−1(n))

= f(f−1(g−1(�(n))) = g−1(�(n))

While the notion of c-closed morphisms require the closure to commute with the images

of subobjects (see Definition 2.2.9), the �-closed require the pre-images of subobjects to

commute with the neighbourhood operator. Despite this duality the behaviour of the

two notions is quite similar as this can be seen from Propositions 2.2.10 and 3.2.2. The

strategies in the proofs of the two Propositions are the same although it seems easier to

manipulate �-closed morphisms than the c-closed.

Proposition 3.2.3. [Raz12a] The following statements hold true for a neighbourhood

operator �.

43

 

 

 

 



(1) Every isomorphism in C is �-initial.

(2) �-initial morphisms are closed under composition.

(3) If g ◦ f is �-initial then then f is �-initial.

(4) If g ◦ f is �-initial and f ∈ E with E stable under pullback, then g is �-initial

Proof. (1) Let f : X −→ Y be a C-isomorphism and g : Y −→ Y its inverse. Then

�(m) = �(g(f(m)) ⊆ g(�(f(m)) = f−1(�(f(m))):

(2) Let f : X −→ Y and g : Y −→ Z be �-initial morphisms. Then for all n ∈ subY

�(m) = f−1(�(f(m)) = f−1(g−1(�(g(f(m))))):

(3) If g ◦ f is �-initial, then for all n ∈ subX,

�(m) = f−1(g−1(�(g(f(m))))) ⊆ f−1(�(f(m))) ⊆ �(m):

(4) If g ◦ f is �-initial and f is in E with E stable under pullback,

f−1((n)) ⊆ �(f−1(n))

⊆ (g ◦ f)−1(�((g ◦ f)(f−1(n))))

= f−1(g−1(�(g(f(f−1(n))))))

= f−1(g−1(�(g(n))))

which implies that �(n) ⊆ g−1(�(g(n)))

The relationship between the �-initial and �-closed morphisms is described in the next

proposition.

Proposition 3.2.4. Let � be a neighbourhood operator, then

(1) every section (or split monomorphism ) is �-initial.

(2) every �-closed monomorphism is �-initial.

(3) every �-initial morphism in E is �-closed provided E is pullback stable.
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Proof. (1) Clear from 3.2.4(3). (2) If f : X −→ Y is a �-closed mono, then

�(m) = �(f−1(f(m)) = f−1(�(f(m))

for all m ∈ subX.

(3) If E is pullback stable then f(f−1(m)) = m . Thus

�(f−1(n)) = f−1(�(f(f−1(n))) = f−1(�(m))

We next consider the dual notions to �-closed and �-initial namely the �-open and

�-final. These are obtained by assuming that the neighbourhoods commute with the

images.

Definition 3.2.5. [Raz12a] Let � be an neighbourhood operator. A morphism f : X −→

Y in C is said to be: (i) �-open if

�Y (f(m)) = f(�X(m))

for all m ∈ subX. (ii) �-final if for any n ∈ subY ,

�X(n) = {k ≥ n | f−1(k) ∈ �X(f−1(n))}

While the �-closed, �-initial and �-open morphisms were obtained by replacing in the

continuity condition ”⊆ ” with ”= ”, this does not hold for �-final, unless the morphism

is in E and E is pullback stable.

We have already encountered the notion of open morphism (see Definition 2.2.17).

Here the operator needs to commute with the images of subobjects while previously we

needed the interior to commute with the pre-mages of subobjects. However, these two

notions behave in a similar way (see Propositions 2.2.18 and 3.2.6).

The basic properties of �-open and �-final morphisms are provided by the following

two propostions.

Proposition 3.2.6. [Raz12a] Let � be a neighbourhood operator. The following state-

ments are true:

(1) Every isomorphism in C is �-open.

(2) �-open morphisms are closed under composition.
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(3) If g ◦ f is �-open and f ∈ E with E stable under pullback, then g is �-open.

(4) If g ◦ f is �-open and g ∈M, then f is �-open.

Proof. . (1) Let f : X −→ Y be a C-isomorphism with inverse g : Y −→ X then for all

m ∈ subX, f(�X(m)) = g−1(�X(m)) ⊆ �Y (g−1(m)) = �Y (f(m))

(2) If f : X −→ Y and Y −→ Z are �-open morphisms, then for all m ∈ subX,

�Z((g ◦ f)(m)) = �Z(g(f(m))

= g(�Y (f(m))

= g(f(�X(m))

(3) If g ◦ f is �-open and g ∈M for all m ∈ subX,

f(�X(m)) = g−1(g(f(�X(m)))

= g−1((g ◦ f)(�X(m)))

= g−1(�Z(g ◦ f)(m))

⊆ �Y (g−1(g(f(m)))

= �Y (f(m))

(4) If g ◦ f is �-open and f ∈ E with E stable under pullback, then for all m ∈ subY ,

g(�Y (m)) = g(�Y (f(f−1(n))))

⊆ g(f(�X(f−1(m)))

= �Z(g(f(f−1(m))))

= �Z(g(m))

Proposition 3.2.7. [Raz12a] The following statements hold true for a neighbourhood

operator �.

(1) Every isomorphism in C is �-final.
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(2) �-final morphisms are closed under composition.

(3) If g ◦ f is �-final then then g is �-final.

(4) If g ◦ f is �-final and g is mono, then f is �-final.

Proof. (1) Let f : X −→ Y be a C-isomorphism with inverse g : Y −→ X and n ≤ k in

subY . Then

f−1(k) ∈ �(f−1(n))⇒ g(k) ∈ �(g(n))

⇒ g−1(g(k)) ∈ �(n) by continuity of g

⇒ k ∈ �(n)

(2) If f : X −→ Y and Y −→ Z are �-final morphisms, then for all k ≥ n in subZ,

g−1(k) ≥ g−1(n), Hence,

f−1(g−1(k)) ∈ �(f−1((g−1(n))⇒ g−1(k) ∈ �(g−1(n))

⇒ k ∈ �(n))

(3) Assume g ◦ f is �-final, k ≥ n and g−1(k) ∈ �(g−1(n)) for n ∈ subZ,

then (g ◦f)−1 ∈ �((g ◦f)−1(n)) by �-continuity of f . Thus k ∈ �(n) by finality of g ◦f

(4) Let g be mono and k ≥ n. Then k = g−1(g(k)); n = g−1(g(n)) for some

n; k ∈ subY .

If f−1(k) ∈ �(f−1(n)) then (g ◦ f)−1(g(k)) ∈ �((g ◦ f)−1(g(n)). Since g(n) ≤ g(k),

g(k) ∈ �(g(n)) by �-finality of g ◦ f and hence k ∈ �(n) by �-continuity of g.

The following relates the �-open, �-final and �-closed morphisms.

Proposition 3.2.8. [Raz12a] Let � be a neighbourhood operator, then

(1) every retraction (or split epimorphism ) is a �-final.

(2) every �-open morphism in E is �-final morphism in E provided E is pullback stable.

(3) every �-final monomorphism is �-open.

(4) every �-closed monomorphism is �-final.
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Proof. (1) Clear from Proposition 3:2:7(3).

(2) Let f : X −→ Y be �-open and k ≥ n then

f−1(k) ∈ �(f−1(n))⇒ k ∈ �(f(f−1(n))

⇒ k ∈ �(n) since f ∈ E and E is pullback stable

(3) If f is �-final mono, the

f−1(n) ∈ �(m)⇒ f−1(n) ∈ �(f−1(f(m)))

⇒ n ∈ �(f(m))

(4) Let f : X −→ Y be �-closed in E with k ≥ n then

f−1(k) ∈ �(f−1(n)⇒ f(f−1(k)) ∈ �(n)

⇒ k ∈ �(n)

In the previous chapter, we have studied the c-closed and i-open morphisms. As

observed, their behaviour is quite similar to those of �-open morphisms described in this

chapter. These three classes of morphisms will later be considered as as being essentially

the same. This fact will be seen using the notion of topogenous order on a category that

we introduce in the next chapter.
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Chapter 4

Topogenous structures

In the previous chapter we have looked at different ways of moving between closure,

interior or neighbourhood operator. We showed that none of them provides a suitable

way to switch back and forth between closure and interior or neighbourhood operators. In

this chapter we wish to present a framework in which the three operators can be treated

in one setting. We introduce the notion of topogenous order on a category and show that

it is equivalent to the categorical neighbourhood operator. Then we proceed by showing

that the closure and interior operators are special topogenous orders. We end the chapter

by providing a few examples for the developed theory.

4.1 Topogenous orders or neighbourhood operators

In this section we define the topogenous order on a category . We show that TORD, the

congolomerate of all topogenous orders on C, is a complete lattice. We end the section by

proving the equivalence between the topogenous orders and the neighbourhood operators.

Definition 4.1.1. A topogenous order v on C is a family {vX | X ∈ C} of relations,

each vX on subX, such that:

(T1) m vX n⇒ m ≤ n for every m;n ∈ subX,

(T2) m ≤ n vX p ≤ q ⇒ m vX q for every m;n; p; q ∈ subX, and

(T3) every morphism f : X −→ Y in C is v-continuous, m vY n ⇒ f−1(m) vX f−1(n)

for every m;n ∈ subY .

An equivalent formulation of the v-continuity is provided by the following proposition:
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Proposition 4.1.2. A morphism f : X −→ Y is in C is v-continuous iff f(m) vY n⇒

m vX f−1(n) for any m ∈ subX and m ∈ subY .

Proof. Let f be v-continuous and f(m) vY n, then m ≤ f−1(f(m)) vX f−1(n) and so

m vX f−1(n) by (T2). Conversely since f(f−1(m)) ≤ m for any m ∈ subY , again by

(T2), m vY n⇒ f(f−1(m)) vY n⇒ f−1(m) vX f−1(n).

At times we omit the subscripts if there is no danger of confusion. TORD is ordered

as follows: v⊆v′ in TORD if and only if for all m;n ∈ subX, m vX n ⇒ m v′X n.

It is a complete lattice with set theoretic union and intersection giving the suprema and

infinima as shown by the following proposition.

Proposition 4.1.3. Let {viX | i ∈ I} ⊆ TORD for all X ∈ C.

(i) v∗X=
⋃
{viX | i ∈ I} for all X ∈ C, and

(ii) v�X=
⋂
{viX | i ∈ I} for all X ∈ C

are topogenous orders on C.

Proof. Let m;n; p and q be in subX:

(i) Since m v∗X n⇒ m viX n for some i ∈ I, we have that m ≤ n: If m ≤ n v∗X p ≤ q,

then m ≤ n viX p ≤ q for some i ∈ I: Thus m viX q for some i ∈ I and so m v∗X n.

Now, let f : X −→ Y be a C-morphism and m v∗Y n for all m;n ∈subY . Then

m viY n for some i ∈ I: This implies that f−1(m) viX f−1(n) for some i and so

f−1(m) v∗X f−1(n):

(ii) Since m v�X n ⇒ m viX n for all i ∈ I, we have that m ≤ n. If m ≤ n v�X p ≤ q,

then m ≤ n viX p ≤ q for all i ∈ I: Thus m viX q for all i ∈ I and so m v�X n: Now,

let f : X −→ Y be a C-morphism and m v�X n for all m;n ∈ subY: Then m viY n for

all i ∈ I. This implies that f−1(m) viX f−1(n) for all i and so f−1(m) v�X f−1(n):

The study of topogenous orders on the category of toplogical spaces was motivated

by the following order A v B ⇔ A ⊆ Bo . This order is responsible for an adjunction

between neighbourhood and interior namely U is a neighbourhood of x iff {x} ⊆ U o (cf.

[RH14]) and indeed topogenous orders are equivalent to neighbourhood operators.
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Proposition 4.1.4. TORD and NBH are order isomorphic with the inverse assignments

v−→ �v and � −→vν given by

�vX(m) = {n | m vX n} and m vνX n⇔ n ∈ �X(m) for all X ∈ C

Proof. Let v∈ TORD and m;n ∈ subX, we have that

(N1) n ∈ �vX(m)⇒ m vX n⇒ m ≤ n.

(N2) If m ≤ n and p ∈ �vX(n) then m ≤ n vX p ⇒ m vX p ⇒ p ∈ �vX(m) and

�vX(n) ⊆ �vX(m).

(N3) If n ∈ �vX(m) and n ≤ q, then m vX n ≤ q ⇒ m vX q ⇒ q ∈ �vX(m).

(N4) Let f : X −→ Y , then p ∈ �vY (f(m)) ⇒ f(m) vX p ⇒ m v f−1(p) by Proposition

4.1.2; so f−1(p) ∈ �vX(m).

On the other hand given if � ∈ NBH and m;n ∈ subX, we see that:

(T1) n vνX m⇒ m ≤ n.

(T2) If m ≤ n vνX p ≤ q, then p ∈ �X(n) and by (N3) q ∈ �X(n). Since m ≤ n ⇒

�X(n) ⊆ �X(m) it follows that q ∈ �X(m) and so m vνX q.

(T3) Let f : X −→ Y and p vνX n for n and p ∈ subX. Then n ∈ �Y (f(f−1(p))) ⇒

f−1(n) ∈ �Y (f−1(p))⇒ f−1(p) vνY f−1(n)

If v⊆v′ in TORD, then {p | m vX p} ⊆ {q | m v′X q}. Thus �vX(m) ⊆ �v
′

X (m): On

the other hand if � ≤ � ′ in NBH, then n ∈ �(m)⇒ n ∈ � ′(m): So vν⊆vν′ .

Finally they are inverse to each other since for m;n ∈ subX:

(1) m vνvX n⇔ n ∈ �v(m)⇔ m vX n.

(2) n ∈ �v
ν

X (m)⇔ m vνX n⇔ n ∈ �X(m).
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4.2 Topogenous orders which respect suprema and

infima

We know from previous section that topogenous orders are equivalent to neighbourhood

operators. In this section, we prove that closure and interior operators are nicely embed-

ded (in the sense that they can be seen as reflections of sub-quasicategories) in topogenous

orders. Consider the following conditions :

(S) (∀i ∈ I : mi vX n)⇒
∨
mi vX n for all X ∈ C.

(I) ∀i ∈ I : m vX ni)⇒ m vX
∧
ni for all X ∈ C.

(P ) If m vX n then there is p such that m vX p vX n for all X ∈ C

One obtains different types of topogenous orders and consequently different types of

sub-quasicategories of TORD :

�

∨
−TORD : the class of all topogenous orders which respect suprema, those satis-

fying (S).

�

∧
−TORD : the class of all topogenous orders which respect infima, those satisfying

(I).

� INTORD : the class of all interpolative topogenous orders, those satisfying (P ):

Lemma 4.2.1. Let {viX | i ∈ I} ⊆ TORD for all X ∈ C.

(i) If each vi satisfies condition (S) (resp. (I)) then so does the topogenous order

defined by

v�X=
⋂
{viX | i ∈ I}

for all X ∈ C;

(ii) If each vi satisfies condition (P ) then so does the topogenous order defined by

v∗X=
⋃
{viX | i ∈ I}

for all X ∈ C.

Proof. (i) v� is a topogenous order by Proposition 1.1.2 and (S) (resp. (I)) is trivially

satisfied if each vi satisfies condition (S) (resp. (I))
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(ii) If m v∗ n then m viX n for some i ∈ I: This implies that there is p such that

m viX p viX n and so m v∗X p v∗X n.

The above lemma shows that
∨
−TORD and

∧
−TORD are closed under arbitrary in-

tersection in TORD and that INTORD is closed under arbitrary union in TORD: Em-

beddings that preserve infima (resp. suprema) are reflections (resp. coreflection). Hence∨
−TORD and

∧
−TORD are reflective sub-quasicategories of TORD and INTORD

is a coreflective sub-quasicategories of TORD. Our next two propositions show that∨
−TORD and

∧
−TORD are precisely the interior and closure operators.

Proposition 4.2.2.
∨
−TORD is order isomorphic to INT with the inverse assignments

given by

ivX(m) =
∨
{p | p vX m} and m viX n⇔ m ≤ iX(n) for all X ∈ C

Proof. Let m ∈ subX and Im = {p | p vX m}. Since p v m ⇒ p ≤ n; iv(m) ≤ m. If

m ≤ n and p ∈ Im, then p v m ≤ n. Thus p v n and Im ⊆ In giving
∨
Im ≤

∨
In

and so vX(m) ≤ ivX(n). Now, let f : X −→Y be a C-morphism. Since v∈
∨
−TORD,

ivY (m) = max{p | p vY m} and so by (T3) we have that f−1(ivY (m)) ∈ {q | q vX
f−1(m)} ⇒ f−1(ivY (m)) ≤ max{q | q vX f−1(m)}. Hence f−1(ivY (m)) ≤ ivX(f−1(m)).

Likewise, since iX(n) ≤ n, we have m viX n ⇒ m ≤ n. If m ≤ n viX p ≤ q, then

m ≤ n ≤ iX(p) ≤ iX(q). As a result, m ≤ iX(p) and so m viX q for n; p and q in

subX. Now let f : X −→ Y be a C-morphism and m viY n for n;m ∈ subY . Then

m ≤ iY (n). Thus, f−1(m) ≤ f−1(iY (n)) ≤ iX(f−1(m)) ⇒ f−1(m) ≤ iX(f−1(n)) and so

f−1(m) viX f−1(n):

Assume thatv⊆v′ in
∨
−TORD. Then {p | p vX m} ⊆ {q | q v′X m} ⇒

∨
{p | p vX

m} ≤
∨
{q | q v′X m}. So ivX(m) ≤ iv

′

X (m) for all X ∈ C. On the other hand if i ≤ i′ in

INT then, m ≤ iX(n)⇒ m ≤ iX(n) ≤ i′X(n)⇒ m ≤ i′X(n). Therefore vi⊆vi′ .

Finally let i ∈ INT and m ∈ subX, then iv
i

X (m) =
∨
{n | n viX m} =

∨
{n | n ≤

iX(m)} = iX(m). Conversely if m vivX n then m ≤ iv(n) =
∨
{p | p v n} ⇒ m vX n.

On the other hand, if m vX n⇒ m ≤ {p | p vX n} by definition. Hence m vivX n.

The condition that the joins of subobjects commute with pullbacks is very important

for interior operators. If f−1 commutes with joins, as is the case for example for functions
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on sets then iv is an interior operator for any v∈ TORD. Since {f−1(p) | p vY m} ⊆

{q | q vX f−1(m)} by (T3), we have

f−1(ivY (m)) = f−1(
∨
{p | p vY m}

=
∨
{f−1(p) | p vY m}

≤
∨
{q | q vX f−1(m)} = iX(f−1(m))

Corollary 4.2.3. Interpolative topogenous orders in
∨
−TORD are equivalent to idem-

potent interior operators

Proof. Assume that i is idempotent. Then

m viX n⇒ m ≤ iX(n)

⇒ m ≤ iX(iX(n)) ≤ iX(n)

⇒ m viX iX(n) viX n

Conversely if v is interpolative then {n | n vX m} ⊆ {p | p vX ivX(m)} for all X ∈ C

since

m vX n⇒ ∃ q : m vX q vX n

⇒ m vX q ≤ ivX(n) definition of iv(m)

⇒ m vX ivX(n) (T2)

This implies that
∨
{n | n vX m} ≤

∨
{p | p vX ivX(m)} and so ivX(m) ≤ ivX(ivX(m)):

Proposition 4.2.4.
∧
−TORD is order isomorphic to CLOS with the inverse assign-

ments given by

cvX(m) =
∧
{p | m vX p} and m vcX n⇔ cX(m) ≤ n for all X ∈ C

Proof. Let m ∈ subX and Cm = {p | m vX p}. Since m vX p ⇒ m ≤ p, we have

m ≤ cvX(m). If m ≤ n and q ∈ Cn ; then m ≤ n vX q. Hence, m vX q and Cn ⊆

Cm ⇒
∧
Cm ≤

∧
Cn and so cvX(m) ≤ cvX(n). Now let f : X −→ Y be a C-morphism and

m vcY n for n;m ∈ subY . Since v∈
∧
−TORD, cv(m) = min{p | m v p} and so by
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(T3), we have that f−1(cvY (m)) ∈ {q | f−1(m) v q} ⇒
∧
{q | f−1(m) v q} ≤ f−1(cvY (m)).

Hence, cvX(f−1(n)) ≤ f−1(cvY (m)).

Similarly, since m ≤ cX(m), we have that m viX n⇒ m ≤ n. If m ≤ n vc p ≤ q then

cX(m) ≤ cX(n) ≤ p ≤ q. Thus, cX(m) ≤ q and so m vcX q. Now, let f : X −→ Y be a C-

morphism and m vcY n for n;m ∈ subY . Then cX(f−1(m)) ≤ f−1(cY (m)) ≤ f−1(n) ⇒

cX(f−1(m)) ≤ f−1(n). So f−1(m) vcX f−1(n).

Assume v⊆v′ in
∧
TORD. Then {p | m vX p} ⊆ {q | m v′X q} ⇒

∧
{q | m v′X

q} ≤
∧
{p | m vX p}. So cv

′ ≤ cv. On the other hand if c ≤ c′ in
∧
TORD, then

cX(m) ≤ n⇒ cX(m) ≤ c′X(m) ≤ n⇒ cX(m) ≤ n for all X ∈ C. Therefore, vc′⊆vc.

Lastly, let c ∈ CLOS and m subX, then cv
c

X (m) =
∧
{n | m vcX n} =

∧
{n | cX(m) ≤

n} = cX(m) for all X ∈ C. Conversely, if m vcvX n then cvX(m) =
∧
{p | m vX p} ≤

n ⇒ m vX n. On the other hand if m vX n, then cX(m) ≤ n by definition, So∧
{p | m vX p} ≤ n. Hence, m vcvX n.

One can see that cv is a closure operator for any v∈ TORD. In fact if f : X −→ Y is

a morphism in C and v∈ TORD, then by (T3), {f−1(p) | m vY p} ⊆ {q | f−1(m) vX q}.

So for any m ∈ subY ;

f−1(cvY (m)) = f−1(
∧
{p | m vY p}

=
∧
{f−1(p) | m vY p} f−1 is right adjoint

≥
∧
{q | f−1(m) vY q} = cvX(f−1(m))

Corollary 4.2.5. Interpolative topogenous orders in
∧
−TORD are equivalent to idem-

potent closure operators.

Proof. Let c be idempotent. Then

m vcX n⇔ cX(m) ≤ n

⇒ cX(cX(m)) ≤ cX(m) ≤ n

⇒ cX(m) vcX cX(m) vcX n

⇒ m vcX cX(m) vcX n
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On the other hand if v interpolates, the {n | m vX n} ⊆ {p | cvX(m) vX p} since for all

X ∈ C

m vX n⇒ ∃ q : m vX q vX n

⇒ cvX(m) ≤ q vX n definition of cv

⇒ cvX(m) vX n (T2)

This implies that
∧
{p | cvX(m) vX p} ≤

∧
{n | m vX n}, that is cvX(cvX(m)) ≤ cvX(m).

Remark 4.2.6. The best way to caracterize the relationship between Propositions 4.2.2

and 4.2.4 is given by the following observation:

� m v n⇔ m ≤ iv(n) in
∨
−TORD,

� m v n⇔ cv(m) ≤ n in
∧
−TORD:

As indicated earlier, categorical closure and interior operators are not dual. However,

there is a notational symetry between the two operators. This symmetry is clarified by

the notion of topogenous orders. Furthermore, this observation that they are situated in

the same category explains how many concepts and definitions which have been studied

separatly for closure and interior are essentially the same. Many results in the next

chapter will make this more clear.

4.3 A few Examples

We present in this section a number of examples constructed from those of closure, interior

and neighbourhood operators. This does not come as a supprise since we have proved

that the topogenous orders allow us to treat these three operators in one setting. Example

4.3.1(a) is induced by the usual interior operator while Example 4.3.1(b) is induced by the

Kuratowski closure operator. Examples 4.3.1(c) and 4.3.1(d) are essentially from interior

operstors while 3.4.1(e) comes from the sequential closure operator.

Examples 4.3.1. Let C be the category Top of topological spaces and continuous maps

with the (E ;M) factorisation formed by continuous surjections and embeddings. For any

topological space X and A ⊆ X;B ⊆ X,
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(a) A v B iff A ⊆ C ⊆ B for some open C ⊆ X is a topogenous order on Top.

Conditions (T1) and (T2) are easily satisfied. To check (T3), let f : X −→ Y be

a continuous map and A;B subsets of the topological space Y . If A ⊆ C ⊆ B for

some open Cin Y , then f−1(A) ⊆ f−1(C) ⊆ f−1(B). Since the inverse image of an

open set by a continuous map is open, we get that f−1(A) v f−1(B).

(b) A v B iff A v C v B for some closed C v X is a topogenous order on Top.

We just need to check condition (T3) since conditions (T1) and (T2) are trivially

satisfied. So for f : X −→ Y a continuous map and A;B subsets of Y , we have

that, if A ⊆ C ⊆ B for some closed C in Y then f−1(A) ⊆ f−1(C) ⊆ f−1(B).

Since the inverse image of a closed set by a continuous map is closed, we get that

f−1(A) v f−1(B).

(c) A v B if A ⊆ C ⊆ B for some clopen C ⊆ X is a topogenous order on Top. The

axioms (T1) and (T2) are easily satisfied. To check (T3), let f : X −→ Y be a

continuous function and A;B ⊆ Y , if A ⊆ C ⊆ B for some clopen C ⊆ Y , then

f−1(A) ⊆ f−1(C) ⊆ f−1(B). Since the inverse image of a clopen set by a continuous

function is clopen, we have that f−1(A) v f−1(B).

(d) A v B if for all x ∈ A there is an open neighbourhood Ux of x such that Ux ⊆ B is a

topogenous order on Top. We only need to verify condition (T3). So let f : X −→ Y

be a continuous function and A, B subsets of the topological space Y . If A v B

and x ∈ f−1(A) then f(x) ∈ A. This implies that there is an open neighbourhood

Uf(x) of f(x) such that U f(x) ⊆ B. Consequently, x ∈ f−1(U f(x)) ⊆ f−1(B). Since

f−1(Uf(x)) is a neighbourhood of x and f−1(U f(x)) ⊇ f−1(Uf(x)) by continuity of f ,

we get that f−1(A) v f−1(B).

(e) A v B iff for all x such that there is a sequence (xn) in A converging to x, x ∈ B is

a topogenous order on Top. We see that (T1) is satisfied by just taking a constant

sequence (x; x; x; :::) for each x ∈ A. (T2) is easily seen to be satisfied. For (T3), let

f : X −→ Y be a continuous map and A ⊆ X;B ⊆ Y . Let f(A) v B and assume

that for all x ∈ X with is a sequence (xn) in A converging to x. By continuity of

f , f(xn) converges to f(x). Since f(A) v B, f(x) ∈ B ⇒ x ∈ f−1(B). Hence

A v f−1(B).
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The next two examples are constructed from neighbourhood operators. We can also

get Example 4.3.2 from the normal closure operator.

Examples 4.3.2. Let C be the category Grp of groups and group homomorphisms with the

(E ;M) factorisation formed by surjective and injective homomorphisms. For any group

G and A;B subgroups of G;A v B if A ≤ N ≤ B for some N �G is a topogenous order

on Grp with respect to M. The axioms (T1) and (T2) are trivial. To check (T3), let

f : G −→ H be a group homomorphism and A;B subgroups of H, if A ≤ N ≤ B for

some N � H, then f−1(A) ≤ f−1(N) ≤ f−1(B). Since the inverse image of a normal

subgroup by a group homomorphism is normal, we get that f−1(A) v f−1(B).

Examples 4.3.3. A (directed) graph is a set X together with a binary relation →. The

elements of X are called vertices and edges of X are pairs (x; y) ∈ X ×Y where x→ y in

X. A morphism of graphs is a function f : X −→ Y preserving the → that is, if x → y

in X then f(x)→ f(y). We denote by Gph the category of (directed) graphs and graph

homomorphisms ([DT95, Raz12a]). The (E ;M) is formed by embeddings and surjective

graph homomorphisms. For graph X;A;B ⊆ X, A ⊆ B ⇔ (∀x ∈ A)(∀y ∈ X \ B) there

is no edge x → y is a topogenous order on Gph. We just need to show the continuity

condition. Let f : X → Y be a graph homomorphism and A;B ⊆ Y with A v B. Assume

there is a x ∈ f−1(A) and y ∈ X \ f−1(B) such that x −→ y. Then f(x) → f(y) but

f(x) ∈ A and f(y) ∈ X \B. Hence, f−1(A) v f−1(B).
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Chapter 5

Strict Morphisms

Looking at the equivalent formulation of the v-continuity in Proposition 1.1.2, one would

ask when do v-continuous morphisms fulfil the other implication. In such case, the notion

of strict morphisms with respect to the topogenous order is obtained. In this chapter we

study the basic properties of these morphisms, define a few notions related to them and

show that they capture the notions of c-closed, i-open, and �-open morphisms. Moreover,

the pullback stability of these morphisms is also discussed.

5.1 Strict subobjects

We present in this section the notion of v-strict subobject which captures the known

ones of c-closed and i-open subobjects and some of its stability properties. The notion of

v-dence subobject is also presented.

Definition 5.1.1. A subobject m of X is called v-strict if

m vX m

m is said to v-dense if

m vX n⇔ n ∼= 1X

for any subobject n of X.

Using Propositions 4:2:4 and 4:2:2, one can rewrite the definition of v-strict subobject

in the notation of closure and interior as: m v m⇔ c(m) ≤ m and m v m⇔ m ≤ i(m).

These are respectively the c-closed and i-open subobjects.
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In the category Top of topological spaces, if we consider the topogenous orders in

Examples 4:3:1(a); (b), the v-strict subobjects coincident with the open, closed subsets

respectively. For thev-dense subobject with the topogenous order in Examples 4:3:1(a), it

coincides with a dense subset. In the category Grp of groups and group homomorphisms,

if the the topogenous order is the one in example 4:3:2, a v-strict subobject coincides

with a normal subgroup.

We are interested in stability properties of v-strict and v-dense subobjects. Already

the condition (T3) implies that the inverse image of a v-strict subobject is v-strict.

Proposition 5.1.2. Let f : X −→ Y be a morphism in C.

(1) If n is v-strict in Y , then f−1(n) is v-strict in X.

(2) If n is v-dense in X, f ∈ E and E is stable under pullback, then f(m) is v-dense

in Y .

(3) If m and n are monomorphisms and m ◦ n is a v-strict M-subobject, then m is a

v-strict M-subobject.

Proof. (1) If n vY n then f−1(n) vX f−1(n) by (T3).

(2) If f(n) vY q and f ∈ E with E stable under pullback, then n vY f−1(q) ⇒

f−1(q) = 1X ⇒ q = f(f−1(q)) = f(1X) = 1Y :

(3) The square

: 1 //

m

��

:
n◦m
��: n
// :

is a pullback since n is a mono, so n◦m v n◦m⇒ m = n−1(n◦m) v n−1(n◦m) = m.

Proposition 5.1.3. For a commutative diagram below with m;n ∈M, if n v-dense and

m is v-strict, then there is a unique p for which the following diagram commutes:

:
n //

a

��

:

b

��

p

~~: m
// :

Proof. Let m′ be a pullback of m and consider the diagram below
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:

a

��

n

!!

k

  :
q

��

m′ // :

b
��: m
// :

The morphism k exists by the pullback property. So n ≤ m and m vX m′ for all X ∈ C

by Proposition 5.1.2(1). This gives n vX m′ ⇒ m′ = 1X since n is v-dense. Thus, q is

the desired diagonal. Its uniqeness follows from the fact that m is a monomorphism.

Proposition 5.1.4. Let mi : Mi −→ X be a family of v-strict subobjects. Then

(i) If v∈
∨
−TORD, then the supremum

∨
mi of mi is a v-strict subobject.

(ii) If v∈
∧
−TORD, then the infinimum

∧
mi is a v-strict subobject.

Proof. (i) For all i ∈ I;

mi ≤
∨

mi ⇒ mi v mi ≤
∨

mi mi is v-strict

⇒ mi v
∨

mi T2

⇒
∨

mi v
∨

mi v∈
∨

TORD

(ii) for all i ∈ I;∧
mi ≤ mi ⇒

∧
mi ≤ mi v mi mi is v-strict

⇒
∧

mi v mi T2

⇒
∧

mi v
∧

mi v∈
∧

TORD

5.2 Description of Strict Morphisms

We have, in the previous chapter, provided a framework in which both the closure and

interior operartors fit nicely in a categorical way. This more general topogenous order

setting has among other benefits, seeing a number of results and defintions on closure and
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interior as the same. We present in this section the notion strict morphism with respect

to a topogenous order which constitute an illustration of these benefits.

Definition 5.2.1. A morphism f : X −→ Y in C is v-strict if

m vX f−1(n)⇔ f(m) vY n

for any m ∈ subX and n ∈ subY .

We note that the use of “strict” in two different context is due to the fact that v-

strict subobjects capture the i-open and the c-closed subobjects as explained in the first

section of this chapter while the v-strict morphisms capture the i-open and the c-closed

morphisms (see Propositions 5.2.5 and 5.2.6). Under the condition that 1X vX 1X for all

X ∈ C, every v-strict morphism in M is a v-subobject (see Proposition 5.3.1).

v-strict morphisms behave as follows:

Proposition 5.2.2. Let v be a topogenous order. The following statements hold.

(1) The class of v-strict morphisms contains all isomorphisms,

(2) The class of v-strict morphisms is closed under composition,

(3) If g ◦ f is v-strict and f ∈ E with E stable under pullback, then g is v-strict,

(4) If g ◦ f is v-strict and g is a monomorphism, then f is v-strict.

Proof. (1) If f : X −→ Y is an isomorphism with inverse g : Y −→ X, then

m vX f−1(m)⇒ f(m) = g−1(m) vY g−1(f−1(n)) = (f ◦ g)−1(n)

⇒ f(m) vY 1−1Y (n) = n

(2) If f : X −→ Y and g : Y −→ Z are v-strict, then

m vX (g ◦ f)−1(n) = f−1(g−1(n)⇔ f(m) vY g−1(n)

⇔ (g ◦ f)(m) = g(f(m)) vZ n
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(3) If E is stable under pullbacks and f ∈ E , then f(f−1(m)) = m: Hence

m vY g−1(n)⇒ f−1(m) vX f−1(g−1(n) = (g ◦ f)−1(n)

⇒ (g ◦ f)(f−1(m)) vZ n

⇒ g(m) vZ n

(4) If g : Y −→ Z is a monomorphism, then g−1(g(n)) = n

m vX f−1(n) = f−1(g−1(g(n))) = (g ◦ f)−1(g(n))⇒ g(f(m)) = (g ◦ f)(m) v g(n)

⇒ f(m) vY g−1(g(n))

⇒ f(m) vY n

Proposition 5.2.3. Consider the following properties of f : X −→ Y in C.

(1) f is a v-strict morphism,

(2) f preserves v,

(3) m vX n⇔ f(m) vY f(n) for any m;n ∈ subX,

(4) m vY n⇔ f−1(m) vX f−1(n) for any m;n ∈ subY ,

Then (1) ⇔ (2). If f ∈ M then (1) ⇔ (3). If E is pullback stable, then for f ∈ E,

(1)⇒ (4).

Proof. � If f is v-strict, then

m vX n ≤ f−1(f(n))⇒ m vX f−1(f(n))

⇒ f(m) vY f(n)

On the other hand if f preserves v, then

m vX f−1(n)⇒ f(m) vY f(f−1(n)) ≤ n

⇒ f(m) vY n
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� If f ∈M then f−1(f(m)) = m for m ∈ subX. Thus

m vX n⇔ m vX f−1(f(n))

⇔ f(m) vY f(n)

Conversely if m vX n⇔ f(m) vY f(n) then f is v-strict since (2)⇒ (1)

� If E is pullback stable, then for f ∈ E ; f(f−1(n) = n for n ∈ subX. Hence

m vY n⇔ f(f−1(m)) vY n

⇔ f−1(m) vX f−1(n)

Corollary 5.2.4. If f is a v-strict morphism, then f(−) takes v-strict subobjects to

v-strict subobjects.

Proof. Let f : X −→ Y be a v-strict morphism, then

f(m) vY f(m) by Proposition 5.2.3(2)

We now turn our attention to strict morphisms in CLOS and INT . These are exactly

the c-closed and i-open morphisms as it can be seen from the next two propositons.

Proposition 5.2.5. If v is in
∧
−TORD then f : X −→ Y is v-strict iff for any

m ∈ subX, f(cvX(m)) = cvY (f(m)).

Proof. . Since in
∧
−TORD;m v n⇔ cv(m) ≤ n and f−1 is right adjoint to f , then

f(cvX(m)) ≤ n⇔ cvX(m) ≤ f−1(n)

⇔ m vX f−1(n)

⇔ f(m) vY n

⇔ cvY (f(m)) ≤ n

64

 

 

 

 



Conversely if f(cvX(m)) = cvY (f(m)) then,

m vX f−1(n)⇔ cvX(m) ≤ f−1(n)

⇔ f(cvX)(m) ≤ n

⇔ cvY (f(m)) ≤ n

⇔ f(m) vY n

Proposition 5.2.6. If v is in
∨
−TORD then f : X −→ Y is v-strict iff for any

m ∈ subY; f−1(ivY (m)) = ivX(f−1(m))

Proof. Since in
∨
−TORD m v n⇔ m ≤ i(n) and f−1 is right adjoint to f , if f is strict

then,

m ≤ f−1(iY (n))⇔ f(m) ≤ iY (n)

⇔ f(m) vY n

⇔ m vX f−1(n)

⇔ m ≤ iX(f−1(n))

On the other hand if f−1(ivY (m)) = ivX(f−1(m)) then,

m vX f−1(n)⇔ m ≤ ivX(f−1(n))

⇔ m ≤ f−1(ivY (n))

⇔ f(m) ≤ ivY (n))

⇔ f(m) vY n

With the help of Proposition 4:1:4, the definition of v-strict morphisms can be rewrit-

ten in the notation of neighbourhoods as: n ∈ �(f(m)) ⇔ f−1(n) ∈ �(m). Thus f is

v-strict iff �(f(m)) = f(�(m)). This is the v-open morphism (see Definition 3:2:5). One

uses Propositions 4:1:4; 4:2:2 and 4:2:4 to see that Proposition 5:2:2 captures Propositions
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2:2:10; 2:2:18 and 3:2:6 which were studied separatly for closure, interior and neighbour-

hood operators.

In the category Top of topological spaces, if we consider the topogenous orders in

Examples 4:3:1(a); (b) and (c), the strict morphisms relative to them are those contin-

uous functions which preserve respectively the open, closed and clopen subsets. For the

category Grp of groups and group homomorphisms, the strict morphisms relative to the

topogenous order in Examples 4:3:2 are those group homomorphisms preserving normal

subgroups.

5.3 Pullback stability

In [CGT04] Clementino, Giuli and Tholen have developed the functional approach to gen-

eral topology. They depart from a class of morphisms satisfying (1), (2), (3) of Proposition

5:2:2, as well as the pullback stability of M-morphisms in the class. We discuss in this

section the pullback stability of strict morphisms in M.

Proposition 5.3.1. Assume that 1X vX 1X for each X ∈ C, then

{f ∈M | f v −strict} ⊆ {f ∈M | f v f}

Proof. If f is a v-morphism such that f ∈ M and 1X v 1X , then by Proposition 4.2.3,

f = f(1X) v f(1X) = f

The class {f ∈ M | f v f} is pullback stable by Proposition 5.1.2(1). In general we

don’t know whether there is a condition on the topogenous order which would make the

class {f ∈ M | f v −strict} = {f ∈ M | f v f} so that one can make a general result

on the pullback stability of strict morphisms inM. However, this holds true in particular

cases:

� If the topogenous order is induced by a weakly hereditary closure operator, then by

Proposition 2.2.11 the two classes are equal and so the strict morphisms in M are

pullback stable.

� The same holds true by Proposition 2.2.20 if the topogenous order is induced by a

weakly hereditary interior operator.
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Chapter 6

Classes of morphisms with respect to

a topogenous order

Four classes of morphisms with respect to a neighbourhood operator were studied in

[Raz12a]. We have summarized the basic properties of these morphisms in the second

section of the third chapter of this thesis. Following Proposition 4.1.4 which establishes

the equivalence between neighbourhood operators and topogenous orders, we present in

this chapter the basic properties of �-open, �-closed, �-initial and �-final in the notation

of topogenous orders and make a few observations on how they are related to the strict

morphisms studied in the previous chapter. We shall see that this approach offers easy

proofs comparing to the one via neighbourhood operators.

6.1 Closedness and initiality

A morphism f : X −→ Y in C is �-closed if for any n ∈ subY , �X(f−1(n)) = f−1(�Y (n)).

This definition corresponds to {q | f−1(n) v q} = {f−1(p) | n v p} by Proposition 4:1:4:

Since f is v-continuous, the crucial inclusion is {q | f−1(n) vX q} ⊆ {f−1(p) | n v p}.

This leads us to the definition below.

Definition 6.1.1. A C-morphism f : X −→ Y is said to be v-closed if for any n ∈ subX,

m ∈ subY ,

f−1(m) v n⇒ ∃ p | m v p and f−1(p) ≤ n:

A similar argument to the above produces the following definition.
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Definition 6.1.2. A C-morphism f : X −→ Y is said to be v-initial if for any n;m ∈

subX,

m v n⇒ ∃ p | f(m) v p and f−1(p) ≤ n

The next two propositions are the counterpart of Propostions 3.2.2 and 3.2.3.

Proposition 6.1.3. Let v be a topogenous order. The class of v-initial morphisms in C

(1) is closed under composition,

(2) is left cancellable that is, g ◦ f v-initial ⇒ f is v-initial,

(3) is right cancellable with respect to E that is, g ◦f v-initial ⇒ g is v-initial provided

E is stable under pullback.

Proof. (1) If f : X −→ Y and g : Y −→ Z are v-initial then

m v n⇒ ∃ p | f(m) v p and f−1(p) ≤ n

⇒ ∃ q | g(f(m)) v q and g−1(q) ≤ p

⇔ g(f(m)) v q and f−1(g−1(q)) ≤ n

(2) If g ◦ f is v-initial then

m v n⇒ ∃ q | g(f(m)) v q and f−1(g−1(q)) ≤ n

⇒ f(m) v g−1(q) and f−1(g−1(q)) ≤ n by (T3)

(3) If g ◦ f is v-initial and f ∈ E with E stable under pullback then

m v n⇒ f−1(m) v f−1(n) by (T3)

⇒ ∃ p | (g ◦ f)(f−1(m)) v p and f−1(g−1(p)) ≤ f−1(n)

⇒ g(m) v p and g−1(p) ≤ n

The fact that the class of v-initial morphisms contains all isomorphisms follows from

Proposition 6.1.3(2). Indeed if f : X −→ Y is an isomorphism with g : Y −→ X, then

g ◦ f = 1X is v-initial, implies f is v-initial.
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Proposition 6.1.4. Let v be a topogenous order. The class of v-closed morphisms in C

(1) is closed under composition,

(2) is left cancellable with respect to M that is, g ◦ f v-closed and g ∈ M ⇒ f is

v-closed,

(3) is right cancellable with respect to E that is, g ◦ f v-closed ⇒ g is v-closed provided

E is stable under pullback.

Proof. (1) If f : X −→ Y and g : Y −→ Z are v-closed then,

f−1(g−1(m)) v n⇒ ∃ p | g−1(m) v p and f−1(p) ≤ n

⇒ ∃ q | m v q and g−1(q) ≤ p

⇒ m v q and f−1(g−1(q)) ≤ f−1(p) ≤ n

(2) If g ◦ f v-closed and g ∈M then

f−1(m) v n⇔ f−1(g−1(g(m))) v n

⇒ ∃ p | g(m) v p and f−1(g−1(p)) ≤ n

⇒ m v g−1(p) and f−1(g−1(p)) ≤ n

(3) If g ◦ f v-closed and f ∈ E with E stable under pullback, then

g−1(m) v n⇔ f(f−1(g−1(m))) v n

⇒ f−1(g−1(m)) v f−1(n) by (T3)

⇒ ∃ p | m v p and f−1(g−1(p)) ≤ f−1(n)

⇒ m v p and g−1(p) ≤ n

It is important to observe from the above two propositions that v-closed and v-initial

morphisms behave in a similar way as their conterpart in neighbourhood notations.

We next provide an immediate connection between the notions of v-initiality and

v-closedness.
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Proposition 6.1.5. For a topogenous order v;

(1) Every v-closed morphism in M is v-initial.

(2) Every v-initial morphism in E is v-closed provided E is pullback stable.

Proof. (1) If f : X −→ Y is v-closed in M, then for any m;n ∈ subX, m v n ⇔

f−1(f(m)) v n⇒ ∃ p | f(m) v p and f−1(p) ≤ n.

(2) If f : X −→ Y is v-initial in E with E stable under pullback, then

f−1(m) v n⇒ ∃ p | f(f−1(m) v p and f−1(p) ≤ n

⇒ m v p and f−1(p) ≤ n

Our next proposition links v-initiality and v-strictness.

Proposition 6.1.6. (1) Any v-initial morphism in E maps v-strict subobjects to v-

strict subobjects.

(2) Any v-strict morphism in M is v-initial.

Proof. (1) If f : X −→ Y is v-initial in E with E stable under pullback, then

m v m⇒ ∃ p | f(m) v p and f−1(p) ≤ m

⇒ f(m) v p and p = f(f−1(p)) ≤ f(m)

⇒ f(m) v f(m)

(2) If f : X −→ Y is v-strict in M, then m v n⇒ f(m) v f(n). Put p = f(n) to get

f−1(p) = f−1(f(n)) = n

6.2 Finality and openness

Final and open morphisms with respect to a topogenous order are also obtained by the

same process used to get the v-closed and v-initial.
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Definition 6.2.1. A C-morphism f : X −→ Y is said to be v-final if for any n ∈ subY

and k ≥ n,

f−1(n) v f−1(k)⇒ n v k

Definition 6.2.2. A morphism f : X −→ Y in C is said to be v-open if

(∃ p | m v p and f(p) ≤ n)⇒ f(m) v n

for all m ∈ subX and n ∈ subY .

The notion of v-open morphism that we have obtained is just the v-strict morphism

as observed in the previous chapter. In fact if f is v-strict and (∃ p | m v p and f(p) ≤ n),

then p ≤ f−1(n) by adjointness. So m v f−1(n) by (T2) and f(m) v n. Conversely f is

v-open, one puts p = f−1(n) in Definition 2.2.2 to see that f is v-strict.

We shall now provide some basic properties of the v-final and v-strict morphisms

Proposition 6.2.3. Let v be a topogenous order. The following statements hold true

(1) v-final morphisms are closed under composition.

(2) If g ◦ f is v-final then then g is v-final.

(3) If g ◦ f is v-final and g is mono, then f is v-final.

Proof. (1) If f : X −→ Y and g : Y −→ Z are v-final then,

f−1(g−1(n)) v f−1(g−1(k))⇒ g−1(n) v g−1(k)

⇒ n v k

(2) If g ◦ f is v-final and k ≥ n for any n ∈ subZ, then

g−1(n) v (g−1(k))⇒ f−1(g−1(n)) v f−1(g−1(k))

⇒ n v k
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(3) If g is mono and k ≥ n, then k = g−1(g(k)) and n = g−1(g(n)) for any n ∈ subY .

Hence,

f−1(n) v (f−1(k))⇔ f−1(g−1(g(n))) v f−1(g−1(g(k)))

⇒ g(n) v g(k)

⇒ n v k

The following proposition is the same as Proposition 5.2.2. We shall leave the proof

as it was already given in the previous chapter.

Proposition 6.2.4. Let v be a topogenous order. The class of v-strict morphisms in C

(1) is closed under composition,

(2) is left cancellable with respect to M that is, g ◦ f v-strict and g ∈ M ⇒ f is

v-strict,

(3) is right cancellable with respect to E that is, g ◦ f v-strict ⇒ g is v-strict provided

E is stable under pullback.

The following is a further relationship between the types of morphisms with respect

to a topogenous order.

Proposition 6.2.5. Let v a topogenous order;

(1) Every v-strict morphism in E is v-final provided E is pullback stable.

(2) If g ◦ f = 1 in C then f is a v-initial morphism and g is a v-final morphism in E.

(3) Every v-closed morphism in E is v-final.

Proof. (1) If f : X −→ Y is v-strict and k ≥ n for any n ∈ subY , then

f−1(n) v f−1(k)⇒ f(f−1(n)) v f(f−1(k))

⇒ n v k
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(2) Follows from 6:1:3(2) and 6:2:2(2) respectively.

(3) If k ≤ n and f : X −→ Y in E with E pullback stable, then

f−1(n) v f−1(k)⇒ ∃ p | n v p and f−1(p) = f−1(k)

⇒ n v p and p = f(f−1(p)) = f(f−1(k)) = k
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[HŠ11] D. Holgate and J. Šlapal. Categorical neighborhood operators. Topology Appl.,

158(17):2356–2365, 2011.

[Kur22] K. Kuratowski. Sur lopération j de lanalyse situs. Fund. Math., (3):182–199,

1922.

76

 

 

 

 



[ML98] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate

Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Moo09] E.H. Moore. On a form of general analysis, with applications to linear dif-

ferential and integral equations. In Atti del IV congrsso interazional dei

Matematici(Roma),6-11 Aprile 1909).,, II(Roma):98–114, 1909.

[Raz12a] A. Razafindrakoto. Neighbourhood operators on categories. PhD thesis, Uni-

versity of Stellemboch., 2012.

[Raz12b] A. Razafindrakoto. On coarse and fine neighbourhood operators. Topology and

its Applications., 159(13):3067–3079, 2012.

[RH14] A. Razafindrakoto and D. Holgate. Interior and neighbourhood. Topology Appl.,

168:144–152, 2014.

[RH16] A. Razafindrakoto and D. Holgate. A lax approach to neighbourhood operators.

Appl. categor. struct., (doi:10.1007/s10485-016-9441-3, 2016.

[Rie09] F. Riesz. Sietigkeiisbegriff und absirakte mengenlehre. Atti del IV cong.Int.di

Mat., II(Roma):18–19, 1909.
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[Šla12] J. Šlapal. Compacteness and convergence with respect to a neighborhood oper-

ator. Collectanea Mathematica., 63(2):123–137, 2012.

[SP64] J. L. Sieber and W. J. Pervin. Connectedness in syntopogenous spaces. Proc.

Amer. Math. Soc., 15:590–595, 1964.
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