Mass Transfer (Stoffaustausch) Fall Semester 2019

Test $1 \quad$ October $22^{\text {nd }} 2019$

Name: \qquad
Legi-Nr.: \qquad

Test Duration: 45 minutes

Test Location: A to L in HG E 1.1
 M to \mathbf{Z} in HG E 3

Permitted material: \quad| 1 calculator |
| :--- |
| 1 copy of Cussler's book "Diffusion" ($2^{\text {nd }}$ or $3^{\text {rd }}$ edition) |
| 1 printout of the lecture script, without notes on the exercises |
| 1 page summary |

NOT permitted: \quad| solutions of exercises (also handwritten on summary), |
| :--- |
| notebooks, mobile phones |

If any information or data are missing, make an assumption but justify it.

Problem 1 (50 points)

A thin layer of nickel ($N i$) coating can prevent metals from corrosion. A metallic surface is placed in a chamber with well-stirred, highly concentrated nickel tetra carbonyl $\left(\mathrm{Ni}(\mathrm{CO})_{4}\right)$ vapor mixed with carbon monoxide (CO) at $200^{\circ} \mathrm{C}$ and 1 atm . Thus, Ni atoms are deposited on that surface by the following instant and irreversible reaction:
$\mathrm{Ni}(\mathrm{CO})_{4(\mathrm{~g})} \rightarrow \mathrm{Ni}_{(\mathrm{s})}+4 \mathrm{CO}_{(g)}$
Assume that $\mathrm{Ni}(\mathrm{CO})_{4}$ diffuses against the released CO that moves away from the surface in a thin unstirred film of thickness 2 mm where the mole fraction of $\mathrm{Ni}(\mathrm{CO})_{4}$ outside of the film is constant and equal to 90%.
a) Draw a sketch of the process. (11 points)
b) Develop the differential equation describing the mole fraction of $\mathrm{Ni}(\mathrm{CO})_{4}$ perpendicular to the surface. Start with an appropriate diffusion equation and clearly state all assumptions. (12 points)
c) Propose appropriate boundary conditions and calculate the $\mathrm{Ni}(\mathrm{CO})_{4}$ flux on the surface. (15 points)
d) How long does it take to grow a $N i$ coating with a thickness of $5 \mu m$? (6 points)
e) How much would be the thickness of the coating in (d) if we assume dilute conditions? (6 points)

Additional data:

Diffusion coefficient of $\mathrm{Ni}(\mathrm{CO})_{4}$ in CO at $200^{\circ} \mathrm{C}: 0.2 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$
Molecular mass of $\mathrm{Ni}(\mathrm{CO})_{4}: 171 \frac{\mathrm{~g}}{\mathrm{~mol}}$
Molecular mass of $\mathrm{Ni}: 59 \frac{\mathrm{~g}}{\mathrm{~mol}}$
Molecular mass of $\mathrm{CO}: 28 \frac{\mathrm{~g}}{\mathrm{~mol}}$
Density of Ni : $8.9 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$

SOLUTION

a) $\mathbf{1 1}$ points

$$
\begin{aligned}
& A=\mathrm{Ni}(\mathrm{CO})_{4} \quad y_{A @ Z=0}=0.9 \quad \text { bulk } \\
& Z \downarrow \rrbracket^{-\bar{q}} l=2 \mathrm{~mm} \downarrow \mathrm{n}_{A} \uparrow n_{B} B=\text { CO } y_{A @ Z=l}=0 \text { unstirred film }
\end{aligned}
$$

b) $\mathbf{1 2}$ points

$$
\begin{aligned}
& n_{A}=j_{A}+c_{A} V^{*}=-D \frac{d c_{A}}{d z}+c_{A} V^{*} \\
& V^{*}=y_{A} v_{A}+y_{B} v_{B}=\frac{n_{A}+n_{B}}{c} \\
& n_{B}=-4 n_{A} \rightarrow V^{*}=-\frac{3 n_{A}}{c} \\
& n_{A}=-D \frac{d c_{A}}{d z}-c_{A} \frac{3 n_{A}}{c} \\
& y_{A}=\frac{c_{A}}{c} \\
& n_{A}=-D c \frac{d y_{A}}{d z}-3 y_{A} n_{A} \\
& n_{A}\left(1+3 y_{A}\right)=-D c \frac{d y_{A}}{d z} \\
& \frac{d y_{A}}{1+3 y_{A}}=-\frac{n_{A}}{D c} d z
\end{aligned}
$$

c) 15 points

$\left.\frac{\ln \left(1+3 y_{A}\right)}{3}\right)\left.\right|_{y_{A @ z=0}=0.9} ^{y_{A @ z=l}=0}=-\left.\frac{n_{A}}{D c} z\right|_{z=0} ^{z=l}$
$\ln \left(\frac{1}{1+3 y_{A @ z=0}}\right)=\frac{-3 n_{A}}{D c} l$
$\rightarrow n_{A}=\frac{+D c}{3 l} \ln \left(\frac{1}{1+3 y_{A @ z=0}}\right)=\frac{+D c}{3 l} \ln \left(\frac{1}{1+3 y_{A @ z=0}}\right)=-0.436 \frac{D c}{l}$

To calculate gas concentration, c, we use ideal gas law:
$P V=n R_{u} T \rightarrow c=\frac{n}{V}=\frac{P}{R_{u} T}=\frac{1013250 \mathrm{dyne} / \mathrm{cm}^{2}}{8.315 \times 10^{7} \cdot(273+200) \mathrm{K}}=2.58 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}$
So
$n_{A}=-0.436 \frac{D c}{l}=-0.436 \frac{0.2 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}} \times 2.58 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}}{0.2 \mathrm{~cm}}=1.12 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}$
d) 6 points
$\left|n_{A}\right| \cdot \frac{M W_{N i}}{\rho_{N i}} \cdot$ time $=$ thickness
\rightarrow time $=\frac{\rho_{N i}}{M W_{N i}} \cdot \frac{\text { thickness }}{\left|n_{A}\right|}=\frac{8.9 \frac{g}{\mathrm{~cm}^{3}}}{59 \frac{\mathrm{~g}}{\mathrm{~mol}}} \cdot \frac{5 \times 10^{-4} \mathrm{~cm}}{1.12 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}}=6.71 \mathrm{~s}$
e) 6 points
$\rightarrow n_{A_{-} \text {Dilute }}=-\frac{D c_{1}}{l}=-\frac{0.2 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}} \times 0.9 \times 2.58 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}}{0.2 \mathrm{~cm}}=2.32 \times 10^{-5} \frac{\mathrm{~mol}}{\mathrm{~cm}^{2} \mathrm{~s}}$
so the new thickness assuming dilute conditions would be $\frac{n_{A_{A D} \text { Dilute }}}{n_{A}} \cdot$ thickness $=$ $10.37 \mu \mathrm{~m}$

Problem 2 (50 points)

Barium Vanadate $\left(\mathrm{Ba}_{3}\left(\mathrm{VO}_{4}\right)_{2}\right)$ nanoparticles (NPs) are attractive as imaging material for biomedical applications. To study their stability in liquids, 10 '000 of the spherical NPs (radius $=100 \mathrm{~nm}$) are dispersed in water, inside a well-stirred cylindrical vial of 2 cm diameter and 8 cm height. The Ba^{2+} ions from the NPs dissolve very slowly (assume NP size constant) into the solution through a hypothetical stagnant film (an unstirred layer at the interface of the NP with the liquid) of thickness l. Also, 0.001 $\mathrm{mol} / \mathrm{L}$ of Ba^{2+} ions are added, simulating the normal Ba^{2+} concentration in blood.
a) Make a detailed sketch of the problem including all relevant information. Additionally, make a separate sketch of the concentration profile of the Ba^{2+} concentration as a function of time. (10 points)
b) Derive an equation for the Ba^{2+} concentration in water for two cases: $I=10 \mathrm{~nm}$ and $I=$ much larger than the radius of the NP (i.e., practically infinite). (20 points)
c) Calculate the Ba^{2+} concentration in water after one day for the case $I=10 \mathrm{~nm}$. (10 points)
A researcher wants to assess whether the elevated Ba^{2+} concentrations caused by dissolution of NPs is harmful to cells. To that end, she prepares a new solution (without NPs) with $\mathrm{c}\left(\mathrm{Ba}^{2+}\right)=0.1 \mathrm{~mol} / \mathrm{L}$ in an identical vial without stirring. Now, at the top of the vial, a layer of cells is added. The Ba^{2+} ions are absorbed immediately and continuously by the cells when they come in contact.
d) How much Ba^{2+} is taken up by the cells after 24 hours? (10 points)

Additional data

Diffusion coefficient of Ba^{2+} ions in water: $10^{-5} \frac{\mathrm{~cm}^{2}}{s}$
Solubility of Ba^{2+} in water: $0.1 \frac{\mathrm{~mol}}{\mathrm{~L}}$
a) $\mathbf{1 0}$ points

Time, s

b) 20 points

This is a "thin film" problem, similar to the problem in Cussler Chapter 2.4.2 (Steady Dissolution of a Sphere).

Start with a mass balance for total Ba^{2+} in the vial

$$
\frac{d c_{\text {vial }}(t)}{d t}=-\frac{\left(-\left.j_{1}\right|_{r=R_{0}}\right) \cdot A_{1, \text { sphere }} \cdot N_{\text {spheres }}}{V_{\text {vial }}}
$$

Vial volume:

$$
V_{\text {vial }}=\left(\frac{d}{2}\right) \cdot \pi \cdot h=1 \mathrm{~cm}^{2} \cdot \pi \cdot 8 \mathrm{~cm}=25.13 \mathrm{~cm}^{3}
$$

Total NP surface area:

$$
A_{1, \text { sphere }} \cdot N_{\text {spheres }}=4 \pi r^{2} \cdot N_{\text {spheres }}=4 \cdot \pi \cdot\left(100 \cdot 10^{-7} \mathrm{~cm}\right)^{2} \cdot 10^{4}=1.26 \times 10^{-5} \mathrm{~cm}^{2}
$$

For each sphere, we calculate the flux, starting with a mass balance in a thin shell around the sphere
$0=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} j_{1}\right)$
Using Fick's law and integrating yields
$c_{1}=A-B \frac{1}{r}$

For Case A: Thin film of thickness I

Boundary conditions:

$$
\begin{array}{ll}
r=R_{0}=100 \mathrm{~nm}, & \rightarrow c_{1}=c_{1,0}=0.1 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
r=R_{0}+l, & \rightarrow c_{1}=c_{\text {vial }}(t)
\end{array}
$$

Plugging the boundary conditions in and subtracting the two equations, we can solve for B (we don't care about A, as for the flux only B is relevant)

$$
B=R_{0} \cdot\left(1+\frac{R_{0}}{l}\right) \cdot\left(c_{\text {vial }}(t)-c_{1,0}\right)
$$

Flux:

$$
\left.j_{1}\right|_{r=R_{0}}=-\left.D \frac{d c_{1}}{d r}\right|_{r=R_{0}}=-\left.D \cdot\left(-\frac{B}{r^{2}}\right)\right|_{r=R_{0}}=\frac{D}{R_{0}} \cdot\left(1+\frac{R_{0}}{l}\right) \cdot\left(c_{\text {vial }}(t)-c_{1,0}\right)
$$

For Case B: Infinite film thickness (I >> R_{0})

Boundary conditions:

$$
\begin{aligned}
r=R_{0}=100 \mathrm{~nm}, & \rightarrow c_{1}=c_{1,0}=0.1 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
r=\infty & \rightarrow c_{1}=c_{\text {vial }}(t)
\end{aligned}
$$

Plugging the $B C$ in and solving for B
$B=R_{0} \cdot\left(c_{\text {vial }}(t)-c_{1,0}\right)$
Flux:

$$
\left.j_{1}\right|_{r=R_{0}}=-\left.D \frac{d c_{1}}{d r}\right|_{r=R_{0}}=-\left.D \cdot\left(-\frac{B}{r^{2}}\right)\right|_{r=R_{0}}=\frac{D}{R_{0}} \cdot\left(c_{\text {vial }}(t)-c_{1,0}\right)
$$

Comparison of the two cases (not asked):

$$
j_{1, \text { CaseA }}=j_{1, \text { CaseB }} \cdot\left(1+\frac{R_{0}}{l}\right)
$$

Conclusion: For large layer thickness ($I \rightarrow$ infinity), the two equations become the same, as expected!!!

Now, we can plug in the flux in the mass balance for Ba^{2+} from the top

$$
\frac{d c_{\text {vial }}(t)}{d t}=-\frac{\left(-\left.j_{1}\right|_{R_{0}}\right) \cdot A_{1, \text { sphere }} \cdot N_{\text {spheres }}}{V_{\text {vial }}}=-\frac{D}{R_{0}} \cdot\left(1+\frac{R_{0}}{l}\right) \cdot\left(c_{\text {vial }}(t)-c_{1,0}\right) \cdot \frac{A_{1, \text { sphere }} \cdot N_{\text {spheres }}}{V_{\text {vial }}}
$$

Separate the variables and integrate

$$
\int_{c_{\text {saar }}}^{c_{\text {val }}(t)} \frac{d c_{\text {vial }}}{c_{\text {vial }}-c_{1,0}}=-\int_{0}^{t} \frac{D}{R_{0}} \cdot\left(1+\frac{R_{0}}{l}\right) \cdot \frac{A_{1, \text { sphere }} \cdot N_{\text {spheres }}}{V_{\text {vial }}} d t=-\int_{0}^{t} M d t
$$

where we have defined the characteristic (inverse time) constant or rate of transport:
$M=\frac{D}{R_{0}} \cdot\left(1+\frac{R_{0}}{l}\right) \cdot \frac{A_{1, \text { spheree }} \cdot N_{\text {spheres }}}{V_{\text {vial }}}$
Solution:
$\frac{c_{\text {vial }}(t)-c_{1,0}}{c_{\text {vial }}(0)-c_{1,0}}=\exp (-M \cdot t)$

Rearrange:
$\begin{aligned} c_{\text {vial }}(t) & =c_{1,0}-\left(c_{1.0}-c_{\text {vial }}(0)\right) \exp (-M \cdot t) \\ & =c_{1.0} \cdot(1-\exp (-M \cdot t))+c_{\text {vial }}(0) \cdot \exp (-M \cdot t)\end{aligned}$

c) 10 points

Value of the inverse time constant M :

For case A (I= 10 nm$)$:

$$
M=\frac{D}{R_{0}} \cdot\left(1+\frac{R_{0}}{l}\right) \cdot \frac{A_{1, \text { sphere }} \cdot N_{\text {spheres }}}{V_{\text {vial }}}=\frac{10^{-5} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}}{10^{-5} \mathrm{~cm}} \cdot\left(1+\frac{100}{10}\right) \cdot \frac{1.26 \times 10^{-5} \mathrm{~cm}^{2}}{25.13 \mathrm{~cm}^{3}}=5.515 \times 10^{-6} \frac{1}{\mathrm{~s}}
$$

For Case B (I >> Ro): (NOT ASKED)

$$
M_{B}=\frac{D}{R_{0}}\left(1+\frac{R_{0}}{l}\right) \frac{A_{1 \text { sphere }} N_{\text {sphere }}}{V_{\text {vial }}}=\frac{10^{-5} \frac{\mathrm{~cm}^{2}}{s}}{10^{-5} \mathrm{~cm}} \cdot(1+0) \cdot \frac{1.26 \times 10^{-5} \mathrm{~cm}^{2}}{25.13 \mathrm{~cm}^{3}}=0.501 \times 10^{-6} \frac{1}{s}
$$

Vial Concentration after one day (time $t=24 \times 60 \times 60=86,400 \mathrm{~s}$):

For case A:

$$
\begin{aligned}
c_{\text {vial,caseA }}(1 \text { day }) & =0.1 \frac{\mathrm{~mol}}{\mathrm{~L}}\left(1-\mathrm{e}^{-5.515 \times 10^{-6} .86400}\right)+0.001 \frac{\mathrm{~mol}}{\mathrm{~L}} \mathrm{e}^{-5.515 \times 10^{-6} .86400} \\
& =0.1 \frac{\mathrm{~mol}}{\mathrm{~L}}\left(1-\mathrm{e}^{-0.4752}\right)+0.001 \frac{\mathrm{~mol}}{\mathrm{~L}} \mathrm{e}^{-0.4752} \\
& =0.1 \frac{\mathrm{~mol}}{\mathrm{~L}}(1-0.6217)+0.001 \frac{\mathrm{~mol}}{\mathrm{~L}} 0.6217 \\
& =0.0378 \frac{\mathrm{~mol}}{\mathrm{~L}}+0.00062 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
& =0.0384 \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

For case B (NOT ASKED)

$$
\begin{aligned}
c_{\text {vial }, B}(1 \text { day }) & =0.1 \frac{\mathrm{~mol}}{L}\left(1-\mathrm{e}^{-0.501 \times 10^{-6.86400}}\right)+0.001 \frac{\mathrm{~mol}}{\mathrm{~L}} \mathrm{e}^{-0.501 \times 10^{-6} .86400} \\
& =0.1 \frac{\mathrm{~mol}}{\mathrm{~L}}\left(1-\mathrm{e}^{-0.0433}\right)+0.001 \frac{\mathrm{~mol}}{\mathrm{~L}} \mathrm{e}^{-0.0433} \\
& =0.1 \frac{\mathrm{~mol}}{\mathrm{~L}}(1-0.958)+0.001 \frac{\mathrm{~mol}}{\mathrm{~L}} 0.958 \\
& =0.0042 \frac{\mathrm{~mol}}{\mathrm{~L}}+0.00096 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
& =0.0051 \frac{\mathrm{~mol}}{\mathrm{~L}}
\end{aligned}
$$

d) $\mathbf{1 0}$ points

Now, this is a semi-infinite slab problem.

$$
J=\left.A \cdot j_{1}\right|_{z=0}=A \cdot \sqrt{\frac{D}{\pi t}} \cdot\left(c_{1,0}-c_{1, l}\right)=-A \cdot \sqrt{\frac{D}{\pi t}} \cdot c_{1, l}
$$

Integrate from 0 to 24 hours

$$
n=\int_{0}^{24 \text { hours }} J d t=-2 A \cdot \sqrt{\frac{D t}{\pi}} \cdot c_{1, l}
$$

Plugging-in all the numbers:

$$
\begin{aligned}
n & =-2 \cdot\left(1 \mathrm{~cm}^{2} \cdot \pi\right) \cdot \sqrt{\frac{10^{-5} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}} \cdot 86400 \mathrm{~s}}{\pi}} \cdot \frac{10^{-3} \mathrm{~L}}{\mathrm{~cm}^{3}} \cdot 0.1 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
& =-3.29 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

