Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The monotypic fern genus Dryopolystichum Copel. combines a unique assortment of characters that obscures its relationship to other ferns. Its thin-walled sporangium with a vertical and interrupted annulus, round sorus with peltate indusium, and petiole with several vascular bundles place it in suborder Polypodiineae, but more precise placement has eluded previous authors. Here we investigate its phylogenetic position using three plastid DNA markers, rbcL, rps4-trnS, and trnL-F, and a broad sampling of Polypodiineae. We also provide new data on Dryopolystichum including spore number counts, reproductive mode, spore SEM images, and chromosome counts. Our maximum-likelihood and Bayesian-inference phylogenetic analyses unambiguously place Dryopolystichum within Lomariopsidaceae, a position not previously suggested. Dryopolystichum was resolved as sister to a clade comprising Dracoglossum and Lomariopsis, with Cyclopeltis as sister to these, but clade support is not robust. All examined sporangia of Dryopolystichum produced 32 spores, and the chromosome number of sporophyte somatic cells is ca. 164. Flow cytometric results indicated that the genome size in the spore nuclei is approximately half the size of those from sporophyte leaf tissues, suggesting that Dryopolystichum reproduces sexually. Our findings render Lomariopsidaceae as one of the most morphologically heterogeneous fern families. A recircumscription is provided for both Lomariopsidaceae and Dryopolystichum, and selected characters are briefly discussed considering the newly generated data.

Free full text 


Logo of phytoPensoft PublishersAboutEditorial TeamAuthor GuidelinesSubmissionPhytoKeys
PhytoKeys. 2017; (78): 83–107.
Published online 2017 Apr 7. https://doi.org/10.3897/phytokeys.78.12040
PMCID: PMC5543276
PMID: 28781553

Phylogenetic analyses place the monotypic Dryopolystichum within Lomariopsidaceae

Associated Data

Supplementary Materials

Abstract

The monotypic fern genus Dryopolystichum Copel. combines a unique assortment of characters that obscures its relationship to other ferns. Its thin-walled sporangium with a vertical and interrupted annulus, round sorus with peltate indusium, and petiole with several vascular bundles place it in suborder Polypodiineae, but more precise placement has eluded previous authors. Here we investigate its phylogenetic position using three plastid DNA markers, rbcL, rps4-trnS, and trnL-F, and a broad sampling of Polypodiineae. We also provide new data on Dryopolystichum including spore number counts, reproductive mode, spore SEM images, and chromosome counts. Our maximum-likelihood and Bayesian-inference phylogenetic analyses unambiguously place Dryopolystichum within Lomariopsidaceae, a position not previously suggested. Dryopolystichum was resolved as sister to a clade comprising Dracoglossum and Lomariopsis, with Cyclopeltis as sister to these, but clade support is not robust. All examined sporangia of Dryopolystichum produced 32 spores, and the chromosome number of sporophyte somatic cells is ca. 164. Flow cytometric results indicated that the genome size in the spore nuclei is approximately half the size of those from sporophyte leaf tissues, suggesting that Dryopolystichum reproduces sexually. Our findings render Lomariopsidaceae as one of the most morphologically heterogeneous fern families. A recircumscription is provided for both Lomariopsidaceae and Dryopolystichum, and selected characters are briefly discussed considering the newly generated data.

Keywords: Fern, morphology, Papua New Guinea, phylogeny, recircumscription, taxonomy, the Solomon Islands

Introduction

Dryopolystichum Copel., with its single species D. phaeostigma (Ces.) Copel., is distributed along streams in lowland forests in New Guinea, the Bismarck Archipelago, and the Solomon Islands (Copeland 1947; Fig. Fig.1A).1A). Christensen (1937) was the first to point out that D. phaeostigma had been independently described under three different genera or subgenera. All told, generic placements has included Aspidium (≡ Tectaria) (Cesati 1877, Baker 1891), Dryopteris (Christensen 1906, Alderwerelt van Rosenburgh 1908, Copeland 1911, Brause 1920, Alderwerelt van Rosenburgh 1924), and Polystichum (Rosenstock 1911). Copeland (1947) inaugurated the new monotypic genus Dryopolystichum in his Genera Filicum, and argued that it was closest to Ctenitis. Pichi Sermolli (1977) agreed, citing the ctenitoid rachis, free venation, and peltate indusium as critical characters. Holttum included the genus in his “Tectarioid Group” in his list of Malaysian pteridophytes (Holttum 1959), but then omitted it in his 1991 treatment of that group.

An external file that holds a picture, illustration, etc.
Object name is phytokeys-78-083-g001.jpg

Dryopolystichum phaeostigma (based on SITW10443). A Habitat B Plants C Peltate indusia D Venation E Sulcate rachis-costa architecture F Longitudinal section of the rhizome.

Although Copeland did not provide an etymological explanation, the name Dryopolystichum presumably reflects the combination of peltate indusium (which is similar to those of polystichoid ferns) and pinnate-pinnatifid lamina division (which is similar to that of most Dryopteris). Such a combination of characters resulted in taxonomic confusion giving that peltate indusia are never found in Dryopteris, and the laminae of Dryopolystichum do not include prominulous segment apices, the hallmark of polystichoid ferns (Little and Barrington 2003). A peltate indusium is diagnostic of polystichoid ferns, including Phanerophlebia and Polystichum, but also found in a few distantly related genera in Polypodiineae such as Cyclodium, Cyclopeltis, Rumohra, Megalastrum, and Tectaria (Kramer and Green 1990).

Despite recent advances in fern phylogenetics and classification, the position of Dryopolystichum remains unclear. The thin-walled sporangium with a vertical and interrupted annulus, round sorus, and petiole with several vascular bundles suggest that this genus belongs to suborder Polypodiineae (= eupolypods I) (Sundue and Rothfels 2014, PPG I 2016). However, the remaining prominent features including pinnate-pinnatifid leaf dissection (Fig. (Fig.1B),1B), peltate indusium (Fig. (Fig.1C),1C), catadromous free veins (Fig. (Fig.1D),1D), and sulcate rachis-costa architecture (Fig. (Fig.1E),1E), do not clearly place it within any Polypodiinae family (Christensen 1937, Copeland 1947).

One other conspicuous character of Dryopolystichum not emphasized by previous authors is that the distal pinnae are decurrent onto the rachis, and the basal pinnules of its distal pinnae are served by veins that emerge from the rachis, rather than the pinna costa (Fig. (Fig.1D).1D). This character is relatively uncommon in the Polypodiineae. It can be found in Dryopteridaceae, mostly in Megalastrum, and less commonly in Stigmatopteris, Ctenitis, and Pleocnemia (Moran et al. 2014, Moran and Labiak 2016). It can also be found in some Tectariaceae such as Pteridrys and Tectaria (Ding et al. 2014). Among these genera, Pleocnemia seems morphologically the most similar to Dryopolystichum because its rachises are adaxially sulcate and narrowly winged laterally. Pleocnemia, however, lacks a peltate indusium (Holttum 1974).

Subsequent to its establishment as a new genus in Genera Filicum (Copeland 1947), and Sermolli’s (1977) contribution, no other substantial argument was made for generic placement of Dryopolystichum. More recent studies maintained Dryopolystichum as a distinct genus, placing it under Dryopteridaceae (Kramer and Green 1990, Smith et al. 2006, Christenhusz et al. 2011). The recently published community-derived classification for extant lycophytes and ferns also places Dryopolystichum in the Dryopteridaceae but without assigning it to subfamily (PPG I 2016).

To resolve the phylogenetic placement of Dryopolystichum, we employ a molecular phylogenetic approach using three chloroplast DNA regions, rbcL, rps4-trnS, and trnL-F. Based on our observations, we further provide new data on Dryopolystichum including spore counts, reproductive mode, spore SEM images, and a chromosome count. Finally, we discuss its diagnostic characters in the light of the inferred phylogeny.

Materials and methods

We examined the morphology of Dryopolystichum phaeostigma using material collected from the Solomon Islands (Braithwaite R.S.S.4557, SING; SITW10443, BSIP, TAIF, TNM) and Papua New Guinea (James & Sundue 1688, BISH, LAE, VT).

Living plants of SITW10443 were transplanted to the Dr. Cecilia Koo Botanic Conservation Center in Taiwan (KBCC). The collection of SITW10443 was made under the “Census and Classification of Plant Resources in the Solomon Islands” project (http://siflora.nmns.edu.tw/). Mitotic chromosomes were counted from these cultivated plants following the protocol of Chen et al. (2014).

Fertile pinnae of SITW10443 were air-dried in an envelope for one day to release the spores. The spores were observed and measured by a tabletop scanning electron microscope (TM-3000 Hitachi, Ibaraki, Japan). The sizes (the length of equatorial axes including the perine ornamentation) of 35 randomly selected spores were measured. Five intact sporangia were observed under a stereo microscope (Leica MZ6, Wetzlar, Germany) to count the number of spores per sporangium.

The genome sizes of spore and leaf nuclei of SITW10443 were examined by flow cytometry in order to infer the reproductive mode (Kuo et al. 2017). The genome size of spore nuclei should be half the genome size of leaf nuclei in the case of sexual and the same size in the case of apomictic reproduction (Kuo et al. 2017). We followed Kuo et al. (2017) for the extraction of leaf nuclei. For extraction of spore nuclei, we used an optimized bead-vortexing treatment with vertex duration of 1 minute and vertex speed of 1,900 rpm, as described by Kuo et al. (2017). An external standard was not necessary since we only need to compare the two phases of the life-cycle to each other.

DNA extraction, amplification and sequencing

Total DNA was extracted using a modified CTAB-Qiagen column protocol (Kuo 2015). Three plastid DNA regions, rbcL, rps4-trnS (rps4 gene + rps4-trnS intergenic spacer), and trnL-F (trnL gene + trnL-trnF intergenic spacer), were amplified and sequenced using the primers “ESRBCL1F” and “1379R” for rbcL (Pryer et al. 2001, Schuettpelz and Pryer 2007), “RPS5F” and “TRNSR” for rps4-trnS (Nadot et al. 1995, Smith and Cranfill 2002), and “FernL 1Ir1” and “f” for trnL-F (Taberlet et al. 1991, Li et al. 2010).

The PCR amplifications were performed in 16 μl reactions containing ca. 10 ng template DNA, 1×Taq DNA Polymerase Master Mix RED solution (Ampliqon, Denmark), and 1 μl each of 10 μM primers. The PCR reactions were carried out in a GeneAmp PCR System 9700 (Applied Biosystems, Carlsbad, California, USA). Thermocycling conditions were the same for PCRs of these three regions and comprised an initial denaturation of 2 minutes at 94°C followed by a core sequence of 35 repetitions of 94°C for 1 minute, 55°C for 1 minute, and 72°C for 1 minute followed by a final extension of 10 minutes at 72°C. Resulting PCR products were sequenced using the same PCR primers with BigDyeTM terminator (Applied Biosystems, Carlsbad, California, USA). The newly generated sequences were deposited in GenBank. GenBank accession numbers and voucher information are provided in Appendix.

DNA alignment and phylogenetic analyses

Initial BLAST against the NCBI nucleotide database (Altschul et al. 1990) based on rbcL sequences indicated that Dryopolystichum phaeostigma is closely related to the species of Polypodiineae families, including Lomariopsidaceae, Nephrolepidaceae, Tectariaceae, and Dryopteridaceae. Accordingly, we assembled a data matrix including 250 species representing 36 genera from these families (Appendix). Sampling included all the four genera in which D. phaeostigma has been placed (i.e., Dryopteris, Polystichum, and Tectaria).

Sequences were aligned using Geneious v6.1.8 (Drummond et al. 2011) and then manually checked for errors. The three single-region (rbcL, rps4-trnS, and trnL-F) and dataset combining all three were independently subjected to both maximum likelihood (ML) and Bayesian inference (BI) phylogenetic analyses. Data matrices are available in TreeBASE, study number 20506, at https://treebase.org/. ML tree searches were conducted using RAxML (Stamatakis 2006) employing the GTRGAMMA substitution model through the CIPRES portal (Miller et al. 2010). Five independent searches for the ‘best tree’ and 1,000 bootstrap replicates were performed using a region-partitioned dataset. BI analyses were conducted using MrBayes 3.2.1 (Ronquist and Huelsenbeck, 2003) employing the same substitution model as in ML analysis. Each analysis consisted of two independent runs with four chains for 106 generations, sampling one tree every 1000 generations. Burn-in was set to 10000 based on our preliminary analysis. The convergences of MCMC runs were checked using Tracer v.1.6 (Rambaut et al. 2014).

We addressed the possibility of phylogenetic bias due to long branches following the recommendation of Siddal and Whiting (1999). Since Dracoglossum and Lomariopsis were resolved on long branches in preliminary analyses (not shown), we conducted two additional analyses in which each one of the two long-branched genera, Dracoglossum and Lomariopsis, was excluded to examine whether phylogenetic placement and branch support for Dryopolystichum’s placement changed. Since maximum parsimony (MP) phylogeny is considered to be more susceptible to long-branch attraction (Philippe et al. 2005), we analyzed the concatenated dataset under MP in order to compare those results with our ML phylogeny. The MP analyses were conducted using TNT (Goloboff et al. 2008) following the search strategy detailed in Sundue et al. (2014).

Results

Phylogenetic analyses

All single-region phylogenies resolved Dryopolystichum phaeostigma in Lomariopsidaceae, but with two slightly different topologies. The rbcL and rps4-trnS phylogenies placed D. phaeostigma sister to a clade of Dracoglossum + Lomariopsis with 93% and 72% maximum likelihood bootstrap percentages (BS), respectively (Suppl. materials 2, 3). In comparison, the trnL-F phylogeny placed D. phaeostigma sister to Cyclopeltis (BS = 74%), and Dryopolystichum + Cyclopeltis was sister to Dracoglossum + Lomariopsis (Suppl. material 4). There was no strongly supported conflict between the ML and BI phylogenies (Suppl. materials 14). Both the ML and BI phylogenies based on the combined dataset (Fig. (Fig.2,2, Suppl. material 1) reveal the same topology as those based on the rbcL and rps4-trnS regions. Bootstrap support and posteriori probability (PP) for the above relationships were generally very high except for the branches placing D. phaeostigma, where BS was ≤ 70% and PP were ≤ 0.9 in all the phylogenies.

An external file that holds a picture, illustration, etc.
Object name is phytokeys-78-083-g002.jpg

Simplified maximum likelihood phylogram of Polypodiineae obtained from the rbcL + rps4-trnS + trnL-F combined dataset. Maximum likelihood bootstrap percentages (BS) are provided at each node. Thickened lines indicate Bayesian inference posterior probability (PP) ≥ 0.9. Original phylogram with support values for all the nodes is available in Suppl. materials 1. Voucher information and GenBank accession numbers are shown in Appendix.

Removing Dracoglossum from the analysis had little effect on the topology within Lomariopsidaceae, and BS supports for the generic placement of Dryopolystichum remained low (≤ 70%, data not shown). In contrast, the removal of Lomariopsis resulted in higher BS values for all clades within Lomariopsidaceae (≥ 99%, data not shown). MP analyses also resulted in a clade comprising all the Lomariopsidaceae genera and Dryopolystichum, but Dryopolystichum was resolved as sister to Cyclopeltis (data not shown).

Karyology, reproductive mode, and spore measurements

All examined sporangia (SITW10443) produced 32 normal spores, and the mean spore length was 64.1 ± 4.5 μm (Fig. (Fig.3).3). The chromosome number of the three sporophyte somatic cells observed was ca. 164 (Fig. (Fig.4).4). Results of flow cytometry revealed that the genome size of spore nuclei is approximately half of those of leaf nuclei (Fig. (Fig.55).

An external file that holds a picture, illustration, etc.
Object name is phytokeys-78-083-g003.jpg

Spores SEM of Dryopolystichum phaeostigma. A Lateral view of the spore B Detail of surface. Scale bars: A = 50 μm, B = 10 μm.

An external file that holds a picture, illustration, etc.
Object name is phytokeys-78-083-g004.jpg

Chromosome number of Dryopolystichum phaeostigma. A Chromosomes at mitosis metaphase, 2n = ca. 164 (SITW10443) B explanatory illustration of A. Scale bars = 10 μm.

An external file that holds a picture, illustration, etc.
Object name is phytokeys-78-083-g005.jpg

Relative DNA contents of Dryopolystichum phaeostigma spore and leaf nuclei inferred by flow cytometry.

Discussion

Phylogenetic placement of Dryopolystichum

The reconstructed maximum likelihood and Bayesian inference phylogenies unambiguously resolved Dryopolystichum within Lomariopsidaceae (Fig. (Fig.2),2), a position not previously suggested (Kramer and Green 1990, Smith et al. 2006, Christenhusz et al. 2011, PPG I 2016). This placement is consistent in all our analyses. Nonetheless, the generic position of Dryopolystichum within Lomariopsidaceae remains poorly resolved. This uncertainty may be partially explained by the incongruence between trnL-F and the other analyzed regions, but our process of removing the long-branched genera showed that low BS was retrieved only when Dryopolystichum and Lomariopsis were both included in the analysis. These results may also be explained by the large amounts of missing data in Lomariopsis; 19 of the 25 species included were represented by trnL-F data alone. We recommend further phylogenetic study using an expanded dataset to resolve the intergeneric relationships within Lomariopsidaceae.

Recircumscription of Lomariopsidaceae

Phylogenetic analyses using DNA sequences have served as the basis for redrawing fern classifications in the 21th century (Smith et al. 2006, Christenhusz et al. 2011, PPG I 2016). With respect to family circumscription, one of the most dramatically changed families is Lomariopsidaceae (Tsutsumi and Kato 2006, Schuettpelz and Pryer 2007, Christenhusz et al. 2013). Just prior to the molecular era, Lomariopsidaceae was treated as one of the largest fern families with six genera and over 500 species (e.g., Kramer and Green 1990) and was strongly supported by the following combination of characters: rhizomes with ventral root insertion, dictyosteles with elongate ventral meristeles, and dimorphic leaves where the fertile leaves had acrostichoid sori (Holttum and Hennipman 1959, Kramer and Green 1990).

Subsequent molecular phylogenetic analyses demonstrated that most genera previously treated in Lomariopsidaceae should be transferred to Dryopteridaceae (Tsutsumi and Kato 2006, Schuettpelz and Pryer 2007). The combination of characters uniting the former Lomariopsidaceae are now interpreted to have evolved multiple times, and to be correlated with dorsiventrality of the rhizome (Moran et al. 2010, McKeown et al. 2012). Meanwhile, Cyclopeltis was transferred from Dryopteridaceae to Lomariopsidaceae as suggested by molecular phylogeny (Schuettpelz and Pryer 2007), although it has none of the characters formerly used to circumscribe Lomariopsidaceae (Holttum and Hennipman 1959, Kramer and Green 1990).

More recently, the neotropical genus Dracoglossum was established (Christenhusz 2007) and later transferred to Lomariopsidaceae from Tectariaceae based on a molecular phylogeny (Christenhusz et al. 2013). This pattern was also unexpected since there are essentially no shared morphological characters by Dracoglossum and Lomariopsis, except for the ribbon-like gametophyte (R. C. Moran pers. com.). Our finding, that Dryopolystichum belongs to Lomariopsidaceae, comes as a further surprise. With these changes, Lomariopsidaceae is a family of five genera (Cyclopeltis, Dracoglossum, Dryopolystichum, Lomariopsis, and Thysanosoria) and ca. 70 species. As far as we can tell, none of the morphological traits commonly used unify these genera (Table (Table1).1). In the following paragraphs, we provide a recircumscription of both Lomariopsidaceae and Dryopolystichum, and then discuss selected characters in the light of our phylogenetic placement.

Table 1.

Comparison of morphological characters of the five Lomariopsidaceae genera [based on Holttum and Hennipman (1959), Holttum (1991), Roubik and Moreno (1991), Moran (2000), Christenhusz (2007), Rouhan et al. (2007), and this study].

Genera Cyclopeltis Dracoglossum Dryopolystichum Lomariopsis Thysanosoria
Habitterrestrialterrestrialterrestrialhemiepiphytehemiepiphyte
Rhizomeerectshort creepingerectclimbingclimbing
Frond division*pinnatesimplepinnate-pinnatifidpinnatepinnate
Pinnae articulationarticulatenot articulatearticulatearticulate
Venationfreereticulate, with included veinletfreefreefree
Rachis-costa architectureprominentprominentgroovedgrooved or flatgrooved
Sporangiaform rounded soriform rounded soriform rounded soriacrostichoidform rounded sori
Indusiapeltate if presentpeltate if presentpeltateabsentabsent
Perine ornamentationbroad foldsnarrow crestsnarrow crestsvariousbroad folds

*matured plant, -not applicable

Taxonomic treatment

Lomariopsidaceae

Keywords: Plantae, ORDO, FAMILIA

Alston, Taxon 5(2): 25. 1956.

Type.

Lomariopsis Fée, Mém. Foug., 2. Hist. Acrostich.: 10. 1845.

Description.

Habit erect, creeping, or climbing; rhizomes dictyostelic, the ventral meristele elongate in transverse section or not; scaly at least when young; scales non-clathrate, basally attached or shallowly peltate, margins entire, toothed, or ciliate; fronds monomorphic or dimorphic; petioles with multiple vascular bundles arranged in a U-shape; laminae simple, pinnate, or pinnate-pinnatifid, provided distally with proliferous buds or not; pinnae articulate to the rachis or not; veins free, ± parallel or pinnate; sori acrostichoid or discrete and then round, with peltate indusia or exindusiate; spores brown, olive or green, chlorophyllous or not, bilateral, monolete, perine loosely attached, variously winged or ornamented.

Five genera and an estimated 70 species. Thysanosoria is included based on its morphological similarity to Lomariopsis (Holttum and Hennipman 1959), but it has not been, to the present, subject to molecular phylogenetic analysis.

Dryopolystichum

Keywords: Plantae, ORDO, FAMILIA

Copel., Gen. Fil. 125, t. 4. 1947.

Type.

Dryopolystichum phaeostigma (Ces.) Copel., Gen. Fil. 125, t. 4. 1947.

Description.

Habit terrestrial, on slopes along streams at lowland forests; rhizome short erect, stout and woody, apex densely scaly, blackish sclerenchyma strands visible in sections; scales dark brown, linear-lanceolate, entire, not clathrate; fronds approximate, stipe not articulate, scaly at base, scales similar to those on rhizome; lamina ovate, pinnate-pinnatifid, catadromous, subleathery, nearly glabrous, only very sparse narrow scales on rachis, costa, and costule; rachis and costa grooved adaxially, not connected to each other; veins free, pinnate, veins of basal pinnules on upper pinnae emerge from the rachis rather than costa, all veins terminating in a prominent hydathode, not reaching frond margin; sori round, dorsally on veinlets near hydathode, indusiate; indusia round, persistent, superior, entire, brownish, thick; sporangia long-stalked, annulus with ca. 14 indurated cells, 32 normal spores in each sporangium; spores monolete, 64.1 ± 4.5 μm in lateral view, surface with broadly winged wall; 2n = ca. 164.

Monotypic.

Dryopolystichum phaeostigma

Keywords: Plantae, ORDO, FAMILIA

(Ces.) Copel., Gen. Fil. 125, t. 4. 1947.

  • Aspidium phaeostigma Ces., Rend. Ac. Napoli 16: 26, 29. 1877. Type. Papua New Guinea. Andai, Beccari 12533 (FI [FI013622]).

  • Dryopteris phaeostigma (Ces.) C.Chr., Index Filic. 284. 1905. Type. Based on Aspidium phaeostigma Ces.

  • Dryopteris tamatana C.Chr., Index Filic., Suppl. (1906-1912) 40. 1913. Replaced: Dryopteris kingii Copel., Phillipp. J. Sci., C 6: 73. 1911., not Dryopteris kingii (Bedd.) C.Chr., Index Filic. 273. 1905. Type. Papua New Guinea. Tamata, C. King 149 (MICH [MICH1287049]).

  • Polystichum lastreoides Rosenst., Repert. Spec. Nov. Regni Veg. 9: 425. 1911. Type. Papua New Guinea. C. King 194 (MICH [MICH1190927]).

  • Dryopteris ledermannii Brause, Bot. Jahrb. Syst. 56: 90. 1920. Type. Papua New Guinea. Sepik, Ledermann 9619 (B [B_20_005865], L [L0063060], S [S-P-8581]).

  • Dryopteris cyclosorus Alderw., Nova Guinea 14: 21. 1924. Type. Indonesia. Irian Jaya, H. J. Lam 1086 (BO [BO1529719, BO1529720], K [K000666126], L [L0051583], U [U0007385]).

Type.

Based on Aspidium phaeostigma Ces.

Description.

Equal to the genus.

Distribution.

New Guinea, the Bismark archipelago, and the Solomon Islands.

Comparison of selected characters of Dryopolystichum

Perine architecture of Dryopolystichum is very similar to that of Dracoglossum plantagineum (Christenhusz 2007, Fig. Fig.3).3). They are loosely attached, forming thin crests, and having a spiculate microstructure. Perine of Cyclopeltis and Thysanosoria are also similar in being loosely attached and having a spiculate microstructure, but they differ by having broader folds (Holttum and Hennipman 1959, Tryon and Lugardon 1991). The perine characters, however, are not shared by all the taxa of Lomariopsidaceae especially considering the variation of ornamentation existing in Lomariopsis (Rouhan et al. 2007). Moreover, these perine characters also appear in other Polypodiineae lineages particularly in bolbitidoid ferns (Moran et al. 2010) as well as in various Aspleniineae lineages (Sundue and Rothfels 2014, PPG I 2016).

Blackish sclerenchyma strands are visible in the rhizome sections of Dryopolystichum (Fig. (Fig.1F).1F). These are also present in Dracoglossum, Cyclopeltis, and Lomariopsis, but similar characters are known from various groups throughout Polypodiineae (Hennipman 1977, Moran 1986, Hovenkamp 1998). Further studies might reveal variation in these strands to be of systematic value.

The rachis-costae architecture of Dryopolystichum is characterized by an adaxially sulcate rachis with grooves that do not connect to those of the pinna-costae. The rachis is also narrowly winged laterally. Both characters are seen in Thysanosoria and in some species of Lomariopsis (Holttum and Hennipman 1959, Moran 2000). In contrast, Dracoglossum and Cyclopeltis have non-winged and non-sulcate rachises (Holttum 1991, Christenhusz 2007).

The chromosome number in somatic cells of Dryopolystichum phaeostigma was ca. 164 (Fig. (Fig.4).4). The base numbers for Lomariopsidaceae genera (Cyclopeltis, Dracoglossum, and Lomariopsis) are 40 or 41 (Walker 1985, Kato and Nakato 1999, Moran 2000), suggesting that D. phaeostigma is a tetraploid.

Our flow cytometry and spore count results indicate that Dryopolystichum phaeostigma is sexually reproducing and has 32 spores per sporangium (Fig. (Fig.5).5). In Polypodiales, sporogenesis leading to the formation of 64 spores in a sporangium is by far the most common pattern of sexually reproducing species, e.g., Aspleniaceae (Gabancho et al. 2010), Athyriaceae (Kato et al. 1992, Takamiya et al. 1999), Davalliaceae (Chen et al. 2014), Dryopteridaceae (Lu et al. 2006), Polypodiaceae (Wang et al. 2011), Pteridaceae (Huang et al. 2006), and Thelypteridaceae (Ebihara et al. 2014). Cases of sporogenesis resulting in 32 spores per sporangium are known from a few Polypodiales ferns but all belong to the suborders Lindsaeineae and Pteridineae, i.e., Lindsaeaceae (Lin et al. 1990), Cystodiaceae (Gastony 1981), and Ceratopteris (Pteridaceae; Lloyd 1973). Our study provides the first confirmed case of a sexual reproduction with 32 spores per sporangium in the suborder Polypodiineae.

Conclusion

We have shown, based on molecular phylogenetic evidence, the placement of Dryopolystichum within Lomariopsidaceae. A revised description was provided for both Lomariopsidaceae and Dryopolystichum resulting from a review of literature and our own observations. Future studies using an expanded dataset are necessary to resolve intergeneric relationships in Lomariopsidaceae.

Supplementary Material

XML Treatment for Lomariopsidaceae :
XML Treatment for Dryopolystichum :
XML Treatment for Dryopolystichum phaeostigma :

Acknowledgements

We are grateful to Kathleen Pryer’s lab for sharing the material of Dracoglossum. Peter Hovenkamp, Thais Almeida, David Barrington, and two anonymous reviewers provided valuable comments on an earlier draft of this manuscript. The curators and staffs of herbaria BSIP, SING, TAIF, and VT for providing access to their collections. We also thank Robbin Moran and Wita Wardani for checking specimens at NY and BO, respectively. Field work in Solomon Islands was supported by Taiwan International Cooperation and Development Fund (TH410-2012-085), Taiwan Forestry Research Institute (102AS-4.1.1-FI-G1), and Dr. Cecilia Koo Botanic Conservation Center (KBCC) for CWC.

Appendix

Individuals sampled in this study. For each individual, the species name and GenBank accession numbers (rbcL, rps4-trnS, trnL-F) are provided. A n-dash (–) indicates unavailable information; new sequences are in bold.

TaxonGenbank accession numbers
rbcL rps4-trnS trnL-F
Dryopteridaceae
Arachniodes aristata (G.Forst.) TindaleKJ464418KJ464592
Arachniodes denticulata (Sw.) ChingKJ464419KJ464593
Arthrobotrya articulata J.Sm.GU376714GU376565
Arthrobotrya wilkesiana Copel.GU376719GU376569
Bolbitis acrostichoides (Afzel.) ChingKJ464420GU376644GU376500
Bolbitis aliena (Sw.) AlstonGU376646GU376502
Bolbitis angustipinna (Hayata) H.ItoGU376654GU376509
Bolbitis appendiculata (Willd.) K.Iwats.GU376647GU376503
Bolbitis auriculata (Lam.) AlstonKJ464421GU376649GU376505
Bolbitis bipinnatifida (J.Sm.) K.Iwats.GU376676GU376530
Bolbitis fluviatilis (Hook.) ChingGU376656GU376510
Bolbitis gemmifera (Hieron.) C.Chr.GU376657GU376511
Bolbitis heteroclita (Pr.) ChingGU376659GU376513
Bolbitis heudelotii (Bory) AlstonGU376662GU376515
Bolbitis humblotii (Baker) ChingKJ464422GU376663GU376516
Bolbitis lonchophora (Kunze) C.Chr.GU376664GU376517
Bolbitis major (Bedd.) HennipmanGU376665GU376518
Bolbitis portoricensis (Sprengel) HennipmanGU376670GU376523
Bolbitis salicina (Hook.) ChingGU376671GU376525
Bolbitis semipinnatifida (Fée) AlstonGU376672GU376526
Bolbitis serratifolia (Mertens) SchottGU376673GU376527
Bolbitis sinuata (C.Presl) HennipmanGU376675GU376529
Bolbitis tibetica Ching & S.K.WuGU376677GU376531
Ctenitis eatonii (Baker) ChingKF709483KJ196645
Ctenitis sinii (Ching) OhwiKJ196643
Ctenitis subglandulosa (Hance) ChingKJ196655
Ctenitis yunnanensis Ching & Chu H.WangKJ196715
Cyclodium heterodon (Schrad.) T. Moore var. heterodonKJ464425KJ464596
Cyclodium rheophilum A.R.Sm.KJ464426KJ464597
Dryopteris apiciflora (Wall. ex Mett.) KuntzeKJ196641
Dryopteris christensenae (Ching) Li Bing ZhangKJ196679
Dryopteris heterolaena C.Chr.KJ196623
Dryopteris integriloba C.Chr.KJ196701
Dryopteris mariformis Rosenst.KJ196686
Dryopteris nidus (Baker) Li Bing ZhangKJ196687
Dryopteris patula (Sw.) Underw.KJ464427KJ464598
Dryopteris polita Rosenst.KJ196700
Dryopteris squamiseta (Hook.) KuntzeGU376678KJ196632
Dryopteris wallichiana (Spreng.) Hyl.KJ464428GU376680KJ464599
Elaphoglossum amygdalifolium (Mett.) ChristGU376681
Elaphoglossum burchellii (Baker) C.Chr.GU376682GU376533
Elaphoglossum decoratum (Kunze) T.MooreKJ464429GU376683KJ464600
Elaphoglossum guentheri Rosenst.GU376684GU376535
Elaphoglossum langsdorffii T.MooreGU376685GU376536
Elaphoglossum lloense (Hook.) T.MooreGU376686GU376537
Elaphoglossum luridum ChristGU376538
Elaphoglossum squamipes (Hook.) T.MooreGU376539
Lastreopsis amplissima (C.Presl) TindaleKJ464432KJ464604
Lastreopsis decomposita (R.Br.) TindaleKJ464439
Lastreopsis hispida (Sw.) TindaleKJ464446KJ464614
Lastreopsis killipii (C.Chr. & Maxon) TindaleKJ464448KF709505
Lastreopsis marginans (F.Muell.) TindaleKJ464449GU376691KJ464616
Lastreopsis poecilophlebia (Hook.) Labiak, Sundue & R.C.MoranKJ464423GU376692KJ464594
Lastreopsis tenera (R.Br.) TindaleKJ464467GU376699KJ464636
Lastreopsis tripinnata (F.Muell. ex Benth.) Labiak, Sundue & R.C.MoranKJ464491GU376700
Lastreopsis walleri TindaleKJ464472GU376701
Lastreopsis wurunuran (Domin) TindaleKJ464474GU376704
Lomagramma brooksii Copel.GU376705GU376542
Lomagramma cordipinna HolttumGU376707GU376543
Lomagramma lomarioides (Blume) J.Sm.GU376550
Lomagramma matthewii (Ching) HolttumKJ464476KJ464640
Lomagramma perakensis Bedd.GU376552
Lomagramma pteroides J.Sm.GU376555
Lomagramma sinuata C.Chr.GU376556
Lomagramma sumatrana Alderw.GU376558
Maxonia apiifolia (Sw.) C.Chr.KJ464477GU376709KJ464641
Megalastrum abundans (Rosenst.) A.R.Sm. & R.C.MoranKJ464478KJ464642
Megalastrum atrogriseum (C.Chr.) A.R.Sm. & R.C.MoranKJ464479GU376710KJ464643
Megalastrum connexum (Kaulf.) A.R.Sm. & R.C.MoranKJ464481KJ464645
Megalastrum lanatum (Fée) HolttumKJ464483KJ464647
Megalastrum littorale R.C.Moran, J.Prado & LabiakGU376651GU376561
Megalastrum macrotheca (Fée) A.R.Sm. & R.C.MoranKJ464484GU376697KJ464648
Megalastrum vastum (Kunze) A.R.Sm. & R.C.MoranKJ464487GU376658KJ464651
Mickelia bernoullii (Kuhn ex Christ) R.C.Moran, Labiak & SundueGU376666GU376506
Mickelia guianensis (Aubl.) R.C.Moran, Labiak & SundueGU376667GU376548
Mickelia hemiotis (Maxon) R.C.Moran, Labiak & SundueGU376512
Mickelia nicotianifolia (Sw.) R.C.Moran, Labiak & SundueKF667557GU376519
Mickelia oligarchica (Baker) R.C.Moran, Labiak & SundueKJ464489GU376520
Mickelia scandens (Raddi) R.C. Moran, Labiak & SundueGU376696GU376547
Olfersia cervina KunzeKJ464493DQ153079KJ464652
Parapolystichum acuminatum (Houlston) Labiak, Sundue & R.C.MoranKJ464430KC977454KJ464601
Parapolystichum boivinii (Baker) RouhanKJ464435KJ464607
Parapolystichum confine (Maxon ex C.Chr.) Labiak, Sundue & R.C.MoranKJ464438
Parapolystichum effusum (Sw.) ChingKJ464441
Parapolystichum effusum (Sw.) Ching subsp. divergens (Willd. ex Schkuhr) TindaleKJ464440
Parapolystichum excultum (Mett.) Labiak, Sundue & R.C.MoranKF709501GU376541
Parapolystichum glabellum (A.Cunn.) Labiak, Sundue & R.C.MoranKJ464445KF709503KJ464613
Parapolystichum microsorum (Endl.) Labiak, Sundue & R.C.MoranKJ464451GU376712KJ464617
Parapolystichum perrierianum (C.Chr.) RouhanKJ464455KJ464623
Parapolystichum rufescens (Blume) Labiak, Sundue & R.C.MoranKJ464461KJ464629
Parapolystichum vogelii (Hook.) RouhanKJ464470
Parapolystichum windsorensis (D.L.Jones & B.Gray) Labiak, Sundue & R.C.MoranKJ464473KJ464639
Pleocnemia conjugata C.PreslGU376713KF709510
Pleocnemia cumingiana C.PreslKJ196828KJ196705
Pleocnemia dahlii (Hieron.) HolttumKJ196829KJ196706
Pleocnemia hemiteliiformis (Racib.) HolttumKF709482KF667560KF709511
Pleocnemia irregularis (C.Presl) HolttumKF709491KF709513
Pleocnemia leuzeana (Gaudich.) C.PreslKJ196830
Pleocnemia olivacea (Copel.) HolttumKJ464495
Pleocnemia presliana HolttumKJ464496KF667561
Pleocnemia rufinervis NakaiJF303976KF667562
Pleocnemia winitii HolttumEF460686KF709515
Polybotrya alfredii BradeKJ464497KF667563KJ464653
Polybotrya andina C.Chr.KJ464498KP271084KJ464654
Polybotrya pubens Mart.KJ464499KP271085
Polystichum tsus-simense (Hook.) J.Sm. var. mayebarae (Tagawa) Sa.KurataAB575224DQ150408
Pseudotectaria biformis (Mett.) HolttumKF897951
Pseudotectaria decaryana (C.Chr.) TardieuKF897952
Rumohra adiantiformis (G.Forst.) ChingKJ464500KJ464655
Rumohra berteroana (Colla) J.J. Rodr.KJ464503KJ464657
Stigmatopteris ichthiosma (Sodiro) C.Chr.KJ464504KJ464658
Stigmatopteris killipiana LellingerKJ464505KJ464659
Stigmatopteris lechleri (Mett) C.Chr.KJ464506KP271087KJ464660
Stigmatopteris sordida (Maxon) C.Chr.KJ464507KJ464661
Teratophyllum koordersii HolttumGU376566
Teratophyllum ludens (Fée) HolttumGU376567
Teratophyllum wilkesianum HolttumKJ464508
Nephrolepidaceae
Nephrolepis abrupta (Bory) Mett.HM748137KF667559
Nephrolepis acutifolia (Desv.) Christ.HM748139
Nephrolepis biserrata (Sw.) SchottAB575227GU376688
Nephrolepis brownii (Desv.) Hovenkamp & Miyam.KR816691
Nephrolepis cordifolia (L.) C.PreslAB575228
Nephrolepis davalliae Alderw.HM748147
Nephrolepis davallioides KunzeHM748148GU376690
Nephrolepis exaltata (L.) SchottHM748149
Nephrolepis falcata (Cav.) C.Chr.HM748150
Nephrolepis falciformis J.Sm.AB232404
Nephrolepis lauterbachii (Christ) ChristHM748153
Nephrolepis pectinata (Willd.) SchottHM748155
Nephrolepis pendula (Raddi) J.Sm.HM748156
Nephrolepis radicans (Burm.) KuhnHM748157
Nephrolepis rivularis (Vahl) Mett.HM748158
Nephrolepis undulata J.Sm.HM748159
Lomariopsidaceae
Cyclopeltis crenata (Fée) C.Chr.DQ054517EF540718DQ51448
Cyclopeltis novoguineensis Rosenst. KY397974 KY397978 KY397970
Cyclopeltis semicordata (Sw.) J.Sm.EF463234 KY397977 KY397969
Dracoglossum plantagineum (Jacq.) Christenh.KC914564 KY397979 KY397971
Dracoglossum sinuatum (Fée) Christenh.KU605106
Dryopolystichum phaeostigma (Ces.) Copel. KY397972 KY397976 KY397968
Lomariopsis crassifolia HolttumDQ396559
Lomariopsis guineensis (Underw.) AlstonKJ628952DQ396560
Lomariopsis hederacea AlstonDQ396561
Lomariopsis jamaicensis (Underw.) HolttumDQ396562
Lomariopsis japurensis (C.Martius) J.Sm.DQ396563
Lomariopsis kunzeana (Underw.) HolttumDQ396569
Lomariopsis latipinna StolzeDQ396571
Lomariopsis lineata (C.Presl) HolttumDQ396572
Lomariopsis longicaudata (Bonap.) HolttumQ396573
Lomariopsis madagascarica (Bonap.) AlstonDQ396575
Lomariopsis mannii (Underw.) AlstonDQ396577
Lomariopsis marginata (Schrad.) KuhnAY818677DQ396578
Lomariopsis maxonii (Underw.) HolttumDQ396580
Lomariopsis muriculata HolttumDQ396582
Lomariopsis palustris (Hook.) Mett. ex KuhnHM748162DQ396585
Lomariopsis pervillei KuhnDQ396586
Lomariopsis pollicina (Willemet) Mett. ex KuhnEF463235DQ396588
Lomariopsis prieuriana FéeDQ396590
Lomariopsis recurvata FéeDQ396592
Lomariopsis rossii HolttumDQ396594
Lomariopsis salicifolia (Kunze) LellingerDQ396595
Lomariopsis sorbifolia (L.) FéeEF463236
Lomariopsis spectabilis Mett.AB232401KJ196685
Lomariopsis vestita E.Fourn.DQ396598
Lomariopsis wrightii Mett.DQ396600
Tectariaceae
Arthropteris altescandens J.Sm.KF667636KF667550KF667606
Arthropteris articulata (Brack.) C.Chr.KC977367KC977437KC977411
Arthropteris beckleri (Hook.) Mett.U05605KF667607
Arthropteris cameroonensis AlstonKF667638
Arthropteris guinanensis H.G.Zhou & Y.Y.HuangKC977364KC977442KC977404
Arthropteris monocarpa (Cordem.) C.Chr.HM748132KF897941
Arthropteris orientalis (Gmel.) Posth.HM748133KC977435KC977420
Arthropteris palisotii (Desv.) AlstonAB575230KC977427KC977406
Arthropteris parallela (Baker) C.Chr.EF463266KC977453KC977425
Arthropteris paucivenia (C.Chr.) H.M.Liu, Hovenkamp & H.Schneid.EF463268KC977426
Arthropteris repens (Brack.) C.Chr.KC977368KC977438KC977412
Arthropteris tenella (G.Forst.) J.Sm. ex Hook.f.KC977363KF011547KC977424
Hypoderris brauniana (H.Karst.) F.G.Wang & Christenh.KF667647KF667618
Hypoderris brownii J.Sm.KF667642KF667611
Hypoderris nicotianifolia (Baker) R.C.Moran, Labiak & J.PradoKF667653KF667626
Pteridrys australis ChingKJ196892KJ196678
Pteridrys cnemidaria (Christ) C.Chr. & ChingKF709488KF709517
Pteridrys lofouensis (Christ) C.Chr. & ChingEF460687KF667566
Pteridrys microthecia (Fée) C.Chr. & ChingKJ196848KF709518
Pteridrys syrmatica (Willd.) C.Chr. & ChingKJ196875KF709519
Tectaria acerifolia R.C.MoranKF887170KF897954
Tectaria angulata (Willd.) Copel.KJ196876KJ196656
Tectaria aurita (Sw.) S.ChandraKJ196849KJ196631
Tectaria barberi (Hook.) Copel.KJ196846KJ196628
Tectaria borneensis S.Y.DongKJ196854KF667555KJ196642
Tectaria cicutaria (L.) Copel.KF667649KF667620
Tectaria coadunata (J.Sm.) C.Chr.KJ196851KJ196661
Tectaria crenata Cav.KF667650KF667568KF667621
Tectaria decurrens (C.Presl) Copel.AB575232DQ514524
Tectaria devexa (Kunze ex Mett.) Copel.AB575233KP271088KF897956
Tectaria dilacerata (Kunze) MaxonKF887173KF897957
Tectaria fauriei TagawaAB575234KJ196658
Tectaria fernandensis C.Chr.KF887174KF897958
Tectaria gigantea (Blume) Copel.KJ196853KJ196660
Tectaria griffithii (Baker) ChingKF667652KF667624
Tectaria grossedentata Ching & Chu H.WangKJ196882KP271089KJ196667
Tectaria harlandii (Hook.) C.M.KuoAB575231KJ196648
Tectaria harlandii (Hook.) C.M.KuoKF887178KF897961
Tectaria heracleifolia (Willd.) Underw.KF887180KF897963
Tectaria herpetocaulos Ching & Chu H. WangKJ196884KJ196669
Tectaria heterocarpa C.V.MortonKF887181KF897964
Tectaria impressa (Fée) HolttumKJ196841KF897965
Tectaria kusukusensis (Hayata) LellingerEF460681KF897968
Tectaria labrusca (Hook.) Copel.KJ196818KJ196692
Tectaria luchunensis S.K.WuKJ196845KP271090KJ196627
Tectaria macleanii (Copel.) S.Y.DongKJ196810KJ196680
Tectaria melanocaula (Blume) Copel.KJ196832KJ196709
Tectaria morsei (Baker) P.J.Edwards ex S.Y.DongKJ196893KF667570KF561675
Tectaria nayarii MazumdarEF463267KJ196699
Tectaria paradoxa (Fée) SledgeKF887189KF897971
Tectaria phaeocaulis (Rosenst.) C.Chr.AB232397KF709499KF897972
Tectaria pica (L.) C.Chr.KF887191GU376715KF897973
Tectaria polymorpha (Wall. ex Hook.) Copel.KJ196888GU376716KJ196657
Tectaria prolifera (Hook.) R.M.Tryon & A.F.TryonEF463273KF897974
Tectaria psomiocarpa S.Y.DongKJ196822KF667572KJ196698
Tectaria pubens R.C.MoranKF887193KF667573KF897975
Tectaria quinquefida (Baker) ChingKJ196885KJ396622
Tectaria repanda (Willd.) HolttumKJ196831KJ196707
Tectaria sagenioides (Mett.) Christenh.KF887194KF667575KF561672
Tectaria semipinnata (Roxb.) MortonKJ196817KF667577KJ196691
Tectaria simonsii (Baker) ChingAB575236KF897977
Tectaria singaporiana (Wall. ex Hook. & Grev.) ChingKF887196KF897978
Tectaria subglabra (Holttum) S.Y.DongKJ196676
Tectaria subsageniacea (Christ) Christenh.KF887197KF667576KF561670
Tectaria subtriphylla (Hook. & Arn.) Copel.AB575237KF897980
Tectaria tricuspis (Bedd.) Copel.KJ196820KJ196694
Tectaria variolosa (Wall. ex Hook.) C.Chr.EF460690KF897982
Tectaria vasta (Blume) Copel.KF667655KF667628
Tectaria vivipara Jermy & T.G.WalkerKF887201KF897983
Tectaria zeilanica (Houtt.) SledgeAB232395KF709521
Triplophyllum crassifolium HolttumKF887203KF897985
Triplophyllum fraternum (Mett.) HolttumKF667657KF667630
Triplophyllum funestum (Kunze) HolttumEF463276KF667631
Triplophyllum glabrum J.Prado & R.C.MoranKF887207KF897989
Triplophyllum heudelotii Pic.Serm.KF897990
Triplophyllum jenseniae (C.Chr.) HolttumKF667660KF667633
Triplophyllum pentagonum (Bonap.) HolttumKF667662KF667635
Triplophyllum pilosissimum (J.Sm. ex T.Moore) HolttumKU605127
Triplophyllum securidiforme (Hook.) HolttumKU605128
Triplophyllum vogelii (Hook.) HolttumKF667661KF667634
Oleandraceae
Oleandra articulata (Sw.) C.PreslKF667644KF709500KF667613
Oleandra cumingii J.Sm.KJ196816KJ196690
Oleandra neriiformis Cav.KJ196815KJ196689
Oleandra pilosa Hook.KF667646KF667615
Davalliaceae
Davallodes hirsuta (J.Sm.) Copel.AY096196
Davallodes yunnanensis (Christ) M.Kato & TsutsumiJX103718KC914565
Polypodiaceae
Campyloneurum minus FéeKF667665
Microgramma lycopodioides (L.) Copel.KF667664
Niphidium longifolium (Cav.) C.V.Morton & LellingerKF667663KF709495

Notes

Citation

Chen C-W, Sundue M, Kuo L-Y, Teng W-C, Huang Y-M (2017) Phylogenetic analyses place the monotypic Dryopolystichum within Lomariopsidaceae. PhytoKeys 78: 83–107. https://doi.org/10.3897/phytokeys.78.12040

Supplementary materials

Supplementary material 1

Figure S1. Maximum likelihood phylogram of Polypodiineae obtained from the combined (rbcL + rps4-trnS + trnL-F) dataset.

Data type: statistical data

Explanation note: Maximum likelihood bootstrap percentages (BS) are provided at each node. Thickened lines indicate Bayesian inference posterior probability (PP) ≥ 0.9.

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Cheng-Wei Chen, Michael Sundue, Li-Yaung Kuo, Wei-Chih Teng, Yao-Moan Huang

Supplementary material 2

Figure S2. Maximum likelihood phylogram of Polypodiineae obtained from the rbcL dataset.

Data type: statistical data

Explanation note: Maximum likelihood bootstrap percentages (BS) are provided at each node. Thickened lines indicate Bayesian inference posterior probability (PP) ≥ 0.9.

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Cheng-Wei Chen, Michael Sundue, Li-Yaung Kuo, Wei-Chih Teng, Yao-Moan Huang

Supplementary material 3

Figure S3. Maximum likelihood phylogram of Polypodiineae obtained from the rps4-trnS dataset.

Data type: statistical data

Explanation note: Maximum likelihood phylogram of Polypodiineae obtained from the rps4-trnS dataset. Maximum likelihood bootstrap percentages (BS) are provided at each node. Thickened lines indicate Bayesian inference posterior probability (PP) ≥ 0.9.

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Cheng-Wei Chen, Michael Sundue, Li-Yaung Kuo, Wei-Chih Teng, Yao-Moan Huang

Supplementary material 4

Figure S4. Maximum likelihood phylogram of Polypodiineae obtained from the trnL-F dataset.

Data type: statistical data

Explanation note: Maximum likelihood bootstrap percentages (BS) are provided at each node. Thickened lines indicate Bayesian inference posterior probability (PP) ≥ 0.9.

This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Cheng-Wei Chen, Michael Sundue, Li-Yaung Kuo, Wei-Chih Teng, Yao-Moan Huang

References

  • Alderwerelt van Rosenburgh CRWK. (1908) Malayan ferns: Handbook to the determination of the ferns of The Malayan Islands. Landsdrukkerij, Jakarta. [Google Scholar]
  • Alderwerelt van Rosenburgh CRWK. (1924) Pteridophyta. Nova Guinea 14: 1–68. [Google Scholar]
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990) Basic local alignment search tool. Journal of Molecular Biology 215(3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 [Abstract] [Google Scholar]
  • Baker JG. (1891) A summary of the new ferns which have been discovered or described since 1874. Annals of Botany 4: 455–500. https://doi.org/10.1093/oxfordjournals.aob.a090650 [Google Scholar]
  • Brause G. (1920) Beiträge zur Flora von Papuasien. VII. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 56: 31–250. [Google Scholar]
  • Cesati V. (1877) Prospetto delle Felci raccolte dal Signor O. Beccari nella Polinesia durante il suo secondo viaggio di esplorazione in que’ mari. Rendiconto dell’Accademia delle scienze fisiche e matematiche 16: 23–31. [Google Scholar]
  • Chen CW, Ngan LT, Hidayat A, Evangelista L, Nooteboom HP, Chiou WL. (2014) First insights into the evolutionary history of the Davallia repens complex. Blumea 59(1): 49–58. https://doi.org/10.3767/000651914X683827 [Google Scholar]
  • Christenhusz MJ. (2007) Dracoglossum, a new Neotropical fern genus (Pteridophyta). Thaiszia, Journal of Botany 17: 1–10. [Google Scholar]
  • Christenhusz MJ, Zhang XC, Schneider H. (2011) A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa 19(1): 7–54. http://dx.doi.org/10.11646/phytotaxa.19.1.2 [Google Scholar]
  • Christenhusz MJ, Jones M, Lehtonen S. (2013) Phylogenetic placement of the enigmatic fern genus Dracoglossum. American Fern Journal 103(2): 131–138. http://dx.doi.org/10.1640/0002-8444-103.2.131 [Google Scholar]
  • Christensen C. (1906) Index Filicum; sive, enumeratio omnium generum specierumque Filicum et Hydropteridum ab anno 1753 ad finem anni 1905 descriptorium, adjectis synonymis principalibus, area geographica etc. Hagerup, Copenhagen. http://dx.doi.org/10.5962/bhl.title.402 [Google Scholar]
  • Christensen C. (1937) Taxonomic fern-studies. IV. Revision of the Bornean and New Guinean ferns collected by O. Beccari and described by Cesati V and Baker JG. Dansk Botanisk Arkiv 9: 33–52. [Google Scholar]
  • Copeland EB. (1911) Papuan ferns collected by the reverend Copland King. Philippine Journal of Science 6: 65–92. [Google Scholar]
  • Copeland EB. (1947) Genera Filicum: the genera of ferns. Chronica Botanica Co, Waltham. [Google Scholar]
  • Ding HH, Chao YS, Callado JR, Dong SY. (2014) Phylogeny and character evolution of the fern genus Tectaria (Tectariaceae) in the Old World inferred from chloroplast DNA sequences. Molecular Phylogenetics and Evolution 80: 66–78. https://doi.org/10.1016/j.ympev.2014.06.004 [Abstract] [Google Scholar]
  • Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A. (2011) Geneious v5.4. http://www.geneious.com [Europe PMC free article] [Abstract]
  • Ebihara A, Nakato N, Matsumoto S, Chao YS, Kuo LY. (2014) Cytotaxonomic studies on thirteen ferns of Taiwan. Bulletin of the National Science Museum. Series B, Botany 40: 19–28. [Google Scholar]
  • Gabancho LR, Prada C, Galán JG. (2010) Sexuality and apogamy in the Cuban Asplenium auritum–monodon complex (Aspleniaceae). Plant Systematics and Evolution 289(3–4): 137–146. https://doi.org/10.1007/s00606-010-0339-5 [Google Scholar]
  • Gastony GJ. (1981) Spore morphology in the Dicksoniaceae. I. The genera Cystodium, Thyrospteris, and Culcita. American Journal of Botany 68: 808–819. http://www.jstor.org/stable/2443187 [Google Scholar]
  • Goloboff PA, Farris JS, Nixon KC. (2008) TNT, a free program for phylogenetic analysis. Cladistics 24(5): 774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x [Google Scholar]
  • Hennipman E. (1977) A monograph of the fern genus Bolbitis (Lomariopsidaceae). Leiden Botanical Series, 2. [Google Scholar]
  • Holttum RE. (1959) List of Malaysian Pteridophytes Flora Malesiana, Series 2, Pteridophyta, 1(1). Rijksherbarium/Hortus Botanicus, Leiden, II–III. [Google Scholar]
  • Holttum RE, Hennipman E. (1959) Lomariopsis group. Flora Malesiana, Series 2, Pteridophyta, 1(4). Rijksherbarium/Hortus Botanicus, Leiden, 255–330. [Google Scholar]
  • Holttum RE. (1974) The fern-genus Pleocnemia. Kew Bulletin 29(2): 341–357. https://doi.org/10.2307/4108544 [Google Scholar]
  • Holttum RE. (1991) Tectaria group. Flora Malesiana, Series 2, Pteridophyta, 2. Rijksherbarium/Hortus Botanicus, Leiden, 1–132. [Google Scholar]
  • Hovenkamp P. (1998) An account of the Malay-Pacific species of Selliguea. Blumea 43: 1–108. [Google Scholar]
  • Huang YM, Chou HM, Hsieh TH, Wang JC, Chiou WL. (2006) Cryptic characteristics distinguish diploid and triploid varieties of Pteris fauriei (Pteridaceae). Canadian Journal of Botany 84(2): 261–268. https://doi.org/10.1139/B05-160 [Google Scholar]
  • Kato M, Nakato N, Cheng X, Iwatsuki K. (1992) Cytotaxonomic study of ferns of Yunnan, southwestern China. Journal of Plant Research 105(1): 105–124. https://doi.org/10.1007/BF02489407 [Google Scholar]
  • Kato M, Nakato N. (1999) A cytotaxonomic study of Hainan (S. China) pteridophytes with notes on polyploidy and apogamy of Chinese species. In: Zhang XC, Shing KH. (Eds) Ching memorial volume. China Forestry Publishing House, Beijing, 1−19. [Google Scholar]
  • Kramer KU, Green PS. (1990) Pteridophytes and gymnosperms. In: Kubitzki K. (Ed.) The families and genera of vascular plants (Vol. 1). Springer-Verlag, Berlin, 1–404. https://doi.org/10.1007/978-3-662-02604-5 [Google Scholar]
  • Kuo LY. (2015) Polyploidy and biogeography in genus Deparia and phylogeography in Deparia lancea. PhD Thesis, Taiwan National University, Taipei. [Google Scholar]
  • Kuo LY, Huang YJ, Chang J, Chiou WL, Huang YM. (2017) Evaluating the spore genome sizes of ferns and lycophytes: a flow cytometry approach. New Phytologist 213(4): 1974–1983. https://doi.org/10.1111/nph.14291 [Abstract] [Google Scholar]
  • Li FW, Kuo LY, Huang YM, Chiou WL, Wang CN. (2010) Tissue‐direct PCR, a rapid and extraction‐free method for barcoding of ferns. Molecular Ecology Resources 10(1): 92–95. https://doi.org/10.1111/j.1755-0998.2009.02745.x [Abstract] [Google Scholar]
  • Lin SJ, Kato M, Iwatsuki K. (1990) Sporogenesis, reproductive mode, and cytotaxonomy of some species of Sphenomeris, Lindsaea, and Tapeinidium (Lindsaeaceae). American Fern Journal 80(3): 97–109. https://doi.org/10.2307/1547175 [Google Scholar]
  • Little DP, Barrington DS. (2003) Major evolutionary events in the origin and diversification of the fern genus Polystichum (Dryopteridaceae). American Journal of Botany 90(3): 508–514. https://doi.org/10.3732/ajb.90.3.508 [Abstract] [Google Scholar]
  • Lloyd RM. (1973) Systematics of the genus Ceratopteris (Parkeriaceae), I. Sexual and vegetative reproduction in Hawaiian Ceratopteris thalictroides. American Fern Journal 63(1): 12–18. https://doi.org/10.2307/1546563 [Google Scholar]
  • Lu JM, Cheng X, Wu D, Li DZ. (2006) Chromosome study of the fern genus Cyrtomium (Dryopteridaceae). Botanical Journal of the Linnean Society 150(2): 221–228. https://doi.org/10.1111/j.1095-8339.2006.00462.x [Google Scholar]
  • McKeown M, Sundue M, Barrington D. (2012) Phylogenetic analyses place the Australian monotypic Revwattsia in Dryopteris (Dryopteridaceae). PhytoKeys 14: 43 https://doi.org/10.3897/phytokeys.14.3446 [Europe PMC free article] [Abstract] [Google Scholar]
  • Miller MA, Pfeiffer W, Schwartz T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), 2010, 1–8. IEEE. https://doi.org/10.1109/gce.2010.5676129
  • Moran RC. (1986) The Neotropical fern genus Olfersia. American Fern Journal 76(4): 161–178. https://doi.org/10.2307/1547430 [Google Scholar]
  • Moran RC. (2000) Monograph of the Neotropical species of Lomariopsis (Lomariopsidaceae). Brittonia 52(1): 55–111. https://doi.org/10.2307/2666495 [Google Scholar]
  • Moran RC, Hanks JG, Labiak P, Sundue M. (2010) Perispore morphology of bolbitidoid ferns (Dryopteridaceae) in relation to phylogeny. International Journal of Plant Sciences 171(8): 872–881. https://doi.org/10.1086/655856 [Google Scholar]
  • Moran RC, Prado J, Sundue MA. (2014) Megalastrum (Dryopteridaceae) in Andean South America, Part I. American Fern Journal 104(3): 109–178. http://dx.doi.org/10.1640/0002-8444-104.3.109 [Google Scholar]
  • Moran RC, Labiak PH. (2016) Phylogeny and character evolution of the Neotropical fern genus Stigmatopteris (Dryopteridaceae). Brittonia 68(4): 476–488. https://doi.org/10.1007/s12228-016-9437-1 [Google Scholar]
  • Nadot S, Bittar G, Carter L, Lacroix R, Lejeune B. (1995) A phylogenetic analysis of monocotyledons based on the chloroplast gene rps4, using parsimony and a new numerical phenetics method. Molecular Phylogenetics and Evolution 4(3): 257–282. https://doi.org/10.1006/mpev.1995.1024 [Abstract] [Google Scholar]
  • Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F. (2005) Heterotachy and long-branch attraction in phylogenetics. BMC Evolutionary Biology 5(1): 50 https://doi.org/10.1186/1471-2148-5-50 [Europe PMC free article] [Abstract] [Google Scholar]
  • Pichi Sermolli RE. (1977) Tentamen Pteridophytorum genera in taxonomicum ordinem redigendi. Webbia 31(2): 313–512. https://doi.org/10.1080/00837792.1977.10670077 [Google Scholar]
  • PPG I (2016) A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54(6): 563–603. https://doi.org/10.1111/jse.12229 [Google Scholar]
  • Pryer KM, Smith AR, Hunt JS, Dubuisson JY. (2001) RbcL data reveal two monophyletic groups of filmy ferns (Filicopsida: Hymenophyllaceae). American Journal of Botany 88(6): 1118–1130. https://doi.org/10.2307/2657095 [Abstract] [Google Scholar]
  • Rambaut A, Suchard MA, Xie D, Drummond AJ. (2014) Tracer v1.6. Program distributed by the author. Available at: http://beast.bio.ed.ac.uk/tracer.
  • Ronquist F, Huelsenbeck JP. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 [Abstract] [Google Scholar]
  • Rosenstock E. (1911) Filices novo-guineenses Kingianae. Feddes Repertorium 9: 422–427. https://doi.org/10.1002/fedr.19110092703 [Google Scholar]
  • Roubik DW, Moreno P. (1991) Pollen and spores of Barro Colorado Island [Panama]. Monographs in Systematic Botany from the Missouri Botanical Garden 36. [Google Scholar]
  • Rouhan G, Hanks JG, McClelland D, Moran RC. (2007) Preliminary phylogenetic analysis of the fern genus Lomariopsis (Lomariopsidaceae). Brittonia 59(2): 115–128. https://doi.org/10.1663/0007-196X(2007)59[115:PPAOTF]2.0.CO;2 [Google Scholar]
  • Schuettpelz E, Pryer KM. (2007) Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56(4): 1037–1037. https://doi.org/10.2307/25065903 [Google Scholar]
  • Siddall ME, Whiting MF. (1999) Long‐branch abstractions. Cladistics 15(1): 9–24. https://doi.org/10.1111/j.1096-0031.1999.tb00391.x [Google Scholar]
  • Smith AR, Cranfill RB. (2002) Intrafamilial relationships of the thelypteroid ferns (Thelypteridaceae). American Fern Journal 92(2): 131–149. http://www.jstor.org/stable/1547658 [Google Scholar]
  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG. (2006) A classification for extant ferns. Taxon 55(3): 705–731. https://doi.org/10.2307/25065646 [Google Scholar]
  • Stamatakis A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21): 2688–2690. https://doi.org/10.1093/bioinformatics/btl446 [Abstract] [Google Scholar]
  • Sundue MA, Rothfels CJ. (2014) Stasis and convergence characterize morphological evolution in eupolypod II ferns. Annals of Botany 113: 35–54. https://doi.org/10.1093/aob/mct247 [Europe PMC free article] [Abstract] [Google Scholar]
  • Sundue MA, Parris BS, Ranker TA, Smith AR, Fujimoto EL, Zamora-Crosby D, Morden CW, Chiou WL, Chen CW, Rouhan G, Hirai RY. (2014) Global phylogeny and biogeography of grammitid ferns (Polypodiaceae). Molecular Phylogenetics and Evolution 81: 195–206. http://dx.doi.org/10.1016/j.ympev.2014.08.017 [Abstract] [Google Scholar]
  • Taberlet P, Gielly L, Pautou G, Bouvet J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17(5): 1105–1109. https://doi.org/10.1007/BF00037152 [Abstract] [Google Scholar]
  • Takamiya M, Takaoka C, Ohta N. (1999) Cytological and reproductive studies on Japanese Diplazium (Woodsiaceae; Pteridophyta): apomictic reproduction in Diplazium with evergreen bi-to tripinnate leaves. Journal of Plant Research 112(4): 419–436. https://doi.org/10.1007/PL00013897 [Google Scholar]
  • Tsutsumi C, Kato M. (2006) Evolution of epiphytes in Davalliaceae and related ferns. Botanical Journal of the Linnean Society 151(4): 495–510. https://doi.org/10.1111/j.1095-8339.2006.00535.x [Google Scholar]
  • Tryon AF, Lugardon B. (1991) Spores of the Pteridophyta: surface, wall structure, and diversity based on electron microscope studies. Springer-Verlag, New York, 1–648. https://doi.org/10.1007/978-1-4613-8991-0_1 [Google Scholar]
  • Walker TG. (1985) Cytotaxonomic studies of the ferns of Trinidad 2. The cytology and taxonomic implications. Bulletin of the British Museum (Natural History), Botany series 13(2): 149–249. [Google Scholar]
  • Wang RX, Shao W, Lu SG, Zhou SY, Liang SC. (2011) Cytotaxonomic study of 12 species in the Polypodiaceae from southern China. American Fern Journal 101(4): 307–316. http://dx.doi.org/10.1640/0002-8444-101.4.307 [Google Scholar]

Articles from PhytoKeys are provided here courtesy of Pensoft Publishers

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/18598910
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/18598910

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.3897/phytokeys.78.12040

Supporting
Mentioning
Contrasting
0
12
0

Article citations

Other citations

Data 


Data behind the article

This data has been text mined from the article, or deposited into data resources.

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.