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Abstract

This document presents an outline of common single-dish calibration techniques and key differences be-
tween centimeter-wave and millimeter-wave observatories in naming schemes and measured quantities. It
serves as a conceptual overview of the complete single-dish amplitude calibration procedure for the Event
Horizon Telescope, using the Submillimeter Telescope (SMT) as the model station.

Note: This document is not meant to be used as a general telescope guide or manual from an engineering
perspective. It contains a number of common approximations used at observatories as an attempt to reason
through the methods used and the specific calibration information needed to calibrate VLBI amplitudes from
Event Horizon Telescope observing runs. This document can be used in conjunction with similar calibration
outlines from other stations for procedural comparisons.
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Relevant terminology

Relevant variables introduced in this document (brightness
temperatures approximated with the Rayleigh-Jeans approxi-
mation):

• Chot: Counts measured when looking at the hot load
(vane)

• Ccold: Counts measured when looking at the cold load
(liquid nitrogen)

• Con: Counts measured observing a target

• Csky: Counts measured when looking at blank sky

• Tcold: temperature of the cold load

• Trx: receiver noise temperature

• Tamb: ambient temperature around the observatory, as
measured by a weather station (physical temperature)

• Tsky: temperature of the atmospheric emission (the
brightness temperature of the sky)

• Tcab: physical temperature of the receiver cabin (this
is assumed to be the same as the ambient temperature)

• Tcal: derived temperature to give a correct temperature
scale for the signal band

• Tinject: injected known temperature (of calibrator or
noise diode) in the signal chain

• Tsys: system noise temperature of the system

• T ∗sys: effective system noise temperature (corrected for
atmospheric attenuation)

Efficiency and correction terms:

• rsb: sideband ratio - since the SMT has a sideband-
separating receiver, rsb =

gi
gs
� 1 since no signal

comes from the image band but some leakage can still
be present

• AM: amount of airmass in the line of sight of the
receiver (elevation-dependent)

• τ0: atmospheric opacity at the zenith

• e−τ: atmospheric attenuation factor, which damps the
signal based on atmospheric opacity in the line of
sight τ = τ0 × AM

• el: elevation of the antenna dish for a particular obser-
vation (in degrees)

• g(el): elevation-dependent gain curve correcting
for changing illumination of the main reflector and
ground contributions as the dish moves and tilts to
different elevations

• ηl: forward efficiency representing the fraction of
power received through the forward atmosphere (ac-
counting for rearward losses)

• ηtaper: efficiency loss due to non-uniform illumination
of the aperture plane by the tapered radiation pattern

• ηblock: aperture blockage efficiency due to blocking
of the feed by the sub-reflector (including its support
legs)

• ηspillover: feed spillover efficiency past the main reflec-
tor − it is the ratio of the power intercepted by the
reflective elements to the total power

• ηRuze: surface error efficiency (or Ruze loss) calcu-
lated from Ruze’s formula (Ruze 1952)

• ηA: aperture efficiency approximated for the SMT, a
combination of various efficiencies ( = ηtaper × ηblock ×

ηspillover × ηRuze )

• Ageom: geometric area of the SMT dish

• Aeff : effective area of the SMT dish ( = ηAAgeom )
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1 Introduction to standard single-
dish Tsys calibration techniques

The following is an outline of the different calibration pro-
cedures for cm-wave and mm-wave observatories and the
different quantities they output. The equations provided
here contain various approximations commonly used but are
not exact from an engineering perspective. They are only
meant to serve as guidelines for a quick understanding of
the outputs of the two different techniques.

1.1 The antenna-based system-equivalent flux
densities (SEFDs)

A telescope’s system-equivalent flux density (SEFD) is sim-
ply the noise contribution of the system, given by the system
noise temperature, and all losses and gains, converted to
a flux density scale. The SEFDs can be calculated using
system noise temperature Tsys measurements and all effi-
ciencies and contributions to source attenuation and noise,
and one can determine the sensitivity of the telescope when
compared to other telescopes in the array. The higher a
telescope’s SEFD, the lower its sensitivity. Ultimately, the
flux density of a source is simply the telescope’s SEFD,
which contains all system and telescope parameters and ef-
ficiencies, multiplied by the ratio of signal to noise power
(defined as rS/N) of the source detection. The equation for the
SEFD can be subdivided into three main components, each
with station-based variations for how they are determined
and measured. The three components to the SEFD are:

1. Tsys: the total noise characterization of the system,
given by the system noise temperature

2. eτ
ηl

: the correction terms for attenuation of the source
signal by the atmosphere and rearward losses (ohmic
losses, rearward spillover and scattering) of the tele-
scope

3. G: The antenna gain, including all the loss terms from
the telescope and the conversion from a temperature
scale (K) to a flux density scale (Jansky), given by the
“degrees per flux density unit” factor (DPFU) in K/Jy
and the normalized elevation-dependent gain curve
g(el): G = DPFU × g(el)

This gives the following general equation for a telescope’s

SEFD:

SEFD =
Tsyseτ

ηlG
(1)

The flux density of a source detected with a given ratio of
signal to noise power rS/N is then:

S source = SEFD × rS/N =
rS/N × Tsyseτ

ηlG
(2)

For mm-observatories, which measure the effective system
noise temperature T ∗sys = Tsys

eτ
ηl

directly using the chopper
technique (explained in the next section), the SEFD equa-
tion can be rewritten in only two components, the effective
system noise temperature and the antenna gain:

SEFD =
T ∗sys

G
(3)

For the SMT, the SEFD at zenith is of order 13 000 Jansky.

1.2 The receiver noise temperature

1.2.1 Two-load (hot and cold) calibration

During a two-load calibration (also called cold calibration),
the Y-factor and the receiver noise temperature are mea-
sured using voltage or counts measurements with a hot and
a cold load. In principle the receiver noise temperature can
be estimated from Tsys measurements at very low opacities
(τ � 1) by extrapolating a linear fit of airmass versus Tsys
to zero airmass. However, it is highly recommended to mea-
sure a receiver noise temperature at least once an observing
night, as this yields more accurate Tsys measurements rather
than backtracking in post-processing. The Y-factor is calcu-
lated with the following:

Y =
Chot

Ccold
, (4)

where the numerator is Chot, the counts obtained from the
hot load and the denominator is Ccold, the counts obtained
from the cold load. The Y-factor also enables an easy di-
agnostic of the sensitivity of the receiver. A high Y-factor
means little receiver noise, and thus sensitive observations
(of course what constitutes “high” depends on the type of
receiver and the observing frequency).

Then the receiver noise temperature is determined as fol-
lows:

Trx =
Thot − YTcold

Y − 1
(5)
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Here temperatures are used, where Thot is the temperature
of the hot load (for the SMT this is near room temperature
∼ 290K) and Tcold is the cold load temperature (for the SMT
this is the temperature of liquid nitrogen ∼ 77K).

1.3 The effective system noise temperature

A lot of confusion comes from mixtures of complicated cal-
ibration documents for different types of calibrations. This
section is an attempt to approximately explain two of the
common techniques for Tsys measurements (chopper wheel
common for mm-telescopes, direct for cm-telescopes), what
they output and what they mean for data processing. The
following outlines are modelled for an SMT-like telescope,
thus with a sideband-separating (SSB) receiver.

1.3.1 Clarification of system temperature jargon

We define the system noise temperature as the contributions
by the receiver and the sky to a source measurement (assum-
ing TCMB is negligible), where ηl is the forward efficiency,
accounting for rearward efficiency loss due to ohmic losses,
rear spillover and scattering:

Tsys = Trx + Tsky = Trx + Tatm(1 − ηle−τ) (6)

Before entering the atmosphere, the source signal is defined
as Sig = Tsource. After attenuation by the atmosphere, the
signal becomes Sig= ηle−τTsource, where the exponential is
the atmospheric attenuation factor (τ is the opacity in the
line of sight) and ηl embodies rearward efficiency losses.
Therefore, the ratio of signal to noise power of a telescope
must depend on this received signal (not taking into account
ground and ambient contributions):

rS/N =
ηle−τTsource

Tsys
=
ηlTsource

eτTsys
(7)

We thus define the effective system noise temperature
T ∗sys:

T ∗sys =
eτ

ηl
Tsys = Trx

eτ

ηl
+ Tatm(

eτ

ηl
− 1) (8)

The effective system temperature is the best description
of the sensitivity of a telescope: the system sensitivity
drops rapidly (exponentially) as opacity increases.

1.3.2 Direct (switched noise diode) method

This method is commonly used at cm-observatories, such
as the VLBA. The system noise temperature is obtained us-
ing a known source or a switched noise diode with a known
temperature placed in the signal chain. The equation is the
following, where Csky represents the counts on blank sky,
so only receiver noise and sky contribute, and Con,cal repre-
sents counts on the calibrator (or diode), such that the signal
contains the source, the receiver and the sky. Tinject is the
temperature of the diode or the brightness temperature of
the source (known for common calibrators), which turns the
counts scale to a temperature scale. When the telescope is
pointed at blank sky in the calibration procedure, without
the source signal, the temperature contribution is entirely
noise from the receiver and the atmospheric emission, and
thus is the system noise temperature Tsys:

Toff,cal = Trx + Tsky = Trx + Tatm(1 − ηle−τ) (9)

When the telescope is pointed at the calibrator (or diode) of
a known brightness (or physical) temperature, the source
signal is added to the temperature contribution:

Ton,cal = Trx + Tsky + Tinject (10)

The system temperature is then determined in the following
way:

Tsys =
Csky

Con,cal −Csky
Tinject (11)

=
Toff,cal

Ton,cal − Toff,cal
Tinject

=
(Trx + Tsky)

(Trx + Tsky + Tinject) − (Trx + Tsky)
Tinject

=
(Trx + Tsky)

Tinject
Tinject = Trx + Tsky (12)

Since the brightness temperature of the source observed
(or the diode temperature) is determined outside the atmo-
sphere, the system noise temperature calculated with this
method does not include effects on sensitivity due to atmo-
spheric attenuation (eτ term). This is because the contribu-
tion of the source or diode is added to the signal chain (as
opposed to the chopper technique that blocks everything but
the receiver noise, explained and derived in the next section).
This method does not provide an effective system tempera-
ture directly, only the receiver and sky contributions to the
noise (which cannot be disentangled from each other).
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In order to obtain the effective system temperature, opac-
ity measurements during observations must be obtained.
This is done either by using water vapor radiometers (or
tipping radiometers) or by using the telescope as a tipper
using sky tips. Tipping radiometers are notoriously unreli-
able (although water vapor radiometers perform very well),
and sky tips must be done very often (every 10 min) and
take up valuable observing time. This makes this method
highly cumbersome for frequencies at which the atmosphere
cannot be neglected.

The effective system temperature is thus:

T ∗sys =
eτ

ηl
Tsys, (13)

such that the effective (opacity-corrected) antenna tempera-
ture of a source (where Con is the telescope signal on target)
can be given using ON-OFF measurements as:

T ∗A =
Con −Csky

Csky
T ∗sys =

Ton − Toff

Toff

T ∗sys =
eτ

ηl
TA (14)

1.3.3 Chopper (or single load) calibration

The chopper (or single load) calibration technique is com-
monly used by (sub)mm observatories. The system noise
temperature is obtained by placing an ambient temperature
load Thot that has properties similar to a blackbody in front
of the receiver, blocking everything but the receiver noise.
As long as Tatm ∼ Thot, this method automatically compen-
sates for rapid changes in mean atmospheric absorption.

For calibration of source measurements, we want to obtain
the effective sensitivity of the system, not a comparison be-
tween the receiver and sky contributions to noise. Therefore,
we want to obtain the effective system noise temperature
T ∗sys to calibrate source measurements.

To first order, the chopper method directly measures T ∗sys.
This is obtained via the following equation:

T ∗sys = Thot
Csky

Chot −Csky
= Trx

eτ

ηl
+ Tatm(

eτ

ηl
− 1), (15)

where Csky is the voltage/count signal on blank sky and τ is
the opacity in the line of sight.

How does the chopper technique directly provide T ∗sys?
This is shown simply by investigating the exact output by
the chopper technique. The chopper system temperature
equation is given in telescope counts, where Chot are the

counts measured when the blocker/chopper/vane is in place,
and Csky is our usual blank sky counts. In terms of temper-
atures, the temperature contribution when the blocker is in
place Tblock is defined as:

Tblock = Trx + Thot, (16)

where Thot is the temperature of the hot load itself. The
load completely blocks the sky emission, which changes
the calibration equations from the direct (or diode) calibra-
tion method. As seen in the direct method, the blank sky
contribution is simply the system noise temperature:

Toff = Trx + Tsky = Trx + Tatm(1 − ηle−τ) (17)

We can thus write the chopper equation (eq. 15) in terms of
temperatures:

T ∗sys = Thot
Csky

Chot −Csky
= Thot

Toff

Tblock − Toff

(18)

= Thot
Trx + Tsky

(Trx + Thot) − (Trx + Tsky)
(19)

We assume the hot load is at ambient temperature, and so
Thot = Tamb = Tatm. This gives:

T ∗sys = Thot
Trx + Tsky

(Trx + Thot) − (Trx + Tsky)
(20)

= Tatm
Trx + Tsky

(Trx + Tatm) − (Trx + Tsky)
(21)

As we have defined Tsky = Tatm(1 − ηle−τ), we can simplify:

T ∗sys = Tatm
Trx + Tsky

(Trx + Tatm) − (Trx + Tsky)
(22)

= Tatm
Trx + Tatm(1 − ηle−τ)

(Trx + Tatm) − (Trx + Tatm(1 − ηle−τ))
(23)

= Tatm
Trx + Tatm(1 − ηle−τ)

Tatm − Tatm + ηle−τTatm
(24)

= Tatm
Trx + Tatm(1 − ηle−τ)

ηle−τTatm
(25)

=
Trx + Tatm(1 − ηle−τ)

ηle−τ
(26)

Finally we obtain:

T ∗sys = Thot
Csky

Chot −Csky
=

Trx + Tatm(1 − ηle−τ)
e−τ

(27)

= Trx
eτ

ηl
+ Tatm(

eτ

ηl
− 1) =

eτ

ηl
(Trx + Tsky) (28)
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If we compare the chopper effective system noise tempera-
ture to the system temperature from the direct method:

T ∗sys =
Tsys

ηle−τ
(29)

To first order, the chopper calibration (or alternatively
named the single-load calibration) corrects for atmospheric
attenuation of an observed source and rearward losses of the
telescope by directly measuring T ∗sys. It is also worth noting
that during VLBI observing, the quarter wave-plate is added
to the signal chain to convert linear to circular polarization:
any losses associated with the addition of the wave-plate
will be automatically calibrated and included in the T ∗sys
measurement from the chopper technique in the same way
as the atmospheric and rearward losses.

1.4 Getting a flux density

We have defined the antenna temperature (modified for mea-
sured quantities at a telescope) as:

T ∗A =
Con −Csky

Csky
T ∗sys (30)

To get a flux density, we must correct for the aperture effi-
ciency ηA (determined through different loss terms or planet
flux measurements) and gain curve g(el) as a function of ele-
vation of the telescope and convert from a temperature scale
to a flux density scale (where k is the Boltzmann constant),
dependent on the geometric area of the dish Ageom:

S =
T ∗A

ηAg(el)
2k

Ageom
(31)

The equation above is then the final expression to obtain a
flux density for a given source. If we expand using all the
terms we’ve discussed, we get the following:

S =
T ∗A

ηAg(el)
2k

Ageom
=

1
ηAg(el)

Con −Csky

Csky
T ∗sys

2k
Ageom

(32)

=
1

ηAg(el)
Con −Csky

Csky

Tsys

ηle−τ
2k

Ageom
(33)

=
Ton − Toff

Toff

Tsys

ηAg(el)ηle−τ
2k

Ageom
(34)

Now the flux density is rewritten also in terms of a system
noise temperature determined with the direct method.

We can subdivide the flux density equation into three major
parts:

1. The ratio of signal to noise power of the observed
source as measured by the telescope (thus attenuated
by the atmosphere):

rS/N = Ton−Toff

Toff

2. The total noise characterization of the system, includ-
ing the correction term for atmospheric absorption,
given by the effective system noise temperature:
T ∗sys = eτ

ηl
Tsys

3. The antenna gain G, including all the loss terms from
the telescope and the conversion from a temperature
scale (K) to a flux density scale (Jansky), given by the
“degrees per flux density unit” factor (DPFU) and the
gain curve:

DPFU =
ηAAgeom

2k giving G = DPFU × g(el)

We can thus simplify the flux density equation using the
three main terms actually measured by the SMT:

S =
rS/N × Tsyseτ

ηlG
=

rS/N × T ∗sys

G
(35)

1.4.1 Determining a gain curve

As previously mentioned, the characterization of the an-
tenna gain G is subdivided into two quantities that must
be separately provided for the calculation of the SEFDs:
the gain curve g(el) and the DPFU (explained in the next
section). The characterization of the telescope’s geometric
(opacity-free) gain curve is an important part of the flux
density calibration, and is particularly crucial for the EHT a
priori amplitude calibration due to the low-elevation obser-
vations of some science targets (including Sgr A*) for the
northern hemisphere stations.

Telescopes do not have perfect surfaces, and must thus suf-
fer some losses of signal due to distorted illumination of the
main reflector as they slowly move to different elevations.
This large-scale surface deformation affects the received
signal and is not taken into account in the measurements
leading to the efficiency and DPFU characterization. These
losses can be determined by tracking sources through a
wide range of elevations, and thus measure an elevation-
dependent gain curve for the telescope, where the maximum
(g = 1) is set where the telescope is expected to be most
efficient. The source measurements used to obtain a gain
curve must of course be calibrated for all other effects, in-
cluding telescope efficiency (through the DPFU) and the
atmospheric attenuation of the signal (through T ∗sys). At the

7



SMT, this is done by observing two sources (usually K3-50
and W75N, a planetary nebula and a star-forming region,
due to their similar up-time plots and wide range of eleva-
tion) contiguously, tracked as they increase and decrease in
elevation from the tree-line to transit and vice-versa.

The gain curve is estimated by fitting a polynomial (usually
second-order for standard radio-dishes). If more than one
source is used, this is done once the flux density measure-
ments are normalized around a plateau (to a relative gain
scale). This normalized gain curve must be written in the
form of a second order polynomial (in the standard VLBA
format for ANTAB), where ‘el’ is the elevation in degrees:

g(el) = a2(el)2 + a1(el) + a0 (36)

Each parameter must not be rounded to the uncertainties of
the fit but instead many significant figures should be pro-
vided. Uncertainties for each parameter as outputted by the
polynomial fit must also be provided, along with the full
covariance matrix of the fit parameters. This will help deter-
mine an error estimate for the gain curve and propagate to
the error estimation of the final SEFDs. Additionally, a plot
of the relative gains (normalized fluxes) versus elevation
and the fitted polynomial should be provided if possible, as
shown in Fig. 1.

Figure 1: Example of a normalized geometric gain curve plot.

1.4.2 Determining the DPFU

The degrees per flux density unit (or DPFU) is the char-
acterization of the temperature to flux density scale of a
telescope. The DPFU is used to calibrate the telescope

measurements to a flux density scale and is obtained us-
ing known flux calibrators, particularly planets, or by boot-
strapping near-in-time observations of non-planet sources
from telescopes with well-defined and accurate flux density
measurements. This enables to check the flux density scale
obtained by the telescope by directly measuring an aperture
efficiency.

The DPFU is estimated with the following equation, where
k = 1.38 × 10−23J/K = 1.38 × 103 Jy/K:

DPFU =
ηAAgeom

2k
[K/Jy] (37)

The geometric area Ageom is simply the area of the dish,
where D is the dish diameter:

Ageom =
πD2

4
(38)

The aperture efficiency is the most difficult part of the es-
timation of the DPFU. It represents the efficiency of the
telescope compared to a telescope with a perfect collecting
area (uniform illumination, no blockage or surface errors)
and it is determined using observations of known calibrator
sources, usually planets. The observed planet fluxes are then
compared to expected planet brightness temperatures from
a planet simulation software for a perfect telescope at the
given frequency and beam width.

The aperture efficiency ηA is found using the following
equation, where T ∗A is the observed effective antenna temper-
ature, g(el) is the telescope gain curve, k is the Boltzmann
constant, Ageom is the geometric area of the telescope and
S beam,sim is the expected flux density of the planet in the
telescope beam from the simulation program used:

ηA =
2k

Ageom

T ∗A
g(el) S beam,sim

(39)

Or similarly the DPFU is directly given by:

DPFU =
T ∗A

g(el) S beam,sim
(40)

For extended sources, it is important to calibrate the flux
density observed in the beam because some emission might
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not be picked up by the telescope. The aperture efficiency
is only concerned by the main beam flux density, and so the
following equation is used to calibrate the simulated flux
density in the beam for an extended source, where S sim is
the expected total flux density of the source:

S beam,sim = S sim × K (41)

Here K is the following, where θmb is the half-power beam-
width in arcseconds of the primary lobe of the telescope
beam pattern (telescope beam diameter) and θs is the diam-
eter in arcseconds of the observed extended source, usually
given by the simulation program:

x =
θs

θmb

√
ln(2) (42)

K =
1 − e−x2

x2 (43)

This K factor is the ratio of the beam-weighted source solid
angle and the solid angle of the source on the sky. It is in
fact the integral of the antenna pattern of the telescope (ap-
proximated as a normalized gaussian) P(θ, φ) = e− ln 2(2θ/θmb)2

and a disklike source with a uniform brightness distribution
Ψ(θ, φ) = 1 over the size of the extended source. This serves
very well for our a priori calibration purposes1.

K =
Ωsum

Ωs
=

1
Ωs

∫
source

P(θ − θ′, φ − φ′)Ψ(θ′, φ′)dΩ′ (44)

K =
1

Ωs

∫
source

P(θ − θ′, φ − φ′)dΩ′ (45)

To minimize the number of approximations used by dif-
ferent planet simulation softwares, the expected total flux
density can be estimated by:

S sim =
2h
c2

ν3Ωs

e
hν

kTB − 1
, (46)

where ν is the observing frequency in Hz, h is the Planck
constant, c is the speed of light (in m/s), TB is the mean
brightness temperature for the planet (assuming a disk of
uniform temperature) from the simulation program, and
Ωs is the solid angle of the source on the sky in steradi-
ans. Since we are dealing with very small objects, the latter

can be approximated using the small angle approximation,
where θs is the apparent diameter in radians of the planet
observed:

Ωs '
πθ2

s

4
(47)

Of course this process heavily depends on assumptions
made in the planet calibration, such as accurate predicted
planet brightness temperatures from available software, tele-
scope beam width used, stable weather conditions and a
well-calibrated instrument in terms of pointing and focus.

An average value for the aperture efficiency can be esti-
mated from the individual measurements during a partic-
ular observing run, but it is preferable to keep the time-
dependence of the variable if a telescope’s efficiency is
expected to vary with temperature and sunlight, causing
systematic differences in the telescope performance between
day-time and night-time observing.

Even more preferable, a plot of long-term trends of the aper-
ture efficiency, using additional measurements outside EHT
observing or even from previous years, would greatly help
understand the time-dependent nature of the aperture ef-
ficiency of a particular telescope. As the scatter between
individual measurements can be caused by various factors,
such as unstable weather or changing pointing/focus ac-
curacy, it is not always representative of the true aperture
efficiency change in the observations. A trend exhibited in
the long-term as a function of time would be more reliable
to estimate an aperture efficiency for a particular scan. Such
a plot is shown in Fig. 2, as an example from the JCMT.

Figure 2: Example of long-term trend for the time-dependent aper-
ture efficiency ηA.

1More detail on this method in Calibration of spectral line data at the IRAM 30m radio telescope by C. Kramer.
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If a UT time-dependence is found for a particular station,
a fit for this dependence must be provided, as well as the
covariance matrix for the fit parameters, for error analysis
of the a priori deliverables. A fit to the UT time-dependence
would be the most robust against various observing effects
from day to day and session to session and should be very
stable over the years, provided no major work has been
done on the telescope. For telescopes with no visible time-
dependence, a mean aperture efficiency (or DPFU) will
suffice, with the appropriate error estimate.

We can also write the aperture efficiency as the combina-
tion of various individual forward efficiencies, each closely
approximated for the telescope via various measurements:

ηA = ηtaper × ηblock × ηspillover × ηRuze (48)

Each efficiency term corresponds to an aspect of the tele-
scope feed 2:

• ηtaper is the efficiency loss due to non-uniform illumi-
nation of the aperture plane by the tapered radiation
pattern/feed function (also formally known as the
illumination efficiency). It is the most important con-
tributor to the aperture efficiency.

• ηblock is the aperture blockage efficiency due to block-
ing of the feed by the sub-reflector (including its sup-
port legs)

• ηspillover is the feed spillover efficiency past the main
reflector - it is the ratio of the power intercepted by
the reflective elements beyond the edge of the sub-
reflector and primary to the total power. It is due
partly to cold sky and partly to a warm background,
and is elevation-dependent.

• ηRuze is the surface error efficiency (also called “Ruze
loss” or scattering efficiency) calculated from Ruze’s
formula (Ruze 1952). It is due to small scale, ran-
domly distributed deviations of the reflector from
the perfect paraboloidal shape. Ruze’s formula is
presented below, where σ is the surface rms (account-
ing for small-scale deviations from a perfect surface
through dish holography) and λ is the observing wave-
length:

ηRuze(λ) = e
−16π2σ2

λ2 (49)

In summary, the aperture efficiency accounts for all forward
losses of the telescope, which come from different contribu-
tions. As previously mentioned in section 1.3.3, the chopper
technique itself account for the rearward losses of the tele-
scope automatically. These losses are also outlined in the
following section.

1.4.3 Other efficiencies

The main beam efficiency of a telescope is the fraction of
observed power in the main lobe of the telescope beam pat-
tern. Let the beam solid angle (the full antenna pattern) be
ΩA and the main beam solid angle (the main lobe) be Ωmb.
The main beam efficiency is written as the ratio between the
total beam and main beam solid angles:

ηmb =
Ωmb

ΩA
(50)

It is estimated with the following, where Tmb is the main
beam temperature of a source that fills the main beam, as
estimated from the simulation program:

ηmb =
S beam,sim

Tmb

ηAAgeom

2k
(51)

It should be noted that the main beam efficiency is not
the same as the aperture efficiency and should not be
used to determine telescope DPFUs and SEFDs.

The forward efficiency ηl represents the fraction of power
received through the forward atmosphere (in other terms it
is the coupling of the receiver to the cold sky) and is written
as the ratio between the solid angle over the forward hemi-
sphere of the telescope and the beam solid angle and it is
typically close to unity (but drops with frequency due to loss
of receiver sensitivity):

ηl =
Ω2π

ΩA
(52)

The only way to estimate it is via sky-dips, by measuring
the atmospheric emission with elevation:3

TA(el) = ηlTatm(1 − e−τ/ sin(El)) + (1 − ηl)Tamb (53)

It is important to note that sky-dips measure both the atmo-
spheric opacity and the forward efficiency so they need to be
disentangled. Fortunately, this is not an issue for the EHT
because the chopper technique implicitly corrects for the
forward efficiency ηl (see Section 1.3.3).

2More detail on the measurement of the different losses, see Baars, J., The paraboloidal reflector antenna in radio astronomy, Springer, 2007.
3Overview in: Kramer, C., Millimeter Calibration, presentation at IRAM Summer School 2013, IRAM, Granada, Spain.
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2 Miscellaneous explanations

2.1 VLBI and the Event Horizon Telescope
array

2.1.1 Determining the antenna-based SEFD for VLBI

The SEFD needed for calibration of single-dish on-off obser-
vations and that for VLBI are identical. The equation for the
antenna-based SEFD for VLBI observations is thus:

SEFD =
T ∗sys

G
=

T ∗sys

DPFU × g(el)
(54)

It is important to note that the SEFD contains corrections
for system noise, atmospheric absorption, antenna gain
terms and temperature-to-Jansky conversion.

2.1.2 A brief overview of a priori amplitude calibration

For VLBI observations, there are very few suitable calibra-
tors that do not become resolved on some baselines, thus we
cannot use the primary calibrator scaling to calibrate VLBI
amplitudes. An alternative approach is to calibrate the VLBI
amplitudes using the system temperatures and collecting
areas of the individual antennas. The visibility amplitudes
can be calibrated in units of flux density by multiplying the
normalized visibility amplitudes by the geometric mean of
the SEFDs of the two antennas concerned (TMS Section
10.1.). On a baseline between two telescopes, for example
the SMT and the LMT, which both use the chopper method,
the amplitude calibration for the correlated source signal
rcorr,SMT−LMT (compensated for digitization and sampling
losses) on that baseline is given by:

S SMT−LMT =
√

SEFDSMT × SEFDLMTrcorr,SMT−LMT, (55)

where SEFDSMT and SEFDLMT are determined as shown
above and S SMT−LMT is then the source signal in Jansky on
that baseline.

Since the SEFDs for the telescopes are expected to include
the effective system noise temperature, which corresponds

to a signal plane above the atmosphere, then the result-
ing visibility amplitudes will be corrected for atmospheric
losses.

2.1.3 Double-sideband (DSB) receivers

It is worth noting that the equations presented in the previ-
ous sections for amplitude calibration are modeled after the
SMT, which has a sideband-separating receiver. However,
a few stations in the Event Horizon Telescope array have
double-sideband (DSB) receivers, which lead to some mod-
ifications of the equations for amplitude calibration. The
most relevant difference between SSB and DSB receiver is
the handling of measured signals. For an SSB receiver, all
the measured signal comes from only one sideband, but for
a DSB receiver it comes from two sidebands folded together
into one single larger band, usually used for spectral-line
observing. However, for continuum VLBI with the EHT,
only one sideband of the DSB receiver systems is used as
the signal sideband and gets correlated, but the rest of the
telescope continues to operate as a DSB system. Therefore,
the sensitivity of the measurements during EHT observing
(through one sideband) is about a factor of two lower than
the normal operation of the telescope as a perfect DSB sys-
tem. This rescaling of the telescope sensitivity from two
sidebands to one is done by correcting T ∗sys.

For a measured effective system temperature from a perfect
DSB system T ∗sys,DSB, the actual effective system tempera-
ture for VLBI observing with only one sideband is:

T ∗sys = 2T ∗sys,DSB (56)

For EHT observing we use half the number of sidebands,
thus the telescope sensitivity must drop by a factor of two,
leading to the effective system temperature increasing by
the same factor. However, if the telescope does not have a
perfect DSB system but one sideband has more gain than
the other, then the equation becomes, more generally:

T ∗sys = (1 + rsb)T ∗sys,DSB, (57)

where the sideband ratio (rsb) is the ratio of source signal
power in the remaining sideband to the signal power in the
sideband of interest (the sideband to be correlated). For a
perfect DSB system, the gains of each sideband are equal,
giving rsb = 1, which gives back Eq. 56. For a perfect SSB
system, where all signal is in one sideband, rsb = 0 and this
gives back simply T ∗sys needed for the EHT.
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Once this correction is applied to T ∗sys, the rest of the ampli-
tude calibration process remains the same. For planet scans
to determine the telescope’s DPFU, the signal is collected
by both sidebands in a DSB system, thus the effective an-
tenna temperature is usually measured in DSB mode. This
is sufficient to reflect the conversion from Kelvin to Jan-
sky within the aperture efficiency and DPFU estimation. It
should be noted that the correction from a DSB system to
an SSB system for VLBI should only be done on T ∗sys, oth-
erwise the resulting SEFDs would be double-corrected for a
DSB system.

2.2 Telescopes not using the chopper tech-
nique

As explained above, the result for telescopes like the SMT
and the LMT, which both use the chopper (or single-load)
technique, is very clean and simple. Now what happens
when there is a telescope in the array that does not use
the chopper technique but instead uses the direct (or noise
diode) method?4

In that case, on baselines with telescopes with the chop-
per method, there will be inconsistencies in the amplitude
calibration if the same corrections are applied in post-
processing to both stations on that particular baseline. This
is precisely because the chopper technique gives T ∗sys and
the direct method only gives Tsys.

Fortunately, as explained in the previous section, the rela-
tionship between the two is well-understood and T ∗sys can
easily be determined from the direct method using opacity
measurements. If the telescope has a tipping radiometer or
water vapor radiometer nearby measuring opacities, this can
give a fairly good estimate for T ∗sys = eτTsys.

However, some aspects of radiometers hinder this approach:

• The radiometer does not always point in the same di-
rection as the telescope, thus under a varying or partly
cloudy sky the opacities from the radiometer are not
entirely accurate to the observations.

• The radiometer can have something blocking and cor-
rupting the measurements (as on Mt Graham due to
the LBT)

• The radiometer does not always measure an opacity

at the observing frequency but instead is converted
(sometimes not so accurately) from a different fre-
quency

Another possible solution is to use the telescope itself as
a tipper: using the dish to observe blank sky through a big
elevation range in the direction of observing to determine
the relationship between elevation and sky temperature and
get an estimate of the zenith opacity.

This tipping method solves the radiometer issues of get-
ting an opacity in the direction of observing and at the right
observing frequency. However, these tipping scans are re-
quired very frequently, every 10 minutes or so, and take up
valuable observing time just to get accurate opacities.

An alternative is then to obtain opacities using approxima-
tions in post-processing. The system noise temperature, as
measured in the direct method, is defined as seen previously.
For τ0 � 1, we can approximate:

Tsys ≈ Trx + Tatm(1 − e−τ) ≈ Trx + Tatm × τ0 × AM (58)

By fitting a least-squares (or as it is done for the GMVA,
a linear fit to the lower envelope) of Tsys as a function of
airmass, the extrapolation of the fit will give an approxima-
tion for the receiver noise temperature Trx. If the telescope
frequently does a dual-load (cold cal) calibration to refresh
values for the receiver temperature, these values are usually
more accurate to use.

With this linear relationship (or measured Trx) and every
variable but the sky opacity known, measured or approxi-
mated by the telescope, we can get the sky opacity at the
zenith and thus correct the system noise temperature for the
atmospheric attenuation:

τ0 = −
1

AM
ln

(
1 −

Tsys − Trx

Tatm

)
(59)

2.3 Tsys or T ∗sys?

A crucial part of the amplitude calibration process is to
determine which variables are actually provided by each
telescope in the context of the entire EHT array. Are all

4As far as the EHT is concerned, there are no stations in the array at this time without the chopper technique. However, this information could be
potentially useful for the a priori calibration of GMVA or HSA observations related to EHT, which are a mixture of mm- and cm-observatories.
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telescopes providing Tsys like cm-observatories do? Or are
some telescopes providing in fact T ∗sys but labeling it as Tsys
(as is commonly done by mm-observatories)? Discrepan-
cies in notation and a heavy background knowledge in the
context of cm-observatories can cause misunderstandings
of the calibration information provided by the telescopes.
However, there is a nice way to do a quick check in post-
processing5.

In order to visually understand the difference between the
two variables, simulated measurements of system noise tem-
peratures for the SMT are presented. Using the standard
chopper equation, the calibration temperature was approxi-
mated to Tcal = Tamb = 280K, the receiver noise temperature
was set to Trx = 60K, and we have used a constant zenith
opacity of τ0 = 0.2, common for the SMT, for consistency.
Figure 3 shows the effective system noise temperature T ∗sys
using the chopper technique equation and the direct method
system noise temperature Tsys ≈ e−τT ∗sys as a function of air-
mass. It is clear that both temperatures indeed do vary with
airmass, but T ∗sys is a lot more sensitive because in addition
it corrects for the increasing attenuation of a signal from
outside the atmosphere, automatically determined with the
chopper technique.

It is a misconception to assume that because Tsys does not
contain that term, it does not vary with airmass. Tsys is in-
herently dependent on airmass because the sky brightness
temperature Tsky, representing atmospheric noise, increases
with airmass as the telescope looks through a larger layer
of atmosphere. This effect is also present in T ∗sys, which, in
addition, corrects for the increasing signal attenuation that is
also elevation (airmass) dependent.

In the previous section, we introduced a useful tool to tell
the two system noise temperatures apart. For the case of
Tsys, as shown by eq. 59, it is possible to untangle a zenith
opacity from Tsys and Trx measurements. In the case of T ∗sys,
because the opacity relationship is much more complicated,
it would not be valid. If we were to apply eq. 59 using T ∗sys
instead of Tsys, the opacities at zenith obtained would be
highly inaccurate when compared to, for example, radiome-
ter measurements during the same observing window.

This reasoning was thus applied to the SMT to see if what
was previously called “Tsys” was really Tsys. For example,
we can take the system noise temperatures and receiver tem-
perature measured during the gain curve measurements for
2017. These were measured in the lapse of a few hours, thus
minimizing opacity fluctuations due to changing weather.

Figure 3: Simulated system temperatures from the chopper and
direct method calibration techniques show divergence as a function
of airmass.

Figure 4: Zenith opacities obtained by assuming the telescope pro-
vides Tsys are much larger than what is actually measured by the
SMT tipper.

We use the opacity equation:

τ0 = −
1

AM
ln

(
1 −

Tsys − Trx

Tatm

)
(60)

Recall that at this point, what is plugged in as Tsys is what is
measured by the chopper technique (in fact it is T ∗sys but this
was still unknown).

The zenith opacities obtained from that equation were then
compared to the measured zenith opacities by the tipping
radiometer on the telescope scan-by-scan. These results
are presented in Fig.4. It is clear that the zenith opacities
obtained from “Tsys” are completely different, incredibly
high and inconsistent with the tipper measurements. This
is of course because “Tsys” is in fact T ∗sys, which diverges
and is increasingly larger than Tsys as a function of airmass.
Thus the zenith opacity equation does not work for what
is outputted by the chopper technique at the SMT, and this
output is definitely not simply Tsys but something much

5This check only works if the telescopes provide an elevation for each “Tsys”, or alternatively these can be extracted from the VLBI Monitor database
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more sensitive to opacity: T ∗sys. For a telescope that is gen-
uinely providing Tsys, the opacity equation would give re-
sults much more in-line with the measured opacities from its
tipper/radiometer.
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