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Context: Conditions of Success for Data Assimilation

261K

1) Accurate simulation of expected observations
2) Non-trivial information from observations
3) Proper statistical description of unbiased errors
4) Usability of mismatch to correct relevant state variables
5) Propagability of the information via error relationships
6) Usefulness of the added information for forecasting
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Context: Conditions of Success for Data Assimilation

?

1) Accurate simulation of expected observations
2) Non-trivial information from observations
3) Proper statistical description of unbiased errors
4) Usability of mismatch to correct relevant state variables
5) Propagability of the information via error relationships
6) Usefulness of the added information for forecasting
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Rationale for focus:

A) Assimilating satellite precipitation and cloud observations for NWP is more
than simply obtaining an analysis for cloud and precipitation fields;

B) Clouds and precipitation have properties that hinder the effectiveness of
many data assimilation approaches.

Focus of this Talk and Rationale

1) Accurate simulation of expected observations
2) Non-trivial information from observations
3) Proper statistical description of unbiased errors
4) Usability of mismatch to correct relevant state variables
5) Propagability of the information via error relationships
6) Usefulness of the added information for forecasting

Obvious 
satellite-
specific 
issues

Focus of 
this talk



Why Worry About Information Propagation and Usefulness?

5) Propagability of the information via error relationships
6) Usefulness of the added information for forecasting

Thesis #1: For reasons of remote sensing and atmospheric instabilities, the need 
to propagate information below cloud tops is more pressing;

Thesis #2: Cloud and precipitation fields have large areas of zero values, smaller-
scale structures, and considerable errors, all reducing our ability to propagate 
information using traditional assimilation approaches;

Thesis #3: Knowing precipitation fields better has small forecasting value.

→ To improve the quality and forecasting use of analyses, I believe these issues 
must be explicitly confronted.
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Assimilation, Remote Sensing, and Clouds

(215 K) (270 K)

Animation of IR hyperspectral imagery
going down on the edge of a CO2 absorption bandClear area:

Remote-sensed 
information is 
available down 
to the surface

Cloudy area:
Remote-sensed 
information is 
limited below 
cloud top

Clouds are largely 
opaque at infrared 
wavelengths and scatter 
strongly visible and high-
frequency microwaves.

→ Available information 
for assimilation is 
considerably reduced 
below thick clouds.



Cloudy Areas, Instabilities, and Forecasting 

Clouds are generally in updraft areas, 
often triggered by atmospheric 
instabilities.

Unstable regions are also where initial 
condition errors will grow most rapidly.

→ Information is needed most acutely 
where it is most difficult to obtain by 
remote sensing.

→ Greater necessity to propagate 
the information from the sides and 
from above.

POORLY-CONSTRAINED 
DYNAMICALLY-ACTIVE AREA
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https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA12198


The Unusual Structure of Clouds and Precipitation

Albedo at visible/NIR wavelengths

Large 
areas of 
zeros

Much 
small-
scale 
structure

Compared to more usual 
fields (e.g., pressure), 
clouds and especially 
precipitation have:

1) Large areas of zeros, 
much of which is already in 
the background 

→ No mismatch between 
background and 
observations

→ No innovation from 
these areas.

Caveat: However, as seen two slides before, information from IR emission bands 
around clouds more than compensate the lack of innovation from cloud-free areas. 
This unexpected help does not occur around precipitating areas.
→ Personal belief to verify: Regions under clouds and without precipitation are the 
hardest to innovate by satellite-based remote sensing. 
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The Unusual Structure of Clouds and Precipitation

Large 
areas of 
zeros

Much 
small-
scale 
structure

Albedo at visible/NIR wavelengths with radar reflectivity overlaid

Caveat: However, as seen two slides before, information from IR emission bands 
around clouds more than compensate the lack of innovation from cloud-free areas. 
This unexpected help does not occur around precipitating areas.
→ Personal belief to verify: Regions under clouds and without precipitation are the 
hardest to innovate by satellite-based remote sensing. 

Compared to more usual 
fields (e.g., pressure), 
clouds and especially 
precipitation have:

1) Large areas of zeros, 
much of which is already in 
the background 

→ No mismatch between 
background and 
observations

→ No innovation from 
these areas.



Illustration in the 
context of convective-
scale radar data 
assimilation:

Consider a large 
tornadic supercell 
storm we aim to warn 
for.

Suppose we had tried 
to forecast this 
tornadic supercell 
storm an hour before.

Moore (OK) 2013 tornado event, 20 May 2013

Limited Areas of Innovation: Example of a Consequence
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Illustration in the 
context of convective-
scale radar data 
assimilation:

Let us first replace the 
storm echo by a 
cartoon…
(courtesy of Markowski and 
Richardson 2010’s book)

Moore (OK) 2013 tornado event, 20 May 2013
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Limited Areas of Innovation: Example of a Consequence
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Illustration in the 
context of convective-
scale radar data 
assimilation:

Let us first replace the 
storm echo by a 
cartoon, and then go 
back in time one hour.

Moore (OK) 2013 tornado event, 20 May 2013
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Q: What areas must be 
better constrained to 
improve the 1-hr 
forecast for that 
storm? 

Limited Areas of Innovation: Example of a Consequence
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Moore (OK) 2013 tornado event, 20 May 2013
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Limited Areas of Innovation: Example of a Consequence

A: Many with no 
constraints besides 
“no precipitation”, an 
information largely 
known already by the 
background.

→ To correct state 
variables in those areas, 
innovation must come 
via relationships with 
errors from “distant” 
echoes
(>>10  grid-points away).
In passing, this entire region is 
covered by high clouds.
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Contrast in structure between fields of pressure and radar echoes of precipitation

The Unusual Structure of Clouds and Precipitation

Compared to more usual 
fields (e.g., pressure), 
clouds and especially 
precipitation have:

2) Considerable small-scale 
structure and larger 
background (and 
simulation) errors;

Smooth 
pressure 
fields

Much 
small-
scale 
structure 
in rain

Log-scale; 
ΔdBZ(5 dB) ≈ ×2 rain



The Unusual Structure of Clouds and Precipitation…

Attempt to contrast the structure of dynamical and thermodynamic fields (left) with that of precipitation (right). 
Beware of the different scales plotted.

Fabry (1996), JGR

Frequency (s-1)

b) Power spectrum of precipitation rate

Compared to more usual fields (e.g., pressure), clouds and especially precipitation have:
2) Considerable small-scale structure and larger background (and simulation) errors;
[Multi-slide explanation in progress…]

Fabry and Meunier 
(2020), MWR



The Unusual Structure of Clouds and Precipitation…

Attempt to contrast the structure of dynamical and thermodynamic fields (left) with that of precipitation (right). 

Compared to more usual fields (e.g., pressure), clouds and especially precipitation have:
2) Considerable small-scale structure and larger background (and simulation) errors;
[Multi-slide explanation in progress…]

Fabry and Meunier 
(2020), MWR

(104 km)

(s-1)

Power spectrum of precipitation rate 
with a scale identical to the left image



… And the High Uncertainty of Small-Scale Patterns

Analyses of different weather centers largely disagree for most atmospheric properties for 
scales below 500 km, where much of the variability in precipitation and clouds resides.

→ Cloud and precipitation errors A) are comparatively large, and B) have shorter auto-
correlation and cross-correlation distances than other errors.

Fabry and Meunier 
(2020), MWR



… And the High Uncertainty of Small-Scale Patterns

Compared to more usual fields (e.g., pressure), clouds and especially precipitation have:
2) Considerable small-scale structure and larger background (and simulation) errors;

→ Errors do not covary (linearly) well with errors in other fields within and around clouds 
and precipitation → Information propagation is reduced just when it is most needed.

Fabry and Meunier 
(2020), MWR



Large Errors and the Breakdown of Error Covariances: An Example

Scenario: Assimilation of precipitation given an error in the timing of convective storms 

Situation 1:

Stronger 
precipitation 
= Stronger 
and warmer 
updraft

Situation 2:

Stronger 
precipitation 
= Stronger 
and cooler 
downdraft

When 
background 
errors are 
large, 
scenarios 
like these 
are not 
uncommon.



What Happens to the Added Innovation?

Thought experiment (1): 

Precipitation is added to 
the analysis; nothing 
else is changed. What 
changes occur in the 
forecast? 

Little: Rain will fall out, 
without significantly 
affecting other fields.

Modifying precipitation
(without other changes) 
has the littlest value for 
forecasting, even if it 
may be the most 
important to forecast.

Adapted from Fabry and Meunier (2020), MWR



What Happens to the Added Innovation?

Thought experiment (2):

Modifying precipitation 
has the littlest value for 
forecasting.

How about clouds?

Modifying clouds has 
more impacts, primarily 
thanks to the clouds’ 
forcing on temperature, 
the root of the 
thermodynamics cycle, 
but only if they can be 
properly maintained.

Adapted from Fabry and Meunier (2020), MWR



Assimilation and the Meteorology of Clouds and Precipitation

Clouds and 
precipitation are the 
end products of 
interacting and often 
threshold-triggered 
processes driven by 
other fields, usually in 
the context of the 
release of an 
instability.

Relating errors in 
clouds and 
precipitation to those 
in other fields is hence 
generally difficult. Adapted from Fabry and Meunier (2020), MWR



Time to Reflect…

The assimilation of cloud and precipitation information 
must not only fix the mass of condensates, but also 
(principally?) other errors (u, Φ, T, e). However, clouds 
and precipitation both obscure the information 
gathering and complicate the retrieval of information 
concerning other key properties.

Despite these problems, much of the error reduction in 
analyses come from satellite data. Imagine what could 
be achieved if we faced the challenges posed and more 
cleverly took advantage of the opportunities offered by 
cloud and precipitation information.

Image from The Independent

https://www.independent.co.uk/news/science/is-the-glass-half-full-or-half-empty-science-knows-your-answer-a6676741.html


Courtesy: Jason Milbrandt

Suggestion: Set Aside the Small Scales; Focus on Larger Scales

Whereas the small-scale patterns of clouds and precipitation are difficult to 
model accurately in terms of 1) process, 2) observation simulation, 3) error 
estimations (background, measurements, and especially their simulation);

Whereas the small-scale patterns are poorly known, and their errors will 
grow quickly (in the context of multi-day forecasts) even if we could 
characterize them correctly;

Whereas the considerable errors of small-scale cloud and precipitation
patterns are difficult to associate with the errors in other fields that 
created them;

Whereas the process of predictability loss is 1) growth of small-scale errors, 
2) migration of errors to synoptic scales, followed by 3) growth of large-
scale errors, and assimilation starts somewhere between steps 2 and 3;

+
CRTM,
RTTOV, 

+ 
R(H(x)) 

+ …

It is proposed that our efforts should at first focus on using satellite data to reduce larger-scale errors.
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The Case to Set Aside the Small Scales, Focus on Larger Scales

Larger-scale patterns of clouds and precipitation:
• Are easier to model accurately;
• Have easier-to-characterize errors;
• Have errors whose relationship with larger-scale errors in 

other atmospheric properties is more linear;
• Have errors whose correlation extends to much larger 

distances (information is easier to propagate to poorly-
observed areas);

• Allow us to better correct the relevant fields that caused 
those errors initially;

→ Can be more effectively assimilated to improve forecasts.

If there is information remaining to fix the considerable errors 
of smaller-scale patterns, assimilation methods that do not 
rely on linear covariance of errors should be considered 
(particle filters perhaps, other ideas needed).

Smoothing increases correlation,
and hence our ability to reduce large-scale errors.

Image from Fabry and Meunier (2020) in a convective-scale context
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