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Context: Conditions of Success for Data Assimilation

1) Accurate simulation of expected observations Sessions 1-3
2) Non-trivial information from observations

3) Proper statistical description of unbiased errors

4) Usability of mismatch to correct relevant state variables

5) Propagability of the information via error relationships

6) Usefulness of the added information for forecasting



https://events.ecmwf.int/event/146/timetable/
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Focus of this Talk and Rationale

1) Accurate simulation of expected observations

Obvious

2) Non-trivial information from observations satellite-
3) Proper statistical description of unbiased errors specific
4) Usability of mismatch to correct relevant state variables P

5) Propagability of the information via error relationships Focus of
6) Usefulness of the added information for forecasting this talk

Rationale for focus:

A) Assimilating satellite precipitation and cloud observations for NWP is more
than simply obtaining an analysis for cloud and precipitation fields;

B) Clouds and precipitation have properties that hinder the effectiveness of
many data assimilation approaches.
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Why Worry About Information Propagation and Usefulness?

5) Propagability of the information via error relationships
6) Usefulness of the added information for forecasting

@

Thesis #1: For reasons of remote sensing and atmospheric instabilities, the need
to propagate information below cloud tops is more pressing;

Thesis #2: Cloud and precipitation fields have large areas of zero values, smaller-
scale structures, and considerable errors, all reducing our ability to propagate
information using traditional assimilation approaches;

Thesis #3: Knowing precipitation fields better has small forecasting value.

- To improve the quality and forecasting use of analyses, | believe these issues
must be explicitly confronted.




Clear area:
Remote-sensed
information is
available down
to the surface

Cloudy area:
Remote-sensed
information is
limited below
cloud top

Assimilation, Remote Sensing, and Clouds
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Clouds are largely
opaque at infrared
wavelengths and scatter
strongly visible and high-
frequency microwaves.

- Available information
for assimilation is
considerably reduced
below thick clouds.



Cloudy Areas, Instabilities, and Forecasting

Clouds are generally in updraft areas,
often triggered by atmospheric
instabilities.

Unstable regions are also where initial
condition errors will grow most rapidly.

- Information is needed most acutely
where it is most difficult to obtain by
remote sensing.

— Greater necessity to propagate
the information from the sides and
from above.
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The Unusual Structure of Clouds and Precipitation

Compared to more usual
fields (e.g., pressure),
clouds and especially
precipitation have:

1) Large areas of zeros,
much of which is already in
the background

—= No mismatch between
background and
observations

— No innovation from
these areas.

Albedo at visible/NIR wavelengths
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Caveat: However, as seen two slides before, information from IR emission bands
around clouds more than compensate the lack of innovation from cloud-free areas.
This unexpected help does not occur around precipitating areas.

—> Personal belief to verify: Regions under clouds and without precipitation are the
hardest to innovate by satellite-based remote sensing.
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Limited Areas of Innovation: Example of a Consequence

lllustration in the
context of convective-
scale radar data
assimilation:

Consider a large
tornadic supercell
storm we aim to warn
for.

Suppose we had tried
to forecast this
tornadic supercell
storm an hour before.

Moore (OK) 2013 tornado event, 20 2013
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Limited Areas of Innovation: Example of a Consequence

lllustration in the
context of convective-
scale radar data
assimilation:

Let us first replace the
storm echo by a
cartoon...

(courtesy of Markowski and
Richardson 2010’s book)

Moore (OK) 2013 tornado event, 20 May 2013
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Limited Areas of Innovation: Example of a Consequence

lllustration in the
context of convective-
scale radar data
assimilation:

Let us first replace the
storm echo by a
cartoon, and then go
back in time one hour.

Q: What areas must be
better constrained to
improve the 1-hr
forecast for that
storm?

Moore (OK) 2013 tornado event, 20 May 2013

9 km flow

Site:  KTLX
VST: 05/20/2013 19:17:01 Z

YMIA (020Z) 481una| pue Aigeq woly pardepy



Limited Areas of Innovation: Example of a Consequence

A: Many with no
constraints besides
“no precipitation”, an
information largely
known already by the
background.

— To correct state
variables in those areas,
innovation must come
via relationships with
errors from “distant”

echoes

(>>10 grid-points away).
In passing, this entire region is
covered by high clouds.

Moore (OK) 2013 tornado event, 20 May 2013
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Compared to more usual
fields (e.g., pressure),
clouds and especially
precipitation have:

2) Considerable small-scale
structure and larger
background (and
simulation) errors;

The Unusual Structure of Clouds and Precipitation
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The Unusual Structure of Clouds and Precipitation...

a) Spectral decomposition of the ECMWF control b) Power spectrum of precipitation rate
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Attempt to contrast the structure of dynamical and thermodynamic fields (left) with that of precipitation (right).
Beware of the different scales plotted.

Compared to more usual fields (e.g., pressure), clouds and especially precipitation have:
2) Considerable small-scale structure and larger background (and simulation) errors;
[Multi-slide explanation in progress...]



Spectral power (m?, m%/s?, K2, g%/kg?)

The Unusual Structure of Clouds and Precipitation...
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Compared to more usual fields (e.g., pressure), clouds and especially precipitation have:
2) Considerable small-scale structure and larger background (and simulation) errors;

[Multi-slide explanation in progress...]



... And the High Uncertainty of Small-Scale Patterns

a) Spectral decomposition of the ECMWF control b) Control-to-control inconsistency in spectral variability
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Analyses of different weather centers largely disagree for most atmospheric properties for
scales below 500 km, where much of the variability in precipitation and clouds resides.

— Cloud and precipitation errors A) are comparatively large, and B) have shorter auto-
correlation and cross-correlation distances than other errors.
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Compared to more usual fields (e.g., pressure), clouds and especially precipitation have:
2) Considerable small-scale structure and larger background (and simulation) errors;

—> Errors do not covary (linearly) well with errors in other fields within and around clouds
and precipitation 2 Information propagation is reduced just when it is most needed.



Large Errors and the Breakdown of Error Covariances: An Example

Scenario: Assimilation of precipitation given an error in the timing of convective storms

When
Situation 1: Situation 2: background

errors are
Stror.wg.er | : Stror.1g.er | large,
precipitation = T M precipitation :

- \ _ scenarios

= Stronger = Stronger .
and warmer and cooler like these
updraft downdraft are not

uncommon.

Towering Cumulus Stage Mature Stage



What Happens to the Added Innovation?

Thought experiment (1):

Precipitation is added to
the analysis; nothing
else is changed. What
changes occur in the
forecast?

Little: Rain will fall out,
without significantly
affecting other fields.

Modifying precipitation
(without other changes)
has the littlest value for
forecasting, even if it
may be the most
important to forecast.

Interactions between Dynamical and Thermodynamic Properties Driving Weather Systems
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What Happens to the Added Innovation?

Thought experiment (2):

Modifying precipitation
has the littlest value for
forecasting.

How about clouds?

Modifying clouds has
more impacts, primarily
thanks to the clouds’
forcing on temperature,
the root of the
thermodynamics cycle,
but only if they can be
properly maintained.

Interactions between Dynamical and Thermodynamic Properties Driving Weather Systems
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Assimilation and the Meteorology of Clouds and Precipitation

Clouds and
precipitation are the
end products of
interacting and often
threshold-triggered
processes driven by
other fields, usually in
the context of the
release of an
instability.

Relating errors in
clouds and
precipitation to those
in other fields is hence
generally difficult.

Interactions between Dynamical and Thermodynamic Properties Driving Weather Systems
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Time to Reflect...

The assimilation of cloud and precipitation information
must not only fix the mass of condensates, but also
(principally?) other errors (U, @, T, e). However, clouds
and precipitation both obscure the information
gathering and complicate the retrieval of information
concerning other key properties.

Despite these problems, much of the error reduction in

analyses come from satellite data. Imagine what could

be achieved if we faced the challenges posed and more

cleverly took advantage of the opportunities offered by
——— cloud and precipitation information.

-

Image from The Independent



https://www.independent.co.uk/news/science/is-the-glass-half-full-or-half-empty-science-knows-your-answer-a6676741.html

Suggestion: Set Aside the Small Scales; Focus on Larger Scales

Whereas the small-scale patterns of clouds and precipitation are difficult to i CR}'M
model accurately in terms of 1) process, 2) observation simulation, 3) error n RTTO\;,
estimations (background, measurements, and especially their simulation); +
T Al R(H(x))
Whereas the small-scale patterns are poorly known, and their errors will — W:@“?JM T

@ourtés,y: Jason Milkrandt v

SEDIMENTATIO SEDIMENTATION

grow quickly (in the context of multi-day forecasts) even if we could

characterize them correctly;
b) Control-to-control inconsistency in spectral varkability

Whereas the considerable errors of small-scale cloud and precipitation L _J:“Z‘E:E‘E“Z%: """"
patterns are difficult to associate with the errors in other fields that 2 og T HOTEN

created them; vgooz:s

Whereas the process of predictability loss is 1) growth of small-scale errors, e A 100
2) migration of errors to synoptic scales, followed by 3) growth of large- /

scale errors, and assimilation starts somewhere between steps 2 and 3;

It is proposed that our efforts should at first focus on using satellite data to reduce larger-scale errors.



The Case to Set Aside the Small Scales, Focus on Larger Scales

Larger-scale patterns of clouds and precipitation: Distributions of correlations between errors in rain and in vapor 50 km upstream

* Are easier to model accurately; Ao scae | 50k sl

 Have easier-to-characterize errors;

 Have errors whose relationship with larger-scale errorsin 10
other atmospheric properties is more linear; 1000

* Have errors whose correlation extends to much larger
distances (information is easier to propagate to poorly-
observed areas);

* Allow us to better correct the relevant fields that caused 45 ,

Smoothing increases correlation,

those errors initially; and hence our ability to reduce large-scale errors.
9 Can be more effectively assimilated to improve forecaStS. Image from Fabry and Meunier (2020) in a convective-scale context

2000¢

Counts
Counts

05 0 0.5
Correlation Correlation

If there is information remaining to fix the considerable errors
of smaller-scale patterns, assimilation methods that do not
rely on linear covariance of errors should be considered
(particle filters perhaps, other ideas needed).
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