Finding Platinum Needles in Igneous Haystacks: X-Ray Fluorescence Mapping with the Maia Detector Array at the Australian Synchrotron

- Igneous geochemistry of Pt
- The sampling problem why XFM?
- Pt, sulfides, magmas and gas bubbles
 - the Norilsk story

www.csiro.au

Pt, Pd, Rh, Ru, Ir, Os – geochemically significant group of Highly Siderophile (metal-loving) elements

Important traces for planetary differentiation (formation of planetary cores) and impact events (e.g. Ir anomaly at K-T boundary)

Very efficiently concentrated by immiscible sulfide liquid – high concentrations in magmatic sulfide ore deposits, tracers for Ni-Co-Cu exploration

Very low (~1 ppb) abundances in the Earth's crust

Why? PGEs are extremely insoluble in silicate magmas (basalts) - ~ 10 ppb max.

Platinum Group Elements: the tastiest elements in the Periodic Table

What form does Platinum (Pt) take in igneous rocks?

Pt very efficiently collected by droplets of immiscible sulfide liquid – high concentrations in magmatic sulfide ore deposits

But – Pt concentration in basalt magmas seems to decrease as they crystallise, even if there's no sulfide involved.

Why? Pt is extremely insoluble in silicate magmas (basalts) - ~ 10 ppb max.

Needles in haystacks: Sampling sparse grains at ppm levels

At one ppm, ~10% of typical sized Pt (or Au) grains in a 100 micron slice are visible in 2D section. Synchrotron X-ray beam penetrates entire 100 micron thickness

Pt in a sulfide-free rock (Mont de Cristals, Gabon, West Africa)

Micro-prospecting at 100 ppb level... Detailed "boxes" at 1 micron resolution A plag **PtNiCu** 100 µ 80155 - co-located sulfide + Pt + As В (g) FIB-SEM **PtNiCu** chr 100 μ 62363 - co-located sulfide + Pt associated with chromite enclosed in opx орх **PtNiCu** chr plag sul Cu l µm 2.5 µm 100 µ

Pt in a sulfide-free rock (Mont de Cristals, Gabon, West Africa)

Sulfide droplets and gas bubbles – Norilsk, Siberia

2 cm

Olivine crystals

Settling, flattening

Flowing suspension of "drobbles" and olivine crystals

Gas filter pressing forces residual melt into bubble

doi: 10.1093/petrology/egy114

Upper taxite – low-S high PGE (Schoneveld et al., Econ Geol 2020)

Plese et al. 2019

3D images: oxide shells around infilled gas bubbles

Model 1) bubbles form in spinel seams

Oxide-sulfide-melt-bubble interactions in spinel-rich taxitic rocks of the Norilsk-Talnakh intrusions, polar Siberia
L Schoneveld, SJ Barnes, B Godel, ML Vaillant, MA Yudovskaya, ...
Economic Geology 115 (6), 1305-1320

Model 2) spinel rafted and collected at roof

Model 3) spinels nucleate on bubbles

Pt minerals closely associated with sulfides in lower parts of intrusions

Low-S PGE, Upper Taxite

DIY Norilsk in a wineglass

Gas-rich drobbles float and accumulate at tops of sills S-degassing generates v high PGE tenors

Taxite (inclusion rich roof-melt scum at top of sill)

Sulfide rich drobbles sink and accumulate

Death Metal: mechanism for the Permo-Triassic mass extinction: Ni transported into the atmosphere as aerosols causing bloom in methane-producing biota

(Le Vaillant et al., PNAS, 2017)

Thanks for listening! Huge thanks to David Paterson, Chris Ryan and the XFM Beamline crew

www.csiro.au

