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One of the assumptions underlying classical analysis of covariance

(ANCOVA) with random covariables is that the covariables are observed

free from errors of measurement. When random assignment of experimental

units to levels of the treatment independent variable is an aspect of the

experimental design, failure to meet the perfectly reliable covariables

assumption decreases the statistical power of ANCOVA but does not cause it

to test biased treatment effects. When random assignment is not an aspect

of the design, however, and ANCOVA is being used to correct for initial

differences among treatment groups on the covariables, use of less than

perfectly reliable covariables not only decreases the power of ANCOVA, but

also causes ANCOVA to test biased treatment effects. Several correction

procedures have been suggested for the single fallible covariable design.

The purpose of the proposed paper is to extend the earlier work by

describing two alternative correction procedures for the multiple fallible

covariable design, demonstrate their properties in terms of population

parameters, and empirically investigate the sampling distributions of their

test statistics, i.e., probability of Type I error and power.

Before we proceed, an important caveat is necessary. In our opinion

there is no perfectly acceptable solution to the problem of estimating

causal relationships from quasi or naturally occurring experiments. Perhaps

ANCOVA is a useful procedure in some situations, but it is clearly limited

by the case and ingenuity used in selecting the covariables. The problem

we are addressing is not how to select a useful set of covariables or

even whether that task can ever be accomplished. Rather, we are concerned

with the effects of errors of measurement in situations where a useful

set of covariables has been identified.

The paper first presents a brief review of past work on the single

fallible covariable problem. Next, the effects of errors of measurement

in multiple linear regression are incorporated into the multiple covariable

model. Finally, two proposed solutions to the multiple fallible covariable

problem are described and their properties investigated, first analytically

and then via a Monte Carlo study.
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Review of ANCOVA with Fallible Covariable

That ANCOVA tests biased treatment effects when there are initial

differences on a random fallible covariable can be seen through inspection

of the null hypothesis for a one-way ANCOVA. The null hypothesis can be

stated
I

E
[ay

°Y.X(IX

2

= 0,
114 i

where ay is the i
th

treatment effect on the dependent variable X, aX is

i i
the i

th
treatment effect on the random fallible covariable X, and isY.X

the least squares pooled within i slope of the regression of Y on X. Although

errors of measurement satisfying classical measurement assumptions do not

cause bias in the estimation of ay and lax , they do cause a bias in using
i i

the least squares regression coefficient as an estimate of the regression

coefficient defined on the latent true variables, i.e., the structural

relationship of Y on X. The bias of the least squares regression

coefficient for estimating the structural relationship is a function of

the reliability of the random covariate and can be stated as

8V.X, 14XXBY.X$.

where primes denote latent true variables and pxx denotes the reliability

of X.

For a fallible covariable the effect of using the least squares

regression coefficient in ANCOVA is a function of the values of G, . If

as in a random assignment design the ax ts a..e all zero, ANCOVA will test
i

the desired hypothesis. For quasi experiments, however, the ax 's are
i

typically not zero, and so ANCOVA tests biased estimates of the adjusted

treatment effects. The bias can result in either a spurious rejection of

the null hypothesis or a spurious retention of the null hypotheses,

depending upon the values of the ax 's (Porter, 1967).
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Although the bias of the least squares regression Loefficient for

estimating the structural relation has been recognized since 1878

(Adcock, 1878), the information was not considered in work on ANCOVA until

as late as 1960 (Lord, 1960). Lord was first to consider the problem, and

proposed a large sample solution which is restricted to a two group design

with two observations on a single fallible covariable. Building on

Lord's work, Porter proposed an estimated true scores solution which at

least in theory is not limited by the complexity of the design to be

analyzed (Porter, 1969; Porter and Chibucos, 1974), but is limited to a

single covariate and does require an estimate of the reliability of the

covariable. Briefly, estimated true scores ANCOVA is computationly ident-

ical to traditional ANCOVA with the single exception that estimated true

scores are used as a substitute covariable (Porter and Chibucos, 1974).

A Monte Carlo investigation of the two procedures for the single covariate

two group design indicated that both were equally satisfactory (Porter, 1967).

In the same study, the utility of estimated true scores ANCOVA was also

demonstrated for a one way layout with four treatment groups.

More recently DeGracie (1968) has proposed a solution quite similar

to estimated true scores ANCOVA, and cited the above mentioned Monte Carlo

investigation as support for the utility of his test statistic. Stroud

(1972) has also proposed a solution for the two group case with a single

fallible covariable and argued that it is readily extendable to more

complex designs. As yet, however, no small sample distributional

investigations have been done on the Stroud statistic. We conclude our

review by rooting the apparent lack of work on the multiple fallible

covariable problem.

ANCOVA with Multiple Fallible Covariables

Unfortunately the problem of multiple fallible covariables in ANCOVA

is more complex. Consider the null hypothesis for a one-way ANCOVA with

two random fallible covariables

I

E [a - B
X
a
X

a 1

2
0,

ii=1
Y
i

a a



where again the a's denote treatment effects on the dependent variable

Y and the covariables X and 3, and 0
X

and 0
3

are the pooled within i least

squares regression coefficients for predicting Y from X and respectively.

As before, the estimates of the a's are left unbiased by the introduction

of errors of measurement which follow classical assumptions, but the least

squares regression coefficients are biased estimates of the corresponding

regression coefficients for the latent true variables. The nature of the

bias has been given by Cochran (1968) as

2
13P (1 P

1

P ) + OW (1 P ) PX XX XZ ZZ Z Z.X ZZ XX
)c ,2

1 P XZPXXPZZ

OW
X X.ZPZZ (1 P XX) + OfZ PZZ (1 P P XX)

and 0
,2

1 P XZ PXXPZZ

where primes denote statistics for the latent true variables, pxx and

p
ZZ

are the reliabilities of X and Z respectively, and p'
X3

is the correla-

tion between the latent true X and Z. A useful restatement of the above

two expressions in terms of bivariate statistics is

PX184.X PXXPZZ84.0LX
Ox -

1 - p'
2

p
X2 XX ZZ

and 0 =

1 - p'
2

p. p
XZ XX Z3

P 0' P P 0' 0'ZZ Y.Z XX ZZ Y.X X.Z

A solution to the multiple fallible covariable problem requires a

procedure that provides unbiased estimates of the regression coefficients

defined on the latent true variables. The substitution of estimated true

scores for the observed covariables does not adequately solve the general

problem, but does provide a solution in the restricted case of uncorrelated

latent true covariables.
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For uncorrelated latent true covariables

p;r2 = 0 and tqc.z = Bi.x = 0

the two regression coefficients become ax = PXX84.X and Sz = paq.a.

Applying estimated true scores gives RX
aX/PXX

0:i.x and

ai aa/Paa f4i..a

The point of breakdown for the estimated true scores solution to the

general problem provided a suggestion for a new procedure, Method A. Use

of estimated true scores corrected bivariate regression coefficients between

the dependent variable and each covariable, but left uncorrected the

bivariate regression coefficients among the covariables. Thus Method A

consisted of 1) substituting estimated true scores for each observed

covariable, and 2) correcting for attenuation the relationships between

the estimated true scores covariables.

A second approach to the solution of the genera4. problem, Method B,

was motivated by the simplified situation which exists for uncorrelated

covariables. Method B can be described for two covariables as followsl

1) one covariable is transformed to make it orthogonal to the other;

2) estimated true scores are substituted for the two orthogonal covariables

and computations proceed as for regular ANCOVA.

Method A

First, consider the effects of Method A on the pooled within regression

coefficients for a one-way ANCOVA having two fallible covariables. Using

standard ANCOVA procedures the population regression coefficient for one

of the covariables, X, is

SWg.SWYX - SWXg.SWYg
8X

SWX.SWZ - SWXg
2

where SW denotes a sum of squares within. Substituting estimated true

scores for X and g replaces
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SWX with
°XXSWX

SWZ with p
2

SWa
aa

SWX with p paSWXZ
XX

SWYX with pxxSWYX

SWYZ with pzzSWYZ ,

where p and p are the sample reliabilities of X and respectively.
XX

It follows that

X

p 2Zp SWZSWYX - p p SWXZSWYZ
XX

2

ZZ XX

p
2

ap
2
SWXSWZ - pap

2 SWa
XX XX

where X, PXX(X" - denotes estimated true scores for X. The

expression can be simplified to

SWYX 1 SWXZ SWYZ
PXX SWX PXX SWX SWa

SWXZ SWa
SWX SWa

1

Further correction for attenuation of the relationship between the co-

variates by dividing SWX the square root of the product of the reliabilities

of X and a results in

By substitution

6X =

1 SWYX PZZ 1 SWX 1 SWYZ

p SWX P p SWX p SWa
XX XX XX

SX =

1 1 SWXa SWXa

PX
pia SWX SWa

X

\IP

aa
' 'V B

Y.X p a.X
6
Y.a

XX

1 - p'
Xa
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Thus when
PAZ PXX' BX

is equal to the regression coefficient for the

latent true X. Similar steps result in the parallel conclusion that

the regression coefficient Si, provided by Method A, is identical to the

regression coefficient for the latent true A when paz = p
XX

. Since

substitution of estimated true scores does not change the means of the

covariables, it follows that Method A tests the desired hypothesis.

Method B

Method B starts with a transformation on the second covariable that

results in a new variable which is orthogonal to the first covariable.

The transformation used was

wii Zij fA.Xxij

where Bz.x denotes the pooled within regression coefficient for predict-

ing 3 from knowledge of X. It should be noted that for perfectly reliable

X and A, use of covariables X and W does not change the hypothesis

tested.

The null hypothesis tested by Method B is

I 1 1

J

2
= 0 ,

EuY PXX 13Y.X a X
i

p 6
WW Y.W

a
Wi

1=1 i

where B
Y.X

and B
Y.W

are bivariate regression coefficients since X and W

are uncorrelated. The question is whether this null hypothesis is

identical to the desired null hypothesis stated in terms of the latent

true variables Y, X, and 3?

Since W is a new variable, its reliability must first be estimated.

By definition

var(W')
DWW var(W) '

where W' denotes the latent true W. But

var(W) = var(A) +
2

A.X
var(X) - 2B cov(X,A)

= var(3)(1 - p
2

X
)

X
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and

var(W') = var(3') + 8:.xvar(X')
2/33.XPX3

Ivar(3)var(X)

2 /aria YIrl= p
33
var(0) +

XX
var(X) 2

PX4var(X)
pXaIvar(X)var(a)

2 2
= var(3)(p33

2PX3 PUPXX)

Thus

Further

and

WW

p
ag

- 2o
2

+ pR
a
p
XX

1 -per

0 =Y.W var(W)
cov(Y,W)

cov(Y,W) - 03.xcov(Y,X)

var(3) (1 - pm)

-0 - 0 0Y.3 X.3 Y.X
2

1 Pxz

= - 0W 3 3.X X

The last two terms in the squared quantity for stating the null

hypothesis for Method B can now be restated as

1 1

-PXX°Y.X(PX PX..) PWW8Y.W(P3 aZ.XPX Pa.. %.XPX..)

-(141.X/PXX °Y.A.X/PWW)(PX PX..) pY.W
(Pai. Pa..)

WW

By further substitution

°y.xlPxx 8y.03.x1Pww
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2
2p

0,

aa

xa , 2 PXX
' '4p ---

Xgp
az

0Y.g6a.xP xx

and 8y.w/p4Jw becomes

2

J_Cg p2 P XX

pgg
xa p

gg

6' 0' P
Y.g X.g Y.X XX

2

Pxa 2 PXX
1 - 2-1; + p

p

where again primes denote statistics for the latent true variables. Since

the two expressions do not simplify to the regression coefficient for the

latent true X and g covariables, it follows that Method B does not test the

desired hypothesis. In retrospect the error in logic was that the trans-

formation forced the manifest variables to be orthogonal, but not their

latent true counterparts.

Monte Carlo Study

Thus far we have considered whether various modifications of ANCOVA

test the correct hypothesis when there are multiple fallible covariables in

a quas± experiment. The conclusions were: 1) if the latent true covari-

ables are uncorrelated, estimated true scores ANCOVA tests the desired

hypothesis; 2) when the latent true covariables are correlated but have

equal reliability Method A tests the correct hypothesis, and 3) Method B

does not appear to test the hypothesis of interest under any circumstances.

The remaining question to be answered was how do the small sample distri-

butioni of the various test statistics behave?

A computer program for the CDC 6500 computer system at the Michigan

State University Computer Center was written to get empirical F distributions

of the estimated true score ANCOVA when two fallible covariates were

independent of each other, and of the two proposed correction methods

when two fallible covariables were related. All distributions were based

on 1000 samples and empirical a's and power were reported for nominal levels

of .10, .05, and .01. The number of treatment groups was varied at 2 and
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4 in a one-way layout. The sample size per treatment was fixed at 40.

The bivariate correlation for each latent true covariate with the

dependent variable was fixed at .7 as was the reliability of each

covariate. The correlation between the two latent true covariates was

varied at .0 and .2. Covariable treatment means were 6.0 and 0.0 for two

treatments and 6.0, 3.0, 3.0, and 0.0 for four treatment groups. Finally

the non central case was created by adding the value one 1.alf standard

deviation of the marginal distribution of the dependent variable to each

observation on the dependent variable in one treatment group.

A pseudo-random unit normal deviate generator was used to generate

observations from a trivariate normal distribution with known parameters.

The unit normal generator involved two stages. First, the multi-

plicative congruent method was used to generate sixteen pseudo-random

numbers from a uniform distribution. Second, the sixteen numbers were

summed and linearly rescaled to provide a pseudo-random unit normal deviate

via the Central Limit Theorem.

Fallible covariables were created by adding random normal deviates,

rescaled by the desired standard error of measurement, to the latent true

covariate values. Reliabilities for calculating estimated true scores

were estimated by first generating two fallible covariable values on

each covariate for each unit of analysis, anu then correlating the two

sets of values for each covariate.

Estimated True Scores ANCOVA with Independent Covariables

The results of the Monte Carlo investigation of estimated true

scores ANCOVA for two uncorrelated fallible covariables are provided in

Tables 1 through 5. As stated previously the sample size per treatment

group was 40, and the correlations of latent true covariables with the

dependent variable were each .7 as were the reliabilities of each

covariable.

Empirical Type I errors, statistical power, average mean squares, and

average adjusted means for the two treatment design are given in Table 1.

The Type I error rates for estimated true scores ANCOVA were slightly

liberal but within two standard errors for all three nominal values. By

contrast the results using latent true covariables were slightly conservative
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but also within two standard errors. The inappropriateness of using

fallible covariables in ANCOVA for quasi experiments was clearly supported

by the .999 empirical Type I errors for all three nominal values.

As was expected, use of latent true covariables resulted in substanti-

ally greater power than estimated true scores ANCOVA. The difference in

power is explained by two factors. First, the multiple correlation of

estimated true scores is identical to that for the fallible covariables,

while the multiple correlation for the latent true covariables is consistent

with a correction for attenuation. Second, the variance of the estimated

true scores covariables are equal to the variance of the corresponding

fallible covariables multiplied by the respective squared reliabilities.

The variance of the latent true covariables, however, are equal to the

variance of the corresponding fallible covariables multiplied by the

respective reliabilities. The smaller variance of estimated true scores

covariables operates to further dampen the power of the procedure.

The slight liberal tendency of estimated true scores ANCOVA reflected

also in the average mean squares for the central case, which showed the

average mean square between to be slightly larger than the average mean

square within. Support for the earlier analytic demonstration that the

procedure tests the correct null hypothesis was given by the average

adjusted means. For the central case the average adjusted means were

-.055 and -.0002 which were very close to the desired values of zero.

Average pooled within regression coefficients and cumulative

distributions for the 1000 samples are provided in Table 2. The average

coefficients were .703 and .707 for the two covariables which were very

close to the .7 value of the population coefficient for the latent true

covariables. As was expected the standard errors for the regression

coefficients were substantially larger for estimated true scores than for

latent true covariables. The reasons are the same as those given previously

for the discussion of statistical power.

Tables 3 and 4 contain comparable data for the four treatment group

design. Number of treatment groups did not noticeably alter the results

for ANCOVA using latent true and fallible covariables. The estimated

true scores ANCOVA empirical Type I errors, however, were markedly

discrepant from the nominal values, i.e., .177, .109, and .037 for nominal
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values of .10, .05, and .01 respectively. This was true despite the

average adjusted means being quite close to the desired value of zero,

i.e., -.021, -.017, -.011, -.0020. Further, the average pooled within

regression coefficients, as shown in Table 4, were .703 and .700.

It was hypothesized that the use of sample reliabilities for cal-

culating estimated true scores was the cause of the liberal nature of the

F test statistic. Therefore, the simulations were replicated using population

reliabilities. The empirical Type I errors and statistical powers for the

replications are reported in Table 5. For both the 2 and 4 treatment groups

designs the empirical Type I errors for estimated true scores ANCOVA were

slightly closer to the nominal values than they had been using estimated

reliabilities. For the 4 treatment group design, however, the empirical

Type I errors were still quite liberal, i.e., .163, .097, .029 for nominal

values of .10, .05, and .01 respectively. The liberalness of the estimated

true scores test statistic for the four treatment design is consistent with,

but much more pronounced than, that found for a single fallible covariable

(Porter, 1967). With a single fallible covariable, however, the empirical

Type I error rates were still within the bounds of practical utility,

i.e., .111, .058, and .013. These simple fallible covariable results were

for the same parameters except sample size which was twenty rather than

forty per treatment group.

Methods A and B

The results of the Monte Carlo investigation of Methods A and B for two

correlated fallible covariables are presented in Tables 6 and 7. The earlier

analytic demonstrations suggested that Method A should test the right

hypothesis while Method B should not. Nevertheless, Method B was investigated

on the chance that it might have some practical utility. The parameters of

the Monte Carlo simulations were as before, with the exception that the

latent true covariables had a .2 intercorrelation.

Empirical Type I error, statistical power, average mean squares, and

average adjusted means for the two treatment designs are given in Table 6.

The average adjusted means for Methods A and B supported our analytic

findings. The averages for Method A were in close agreement with the

desired zero values, i.e., -.070 and -.002, while the averages for Method B
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were not, i.e., =1.074 and =.003. Further support for the analytic work

is provided in Table 7. The average values fo the regression coefficients

for Method A were in close agreement with the desired .58 value, i.e.,

.586 and .591, while for Method B there was little agreement, i.e., .705

and .640.

Unfortunately the empirical Type I error rates were not within the

range of practical utility for either method. The finding for Method B

was not surprising, but we had greater hopes for Method A. The too liberal

nature of the F test statistic for Method A stemmed from a far too large

average adjusted mean square for treatments, i.e., 179.1.

Several modifications of Method A were proposed in an attempt to

decrease the adjusted mean square for treatments, none of which resulted in

empirical Type I error rates within the bounds of practical utility. One

modification was motivated by the argument that the reliability of a

covariate for the total sample should be greater than the pooled within

treatment reliability. Thus the estimated true scores and correction to

the within treatment cress products were calculated using pooled within

reliabilities while the correction to the total cross products used the

reliabilities for the total sample. The effect was only a minor reduction

in the Type I error. Another modification left the total cross products

uncorrected, and resulted in a far too conservative F test. Additional

modifications involved correcting the relationships between the dependent

variables and the covariables for attentuation.

Conclusion

Thus far we have been notably unsuccessful in discovering a solution

to the problem of multiple fallible covariables in quasi experiments. For

two uncorrelated covariables, estimated true scores ANCOVA appeared to

satisfactorily solve the problem for a two group design but not a four

group design. Method A tested the correct hypothesis for two correlated

fallible covariables of equal reliability, but provided a far too liberal

test of that hypothesis. Method B had no useful properties.
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Table 1

Empirical type I error, statistical power, average mean
square and average adjusted means for estimated true scores
ANCOVA with t = 2, nb = 40,

PXX
.70, pgg .70,

PYX
.70,

ps'a = .70, qz = .00,
UX1

= pal = 6.0, pn. = pa2 pa2 = 0,

uYl = 8.4, py2 = 0.0

CENTRAL NON-CENTRAL

.10 .05 .01 .10 .05 .01

TRUE COV. .092 .044 .005 .973 .950 .814

EST. TRUE .115 .063 .013 .200 .128 .046

FALLIBLES .999 .999 .999 1.000 1.000 1.000

MEANS SQU. BETWEEN WITHIN BETWEEN WITHIN

TRUE COV. .0178(.0006) .0200(.00001) .2694(.0203) .0200(.00001)

EST. TRUE .3411(.2253) .3150(.0026) .5292(.4906) .3150(.0026)

FALLIBLES 9.3305(13.25) .3150(.0026) 13.2614(20.38) .3150(.0026)

ADJ. MEANS Ti T2 Ti T2

TRUE COV. -0.002(.018) -0.0007(.0005) .497(.018) *

EST. TRUE -0.055(.508) -0.0002(.0115) .444(.508) *

FALLIBLES 2.523(.208) -0.0008(.0086) 3.022(208) *

Primes denote parameters on latent true variables.

*same as in central case.



Table 2

Empirical cumulative distribution of regression coefficients
from estimated true scores ANCOVA with t = 2, nb = 40,
p
XX

= .70, pgg = .70, p:ix = .70, 41g = .70, p;cg = .00,

SX g= .70 S' = .70

X

TRUE COV

a

EST. TRUE

x a

FALLIBLES

x a

.50 4 1 572 569

.55 22 21 873 878

.60 92 83 981 975

.65 0 0 258 237 997 998

.70 490 506 515 494 1000 1000

.75 1000 999 746 743

.80 1000 884 875

.85 958 956

.90 985 978

.95 990 995

MEAN .701 .700 .703 .707 .489 .490

VAR .0003 .0002 .0069 .0065 .0029 .0030

Primes denote parameters on latent true variables.
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Table 4

Empirical cumulative distribution of regression coefficient
from estimated true scores ANCOVA with t = 4, nb = 40,
p = .70, p

ZZ Y
= .70, p'

X Y
= .70 p'

Z ' X
= .70 p'

3
= .00,

XX

0' sa 70
'
0' = .70

TRUE COV EST. TRUE FALLIBLES

X a x a x a

.50 0 0 612 600

.55 1 2 953 944

.60 25 29 998 997

.65 0 0 178 196 1000 1000

.70 532 497 490 517

.75 1000 1000 796 814

.80 959 943

.85 991 993

.90 998 999

.95 1000 1000

MEAN .699 .700 .703 .700 .490 .490

VAR .00014 .00012 .0031 .0033 .0014 .0014

Primes denote parameters on latent true variables.



Table 5

Empirical type I error and statistical power for estimated
true scores ANCOVA using population reliabilities with
nb = 40, p =

XX
.70, p

B3
= .70, p' = .70, p' ,.. .70, p' =

YX ya xa
.00

CENTRAL NON-CENTRAL

a = .10 a = .05 a = .01 a = .10 a = .05 a = .01

T = 2

TRUE COV .099 .045 .008 .963 .943 .819

EST. TRUE .100 .056 .012 .219 .127 .032

FALLIBLES .999 .999 .992 .999 .999 .999

T = 4

TRUE COV .098 .045 .007 1.000 1.000 1.000

EST. TRUE .163 .097 .029 .789 .703 .479

FALLIBLES 1.000 1.000 1.000 1.000 1.000 1.000

Primes denote parameters on latent true variables.



Table 6

Empirical type I error, statistical power, average mean
squares and average adjusted means for Method A and Method B
with t = 2, nb = 40,

PXX

ps'z = .70, p16 = .20, =
' PX1

.70,
PZZ

6.0,= 6.

.70, PYX

11X2X2
0.0,

.70,

lin = 6.96,

p
Y2

= 0.0

.10

CENTRAL

.05 .01 .10

NON-CENTRAL

.05 .01

TRUE COV. .106 .055 .010 .377 .254 .100

METHOD A 1.000 1.000 1.000 1.000 1.000 1.000

METHOD B .180 .096 .027 .120 .057 .013

FALLIBLES .980 .956 .845 .998 .996 .979

MS BETWEEN WITHIN BETWEEN WITHIN

TRUE COV .188(.066) .184(.0009) .507(.313) *

METHOD A 179.1(945.6) .429(.0050) 204.56(1205.7) *

METHOD B 1.242(1.99) .399*.0043) .733(.958) *

FALLIBLES 5.980(9.48) .398(.0043) 9.369(16.05) *

ADJ. MEAN Ti T2 Ti T2

TRUE COV .015(.155) -.000(.005) .515(.155) *

METHOD A -.070(.606) -.002(.014) .429(.606) *

METHOD B .514(.566) -.003(.015) .014(.566) *

FALLIBLES 1.848(.236) -.001(.011) 2.349(.236) *

Primes denote parameters for latent true variables.

*same as in central case.



Table 7

Empirical distribution of regression coefficients for Method A
and Method B cumulative with t = 2, nb = 40,

PXX
.70,

PZZ
.70,

p' = .70, p'
XYZ

= .70, p' = .20, 0' = .58 B' .58YX XZ

TRUE COV

X Z

METHOD A

X Z

METHOD B

X Z

FALLIBLES

X z

.50 53 63 189 160 29 56 881 868

.55 261 248 366 331 76 153 982 975

.60 639 638 564 552 169 353 1000 996

.65 910 912 732 743 316 562 100

.70 993 994 886 876 496 762

.75 997 1000 961 937 672 874

.80 1000 986 979 805 943

.85 995 994 901 981

.90 997 999 958 995

.95 999 999 976 997

MEAN .581 .582 .586 .591 .705 .640 .427 .431

VARIANCE .0025 .0025 .0093 .0092 .0129 .0090 .0035 .0037

Primes denote parameters on latent true variables.


