Red Swimming Crab (Monomia haanii) Fishery Improvement Project (FIP) in Zhangzhou City,

Fujian Province, China

(August 2022-April 2023, Phase VI)

Prepared by Min Liu and Cai-lian Liu Fish Biology Laboratory College of Ocean and Earth Sciences, Xiamen University

June 2023

1. Introduction	4
2. Materials and Methods	8
2.1 Survey dates	8
2.2 Fishing vessel information collection	8
2.3 Capture volume data collection	9
2.4 Crab sampling	10
2.5 Feed fish sampling	11
2.6 Species identification	11
2.7 Sample measurement	11
2.8 Crab sex determination	12
2.9 Seahorse bycatch volume and habitat analysis	14
2.10 Subsidies for fishery resources conservation	14
3. Results	15
3.1 Number of trawl fishing vessels surveyed	15
3.2 Species diversity	15
3.2.1 Species composition	15
3.2.2 Endangered, threatened and protected species	33
3.3 Fishing areas	35
3.4 Fishery operation patterns	36
3.5 Capture volumes and proportions by trawl vessels	36
3.5.1 Capture volumes and proportions of different taxonomic groups	36
3.5.2 Crabs	38
3.5.3 Food fishes	41
3.5.4 Feed fishes	43
3.5.5 Average capture proportions from 2018 to 2023 (Phases I-VI)	56
3.6 Biology of <i>Monomia haanii</i>	59
3.6.1 Size variation by month	59
3.6.2 Size variation by sex	62

Contents

3.6.3 Sex ratio	
3.6.4 Spawning season	63
3.6.5 Spawning season from 2018 to 2023 (Phases I-VI)	64
3.6.6 Sizes for female maturity	64
3.6.7 Size-weight and size-size relationships	65
3.7 Biology of Portunus sanguinolentus	67
3.7.1 Size variation by month	67
3.7.2 Size variation by sex	69
3.7.3 Sex ratio	69
3.7.4 Spawning season	70
3.7.5 Spawning season from 2018 to 2023 (Phases I-VI)	71
3.7.6 Sizes for female maturity	71
3.7.7 Size-weight and size-size relationships	72
3.8 Seahorse bycatch and habitat identity in Taiwan Strait	74
3.8.1 Seahorse species	74
3.8.2 Capture volume	74
3.8.3 Critical habitat	77
4. Significant findings	78
5. Acknowledgements	82
6. References	

1. Introduction

The red swimming crab (*Monomia haanii*, Portunidae) is widely distributed in the Indo-Pacific, and in China it is commonly found in the East and South China Seas (Dai et al., 1986). *M. haanii* is characterized with a dark purple spot on the distal tips of the propodus of the fifth pereopod and the distal one-third of the dactylus of the fifth pereopod is colored dark purple (Windsor et al., 2019) (Fig. 1). *M. haanii* lives in sandy and gravelly bottom within 100 m (Dai et al., 1986) and feeds on demersal fishes and crustaceans with Macrura and Brachyura species dominant (Huang, 2004).

Fig. 1-1. Red swimming crab Monomia haanii.

The *M. haanii* fishery has been important in Minnan fishing ground and Taiwan Bank fishing ground since the 1980s and has been one of the most productive crab species in Fujian Province fisheries since the 1990s, and it can be caught year-round (Zhang, 1997). Catches of *M. haanii* come mainly from bottom trawlers, baited crab traps, and gill nets. The estimated annual capture volume of *M. haanii* in the 1990s was 30,000-35,000 tons (t) in Minnan-Taiwan Bank fishing grounds, and the capture volume of *M. haanii* contributed to 16-23% of the total capture volume in bottom trawl fishery (Zhang, 1997), and 30,000-40,000 t in 2009-2018, contributing to 60-70% of the annual crab catch in Fujian Province (Ocean Outcomes, 2018; OFBFJ, 2010-2018). Based on the results of this project (in previous reports), the CPUE and average size of *M. haanii* have shown a decline compared to the results in the 1990s (Zhang, 1997).

Dongshan County (Zhangzhou City, Fujian Province) is the most important area for *M. haanii* process, contributing to approximate 80% and 65% of Fujian total volume (20,646 t) and value (48.34 million US dollars), respectively. Export products are mainly as canned lump crab meat, frozen crab body, and frozen raw claw meat in Dongshan County. The processed products of *M. haanii*' exported from Fujian Province included about 18 countries and 2 areas, with USA, Hong Kong, Taiwan and South Korea were the main export destinations (Chinese Customs Datasets, 2008-2018).

In an effort to ensure the sustainability of *M. haanii* fishery and process industry, the China Aquatic Products Processing and Marketing Alliance (CAPPMA), its local affiliate, the Zhangzhou Aquatic Products Processing and Marketing Alliance (ZAPPMA), the US based National Fisheries Institute (NFI) and Ocean Outcomes (O2) have launched together the fisheries improvement project (FIP) since 2018 in Dongshan County.

In August-December 2018, O2 launched Phase I of the FIP. The project focused on understanding the trawl and trap fisheries of *M. haanii* and the biology of *M. haanii* in Dongshan County. The information of the trawl and trap catch volumes, main species and species group catch volumes, and species composition on the landing ports in Dongshan County was collected. Biology of *M. haanii* and other three main crab species (*Portunus sanguinolentus, Charybdis nataor* and *Calappa philargius*) were examined. However, the trap vessel surveys in Dongshan County were not very successful because the low number of trap vessels surveyed.

In January-April 2019, O2 and QMCS launched Phase II of the FIP. The project still focused on the trawl and trap fisheries of *M. haanii* in Dongshan County, with an extension to nearshore one-day-trip trap fishery in Longhai County of Zhangzhou City. The information of the trawl and trap catch volumes, main species and species group catch volumes, and species composition on the landing ports in Dongshan County was collected. Biology of *M. haanii* and other three main crab species (*Portunus sanguinolentus, Charybdis nataor* and *Calappa philargius*) were examined. Longhai County was the location for the pilot TAC project of Fujian Province led by Fujian Province Fishery Research Institute. Briefly, the trap fishery surveys were challenging in Dongshan County because the trap catches were mainly sold alive at sea and *M. haanii* was processed at sea.

In August-December 2019, O2 and QMCS launched Phase III of the FIP. The project continued our focus on the trawl and trap fisheries of *M. haanii* in Dongshan County. Based the information collected in Phases I and II during the surveys and interviews, the trap fishery operation pattern in Dongshan County started to be clear. Trap vessel surveys for the *M. haanii* fishery was finally completed for the first time in Dongshan County in Phase III.

In August-December 2020, O2 and QMCS launched Phase IV of the FIP. The project still focused on the *M. haanii* trawl fishery in Dongshan County. Moreover, we also paid attention on the domestic and international trade dynamics of *M. haanii* in Dongshan County and Longhai County to evaluate the impacts of the trade war between China and USA, and the COVID-19 pandemic.

In January-April 2021, without financial support from O2 and QMCS, the surveys on the *M. haanii* trawl fishery in Dongshan County continued in order to keep long term dataset available.

In October 2021-April 2022, O2 and QMCS launched Phase V of the FIP. The project continued the focuses on the trawl fishery of *M. haanii* in Dongshan County. The information on catch volumes, main species and species group catch volumes, and

species composition was collected. Biology of *M. haanii* and *P. sanguinolentus* were examined again after the completion of Phases I-III. In addition, the logbook data collection were conducted, including the capture volumes of *M. haanii* and latitude and longitude data for the fishing grounds.

In August 2022-April 2023, O2 and QMCS launched Phase VI of the FIP. The project continued the focuses on the trawl fishery of *M. haanii* in Dongshan County. The information on catch volumes, species composition, proportions of main economic species and "feed fishes" (See definition in Zhang & Liu, 2020) were collected. The biological study of two swimming crabs, *M. haanii* and *P. sanguinolentus*, continued. The logbook data collection continued, including the capture volumes of *M. haanii* and bycatch of seahorse species, with latitude and longitude recorded.

The specific objectives of Phase VI were assigned as follows:

(1) to document the species composition in catches from trawl fishery monthly, including those from the "feed fishes";

(2) to estimate the total catch volumes, and the catch volume proportions of main taxonomic groups (including crabs) and feed fishes monthly;

(3) to determine the size classes, sex ratio, number of females carrying eggs and spawning peaks for *M. haanii* and *P. sanguinolentus* based on the random samples collected from landing port monthly;

(4) to estimate the seahorse bycatch species and volumes, and to identify the habitats of seahorses in the southern Taiwan Strait based on logbook data collection.

7

2. Materials and Methods

2.1 Survey dates

The trawl surveys were conducted at two major landing ports (Gongqian and Tongling) monthly in August 2022-April 2023 in Dongshan County (Table 2-1; Fig. 2-1).

No.	Dates	Items
1	August 20 th -25 th , 2022	Trawler survey and crab sample collection
2	September 20 th -24 th ,2022	Trawler survey and crab sample collection
3	October 21 st -26 th , 2022	Trawler survey and crab sample collection
4	November 10 th -15 th , 2022	Trawler survey and crab sample collection
5	December 9 th -14 th , 2022	Trawler survey and crab sample collection
6	January 2 nd -4 th , 2023	Trawler survey and crab sample collection
7	February 15 th -20 th , 2023	Trawler survey and crab sample collection
8	March 10 th -15 th , 2023	Trawler survey and crab sample collection
9	April 15th-20th, 2023	Trawler survey and crab sample collection

Table 2-1. Survey dates in Dongshan County, Zhangzhou City, Fujian Province, China.

2.2 Fishing vessel information collection

In Dongshan County, about 650 trawl vessels are registered. In August 2022-April 2023, 9-15 trawl vessels each month were surveyed at the landing ports of Dongshan County (Fig. 2-1). For each trawl vessel surveyed, information on vessel registration number, fishing areas, number of days at sea, number of tows per day, and hours per tow were collected.

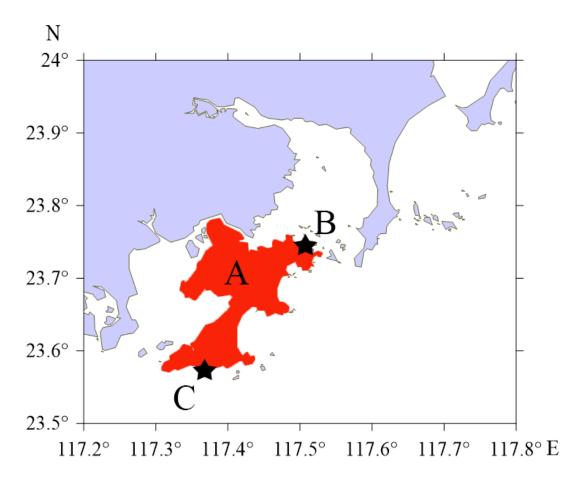


Fig. 2-1. Locations of the landing ports surveyed in Dongshan County (A).B: Tongling Landing Port; C: Gongqian Landing Port.

2.3 Capture volume data collection

For each trawl vessel surveyed above, information on the total capture volume, crab capture volume including *M. haanii* and *P. sanguinolentus*, capture volume of main species or species groups, and capture volume of feed fishes were estimated at the landing ports based on observation and interview. The capture per unit effort (CPUE) of each vessel was calculated.

The seahorse trade was no longer observed at the landing port since all seahorses (wild populations) were listed as Category Two of national protected wild animals in China in 2021. The bycatch seahorse information were obtained via logbook, including species, number of individuals and the locations.

2.4 Crab sampling

In Dongshan County, four crab species (*M. haanii*, *P. sanguinolentus*, *Charybdis nataor* and *Calappa philargius*) made up a great proportion of crab catches and were usually separated in catch landings in trawl fishery.

In August 2022-April 2023, *M. haanii* and *P. sanguinolentus*, about one basket (about 20 kg) each species, were collected randomly and monthly for measurement and examination (Table 2-2) during the trawl vessels surveyed. Baskets are the uniform containers used to hold catches by local fishermen on board in Dongshan County. Small *M. haanii* and *P. sanguinolentus* samples came from the feed fish samples.

No.	Photo	Species name
1		Red swimming carb Monomia haanii
2		Three-spot swimming crab Portunus sanguinolentus

Table 2-2. Two crab species sampled.

2.5 Feed fish sampling

At least 1 kg feed fishes were randomly collected monthly in August 2022-April 2023 from the trawl vessels surveyed for further species identification and size measurement.

2.6 Species identification

To understand the species and species group diversity in Dongshan County trawl fishery, common and commercially important species of fishes, crustaceans and cephalopods were noted and photos were taken at the landing ports for taxonomic use. If necessary, specimens were collected for further identification in the laboratory. For feed fishes, species were identified to species, genus or family levels in laboratory in terms of the size and reserve condition of the specimens.

Fish classification and identification was based on Fishes of The World (Nelson 2006), Marine Fishes of Southern Fujian, China (Volume 1) (Liu et al., 2013), Marine Fishes of Southern Fujian, China (Volume 2) (Liu et al., 2014), www.fishbase.org, and fishdb.sinica.edu.tw. In addition, DNA barcoding technique was applied for fish species identification if necessary.

Crustacean identification followed Marine Crabs of China (Dai et al., 1986), A Catalog of the Mantis Shrimps (Stomatopoda) of Taiwan (Ahyong et al., 2008), and Penaeidae Shrimps of the South China Sea (Liu et al., 1988).

Cephalopod identification followed Fauna Sinica Vol. 4: Phylum Mollusca Class Cephalopode (Dong, 1988), and Cuttlefished and Squids of the World [New Edition] (Takashi, 2015).

2.7 Sample measurement

For *M. haanii* and *P. sanguinolentus*, the carapace size (cm) and body weight (BW, g) were measured individually in the laboratory. The carapace width (CW) was the straight line distance between the two tips of the most lateral carapace spines, while the

carapace length (CL) was the straight midline between the frontal notch and the posterior margin of the carapace (Fig. 2-2).

For fishes, crustaceans and cephalopods in feed fish samples, measurements were also conducted individually for standard length (SL, cm) and total length (TL, cm) and body weight (BW, g) in the laboratory, with a maximum of 30 individuals each species per batch.

Fig. 2-2. Crab size measurement.

CL: carapace length; CW: carapace width.

2.8 Crab sex determination

Crab sex was determined based on the morphology of abdomen (Fig. 2-3). The

spawning season of crabs is determined by the high proportions of the females bearing eggs by month (Fig. 2-4). Gonads develop within the carapaces of female and male crabs. When ovaries mature, the eggs are released and attached to the belly of the females. The eggs are fertilized and develop until the larvae are released into the sea.

Fig. 2-3. Sex determination for crabs.

Fig. 2-4. A female crab bearing eggs.

2.9 Seahorse bycatch volume and habitat analysis

In this report, the findings on seahorse bycatch fishery in the southern Taiwan Strait were summarized based on two data sources:

First, a total of 178 bottom trawling vessels operated in the southern Taiwan Strait were surveyed at landing ports of Dongshan County from January 2019 to December 2020 (except the summer fishing moratorium from May to July every year). For the trawling vessels with seahorse bycatch, the volumes were estimated.

Second, the logbook data from 3-7 bottom trawling vessels monthly from October 2021 to April 2023 (except May to July 2022) were collected including the location (latitude and longitude) of each tow (start and end), operating time and water depth of each tow, and the number of seahorse individuals each tow. The location data was used for mapping on ARCGIS 10.2.

2.10 Subsidies for fishery resources conservation

In order to know about the implementation of subsidies for fishery resources, interviews were conducted with the captains and crews at the landing ports of Dongshan County during monthly surveys.

3. Results

3.1 Number of trawl fishing vessels surveyed

A total of 101 trawl fishing vessels were surveyed at the landing ports of Dongshan County in August 2022-April 2023 (Table 3-1).

Table 3-3. Number of trawl fishing vessels surveyed at the landing ports of DongshanCounty, Zhangzhou City, Fujian Province, China.

Survey month	Number of vessels surveyed
August 2022	11
September 2022	10
October 2022	11
November 2022	10
December 2022	11
January 2023	12
February 2023	15
March 2023	12
April 2023	9

3.2 Species diversity

3.2.1 Species composition

A total of 368 species (at species, genus or family level) were identified from trawl fishery catches from October 2021 to April 2023 (in Phases V and VI), including 280 fishes (76.1%), 69 crustaceans (18.8%) and 19 cephalopods (5.1%) (Table 4-2). Fishes came from 22 orders and 93 families, with almost half of the species from the order Perciformes. Crustaceans came from 2 orders and 19 families, and cephalopods from 4 orders and 4 families. Among 368 species, 78 species were found in both food and feed fishes, including 57 fishes, 11 crustaceans and 10 cephalopods; 151 species were only found in feed fishes, including 102 fishes, 44 crustaceans and 5 cephalopods.

Table 4-2. Species recorded (N = 368) in trawl fishery in October 2021-April 2023 (in Phase V & VI) at landing ports of Dongshan County.

(#: species found in both food and feed fish samples; *: species only found in feed fish samples; CR, critically endangered; EN, endangered; VU,

Order	Family	No. of species	Common name	Species name	IUCN threatened category
			Fishes (N = 280)		
Carcharhiniformes	Carcharhinidae	1	Pacific spadenose shark	Scoliodon macrorhynchos	NT
		2	Cocktail shark	Carcharhinus brachyurus	VU
		3	Spot-tail shark	Carcharhinus sorrah	NT
		4	Hardnose shark	Carcharhinus macloti	NT
	Galeocerdonidae	5	Tiger shark	Galeocerdo cuvier	NT
	Shpyrnidae	6	Scalloped hammerhead	Sphyrna lewini	CR
	Scyliorhinidae	7	Blotchy swell shark	*Cephaloscyllium umbratile	NT
Torpediniformes	Narcinidae	8	Chinese numbfish	Narcine lingula	VU
		9	Shortlip electric ray	Narcine maculata	VU
Rajiformes	Rhynchobatidae	10	Taiwanese wedgefish	Rhynchobatus immaculatus	CR
		11	Bottlenose wedgefish	Rhynchobatus australiae	CR
	Rhinobatidae	12	Angel fish	Rhinobatos hynnicephalus	EN
		13	Brown guitarfish	Rhinobatos schlegelii	CR
	Rajidae	14	Boeseman's skate	Okamejei boesemani	VU
Myliobatiformes	Platyrhinidae	15	Yellow-spotted fanray	#Platyrhina tangi	VU

vulnerable; NT, near threatened; LC, least concern; NE, not evaluated; DD, data deficient)

		16	Chinese fanray	Platyrhina sinensis	EN
	Dasyatidae	17	Red stingray	Dasyatis akajei	NT
		18	Pale-edged stingray	Telatrygon zugei	VU
		19	Round ribbontail ray	Taeniurops meyeni	VU
		20	Japanese butterflyray	Gymnura japonica	VU
	Myliobatidae	21	Longheaded eagle ray	Aetobatus flagellum	EN
Anguilliformes	Muraenidae	22	Netted moray	#Gymnothrax reticularis	LC
		23	Sieve-patterned moray	Gymnothorax cribroris	LC
		24	Reeves's moray	Gymnothorax reevesii	LC
		25	-	Gymnothorax sp.	-
		26	-	Strophidon sp.	-
	Ophichthidae	27	Finny snake eel	*Caecula pterygera	DD
		28	Longtailed sand-eel	*Bascanichthys kirki	LC
		29	Snake eel	*Ophichthus urolophus	LC
		30	Sharpsnout snake eel	*Apterichtus klazingai	LC
		31	Longfin snake-eel	#Pisodonophis cancrivorus	LC
		32	Rice-paddy eel	#Pisodonophis boro	LC
		33	Black ridge-fin eel	#Callechelys kuro	DD
		34	Chinese eel	*Cirrhimuraena chinensis	LC
		35	-	*Ophichthidae sp	-
	Muraenesocidae	36	Daggertooth pike conger	#Muraenesox cinereus	LC
		37	Shorttail pike conger	#Oxyconger leptognathus	LC
	Congridae	38	Shorttail pike conger	Gnathophis heterognathos	LC

		39	Eel	#Ariosoma megalops	DD
		40	-	#Ariosoma sp.	-
		41	Slender conger	#Uroconger lepturus	LC
		42	-	*Congridae sp.	-
	Nettastomatidae	43	Duckbill eel	*Saurenchelys fierasfer	LC
Clupeiformes	Clupeidae	44	Round sardinella	*Sardinella aurita	LC
		45	Bali sardinella	Sardinella lemuru	NT
	Engraulidae	46	-	*Stolephorus sp.	-
		47	Kammal thryssa	*Thryssa kammalensis	DD
		48	Common hairfin anchovy	*Setipinna tenuifilis	DD
	Prisigasteridae	49	Elongate ilisha	Ilisha elongata	LC
		50	Buccaneer anchovy	*Encrasicholina punctifer	LC
Gonorhynchiformes	Gonoruchidae	51	beaked salmon	*Gonorychus abbreviatus	NE
Siluriformes	Plotosidae	52	Striped eel catfish	Plotosus lineatus	NE
Aulopiformes	Synodontidae	53	Snakefish	#Trachinocephalus myops	LC
		54	Lizardfish	#Synodus fuscus	LC
		55	Taiwan Lizardfish	*Synodus taiwanensis	NE
		56	-	*Synodus sp.	-
		57	Bombay-duck	Harpadon nehereus	NT
		58	Slender lizardfish	#Saurida elongata	LC
		59	Greater lizardfish	#Saurida tumbil	LC
		60	Brushtooth lizardfish	#Saurida undosquamis	LC
Myctophiformes	Myctophidae	61	Skinnycheek lanternfish	*Benthosema pterotum	LC

Lophiomus	Lophiidae	62	Blackmouth angler	Lophiomus setigerus	LC
Gadiformes	Bregmacerotidae	63	False lance codlet	*Bregmaceros pseudolanceolatus	NE
		64	-	*Bregmaceros sp.	-
Ophidiiformes	Ophidiidae	65	Asiro brotula	*Ophidion muraenolepis	LC
		66	Yellow pigmy brotula	*Dinematichthys iluocoeteoides	LC
Mugiliformes	Mugilidae	67	Mullet	Planiliza affinis	NE
		68	-	*Mugilidae sp.	-
Beloniformes	Hemiramphidae	69	-	Hyporhamphus sp.	-
Beryciformes	Holocentridae	70	Redcoat	*Sargocentron rubrum	LC
Zeiformes	Zeidae	71	Cape dory	*Zeus capensis	LC
Syngnathiformes	Syngnathidae	72	Longnose seahorse	#Hippocampus trimaculatus	VU
		73	Great seahorse	Hippocampus kelloggi	VU
		74	Japanese seahorse	Hippocampus mohnikei	VU
		75	Hedgehog seahorse	Hippocampus spinosissimus	VU
		76	Rough pipefish	#Trachyrhamphus serratus	DD
	Pegasidae	77	Sea moth	*Pegasus laternarius	DD
	Fistularidae	78	Red cornetfish	#Fistularia petimba	LC
		79	Bluespotted cornetfish	Fistularia commersonii	LC
Scorpaeniformes	Scorpaenidae	80	Lionfish	Pterois volitans	LC
		81	Ocellated waspfish	*Apistus carinatus	LC
		82	Blackfoot Lionfish	Parapterois heterura	LC
		83	False kelpfish	#Sebastiscus marmoratus	NE
		84	Yellowfin scorpionfish	Scorpaenopsis neglecta	LC

		85	Scorpionfish	#Scorpaena miostoma	NE
		86	Korean rockfish	Sebastes schlegelii	NE
		87	Dwarf stingfish	*Minous pusillus	NE
		88	Grey stingfish	*Minous monodactylus	LC
	Aploactinidae	89	Dusky velvetfish	*Aploactis aspera	NE
	Triglidae	90	Spiny red gurnard	#Chelidonichthys spinosus	LC
		91	Redwing searobin	*Lepidotrigla microptera	NE
		92	Forksnout searobin	*Lepidotrigla alata	NE
	Platycephalidae	93	Midget flathead	*Onigocia spinosa	LC
		94	Tuberculated flathead	*Sorsogona tuberculata	LC
		95	Bartail flathead	Platycephalus indicus	DD
		96	Olive-tailed flathead	*Rogadius asper	LC
		97	Japanese flathead	*Inegocia japonica	LC
		98	Spotted flathead	*Inegocia guttata	NE
		99	-	* <i>Platycephalidae</i> sp.	-
Perciformes	Moronidae	100	Japanese seabass	Lateolabrax japonicus	NE
	Acropomatidae	101	Glowbelly	*Acropoma japonicum	NE
	Epinephelidae	102	Orange-spotted grouper	Epinephelus coioides	LC
		103	Yellow grouper	Epinephelus awoara	DD
		104	Duskytail grouper	Epinephelus bleekeri	DD
		105	Longfin grouper	Epinephelus quoyanus	LC
		106	Hong Kong grouper	Epinephelus akaara	EN
	Pricanthidae	107	Red bigeye	#Priacanthus macracanthus	LC

	108	Purple-spotted bigeye	#Priacanthus tayenus	LC
Apogonidae	109	Rifle cardinal	*Ostorhinchus kiensis	LC
	110	Half-lined cardinal	*Ostorhinchus semilineatus	DD
	111	Broadbanded cardinalfish	#Ostorhinchus fasciatus	NE
	112	Cardinalfish	*Apogonichthyoides niger	LC
	113	Flagfin cardinalfish	*Jaydia truncata	NE
	114	Indian perch	*Jaydia lineata	LC
Sillaginidae	115	Japanese sillago	Sillago japonica	LC
	116	Bay sillago	#Sillago ingenuua	NE
	117	-	*Sillaginidae sp.	-
Coryphaenidae	118	Common dolphinfish	Coryphaena hippurus	LC
Rachycentridae	119	Cobia	Rachycentron canadum	LC
Carangidae	120	African pompano	Alectis ciliaris	LC
	121	Bigeye scad	Selar crmenophthalmus	LC
	122	Yellowstripe scad	#Selaroides leptolepis	LC
	123	Black pomfret	Parastromateus niger	LC
	124	Whitefin trevally	*Carangoides equula	LC
	125	Razorbelly scad	Alepes kleinii	LC
	126	Japanese scad	#Decapterus maruadsi	LC
	127	Shortfin scad	Decapterus macrosoma	LC
	128	Japanese jack mackerel	#Trachurus japonicus	NT
	129	Snubnose pompano	Trachinotus blochii	LC
	130	Needlescaled queenfish	Scomberoides tol	LC

	131	Yellowtail amberjack	Seriola dumerili	LC
	132	Blackbanded trevally	Seriolina nigrofasciata	LC
Menidae	133	Moonfish	Mene maculata	NE
Leiognathidae	134	Deep pugnose ponyfish	*Secutor ruconius	NE
	135	Ponyfish	*Equulites rivulatus	NE
	136	Scrawled ponyfish	*Leiognathus berbis	NE
	137	Orangefin ponyfish	*Photopectoralis bindus	NE
Lutjanidae	138	Crimson snapper	Lutjanus erythopterus	LC
	139	Russell's snapper	Lutjanus russellii	LC
	140	Mangrove red snapper	Lutjanus argentimaculatus	LC
Gerreidae	141	Whipfin silver-biddy	Gerres filamentosus	LC
Haemulidae	142	Broadbanded velvetchin	Hapalogenys analis	NE
	143	Black grunt	Hapalogenys nigripinnis	NE
	144	Trout sweetlips	Plectorhinchus pictus	LC
	145	Crescent sweetlips	Plectorhinchus cinctus	LC
	146	Chicken grunt	Parapristipoma trilineatum	NE
Nemipteridae	147	Whitecheek monocle bream	*Scolopsis vosmeri	LC
	148	Golden threadfin bream	Nemipterus virgatus	VU
	149	Yellowbelly threadfin bream	*Nemipterus bathybius	LC
	150	Japanese threadfin bream	#Nemipterus japonicus	LC
Lethrinidae	151	Pacific yellowtail emperor	Lethrinus atkinsoni	LC
	152	Spangled emperor	Lethrinus nebulosus	LC
Sparidae	153	Yellowfin seabream	Acanthopagrus latus	DD

	154	Blackhead seabream	Acaanthopagrus schelegeli	LC
	155	Red seabream	Pagrus major	LC
	156	Goldlined seabream	Rhabdosargus sarba	LC
	157	Threadfin porgy	#Evynnis cardinalis	EN
Polynemidae	158	Fourfinger threadfin	Eleutheronema tetradactylum	NE
	159	Sixfinger threadfin	#Polydactylus sextarius	NE
Sciaenidae	160	Reeve's croaker	Chrysochir aureus	LC
	161	Croaker	*Johnius distinctus	LC
	162	Trewavas croaker	#Johnius trewavasae	LC
	163	Belanger's croaker	Johnius belangerii	LC
	164	-	*Johnius sp.1	-
	165	-	*Johnius sp.2	-
	166	Large yellow croaker	Larimichthys crocea	CR
	167	Yellow drum	Nibea albiflora	LC
	168	Big-head pennah croaker	#Pennahia macrocephalus	LC
	169	Truncate-tail croaker	#Pennahia anea	LC
	170	Silver croaker	#Pennahia argentata	LC
	171	Pawak croaker	*Pennahia pawak	LC
	172	Mi-iuy croaker	Miichthys miiuy	DD
	173	-	*Sciaenidae sp.	-
Glaucosomatidae	174	West Australian dhufish	Glaucosoma hebraicum	NE
Mullidae	175	Japanese goatfish	#Upeneus japonicus	NE
	176	Pointed goatfish	Parupeneus biaculeatus	NE

		177	Whitesaddle goatfish	Parupeneus ciliatus	LC
	-	178	Yellowstripe goatfish	Mulloidichthys flavolineatus	LC
Кур	ohosidae	179	Stripey	Microcanthus strigatus	LC
Drep	paneidae	180	Spotted sicklefish	*Drepane punctata	LC
Tera	apontidae	181	Jarbua terapon	*Terapon jarbua	LC
		182	Fourlined terapon	*Pelates quadrilineatus	NE
Ople	egnathidae	183	Spotted knifejaw	*Oplegnathus punctatus	NE
Cha	etodontidae	184	Triple-banded butterflyfish	#Roa modestus	LC
Pom	nacanthidae	185	Bluestriped angelfish	Chaetodontoplus septentrionalis	LC
Pom	nacentridae	186	Jordan's damsel	#Teixeirichthys jordani	LC
Cep	olidae	187	Bandfish	Acanthocepola indica	NE
Labi	ridae	188	Scarbreast tuskfin	Choerodon azurio	DD
Scar	ridae	189	Multicolorfin rainbowfish	Parajulis poecilepterus	LC
	-	190	Slender wrasse	*Suezichthys gracilis	LC
	-	191	Rosed razorfish	Iniistius verrens	LC
	-	192	Blackspot razorfish	Iniistius dea	LC
	-	193	Blue-barred parrotfish	Scarus ghobban	LC
Cha	mpsodontidae	194	Günther's gaper	*Champsodon guentheri	NE
Ping	guipedidae	195	Harlequin sandsmelt	#Parapercis pulchella	NE
		196	Sandperch	*Parapercis ommatura	NE
Call	lionymidae	197	Dragonet	#Callionymus huguenini	NE
		198	Dragonet	#Callionymus planus	NE
		199	Izu ruddertail dragonet	*Callionymus curvicornis	LC

	200	-	*Callionymus sp.	-
Percophidae	201	-	*Percophidae sp.	-
Trichonotidae	202	Black-spot sand-diver	#Trichonotus filamentosus	LC
	203	Spotted sand-diver	#Trichonotus setiger	LC
	204	Long-rayed sand-diver	#Trichonotus elegans	LC
Ammodytidae	205	Sand lance	#Bleekeria viridianguilla	NE
	206	Sand lance	#Bleekria mitsukurii	NE
Uranoscopidae	207	Naked-nape stargazer	Uranoscopus oligolepis	LC
	208	Chinese stargazer	*Uranoscopus bicinctus	NE
	209	Japanese stargazer	#Uranoscopus japonicus	LC
	210	Longnosed stargazer	*Ichthyscopus lebeck	NE
	211	Oriental fringe stargazer	*Ichthyscopus pollicaris	NE
Gobiidae	212	Burrowing goby	Trypauchen vagina	LC
	213	Maned goby	*Oxyurichthys microlepis	LC
	214	-	*Gobiidae sp.	-
Eleotridae	215	Ward's sleeper	*Valenciennea wardi	LC
	216	Immaculate glidergoby	*Valenciennea immaculata	LC
Ptereleotridae	217	Blue hana goby	*Ptereleotris hanae	LC
Ephippidae	218	Longfin batfish	Platax teria	LC
Siganidae	219	Mottled spinefoot	#Siganus fuscescens	LC
Sphyraenidae	220	Seapike	Sphyraena jello	NE
	221	Red barracuda	Sphyraena pinguis	NE
	222	-	<i>Sphyraena</i> sp.	-

	Trichiuridae	223	Largehead hairtail	#Trichiurus lepturus	LC
		224	Japanese hairtail	*Trichiurus japonicus	NE
		225	Chinese short-tailed hairtail	*Trichiurus brevis	NE
		226	-	*Trichiurus sp.	-
	Scombridae	227	Chub mackerel	#Scomber japonicus	LC
		228	Japanese Spanish mackerel	Scomberomorus niphonius	DD
		229	Narrow-barred Spanish mackerel	Scomberomorus commerson	NT
		230	Indo-Pacific king mackerel	Scomberomorus guttatus	DD
		231	Bullet mackerel	Auxis thazard	LC
		232	Bonito	Euthynnus affinis	LC
		233	Striped bonito	Sarda orientalis	LC
	Centrolophidae	234	Pacific rudderfish	#Psenopsis anomala	LC
	Stromateidae	235	Butterflyfish	Pampus argenteus	NE
		236	Chinese silver pomfret	Pampus chinensis	NE
Pleuronectiformes	Paralichthyidae	237	Cinnamon flounder	Pseudorhombus cinnamoneus	LC
		238	Largetooth flounder	Pseudorhombus arsius	NE
		239	Taiwan-ganzôbirame	Pseudorhombus levisquamis	LC
		240	Roughscale flounder	Pseudorhombus oligodon	LC
		241	Large-tooth flounder	*Tarphops oligolepis	LC
	Bothidae	242	Lefteye flounder	*Psettina tosana	LC
		243	-	*Psettina sp.	-
		244	Largescale flounder	*Engyprosopon grandisquama	LC
		245	Lefteye flounder	*Engyprosopon maldivensis	DD

	246	Lefteye flounder	*Engyprosopon multisquama	LC
	247	-	*Engyprosopon sp.	-
	248	Blue flounder	*Crossorhombus azureus	LC
	249	-	*Crossorhombus sp.	-
	250	Many-spotted lefteye flounder	*Arnoglossus polyspilus	LC
	251	Large-crested lefteye flounder	*Arnoglossus macrolophus	LC
	252	Dwarf lefteye flounder	*Arnoglossus tenuis	LC
	253	-	*Arnoglossus sp.	-
	254	-	*Bothidae sp.	-
Pleuro	onectidae 255	Ridged-eye flounder	#Pleurinichthys cornutus	NE
Samar	ridae 256	Crested flounder	*Samaris cristatus	LC
Soleid	lae 257	Ovate sole	*Solea ovata	LC
	258	Zebra sole	Zebrias zebra	NE
	259	Unicorn sole	Aesopia cornuta	LC
	260	Flounder	*Zebrias crossolepis	DD
	261	Wavyband sole	*Pseudaesopia japonica	LC
	262	-	*Soleidae sp.	-
	263	Blackspotted sole	#Liachirus melanospilos	LC
Cynog	glossidae 264	Red tonguesole	*Cynoglossus joyneri	NE
	265	Speckled tougue sole	*Cynoglossus puncticeps	LC
	266	Speckled tongue sole	*Cynoglossus itinus	LC
	267	Genko sole	*Cynoglossus interruptus	LC
	268	-	*Cynoglossus sp.	-

		269	Black cow-tongue	Paraplagusia japonica	LC
Tetraodontiformes	Monacanthidae	270	Unicorn leatherjacket filefish	Aluterus monoceros	LC
		271	Threadsail filefish	#Stephanolepis cirrhifer	LC
		272	Mudbank filefish	#Paramonacanthus sulcatus	LC
		273	Faintstripe filefish	#Paramonacanthus pusillus	LC
		274	Prickly leatherjacket	Chaetodermis peniciligera	LC
	Tetraodontidae	275	Blowfish	#Lagocephalus wheeleri	LC
		276	Smooth blaasop	Lagocephalus inermis	LC
		277	Lattice blaasop	Takifugu oblongus	LC
		278	Pufferfish	Takifugu poecilonotus	LC
		279	Yellowfin puffer	Takifugu xanthopterus	LC
		280	Guineafowl puffer	Arothron meleagris	LC
			Crustaceans (N = 69)		
Stomatopoda	Squillidae	281	Japanese squillid mantis shrimp	*Oratosquilla fabricii	NE
		282	Mantis shrimp	*Lophosquilla costata	NE
		283	Smooth squillid mantis shrimp	*Erugosquilla woodmasoni	NE
		284	Mantis shrimp	*Carinosquilla multicarinata	NE
		285	Mantis shrimp	*Oratosquillina interrupta	NE
		286	Mantis shrimp	#Odontodactylus japonicus	NE
Decapoda	Sicyoniidae	287	Shrimp	*Sicyonia sp.	-
	Palaemonidae	288	Shrimp	*Palaemonidae sp.	-
	Solenoceridae	289	Udang merah	#Solenocera crassicornis	NE
	Penaeidae	290	Kuruma shrimp	Penaeus japonicus	NE

	291	Chinese white prawn	Penaeus merguiensis	NE
	292	Western king prawn	Penaeus latisulcatus	NE
	293	Green tiger prawn	Penaeus semisulcatus	NE
	294	Southern rough shrimp	#Trachysalambria curvirostris	NE
	295	Rough shrimp	*Trachysalambria longipes	NE
	296	Spear shrimp	#Parapenaeopsis hardwickii	NE
	297	Coral shrimp	#Kishinouyepenaeopsis cornuta	NE
	298	Shrimp	*Mierspenaeopsis cultrirostris	NE
	299	Smoothshell shrimp	*Batepenaeopsis tenella	NE
	300	Flamingo shrimp	*Parapenaeus longipes	NE
	301	Whiskered velvet shrimp	#Metapenaeopsis barbata	NE
	302	Kishi velvet shrimp	*Metapenaeopsis dalei	NE
	303	Humpback prawn	Metapenaeopsis lamellata	NE
	304	Southern velvet shrimp	*Metapenaeopsis palmensis	NE
	305	Mogi velvet shrimp	*Metapenaeopsis mogiensis	NE
	306	-	*Metapenaeopsis sp.1	-
	307	-	*Metapenaeopsis sp.2	-
	308	-	*Penaeidae sp.1	-
	309	-	*Penaeidae sp.2	-
Pasiphaeida	ae 310	Lesser glass shrimp	*Leptochela gracilis	NE
Scyllaridae	311	Slipper lobster	*Scyllarus cultrifer	LC
Albuneidae	312	-	*Albunea sp.	-
Dromiidae	313	Japanese sponge crab	*Lauridromia dehaani	NE

	314	Crab	*Conchoecetes artificiosus	NE
Dorippida	e 315	Granulated mask crab	*Paradorippe granulata	NE
Majidae	316	-	* <i>Pugettia</i> sp.	-
	317	-	*Majidae sp.	-
Leucosiid	ae 318	Pebble crab	Leucosia craniolaris	NE
	319	Painted pebble crab	Leucosia anatum	NE
	320	Fleeting purse crab	*Myra fugax	NE
	321	-	*Myra sp.	-
	322	-	*Leucosiidae sp.	-
Calappida	e 323	Box crab	#Calappa philargius	NE
	324	Spotted box crab	Calappa lophos	NE
	325	Reef box crab	*Calappa hepatica	NE
	326	Crab	*Cycloes granulosa	NE
Parthenop	idae 327	Strong elbow crab	*Enoplolambrus validus	NE
Corystidae	e 328	Crab	Jonas distincta	NE
Matutiode	a 329	Spotted moon crab	*Matuta planipes	NE
	330	Yellow moon crab	*Matuta banksi	NE
Portunidae	e 331	Mud crab	Scylla paramamosain	NE
	332	Swimming crab	*Portunus hastatoides	NE
	333	Japanese blue crab	#Portunus trituberculatus	NE
	334	Swimming crab	*Portunus gracilimanus	NE
	335	Three-spot swimming crab	#Portunus sanguinolentus	NE
	336	Swimming crab	*Portunus argentatus	NE

		337	Flower crab	Portunus pelagicus	NE
		338	Red swimming crab	#Monomia haanii	NE
		339	Swimming crab	*Charybdis bimaculata	NE
		340	Swimming crab	*Charybdis acuta	NE
		341	Crucifix crab	Charybdis feriatus	NE
		342	Rock crab	#Charybdis nataor	NE
		343	Swimming crab	*Charybdis variegata	NE
		344	Soldier swimming crab	Charybdis miles	NE
		345	-	*Charybdis sp.	-
	Porcellanidae	346	Crab	*Porcellana pulchra	NE
		347	-	*Porcellanidae sp.	-
	Xanthidae	348	Mosaic reef crab	Lophozozymus pictor	NE
	Pilumnidae	349	-	*Heteropilumnus sp.	-
			Cepholopods (N = 19		
Sepiida	Sepiidae	350	Spineless cuttlefish	#Sepiella maindroni	DD
		351	Golden cuttlefish	#Sepia esculenta	DD
		352	Kisslip cuttlefish	Sepia lycidas	DD
		353	-	#Sepiidae sp.	-
	Sepiolidae	354	Bobtail Squid	#Sepiola berryi	NE
		355	Koch's bottletail squid	*Sepiadarium kochii	LC
		356	-	<i>*Sepiola</i> sp.	-
Teuthida	Loliginidae	357	Squid	Loligo japonicus	DD
		358	Squid	Uroteuthis duvaucelii	DD

		359	Southern dumpling squid	Uroteuthis chinensis	DD
		360	Swordtip squid	*Uroteuthis edulis	DD
		361	Little squid	#Loliolus uyii	DD
		362	-	*Loliginidae sp.	-
Octopoda	Octopodidae	363	Whiparm octopus	#Octopus variabilis	DD
		364	Webfoot octopus	#Octopus ocellatus	LC
		365	Octopus	#Amphioctopus aegina	LC
		366	Stareye octopus	#Amphioctopus kagoshimensis	LC
		367	Greater blue-ringed octopus	*Hapalochlaena lunulata	LC
		368	-	#Octopodidae sp.	-

3.2.2 Endangered, threatened and protected species

All Carcharhinidae species were listed in CITES Appendix II in 2022, and three species (*Sphyrna lewini*, *Scoliodon macrorhynchos*, *Carcharhinus sorrah* and *C. macloti*) were recorded at the landing ports of Dongshan County according to the surveys from August 2022 to April 2023 (Fig. 3-1). *S. macrorhynchos* was the most common species of Carcharhinidae species that was spotted in October 2022, December 2022, January 2023 and April 2023, with a total of about 30 individuals. Both *C. sorrah* and *C. macloti* had a low occurrence at the landing ports, with one *C. sorrah* individual in August 2022, one *C. macloti* individual in December 2022 and one *C. macloti*

Fig. 3-1 Pacific spadenose shark *Scoliodon macrorhynchos* (top), Spot-tail shark *Carcharhinus sorrah* (middle), Hardnose shark *Carcharhinus macloti* (bottom) found in trawl catches in Dongshan County.

Sphyrna lewini (Shpyrnidae) was listed as CITES Appendix II in 2014. *S. lewini* had a low occurrence at the landing ports of Dongshan County according to the surveys from August 2022 to April 2023, only one individual in October 2022 and one in March 2023 (Fig. 3-2).

Fig. 3-2. Scalloped hammerhead shark *Sphyrna lewini* found in trawl catches in Dongshan County.

All *Rhynchobatus* species (Rhynchobatidae) were listed as CITES Appendix II in 2019. One species, Taiwan wedgefish *Rhynchobatus immaculatus*, was recorded according to the surveys from August 2022 to April 2023 (Fig. 3-3). Only one individual of *R. immaculatus* was observed in October 2022 (Fig. 3-3).

Fig. 3-3. Taiwan wedgefish *Rhynchobatus immaculatu* found in trawl catches in Dongshan County.

All *Hippocampus* species were listed in CITES Appendix II in 2004. In Dongshan County, *H. trimaculatus* is the absolutely dominant landing species in seahorse bycatches from trawl fishery. During the surveys from August 2022 to April 2023, only *H. trimaculatus* was found at the landing ports of Dongshan County.

To summary, a total of nine cartilaginous fishes (S. macrorhynchos, C. melanopterus, C. brachyurus, C. sorrah, C. macloti, C. leucas, Sphyrna lewini,

Rhynchobatus immaculatus and *R. australiae*) and four bony fishes (*H. trimaculatus*, *H. spinosissimus*, *H. kelloggi* and *H. mohnikei*), all listed as CITES Appendix II species, were found in trawl catches of Dongshan County throughout the surveys from August 2018 to April 2023 (in Phase I-VI).

The four seahorse species aforementioned were also listed as Category II of National Wildlife Protected Species in January 2021 (www.forestry.gov.cn/html/main/main_5461/20210205122239482485322/file/202102 05122347636743107.pdf).

Among the 368 species identified aforementioned in Dongshan County from October 2021-April 2023, a total of 23 fish species were listed as threatened in the International Union for Conservation of Nature (IUCN) Red List (Table 4-2). Among the 23 fish species, 5 species (*S. lewini, R. immaculatus, R. australiae, Rhinobatos schlegelii* and *Larimichthys crocea*) were listed as "Critically Endangered", 5 species (*Rhinobatos hynnicephalus, Platyrhina sinensis, Aetobatus flagellum, Epinephelus akaara* and *Evynnis cardinalis*) were listed as "Endangered", and 13 species (*C. brachyurus, Narcine lingual, N. maculate, Okamejei boesemani, Platyrhina tangi, Telatrygon zugei, Taeniurops meyeni, Gymnura japonica, H. kelloggi, H. mohnikei, H. spinosissimus, H. trimaculatus* and *Nemipterus virgatus*) were as "Vulnerable". *E. cardinalis* is one of the most important food fishes in terms of catch volume proportion and number documented in this study.

3.3 Fishing areas

The fishing grounds remained unchanged during the surveys from August 2022 to April 2023. Based on the captain and crew interviews, trawl vessels from Dongshan County mainly operate in offshore fishing grounds, including Minnan Fishing Ground, Taiwan Bank Fishing Ground, Yuedong Fishing Ground, Dongsha Fishing Ground and Southern Taiwan Fishing Ground within 116°-119° E and 21°50'-24°50' N or more extended (Lin et al., 2021) (Fig. 3-4).

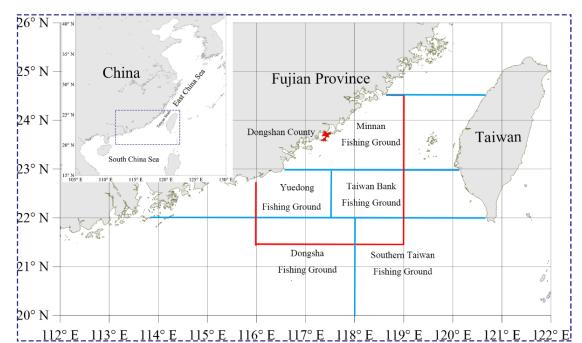


Fig. 3-4. Offshore fishing areas (within red line) of trawl vessels from Dongshan County (red area), covering five fishing grounds of southern Taiwan Strait.

3.4 Fishery operation patterns

Based on 101 trawl vessels surveyed at the landing ports of Dongshan County during the surveys from August 2022 to April 2023, they generally spent 1-14 days/trip at sea (mean = 6.22, N = 101). The variation of fishing days at sea highly depended on the weather conditions. Over 60% of trawl vessels surveyed spent more than 5 days/trip at sea. Almost all of the trawl vessels surveyed in October 2022 and February 2023 spent less than 3 days/trip at sea due to bad weather. The fishery operation patterns are similar with the findings in August 2018-April 2022 surveys (in Phases I-V).

3.5 Capture volumes and proportions by trawl vessels

3.5.1 Capture volumes and proportions of different taxonomic groups

Based on the trawl vessels surveyed (N = 101) at the landing ports of Dongshan County from August 2022 to April 2023, the average total capture volume was about 8179.90 kg/vessel/trip, and the capture volumes and proportions of different taxonomic groups were estimated (错误!未找到引用源。3-3). The findings were summarized as below:

(1) The most dominant capture taxonomic group was the fishes (including food fish and feed fish), contributed to 71.83% (average of 5875.85 kg/vessel/trip) of the

estimated average total capture volume (average of 8179.90 kg/vessel/trip).

(2) The average total food fish capture volume was 3802.60 kg/vessel/trip, which contributed to 46.49% of the estimated total capture volume.

(3) The proportion of feed fishes was high (average of 2073.25 kg/vessel/trip), contributed to 25.35% of the total capture volume.

(4) The average total crustacean capture volume (1489.73 kg/vessel/trip) contributed to 18.21% of the estimated average total capture volume, with the estimated average 1249.90 kg/vessel/trip for crabs and 239.83 kg/vessel/trip for shrimps.

(5) The average total cephalopod capture volume was 814.32 kg/vessel/trip, which contributed to 9.96% of the estimated total capture volume.

Table 3-3. Capture volumes and proportions from trawl vessels surveyed (N = 101) in August 2022-April 2023 at the landing ports of Dongshan County.

Parameters	Mean	N = 101
Fishing days per trip	6.22	days/trip
Average total capture volume per trip	8179.901	kg/vessel/trip
Average total crustacean	1489.73	kg/vessel/trip
capture volume per trip	Shrimps:	Crabs:
cupture volume per urp	239.83 kg/vessel/trip	1249.90 kg/vessel/trip
Total crustacean	18	8.21%
volume/total capture volume	Shrimps: 2.93%	Crabs: 15.28%
Average total fish capture volume per trip	5875.851	kg/vessel/trip
Total fish volume/total capture volume	71	1.83%
Average total food fish capture volume per trip	3802.60	kg/vessel/trip
Total food fish	Δ.	5.49%
volume/total capture volume		
Average total feed fish capture volume per trip	2073.25	kg/vessel/trip

Total feed fish	25.35%
volume/total capture volume	
Average total	
cephalopod capture volume	814.32 kg/vessel/trip
per trip	
Total cephalopod	9.96%
volume/total capture volume	9.9070

3.5.2 Crabs

The crab capture volume proportions in the total capture volumes of trawl fishery (N = 101) in Dongshan County in August 2022-April 2023 were further analyzed (Table 3-4; Fig.3-5 to 3-7). The findings were summarized as below:

(1) Crab proportions in the total capture volumes of trawl fishery in Dongshan County ranged from 2.93% in April 2023 to 29.64% in August 2022, including four main crab species, *M. haanii*, *P. sanguinolentus*, *C. nataor* and *C. philargius*.

(2) Among the estimated average total crab capture volume of 1249.90 kg/vessel/trip, *M. haanii* was 954.63 kg/vessel/trip, *P. sanguinolentus* was 218.14 kg/vessel/trip, *C. nataor* was 14.49 kg/vessel/trip and *C. philargius* was 37.08 kg/vessel/trip, contributed to 11.67%, 2.67%, 0.28% and 0.65% of the total capture volume, respectively.

(3) The dominant crab species in trawl fishery was *M. haanii*, contributed around 80% of the total crab production. The *M. haanii* proportions in the total capture volumes varied monthly, ranged from 2.36% in April 2023 to 24.01% in August 2022. The capture volumes of *M. haanii* ranged from 190.56 kg/vessel/trip to 2154.09 kg/vessel/trip.

(4) Based on the average fishing days at sea, the average CPUE of *M. haanii* ranged from 20.14 kg/vessel/day in April 2023 to 355.72 kg/vessel/day in August 2021 (mean = 173.28 kg/vessel/day).

(5) Based on the average fishing days at sea, the average CPUE of *P. sanguinolentus* ranged from 1.48 kg/vessel/day in April 2023 to 77.04 kg/vessel/day in January 2023 (mean = 37.50 kg/vessel/day).

Table 3-4. Average capture volumes (kg/vessel/trip) and proportions (%) of four main crab species in the total capture volumes from trawl vessels surveyed (N = 101) in

Crab species	Average volume (kg/vessel/trip)	Proportion (%)
Monomia haanii	954.63	11.67%
Portunus sanguinolentus	218.14	2.67%
Charybdis nataor	23.23	0.28%
Calappa philargius	52.93	0.65%
Other crabs	0.96	0.01%
Total	1249.90	15.28%

August 2022-April 2023 at the landing ports of Dongshan County.

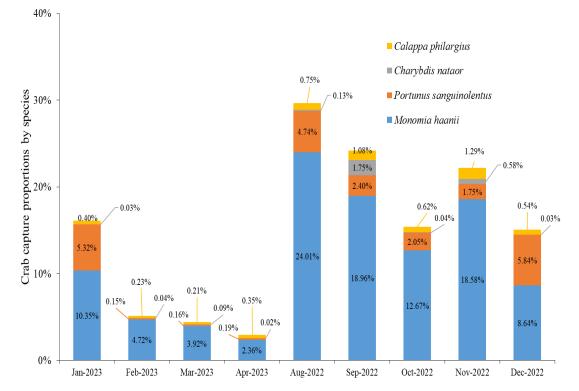


Fig. 3-5. Crab capture proportions in the total capture volume by species from trawl vessels surveyed in August 2022-April 2023 at the landing ports of Dongshan County.

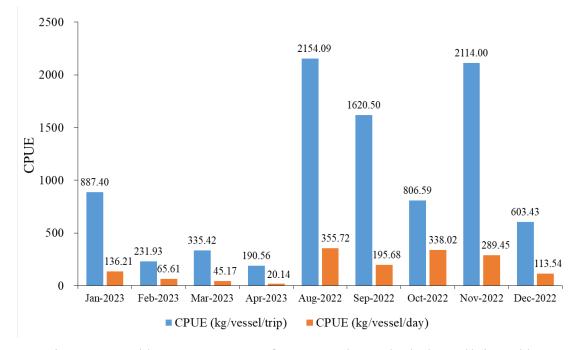


Fig. 3-6. Monthly average CPUE of *Monomia haanii* by kg/vessel/trip and by kg/vessel/day (values shown at the tops of the bars), surveyed in August 2022-April 2023 at the landing ports of Dongshan County.

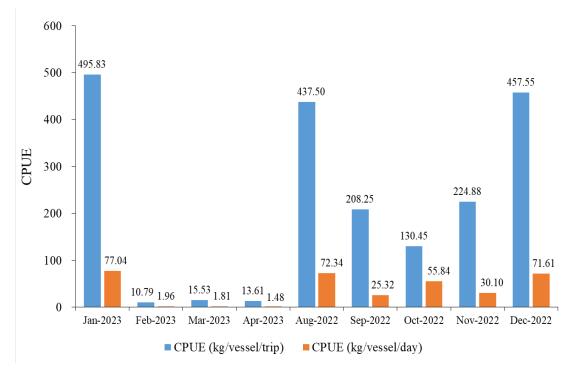


Fig. 3-7. Monthly average CPUE of *Portunus sanguinolentus* by kg/vessel/trip and by kg/vessel/day (values shown at the tops of the bars), surveyed in August 2022-April 2023 at the landing ports of Dongshan County.

3.5.3 Food fishes

In August 2022-April 2023, the dominant food fish species or species groups in trawl fishery in Dongshan County were *Evynnis cardinalis*, *Trachinocephalus myops*, *Saurida* spp. (mainly *Saurida elongata*), *Decapterus* spp. (mainly *D. maruadsi*), *Trachurus japonicus*, Sillaginidae spp. (mainly *Sillago sihama*), Mullidae spp. (mainly *Upeneus japonicus*), *Siganus fuscescens*, Trichiuridae spp., Callionymidae spp., Ammodytidae spp. (*Bleekeria viridianguilla* and *Bleekria mitsukurii*), Monacanthidae spp. (mainly *Paramonacanthus sulcatus* and *Stephanolepis cirrhifer*) and Tetraodontidae spp. (mainly *Lagocephalus wheeleri* and *Takifugu oblongus*).

For dominant food fish species and species groups, their capture volume proportions in the total capture volumes showed monthly variation (Table 3-5).

Based on the 101 trawl vessels surveyed at the landing ports of Dongshan County in August 2022-April 2023, food fishes contributed to 26.37% (in January 2023)-61.17% (in March 2023) of the total capture volumes (Fig. 3-8).

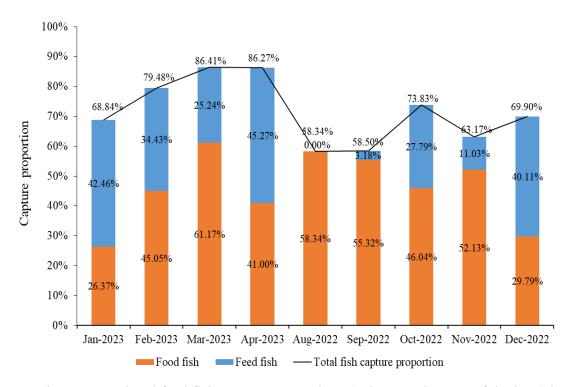


Fig. 3-8. Food and feed fish capture proportions (values on the tops of the bars) in the total capture volumes from trawl vessels surveyed (N = 101) in August 2022-April 2023 at the landing ports of Dongshan County.

Fish Species/Groups	Jan-2023	Feb-2023	Mar-2023	Apr-2023	Aug-2022	Sep-2022	Oct-2022	Nov-2022	Dec-2022
Total fish%	68.84%	79.48%	86.41%	86.27%	58.34%	58.50%	73.83%	63.17%	69.90%
Trachinocephalus myops	3.03%	3.32%	3.60%	7.55%	5.34%	16.26%	2.88%	5.33%	4.39%
& Saurida spp.									
Evynnis cardinalis	1.15%	1.09%	1.35%	0.36%	21.41%	7.79%	8.14%	13.17%	1.22%
Sillaginidae spp.	0.99%	2.58%	2.94%	1.97%	4.21%	3.34%	2.03%	4.17%	0.51%
Decapterus spp. &	9.05%	0.44%	0.58%	2.77%	14.58%	3.18%	20.14%	15.88%	6.04%
Trachurus japonicus									
Mullidae spp.	1.32%	2.12%	0.96%	0.77%	3.59%	3.33%	1.31%	2.06%	2.86%
Ammodytidae spp.	0.00%	29.84%	50.59%	21.97%	0.00%	5.85%	1.50%	1.53%	0.00%
Trichiuridae spp.	2.40%	0.04%	0.08%	0.00%	0.43%	0.16%	2.37%	1.66%	1.35%
Tetraodontidae spp.	0.19%	0.89%	0.86%	0.08%	0.10%	0.81%	0.35%	1.13%	0.54%
Monacanthidae spp.	1.28%	0.45%	0.24%	1.00%	4.96%	11.49%	1.54%	1.17%	0.81%
Siganus fuscescens	1.27%	0.19%	0.05%	3.02%	0.12%	0.23%	0.09%	0.72%	5.60%
Callionymidae spp.	0.11%	1.45%	0.31%	0.45%	0.35%	0.09%	0.11%	0.11%	0.53%

Table 3-5. Dominant fish species or species groups in capture proportions of the total capture volumes in trawl vessels surveyed (N = 101) in August 2022-April 2023 at the landing ports of Dongshan County.

3.5.4 Feed fishes

3.5.4.1 Capture proportions of feed fishes

The "feed fishes" in this report were those small-sized, low-valued, poorly preserved, fishes (also including crustaceans and cephalopods), with their destination to aquaculture farms, mentioned by the captains of the trawl vessels surveyed (Zhang et al., 2018).

Based on the 101 trawl vessels surveyed at the landing ports of Dongshan County in August 2022-April 2023, feed fishes contributed to 0.00% (August 2022)-45.27% (April 2023) of the total capture volumes; no feed fishes in August 2022 (Fig. 3-8).

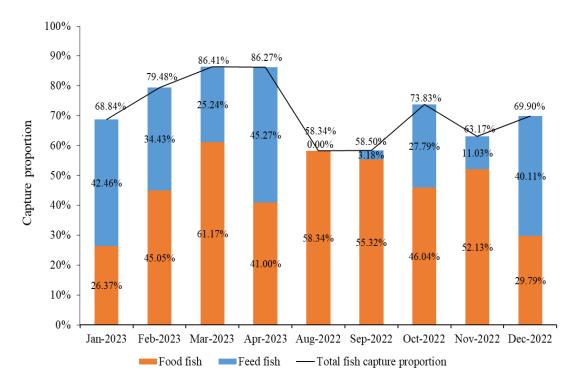


Fig. 4-8. Food and feed fish capture proportions (values on the tops of the bars) in the total capture volumes from trawl vessels surveyed (N = 101) in August 2022-April 2023 at the landing ports of Dongshan County.

3.5.4.2 Species diversity in feed fishes

Based on the monthly and randomly samplings of feed fishes (mean 1.70 kg/month, range of 1.43-2.30 kg) at the landing ports of Dongshan County from August 2022 to April 2023, 167 species with 118 fishes, 39 crustaceans and 10 cephalopods were identified (Table 3-6). There were 12 species dominated in feed fishes including fishes, crabs and squids, and some were commercially important.

Table 3-6. Species diversity, size range (standard length for fishes and cephalopods, carapace width for crabs) and proportions in feed fishes oftrawl catches in August 2022-April 2023 in Dongshan County.

		Jan-2	023	Feb-2	023	Mar-2	2023	Apr-2	023	Aug-2	2022	Sep-2	2022	Oct-2	2022	Nov-2	2022	Dec-202	22
No.	Species name	%	Size (cm)	%	Size (cm)	%	Size (cm)	%	Size (cm)	%	Size (cm)	%	Size (cm)	%	Size (cm)	%	Size (cm)	%	Size (cm)
1	*Caecula pterygera	0.77	40.6	-	-	-	-	-	-	-	-	-	-	-	-	0.60	36.9	0.89	28.6- 39.5
2	*Bascanichthys kirki	-	-	-	-	-	-	-	-	-	-	1.72	50.0	-	-	-	-	-	-
3	Pisodonophis cancrivorus	-	-	-	-	-	-	0.56	28.6	-	-	-	-	-	-	-	-	-	-
4	Pisodonophis boro	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.01	34.4	-	-
5	Callechelys kuro	-	-	0.89	28.1- 30.9	0.60	34.5	0.29	26.4	-	-	-	-	-	-	1.50	40.0	1.12	34.9
6	*Cirrhimuraena chinensis	0.47	28.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	Muraenesox cinereus	-	-	-	-	-	-	-	-	1.67	22.9	-	-	-	-	-	-	-	-
8	Oxyconger leptognathus	-	-	-	-	-	-	1.29	29.8	-	-	-	-	5.99	22.0- 26.0	-	-	1.03	27.0
9	Ariosoma megalops	-	-	-	-	-	-	0.38	13.5- 13.6	0.39	13.1	-	-	0.70	18.6	-	-	0.33	13.4
10	Uroconger lepturus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.32	15.0

(*species only found in feed fishes) (Red: the first three dominant species or species group each month)

		T	T		T	<u>r</u>	1	1	1	r	1	1	1	r –	T	0.75	22.0	T	
11	*Congridae sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.75	23.0-	-	-
																	23.1		
12	*Saurenchelys	-	-	-	-	-	-	-	-	-	-	0.54	35.4	0.61	36.6	-	-	-	-
12	fierasfer																		
13	*Thryssa	0.90	10.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.18	8.9-9.8
15	kammalensis																		
14	*Setipinna tenuifilis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.34	8.1	1.10	8.9-9.7
	*Encrasicholina	0.08	5.2	-	-	-	-	-	-	-	-	-	-	0.07	6.0	-	-	1.30	5.3-6.5
15	punctifer																		
16	*Gonorynchus	-	-	0.08	7.5	0.39	7.2-	0.90	7.5-	-	-	-	-	-	-	-	-	-	-
16	abbreviatus						7.9		11.9										
17	Plotosus lineatus	-	-	-	-	-	-	-	-	-	-	-	-	4.01	14.5-	-	-	-	-
17	1 totosus tineutus														17.0				
18	Trachinocephalus	2.04	7.1-9.2	8.70	3.5-	3.93	6.9-	1.81	4.9-8.2	-	-	2.14	2.6-9.8	0.82	4.6-5.9	0.79	4.5-	1.78	5.4-7.0
18	myops				15.0		10.6										5.0		
10	G 1 C	-	-	0.77	11.5	-	-	-	-	5.27	7.5-	3.34	6.8-	0.87	8.1-8.5	-	-	1.73	9.5-
19	Synodus fuscus										12.6		13.4						11.0
20		-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.13	6.1-	-	-
20	Harpadon nehereus																7.0		
21	Saurida elongata	-	-	-	-	-	-	-	-	-	-	-	-	0.46	9.5	-	-	-	-
22	Saurida	-	-	-	-	1.00	5.8-	-	-	-	-	0.17	4.6-5.1	3.05	6.5-	0.56	9.9	5.60	9.0-
22	undosquamis						12.2								10.5				13.5
23	* Benthosema	0.10	3.3	-	-	-	-	-	-	-	-	-	-	-	-	0.17	2.4-	-	-
23	pterotum																3.2		
24	*Bregmaceros pseu	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.32	7.8	-	-

	dolanceolatus																		
25	*Bregmaceros sp.	0.30	4.2-6.1	-	-	0.12	6.8	2.97	4.2-7.3	-	-	0.06	4.9	-	-	0.10	5.6	0.79	4.9-5.9
26	*Ophidion muraenolepis	0.35	9.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27	*Dinematichthys iluocoeteoides	-	-	-	-	0.02	3.5	0.04	4.3	-	-	-	-	-	-	-	-	-	-
28	Hippocampus trimaculatus	-	-	0.21	10.6	-	-	0.08	8.7	-	-	-	-	-	-	-	-	-	-
29	*Pegasus laternarius	-	-	-	-	-	-	-	-	-	-	-	-	0.15	5.2	-	-	0.12	4.7
30	Fistularia petimba	-	-	-	-	-	-	-	-	-	-	-	-	0.45	24.5	-	-	-	-
31	*Apistus carinatus	2.17	2.4-5.0	1.37	4.0- 5.7	3.98	3.9- 11.1	4.41	3.4-7.2	0.03	2.4	1.35	2.4-9.1	4.55	4.6- 11.5	1.17	4.4- 6.4	1.14	2.0-5.9
32	*Minous pusillus	-	-	-	-	-	-	0.34	6.1	-	-	0.37	5.9	-	-	-	-	-	-
33	*Minous monodactylus	-	-	-	-	-	-	-	-	-	-	0.08	2.7	-	-	0.10	3.6	0.11	3.9
34	*Aploactis aspera	-	-	-	-	0.45	8.0	-	-	-	-	-	-	-	-	-	-	-	-
35	Chelidonichthys spinosus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.46	10.5	-	-
36	*Lepidotrigla alata	-	-	-	-	-	-	-	-	1.53	-	-	-	-	-	-	-	-	-
37	*Onigocia spinosa	-	-	-	-	0.70	8.7	-	-	-	-	0.49	7.6	-	-	-	-	0.44	4.9-6.5
38	*Sorsogona tuberculata	1.07	6.7-8.5	2.12	5.5- 8.8	1.94	4.5- 7.6	3.65	6.7- 12.3	-	-	8.07	10.6- 14.0	0.26	5.0-5.2	-	-	0.43	5.6-6.4
39	*Rogadius asper	-	-	-	-	-	-	-	-	-	-	0.52	8.2	-	-	-	-	-	-

40	*Inegocia japonica	-	-	-	-	-	-	-	-	4.79	18.5	-	-	-	-	-	-	-	-
41	*Inegocia guttata	-	-	2.63	16.9	-	-	-	-	2.55	13.4	-	-	-	-	-	-	-	-
42	*Platycephalidae sp.	-	-	-	-	0.14	6.1	-	-	-	-	-	-	-	-	-	-	-	-
43	*Acropoma japonicum	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.36	2.5- 4.6	0.10	4.1
44	Priacanthus macracanthus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.04	3.0
45	Priacanthus tayenus	-	-	-	-	-	-	-	-	-	-	-	-	1.69	10.0	-	-	0.16	4.2
46	*Ostorhinchus kiensis	-	-	-	-	-	-	-	-	0.61	3.8-4.1	-	-	-	-	-	-	-	-
47	Ostorhinchus fasciatus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.50	3.1- 5.9	-	-
48	*Apogonichthyoides niger	-	-	1.49	6.2- 6.7	0.81	5.5- 6.5	-	-	-	-	0.04	2.7	0.45	4.2-4.8	-	-	1.13	4.2-5.5
49	*Jaydia truncata	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.65	4.9- 6.4	-	-
50	Sillago ingenuua	4.72	5.4-12.9	4.63	6.5- 10.0	0.95	8.9- 10.1	-	-	15.30	7.4- 10.2	12.28	6.3-9.3	1.04	3.1- 10.6	3.44	9.5- 11.9	8.12	5.5-9.5
51	*Sillaginidae sp.	-	-	-	-	-	-	0.10	4.9	-	-	-	-	-	-	-	-	-	-
52	Selaroides leptolepis	-	-	-	-	-	-	-	-	-	-	-	-	1.10	4.5-7.8	-	-	-	-
53	*Carangoides equula	-	-	-	-	0.16	5.1	-	-	-	-	-	-	-	-	-	-	-	-
54	Decapterus maruadsi	-	-	-	-	-	-	1.45	5.9- 13.4	-	-	-	-	-	-	-	-	-	-

55	Trachurus japonicus	-	-	-	-	2.53	3.5-	1.04	5.7-8.1	-	-	-	-	-	-	-	-	-	-
55	11 actiur us juponicus						6.2												
56	*Secutor ruconius	1.29	3.5-5.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.62	4.0-5.1
57	*Equulites rivulatus	0.56	4.0-4.5	2.67	5.0- 6.4	1.35	4.5- 6.5	0.11	5.1	0.48	2.7-4.4	6.05	2.3-4.5	-	-	-	-	2.39	4.0-6.4
58	*Photopectoralis bindus	-	-	-	-	-	-	-	-	0.22	4.6	-	-	0.09	3.9	-	-	-	-
59	*Scolopsis vosmeri	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.69	8.9
60	*Nemipterus bathybius	-	-	-	-	-	-	-	-	-	-	0.14	4.7	-	-	-	-	-	-
61	Nemipterus japonicus	-	-	-	-	-	-	-	-	-	-	-	-	1.40	10.1	-	-	-	-
62	Evynnis cardinalis	-	-	-	-	0.65	2.3- 4.0	3.73	3.4-5.8	2.42	-	-	-	-	-	-	-	-	-
63	Polydactylus sextarius	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.44	5.5- 7.9	-	-
64	*Johnius distinctus	0.78	8.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
65	Johnius trewavasae	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.39	10.2
66	*Johnius sp.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.37	6.6	-	-
67	*Johnius sp.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.19	9.8	-	-
68	Pennahia macrocephalus	0.61	3.4-5.5	-	-	-	-	-	-	-	-	-	-	-	-	18.71	2.9- 8.0	1.96	6.5-7.5
69	Pennahia argentata	1.32	2.9-9.6	-	-	-	-	-	-	-	-	-	-	-	-	3.66	5.5- 9.4	-	-
70	*Pennahia pawak	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.75	7.9

71	*Sciaenidae sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.05	3.7	-	-
72	Upeneus japonicus	1.48	7.8-8.1	0.68	8.5	-	-	0.98	3.5-9.9	6.01	7.1-9.5	4.57	4.4-8.2	4.56	4.7- 11.5	1.21	10.2	3.44	4.4-6.9
73	Teixeirichthys jordani	0.97	7.5	1.68	7.5- 7.9	10.79	7.9- 9.5	1.43	9.6	4.85	7.1-8.5	9.68	2.3-9.0	1.17	8.1	-	-	1.72	9.3
74	*Suezichthys gracilis	0.50	7.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.30	7.2
75	*Champsodon guentheri	-	-	-	-	0.12	3.5- 4.8	-	-	0.56	5.0-6.9	0.17	4.7-4.8	-	-	-	-	-	-
76	*Parapercis ommatura	0.15	5.8	-	-	0.24	6.9	-	-	-	-	-	-	-	-	-	-	-	-
77	Callionymus huguenini	6.10	3.9-11.0	8.26	2.9- 65.0	2.99	7.9- 13.4	4.43	4.3- 11.4	6.80	5.5-9.5	1.22	5.1-9.4	4.56	4.0- 11.5	1.82	6.6- 9.3	4.66	4.0- 10.2
78	Callionymus planus	0.12	3.7-4.2	2.35	3.8- 7.5	2.77	4.5- 9.5	9.40	5.9- 10.6	1.16	7.9-8.6	-	-	-	-	-	-	-	-
79	*Callionymus curvicornis	0.77	9.9	-	-	-	-	-	-	-	-	-	-	-	-	1.76	14.6	-	-
80	*Callionymus sp.	-	-	-	-	-	-	-	-	2.26	13.6	-	-	-	-	-	-	-	-
81	*Percophidae sp.	-	-	0.10	3.9- 4.4	0.04	3.6- 4.1	0.02	3.3-3.5	-	-	0.07	5.4	-	-	0.15	3.6- 5.6	-	-
82	Trichonotus filamentosus	0.77	7.6-9.9	0.55	6.2- 9.6	0.89	6.1- 9.8	0.66	6.4-9.1	0.23	9.6	1.13	9.9- 10.8	0.31	8.5-9.0	1.05	8.6- 10.4	0.14	8.5
83	Trichonotus setiger	3.65	6.0-12.5	4.24	9.9- 14.1	7.15	7.0- 14.3	3.95	10.0- 13.5	1.71	9.3- 13.4	0.78	7.3- 10.8	0.49	13.5	2.32	11.5- 15.0	0.90	11.5- 13.7
84	Trichonotus elegans	0.95	6.0-9.5	3.18	7.0-	3.13	5.7-	2.91	5.1-	-	-	-	-	1.97	10.5-	1.04	6.2-	0.45	6.7-

					11.0		11.0		10.4						12.3		10.6		10.4
85	Bleekeria	4.97	8.2-11.2	26.48	4.1-	14.30	6.5-	22.49	4.8-	-	-	8.72	7.4-	19.38	9.0-	11.60	3.7-	5.37	8.9-
85	viridianguilla				10.9		11.5		12.3				13.3		12.1		14.5		14.1
86	Bleekria mitsukurii	2.59	8.4-11.4	11.82	7.9- 11.4	9.85	8.0- 13.5	4.85	5.2- 10.5	4.24	8.2- 10.0	8.49	8.4- 10.2	1.42	8.5-9.7	4.07	7.3- 11.0	2.83	8.7- 10.2
87	*Uranoscopus bicinctus	2.55	10.2	1.11	2.0- 8.9	-	-	-	-	-	-	1.22	8.4	-	-	-	-	-	-
88	Uranoscopus japonicus	-	-	0.30	5.9	2.12	10.5	0.29	3.5-4.7	-	-	-	-	3.30	12.2	-	-	0.12	2.2-2.8
89	*Ichthyscopus pollicaris	-	-	-	-	-	-	-	-	-	-	-	-	0.03	2.4	-	-	-	-
90	*Oxyurichthys microlepis	-	-	-	-	-	-	-	-	-	-	-	-	0.12	8.6	-	-	-	-
91	*Valenciennea wardi	-	-	-	-	-	-	-	-	0.78	7.8	-	-	1.16	8.1-8.8	-	-	-	-
92	Siganus fuscescens	-	-	-	-	-	-	-	-	5.03	13.0	-	-	-	-	-	-	-	-
93	Trichiurus lepturus	-	-	-	-	-	-	-	-	-	-	-	-	2.67	-	-	-	-	-
94	*Trichiurus japonicus	2.36	19.2- 32.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
95	*Trichiurus brevis	1.48	38.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
96	Scomber japonicus	-	-	-	-	3.95	4.7- 9.8	-	-	-	-	-	-	-	-	-	-	-	-
97	*Tarphops oligolepis	-	-	-	-	-	-	-	-	2.30	4.4-6.5	2.35	4.5-6.9	-	-	-	-	-	-
98	*Engyprosopon	2.77	6.4-8.1	5.56	5.4-	8.72	5.5-	4.72	5.0-9.7	1.96	5.5-8.0	9.41	4.4-	-	-	-	-	0.10	4.8

	multisquama				9.0		9.1						10.4						
99	*Engyprosopon sp.	-	-	-	-	-	-	0.31	7.2	-	-	-	-	-	-	-	-	-	-
100	*Crossorhombus azureus	-	-	-	-	-	-	-	-	-	-	1.17	9.4	-	-	-	-	-	-
101	*Crossorhombus sp.	-	-	-	-	0.02	2.8	-	-	-	-	-	-	-	-	-	-	-	-
102	*Arnoglossus macrolophus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.23	6.8	-	-
103	*Arnoglossus tenuis	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.40	8.1
104	*Arnoglossus sp.	0.14	5.6	-	-	-	-	-	-	-	-	-	-	0.13	5.0	-	-	-	-
105	*Bothidae sp.	-	-	-	-	-	-	0.01	2.6	-	-	-	-	-	-	-	-	-	-
106	Pleurinichthys cornutus	2.18	8.9-9.1	-	-	-	-	-	-	0.97	7.5	-	-	-	-	4.27	8.1- 10.9	0.64	8.0
107	*Solea ovata	0.53	6.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
108	*Zebrias crossolepis	-	-	-	-	-	-	-	-	-	-	-	-	0.17	5.6	-	-	-	-
109	*Pseudaesopia japonica	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.30	6.6	-	-
110	*Soleidae sp.	-	-	-	-	-	-	-	-	-	-	1.23	11.5	-	-	-	-	-	-
111	Liachirus melanospilos	1.76	10.5	-	-	3.92	8.9- 10.4	-	-	-	-	-	-	-	-	0.45	6.6	0.25	5.5
112	*Cynoglossus itinus	0.13	5.5	0.72	11.7	0.71	5.5- 7.1	3.19	5.5- 11.5	3.33	15.1	-	-	-	-	0.66	10.0	-	-
113	*Cynoglossus interruptus	0.14	5.0	-	-	-	-	-	-	-	-	-	-	-	-	1.30	10.2	-	-
114	*Cynoglossus sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.52	9.5

115	Stephanolepis cirrhifer	-	-	-	-	-	-	-	-	-	-	0.44	2.1-2.8	-	-	-	-	-	-
116	Paramonacanthus sulcatus	1.16	6.2-7.0	-	-	-	-	0.75	8.2	-	-	-	-	21.26	4.6-8.0	5.76	4.2- 6.5	4.23	5.9-7.3
117	Paramonacanthus pusillus	-	-	-	-	-	-	-	-	-	-	0.23	4.5	-	-	-	-	-	-
118	Lagocephalus wheeleri	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.28	8.4
119	*Oratosquilla fabricii	0.80	9.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
120	*Lophosquilla costata	0.48	6.0-6.3	-	-	-	-	0.56	5.9-7.5	-	-	-	-	0.15	5.8	-	-	0.07	4.3
121	*Carinosquilla multicarinata	0.19	5.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
122	*Oratosquillina interrupta	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.30	6.4	-	-
123	Odontodactylus japonicus	-	-	-	-	-	-	-	-	-	-	2.49	-	-	-	-	-	-	-
124	*Sicyonia sp.	-	-	-	-	-	-	-	-	-	-	0.10	3.9	0.10	4.1	-	-	-	-
125	*Palaemonidae sp.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.04	3.4
126	Trachysalambria curvirostris	3.34	5.7-7.5	0.13	5.5	-	-	-	-	-	-	0.31	4.5-6.0	0.48	5.8-6.2	-	-	2.19	4.5-8.7
127	*Trachysalambria longipes	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.08	5.4- 6.4	-	-
128	Parapenaeopsis	0.54	5.9-6.9	-	-	-	-	-	-	-	-	-	-	-	-	0.78	5.5-	0.12	-

	hardwickii																6.7		
129	Kishinouyepenaeop sis cornuta	1.54	5.4-7.0	0.07	5.1	0.49	4.8- 7.3	-	-	-	-	-	-	-	-	1.74	4.3- 6.5	3.20	4.5-7.5
130	*Batepenaeopsis tenella	-	-	-	-	-	-	-	-	-	-	-	-	0.07	2.3-4.2	-	-	-	-
131	Metapenaeopsis barbata	4.41	6.1-8.1	0.33	6.5- 6.6	-	-	-	-	-	-	-	-	1.64	5.5-7.3	0.28	7.1	0.95	8.0
132	* <i>Metapenaeopsis</i> sp.1	1.53	3.6-6.5	0.68	3.5- 5.7	0.90	3.4- 5.4	1.18	0.2-5.3	-	-	0.13	3.1-4.0	0.10	3.0-4.2	0.09	2.4- 3.8	2.19	3.3-5.1
133	* <i>Metapenaeopsis</i> sp.2	-	-	-	-	0.16	7.2	0.44	7.0-7.5	-	-	0.29	#NUM !	-	-	0.44	4.0- 6.8	2.40	5.4-7.2
134	*Penaeidae sp.1	-	-	-	-	-	-	-	-	0.24	1.7	-	-	-	-	-	-	-	-
135	*Penaeidae sp.2	-	-	-	-	-	-	-	-	0.49	0.8-1.0	-	-	-	-	-	-	-	-
136	*Leptochela gracilis	0.01	2.3	-	-	-	-	-	-	-	-	-	-	-	-	0.01	2.2	0.03	1.8-3.1
137	*Scyllarus cultrifer	-	-	-	-	-	-	-	-	-	-	-	-	0.04	2.4	-	-	-	-
138	*Albunea sp.	-	-	-	-	-	-	-	-	0.09	1.3	-	-	-	-	-	-	-	-
139	*Lauridromia dehaani	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.32	2.1	-	-
140	*Paradorippe granulata	-	-	-	-	0.08	1.3	-	-	-	-	-	-	-	-	-	-	-	-
141	*Majidae sp.	-	-	-	-	-	-	-	-	0.03	1.2	-	-	-	-	-	-	-	-
142	*Myra sp.	-	-	-	-	-	-	0.03	1.3	-	-	-	-	-	-	-	-	0.13	1.8
143	*Leucosiidae sp.	-	-	0.06	0.8- 1.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-

144	Calappa philargius	1.42	2.8-4.2	-	-	-	-	0.23	4.3	0.30	1.2-2.0	0.15	1.4-2.0	0.14	2.3	0.11	2.1	1.00	2.0-2.6
145	*Calappa hepatica	-	-	-	-	-	-	-	-	0.35	2.7	-	-	-	-	-	-	-	-
146	*Cycloes granulosa	-	-	-	-	1.05	3.7	0.08	0.9-1.9	-	-	-	-	-	-	-	-	-	-
147	*Matuta planipes	0.05	1.6	0.25	1.9- 2.2	0.53	2.6- 3.4	1.17	2.4-3.8	-	-	-	-	-	-	-	-	0.05	1.9
148	*Portunus hastatoides	2.12	3.5-4.4	-	-	-	-	-	-	-	-	-	-	-	-	0.33	3.1- 3.6	0.09	3.1
149	*Portunus gracilimanus	1.37	4.4	-	-	0.04	1.4	-	-	-	-	-	-	1.13	1.4-3.3	3.06	2.9- 4.1	0.70	3.1-3.5
150	Portunus sanguinolentus	0.04	2.1	-	-	-	-	0.04	2.7	0.16	1.8-3.2	0.07	1.7-2.5	0.05	2.5	-	-	0.98	2.2-6.7
151	*Portunus argentatus	-	-	-	-	-	-	2.33	2.8-6.2	0.18	2.8	-	-	0.42	1.9-3.0	-	-	-	-
152	Monomia haanii	20.67	1.6-5.9	1.50	1.7- 4.2	2.38	1.2- 5.3	7.29	1.2-5.8	4.63	2.1-6.3	3.65	1.4-8.0	1.68	2.6-4.9	8.47	2.1- 5.0	10.14	2.7-6.6
153	*Charybdis bimaculata	0.62	2.1-2.6	-	-	-	-	-	-	-	-	-	-	-	-	0.83	1.9- 2.8	0.27	1.9-2.2
154	Charybdis nataor	-	-	-	-	-	-	-	-	-	-	-	-	0.06	1.8	-	-	-	-
155	*Charybdis variegata	0.45	1.6-2.3	0.92	2.4- 3.3	0.59	0.9- 2.9	0.22	1.7-2.2	0.27	1.4-1.7	-	-	0.94	1.2-2.4	0.05	1.7	0.45	1.6-2.3
156	*Porcellana pulchra	-	-	-	-	-	-	0.01	0.6	-	-	-	-	-	-	-	-	-	-
157	*Porcellanidae sp.	-	-	-	-	-	-	0.04	1.4	-	-	-	-	-	-	-	-	-	-
158	Sepia esculenta	-	-	-	-	-	-	-	-	-	-	0.63	4.9	-	-	-	-	-	-
159	Sepiola berryi	1.59	1.9-3.6	1.86	1.8- 3.7	1.33	1.7- 3.8	-	-	-	-	-	-	-	-	1.08	5.0- 8.1	3.07	5.7-9.2

160	*Sepiadarium	0.09	1.8	0.07	2.0	0.61	1.6-	0.77	1.8-2.6	-	-	-	-	-	-	0.28	7.2-	-	-
100	kochii						2.5										8.2		
161	*Sepiola sp.	-	-	-	-	-	-	1.38	1.3-3.9	-	-	-	-	-	-	-	-	-	-
162	Loliolus uyii	-	-	0.24	3.5-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
102	Lononus uyn				4.5														
163	*Loliginidae spp.	2.29	2.5-5.4	1.33	4.5-	0.41	7.0	0.53	13.4	11.16	2.8-7.5	3.95	4.0-7.0	0.56	6.0	0.38	2.9-	5.94	6.8-
105	Longinidae spp.				8.0												4.4		22.6
164	Octopus ocellatus	-	-	-	-	-	-	-	-	4.66	4.1-4.8	-	-	1.99	2.3-3.0	-	-	-	-
165	Amphioctopus	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.63	15.5
105	aegina																		
166	*Hapalochlaena	-	-	-	-	-	-	0.18	2.3	-	-	-	-	-	-	-	-	-	-
100	lunulata																		
167	Octopodidae sp.	0.68	4.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

3.5.4.3 Monomia haanii in feed fishes

M. haanii was one of the few common species found in feed fish samples from trawl catches in Dongshan County and contributed to 1.50%-20.67% of the total feed fish volumes in August 2022-April 2023 (Table 3-6).

Based on the size for 50% female maturity (6.3 cm CW) of *M. haanii* (Lin et al., 2021), up to 97.30% individuals (n = 148) of *M. haanii* were juveniles in feed fishes, and the juvenile proportions were in 66.67%-100.00% in August 2022-April 2023. The smallest size of *M. haanii* in feed fishes was 1.2 cm CW, caught in March 2023.

3.5.5 Average capture proportions from 2018 to 2023 (Phases I-VI)

Based on the trawl vessels surveyed at the landing ports of Dongshan County from August 2018 to April 2023 (Phases I-VI), the highest average total capture volume was about 10813.98 kg/vessel/trip in August 2020-December 2020 (Phase IV) and the lowest was about 7855 kg/vessel/trip estimated from surveys in August 2018-December 2018 (Phase I) (Table 3-7). The largest proportion of total capture volume was fish, over 70% in each phase, followed by crustacean, then by cephalopod. The proportions of feed fish in 2019-2020 (< 17%) was lower than in 2021-2022 (>25%).

Table 3-7. Average capture volumes and proportions from trawl vessels surveyed from 2018 to 2023 (in Phase I-VI) at the landing ports of

Dongshan County.

	Phase	VI	V	IV	II-III	Ι
S	urvey period	2022.8-2023.4	2021.10-2022.4	2020.8-2020.12	2019.1-2019.4 & 2019.8-2019.12	2018.8-2018.12
Number	of vessels surveyed	101	101 79 54		79	61
Fishir	ng days(days/trip)	6.22	6.34	6.48	7.16	7.67
Total capture	e volume(kg/vessel/trip)	8179.9	8751.28	10813.89	8153.79	7855
Crustacean	volume(kg/vessel/trip)	1489.73	1132.84	1621.48	1202.46	-
Clustaccall	proportion	18.21%	12.94%	14.99%	14.75%	-
Shrimp	volume(kg/vessel/trip)	239.83	360.31	212.38	271.49	-
Sininp	proportion	2.93%	4.12%	1.96%	3.46%	-
Crab	volume(kg/vessel/trip)	1249.90	772.71	1409.09	920.33	1603.00
Clau	proportion	15.28%	8.83%	13.03%	11.29%	20.41%
Fish	volume(kg/vessel/trip)	5875.85	6731.53	8290.82	5805.80	-
1,1211	proportion	71.83%	76.92%	76.67%	71.20%	-
Food fish	volume(kg/vessel/trip)	3802.60	4039.44	7128.06	4435.31	-
1'000 11511	proportion	46.49%	46.16%	65.92%	54.39%	-
Feed fish	volume(kg/vessel/trip)	2073.25	2692.09	1162.76	1370.49	-

	proportion	25.35%	30.76%	10.75%	16.81%	-
Cephalopod	volume(kg/vessel/trip)	814.32	886.91	901.00	1145.54	-
Cephalopou	proportion	9.96%	10.13%	8.33%	14.05%	-

3.6 Biology of *Monomia haanii*

Monomia hannii samplings were conducted from trawl catches monthly from August 2022 to April 2023. A total of 2,122 individuals were collected and measured.

3.6.1 Size variation by month

Sizes (carapace width, CW in cm) of *M. haanii* ranged from 1.2 to 12.2 cm CW, and monthly average sizes ranged from 6.4 cm CW in April 2023 to 8.5 cm CW in February 2023 (Table 3-8; Fig. 3-9).

The minimum sizes of *M. haanii* in Phases I-V (August 2018-April 2022) were larger than those in Phase VI, the minimum size was 2.2 cm CW in Phases I-III, the minimum size was 1.7 cm CW in Phase V, and the minimum size was 1.2 cm CW in Phase VI (Table 3-8).

The dominant size classes of *M. haanii* in August 2022-April 2023 showed monthly variation (Fig. 3-9):

(1) Proportions of larger sizes (≥ 10.0 cm CW) were the highest in December 2022 at 20.28%, relatively higher in January 2023, February 2023 and November 2022 at 10%-15% and less than 5% in the rest of months.

(2) Proportions of the sizes smaller than 8.0 cm CW (the minimum size for catch regulation in Fujian Province, 2018) in the total catch of *M. haanii* were high; > 80% in April 2023 (81.56%) and August 2022 (95.02%), and >50% in January 2023 (54.75%) and March 2023 (62.03%). Proportions were relatively low in September 2022 (44.95%), October 2022 (42.92%), November 2022 (31.02%) and December 2022 (36.79%). The lowest proportion was recorded in February 2023 (17.99%).

(3) Sizes smaller than 6.0 cm CW (around the size at 50% sexual maturity) were found in all months, and mainly in January 2023 (22.17%) and April 2023 (38.44%).

Table 3-8. Number of samples and size (carapace width, CW, cm) of Monomia haaniifrom trawl fishery in Dongshan County in August 2022-April 2023

Month	Number	Range of CW (cm)	Average CW (cm)
Jan-2023	221	1.6-11.5	7.6
Feb-2023	189	1.7-11.5	8.5
Mar-2023	237	1.2-10.4	7.2

Apr-2023	385	1.2-11.5	6.4
Aug-2022	281	2.1-11.2	6.6
Sep-2022	198	1.4-10.1	8.0
Oct-2022	212	2.6-10.7	8.1
Nov-2022	187	2.1-11.4	8.0
Dec-2022	212	2.7-12.2	8.1

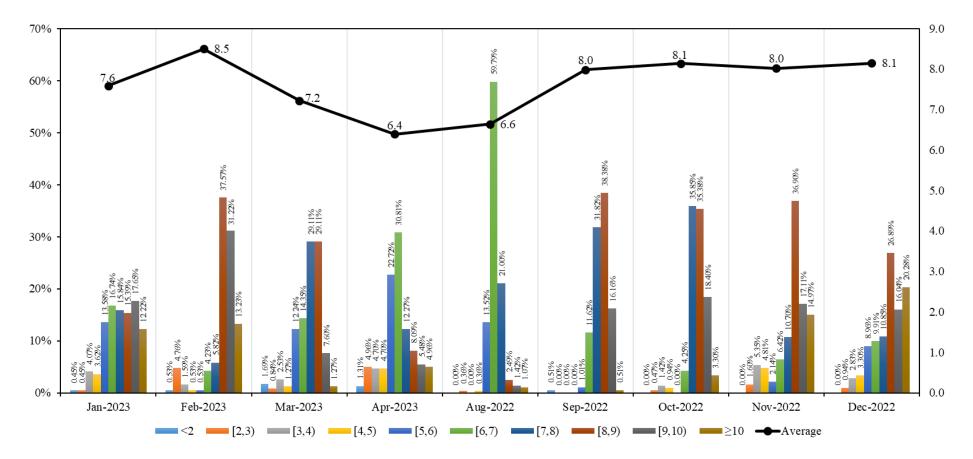


Fig. 3-9. Proportions of different size classes (cm in carapace width) of *Monomia haanii* (left Y-axis) and the trends of the monthly average sizes (right Y-axis) in trawl catches of Dongshan County from August 2022 to April 2023.

3.6.2 Size variation by sex

The sizes ranged from 1.2 to 11.5 cm CW for females (mean = 7.2, SD = 1.5, N = 1331), and from 1.2 to 12.2 cm CW for males (mean = 7.9, SD = 2.2, N = 791) (Fig. 3-10). Males were significantly larger than females in CW (W = 399,570, p < 0.01). Females dominated in size classes of 5.0-9.0 cm CW, and males in size classes of 6.0-11.0 cm CW.

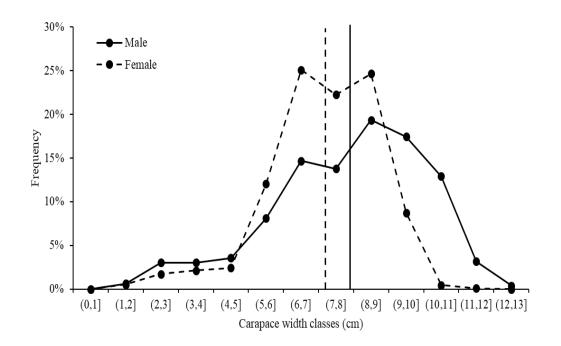


Fig. 3-10. Size (carapace width, CW) frequency (%) of *Monomia haanii* males (N = 791) and females (N = 1331), collected from August 2022 to April 2023. Vertical lines indicate the average sizes of males and females.

3.6.3 Sex ratio

Sex ratios of *M. haanii* showed monthly variation. From the 2,122 individuals randomly sampled, the overall sex ratio of *M. haanii* was 1:1.68 (male: female, N = 791 for males, N = 1,331 for females), showing a significant female-bias (p < 0.05). Significant female-bias sex ratios were observed in February 2023, March 2023, April 2023, August 2022, November 2022 and December 2022 (p < 0.05) (Fig. 3-11).

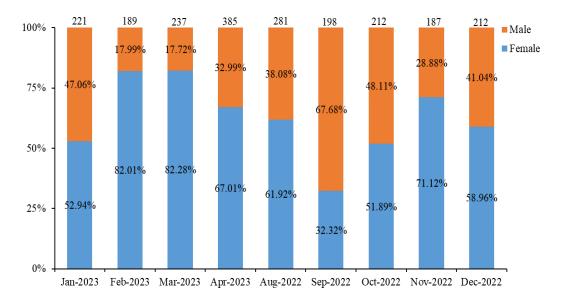


Fig. 3-11. Proportions of males and females of *Monomia haanii* (N = 2,122) in trawl catches of Dongshan County in August 2022-April 2023. (Total number of samples showed at the top of the bars)

3.6.4 Spawning season

M. haanii females carrying eggs were found in most of sampling months except September 2022 and December 2022. The spawning peak was in February and March 2023, determining by the high proportions (%) of number of females carrying eggs/number of females (Fig. 3-12).

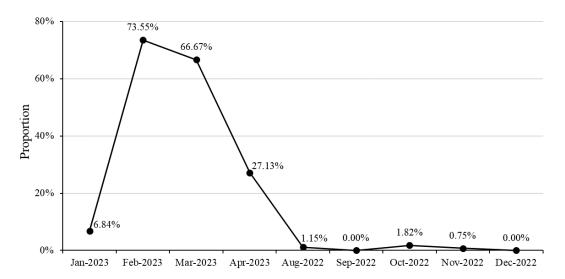


Fig. 3-12. Proportions of *Monomia haanii* females carrying eggs in trawl catches of Dongshan County in August 2022-April 2023.

3.6.5 Spawning season from 2018 to 2023 (Phases I-VI)

According to the surveys from 2018 to 2023 (Phases I-VI), *M. haanii* females carrying eggs were found in most of sampling months. The proportions of individuals carrying eggs was high in January-April, indicating the consistent spawning peak of *M. haanii*. In addition, there may have another spawning peak in August (2018 and 2019) (Fig. 3-13).

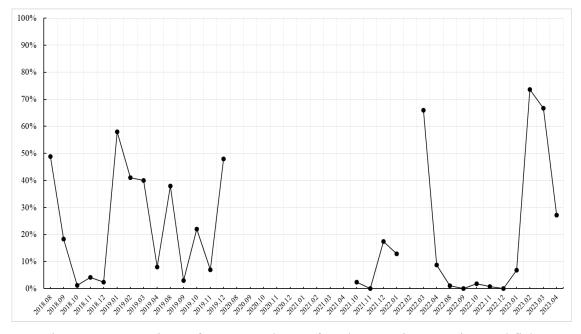


Fig. 3-13. Proportions of *Monomia haanii* females carrying eggs in trawl fishery in Dongshan County from 2018 to 2023 (Phases I-VI).

3.6.6 Sizes for female maturity

The minimum size for female carrying eggs was 4.6 cm CW, caught in March 2023. Females collected in February and March 2023 (the spawning peak) were used to calculate the size at 50% female maturity (CW₅₀), and the estimated CW₅₀ was 6.0 cm CW (Fig. 3-14), smaller than 6.3 cm CW estimated from 2019 samples (Lin et al., 2021).

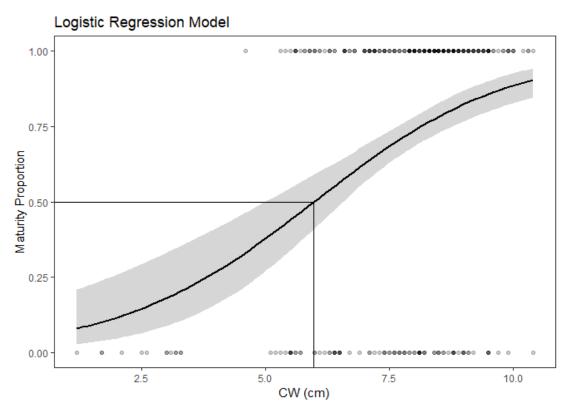


Fig. 3-14. Size (carapace width, CW) at 50% female maturity of *Monomia haanii* based on all females sampled in the spawning peak determined, i.e. February and March 2023 (N = 350). The fitting curve was suggested by the black solid line with 95% CI. The circle represented the individuals that were mature (proportion = 1) or not (proportion = 0).

3.6.7 Size-weight and size-size relationships

The relationship of size (carapace width, CW) and weight (whole body weight, BW) for *M. haanii* was: BW = $0.0761 \times CW^{3.1728}$ (R² = 0.9753; N = 2,122); for females was: BW = $0.075 \times CW^{3.1907}$ (R² = 0.9665; N = 1,331); for males was: BW = $0.0753 \times CW^{3.1617}$ (R² = 0.9826; N = 791) (Fig. 3-15).

The relationship of carapace length (CL)-carapace width (CW) for *M. haanii* was: $CL = 0.551 \times CW + 0.0884$ (R² = 0.9634; N = 2,122); for females was: $CL = 0.5578 \times CW + 0.0603$ (R² = 0.9461; N = 1,331); for males was $CL = 0.5485 \times CW + 0.0743$ (R² = 0.977; N = 791) (Fig. 3-16).

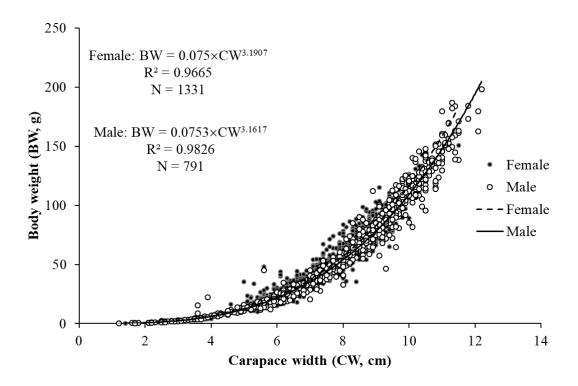


Fig. 3-15. Size (carapace width, CW)-weight (whole body weight, BW) relationship of *Monomia haanii* in August 2022-April 2023.

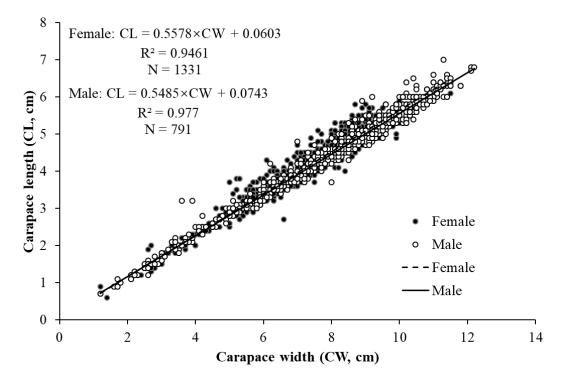


Fig. 3-16. Carapace length (CL)-carapace width (CW) relationship of *Monomia haanii* in August 2022-April 2023.

3.7 Biology of *Portunus sanguinolentus*

P. sanguinolentus samplings were conducted from trawl catches of Dongshan County from August 2022 to April 2023. A total of 826 individuals were collected and measured.

3.7.1 Size variation by month

Sizes (carapace width, CW in cm) of *P. sanguinolentus* ranged from 1.7 to 19.0 cm CW, and monthly average sizes ranged from 11.4 cm CW in August and December 2022 to 14.6 cm CW in February 2023 (Table 3-9, Fig. 3-17). The minimum sizes (< 2 cm CW) was found in August and September 2022 (Table 3-9).

The dominant size classes of *P. sanguinolentus* showed monthly variation:

(1) Proportions of larger sizes (≥ 15.0 cm CW) were high in February 2023 and September 2022, accounting for 36.91% and 50.67%, respectively, and were less than 15% in January and March 2023, and in August and December 2022.

(2) Proportions of the sizes smaller than 12.0 cm CW (the minimum size for catch regulation in Fujian Province) in the total catch of *P. sanguinolentus* were high; > 60% in August 2022 (63.43%) and December (69.93%), around 40-45% in January 2023 (42.34%) and March 2023 (41.79%). Low proportions were recorded in February 2023 (16.00%), April 2023 (25.40%), September 2022 (10.71%), October 2022 (16.28%) and November 2022 (19.05%).

Month	Number	Range of CW (cm)	Average CW (cm)
Jan-2023	111	2.1-16.5	12.3
Feb-2023	75	9.5-19.0	14.6
Mar-2023	67	9.2-17.2	12.4
Apr-2023	63	2.7-18.0	13.2
Aug-2022	134	1.8-16.1	11.4
Sep-2022	84	1.7-18.7	13.9
Oct-2022	86	2.5-16.9	13.4
Nov-2022	63	8.7-17.4	13.3
Dec-2022	143	2.2-14.2	11.4

Table 3-9. Number of samples and sizes (carapace width, CW, cm) of *Portunus sanguinolentus* from trawl fishery in Dongshan County in August 2022-April 2023.

Fig. 3-17. Proportions of different size classes (cm in carapace width) of *Portunus sanguinolentus* (left Y-axis) and the trends of the monthly average sizes (right Y-axis) in trawl catches of Dongshan County from August 2022 to April 2023.

3.7.2 Size variation by sex

The sizes ranged from 2.2 to 17.4 cm CW for females (mean = 12.2, SD = 1.8, N = 434), and from 1.7 to 19.0 cm CW for males (mean = 13.1, SD = 2.6, N = 392) (Fig. 3-18). Males were significantly larger than females in CW (W = 62,939, p < 0.01).

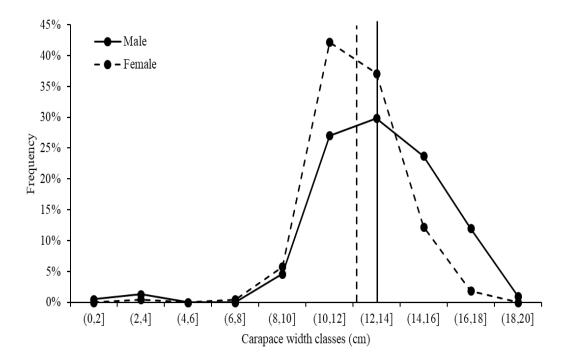


Fig. 3-18. Size (carapace width, CW) frequency (%) of *Portunus anguinolentus* males (N = 392) and females (N = 434), collected from August 2022 to April 2023. Vertical lines indicate the average sizes of males and females.

3.7.3 Sex ratio

Sex ratios of *P. sanguinolentus* showed monthly variation. From the 826 individuals randomly sampled, the overall sex ratio of *P. sanguinolentus* was 1: 1.11 (male: female, N = 826), showing no significant difference from 1:1 (p = 0.15). Femalebias sex ratios were significant in January 2023 and September 2022 (p < 0.05) and male-bias sex ratio was significant in December 2022 (p < 0.05) (Fig. 3-19).

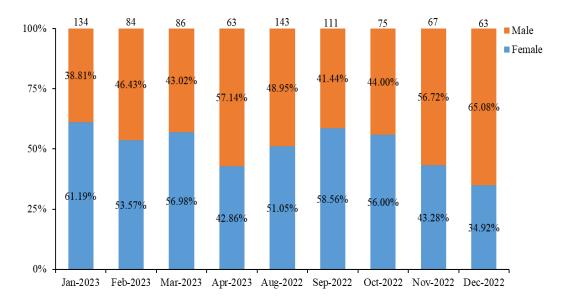


Fig. 3-19. Proportions of males and females of *Portunus sanguinolentus* (N = 826) in trawl fishery in Dongshan County in August 2022-April 2023. (Number of samples at the top of the bars)

3.7.4 Spawning season

P. sanguinolentus females carrying eggs were found in most of sampling months except October 2022 (Fig. 3-20). The spawning peak was in February-April 2023, determining by the proportions (%) of number of females carrying eggs/number of females.

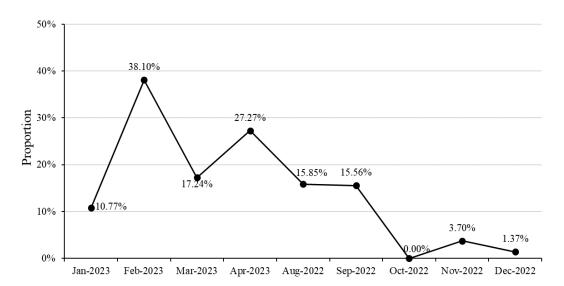


Fig. 3-20. Proportions of *Portunus sanguinolentus* females carrying eggs from trawl catches of Dongshan County in August 2022-April 2023.

3.7.5 Spawning season from 2018 to 2023 (Phases I-VI)

According to the surveys from 2018 to 2023 (Phases I-VI), the proportion of individuals carrying eggs was high in February-April, indicating the consistent spawning peak of *P. sanguinolentus*. In addition, there may have another spawning peak in August-September (Fig. 3-21).

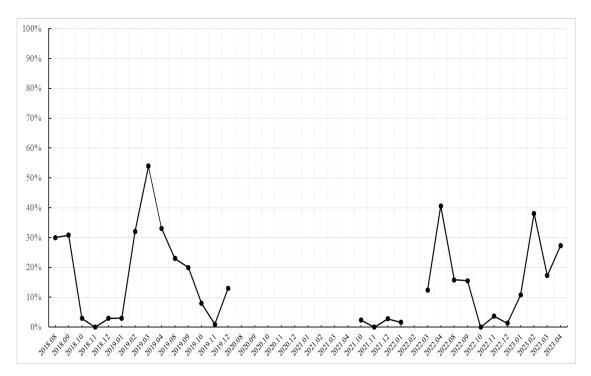


Fig. 3-21. Proportions of *Portunus sanguinolentus* females carrying eggs from trawl catches of Dongshan County from 2018 to 2023 (Phases I-VI).

3.7.6 Sizes for female maturity

The minimum size for female carrying eggs was 10.7 cm CW for *P. sanguinolentus*, caught in January 2023, which was larger than 5.6 cm CW in January 2022, 9.6 cm CW in September 2019 and 8.0 cm CW in 1998 (Ye, 1998).

Females collected in February-April (the spawning peak) were used to calculate the size at 50% female maturity (CW_{50}), and the estimated CW_{50} was 15.5 cm CW (Fig. 3-22).

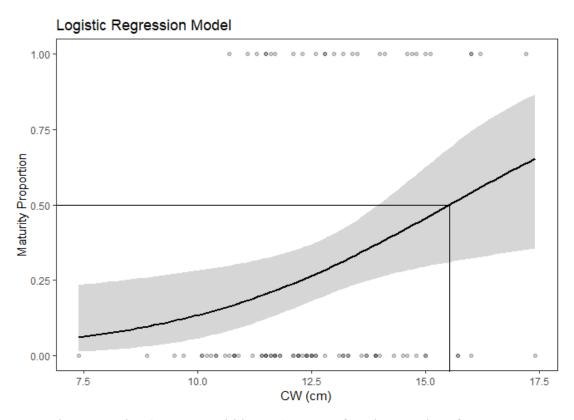


Fig. 3-22. Size (carapace width, CW) at 50% female maturity of *Portunus sanguinolentus* based on all females sampled in spawning peak determined, i.e.
February-April 2023 (N = 93). The fitting curve was suggested by the black solid line with 95% CI. The circle represented the individuals that were mature (proportion = 1) or not (proportion = 0).

3.7.7 Size-weight and size-size relationships

The relationship of size (carapace width, CW) and weight (whole body weight, BW) for *P. sanguinolentus* was: BW = $0.058 \times CW^{3.0172}$ (R² = 0.9489; N = 826); for females was: BW = $0.0661 \times CW^{2.9567}$ (R² = 0.9055; N = 434); for males was: BW = $0.058 \times CW^{3.026}$ (R² = 0.9669; N = 392) (Fig. 3-23).

The relationship of carapace length (CL)-carapace width (CW) for *P. sanguinolentus* was: $CL = 0.4258 \times CW + 0.2039$ (R² = 0.9427; N = 826); for females was: $CL = 0.4295 \times CW + 0.156$ (R² = 0.9225; N = 434); for males was: $CL = 0.4233 \times CW + 0.2415$ (R² = 0.9502; N = 392) (Fig. 3-24).

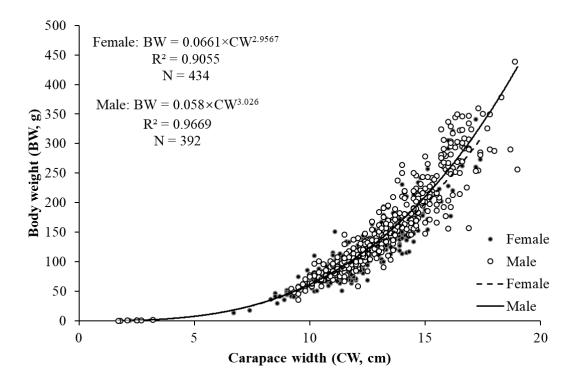


Fig. 3-23. Size (carapace width, CW)-weight (whole body weight, BW) relationship of *Portunus sanguinolentus* in August 2022-April 2023.

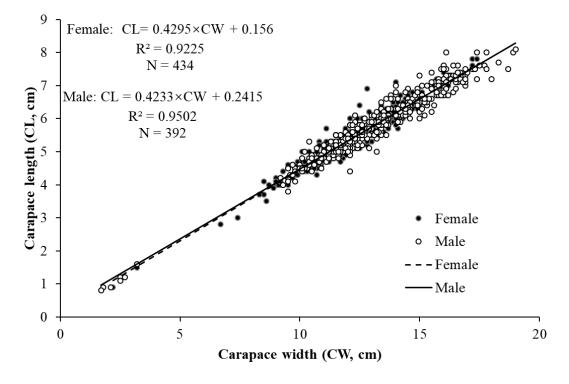


Fig. 3-24. Carapace length (CL)-carapace width (CW) relationship of *Portunus* sanguinolentus in August 2022-April 2023.

3.8 Seahorse bycatch and habitat identity in Taiwan Strait

3.8.1 Seahorse species

A total of four seahorse species were found in trawl fishery operating in the southern Taiwan Strait, including *H. trimaculatus*, *H. spinosissimus*, *H. kelloggi* and *H. mohnikei*. In the trawl fishery, the bycatch volume of *H. trimaculatus* was the highest, followed by *H. spinosissimus*, with low occurrence of *H. kelloggi* and *H. mohnikei*.

3.8.2 Capture volume

According to the data collected from logbook, the operating time of trawling was 0.9-5.5 hours/tow (mean = 3.0 hours/tow, N = 2008) and the seahorse bycatch volume was 0-253.0 g/tow (mean = 9.03 g/tow, N = 2008), namely 0-55 ind./tow (mean = 1.96 ind./tow, N = 2008).

According to the data collected from landing ports and logbook, the bycatch volume of seahorses had monthly variation; high in August-September and low in January-April. The estimated bycatch volumes in Dongshan County were 144.6 kg/vessel/year (31,426 ind./vessel/year) in 2019, 88.1 kg/vessel/year (19,143 ind./vessel/year) in 2020, and 631 ind./vessel/year (2.9 kg/vessel/year) in 2021-2023 (Table 3-10).

Survey time	Landing port survey			Logbook			
	2019		2020		2021-2023		
	Wet weight	Number	Wet weight	Number	Wet weight (×10 ⁻³)	Number	
January	12.7 (0.0-81.0)	2,762 (0-17,609)	5.3 (0.0-13.5)	1,141 (0.0-2,935)	16.9 (4.6-32.2)	4 (1-7)	
February	0.6 (0.0-2.7)	138 (0-589)	-	-	0.0 (0.0)	0.0 (0.0)	
March	1.6 (0.0-6.5)	343 (0-1,408)	2.6 (0.7-5.8)	576 (145-1,256)	55.2 (0.0-165.6)	12 (0.0-36)	
April	4.3 (0.0-12.5)	925 (0-2,717)	17.8 (0.8-54.7)	3,871 (165-11,889)	107.3 (0.0-322)	23 (0.0-70)	
August	39.2 (6.9-88.2)	8,525 (1,501-19,176)	33.3 (21.8-52.4)	7,244 (4,728-11,383)	900.0 (0.0-2097.6)	196 (0.0-456)	
September	28.6 (5.5-81.1)	6,210 (1,197-17,629)	19.8 (12.6-30.8)	4,304 (2,742-6,703)	1275.7 (0.0-2263.2)	277 (0.0-492)	
October	5.0 (0.6-14.3)	1,094 (136-3,111)	3.9 (1.3-17.0)	841 (272-3,696)	482.0 (0.0-2608.2)	105 (0.0-567)	
November	34.8 (2.1-61.4)	7,557 (462-13,357)	2.9 (0.7-8.8)	634 (154-1,917)	36.8 (0.0-110.4)	8 (0.0-24)	
December	17.8 (9.0-31.5)	3,873 (1,957-6,848)	2.5 (1.1-7.9)	533 (245-1,712)	27.6 (0.0-73.6)	6 (0.0-16)	
Total (kg/vessel/year or ind./vessel/year)	144.6 (24.2-379.2)	31,426 (5,252-82,443)	88.1 (38.9-190.9)	19,143 (8,451-41,490)	2901.6 (4.6-7672.8)	631 (1-1,668)	
Total number of			1	1	1	1	
trawl vessels				650			
registered in							

Table 3-10. Estimated seahorse bycatch volume (wet weight: kg/vessel; number: ind./vessel) at Dongshan County.

Dongshan County						
Estimated annual seahorse bycatch volume (×10 ⁴ kg/year or ×10 ⁴ ind./year)	9.4 (1.6-24.7)	2,043 (341-5,359)	5.7 (2.5-12.4)	1,244 (549-2,697)	0.2 (0.0-0.5)	41 (0.0-108)

Note: estimated wet weight is 4.6 g for each seahorse individual.

3.8.3 Critical habitat

High seahorse bycatch rate (the number of nets that caught seahorses / the total number of nets) indicates that the seahorse habitats overlapped largely with fishing areas in the southern Taiwan Strait by trawlers. The bycatch rates were higher in August-October 2022 than those in November 2022-April 2023 (Fig. 3-25).

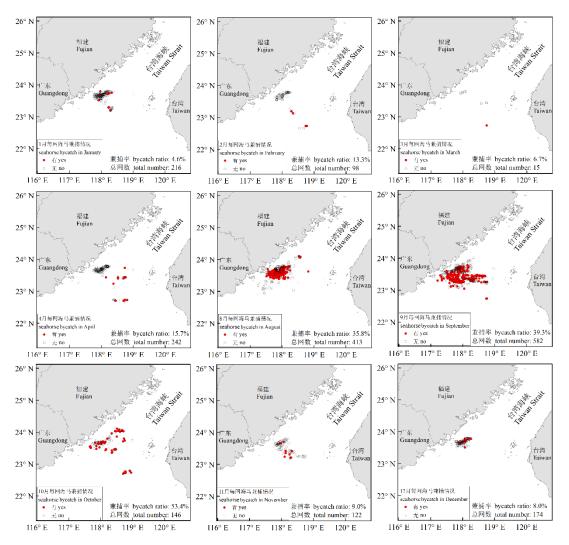


Fig. 3-25. The trawl fishing areas and seahorse bycatch areas in the southern Taiwan Strait (black open circles for the nets without seahorse bycatch and red solid circles for the net with seahorse bycatch).

Seahorses in the southern Taiwan Strait (mainly *H. trimaculatus*) prefer relatively flat, sandy and muddy bottoms within the water depth of 50 m in the southern Taiwan Strait. The two most critical seahorse habitats were in the southwestern Minnan fishing ground (118.40°N-118.49°N, 23.43°E-23.49°E) and in the northern Taiwan Bank

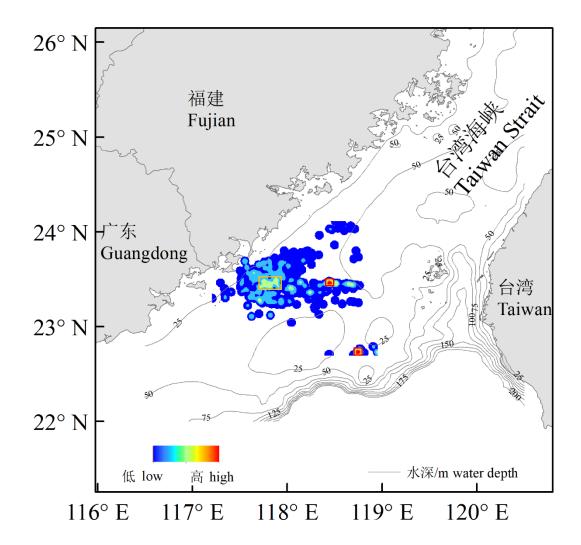


Fig. 3-26. Distribution kernel density of seahorses in the southern Taiwan Strait.

4. Significant findings

(1) The species diversity in the southern Taiwan Strait is high. A total of 368 species were identified in October 2021-April 2023, including 280 fishes (76.09%), 69 crustaceans (18.76%) and 29 cephalopods (5.16%).

(2) The species in feed fishes is diverse. A total of 167 species with 118 fishes, 39 crustaceans and 10 cephalopods were identified in feed fishes in August 2022-April 2023. Among these species, 104 species were only found in feed fishes including 70 fishes, 30 crustaceans and 4 cephalopods.

(3) The CPUE for *M. haanii* in the trawl fishery in Dongshan County was higher from August to December than from January to April, and showed similar trends from 2018 to 2023. The CPUE were higher in August-November 2022 than those in other years (Figs. 4-1 & 4-2).

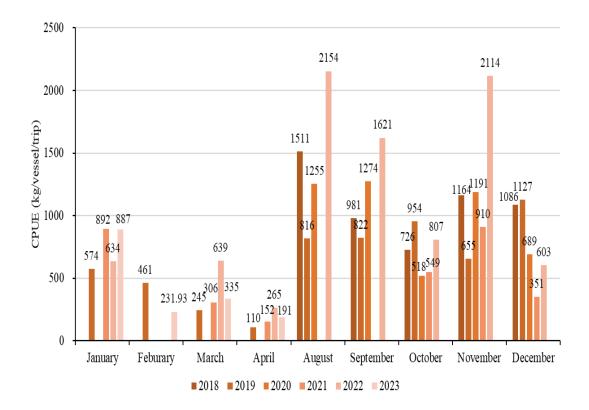


Fig. 4-1. Monthly average CPUE of *Monomia haanii* by kg/vessel/trip (values shown at the tops of the bars), surveyed at the landing ports of Dongshan County from 2018 to 2023 (Phases I-VI).

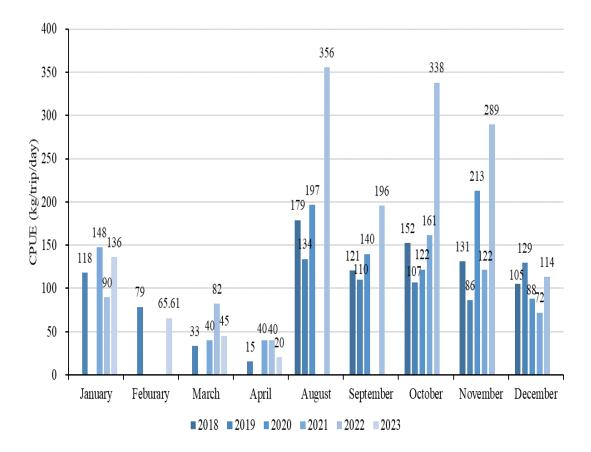


Fig. 4-2. Monthly average CPUE of *Monomia haanii* by kg/vessel/day (values shown at the tops of the bars), surveyed at the landing ports of Dongshan County from 2018-2023 (Phases I-VI).

(4) High proportions of *M. haanii* < 8 cm CW and *P. sanguinolentus* < 12 cm CW were recorded in trawl catches, i.e. smaller than the minimum sizes for catch regulation in Fujian Province.

(5) Based on the monthly sampling from 2018 to 2023, one spawning peak before the national summer fishing moratorium was identified and relatively consistent for *M. haanii* and *P. sanguinolentus*; in January-April for *M. haanii* and in February-April for *P. sanguinolentus*. There may have another spawning peak in August and September for *M. haanii* and *P. sanguinolentus*.

(6) The minimum sizes and the sizes at 50% female maturity of *M. haanii* and *P. sanguinolentus* in 2018-2023 showed annual variations and declines (Table 4-1).

Year	Monom	ia haanii	Portunus sanguinolentus		
	CWmin	CW50	CWmin	CW50	
2018	5.5	-	11.6	-	
2019	4.6	6.3	9.6	12.6	
2022	4.0	5.3	5.6	12.8	
2023	4.6	6.0	10.7	15.5	

Table 4-1. Sizes (carapace width, CW, cm) for female maturity of *M. haanii* and *P. sanguinolentus*..

-: no data

 CW_{min} : the minimum size for female bearing eggs

CW₅₀: the size at 50% female maturity

(7) Seahorse bycatches declined drastically. The estimated bycatch volume was 144.6 kg/vessel/year (31,426 ind./vessel/year) in 2019, 88.1 kg/vessel/year (19,143 ind./vessel/year) in 2020, and 631 ind./vessel/year (2.9 kg/vessel/year) in 2021-2022.

(8) The seahorse habitats overlapped heavily with fishing grounds in the southern Taiwan Strait. The critical habitats were in the southwestern Minnan fishing ground (118.40°N-118.49°N, 23.43°E-23.49°E) and in the northern Taiwan Bank fishing ground (118.71°N-118.79°N, 22.70°E -22.77°E).

5. Acknowledgements

We would like to thank O2 (Ocean Outcome) and Qingdao Marine Conservation Society of China (QMCS) for funding support the Phase VI of the FIP. Great thanks to Chenrui Jiang, Chen Wang, Jiahao Song, Guohan Yang and Qing Xu from Fish Biology Laboratory, Xiamen University for sample collection, interviews and laboratory work, to Qisi Cai and Shengyao Sun from Dongshan Swire Marine Station, Xiamen University for logistics. Great thanks to anonymous captains and crews for logbook data collection.

6. References

- Ahyong, S.T., Chan, T.Y. and Liao, Y. C. 2008. *A Catalog of The Mantis Shrimps* (*Stomatopoda*) of *Taiwan*. Taiwan: Taiwan Ocean University Press.
- China Custom Dataset, 2008–2018. Exported Volume and Value of Crab Products from China. China Custom, Beijing.
- Dai, A., Yang, S., Song, Y. and Chen, G. 1986. *Marine crabs of China*. China: Ocean Press. (in Chinese)
- Dong Z.Z. 1988. Fauna Sinica Vol. 4. Phylum Mollusca Class Cephalopode. China: Science Press.
- Huang, M. 2004. Study on feeding habit and nutrient level of *Portunus argentatus*, *P. sanguinolentus* and *Charybdis feriatu* in Fujian sea area. Journal of Oceanography in Taiwan Strait, 23(2):159-166. (In Chinese with English abstract)
- Lin, B.-a, Boenish, R., Kritzer, J.P., Jiang, Y., Wang, S.-l. and Liu, M. 2021. Reproductive dynamics of a swimming crab (*Monomia haanii*) in the world's crab basket. Fisheries Research 236, 105828.
- Liu, M., Chen, X. and Yang, S.Y. 2013. *Marine Fishes of Southern Fujian, China* (Volume 1). China: Ocean Press. (in Chinese)
- Liu, M., Chen, X. and Yang, S.Y. 2014. *Marine Fishes of Southern Fujian, China (Volume 2)*. China: Ocean Press. (in Chinese)
- Liu, R. and Zhong, Z. 1988. *Penaeoid Shrimps of the South China Sea*. China: Agriculture Press.
- Nelson, J.S. 2006. Fishes of The World (4th edition). John Wiley & Sons, Inc.

Ocean Outcomes, 2018. Fujian Zhangzhou Red Swimming Crab Fishery Improvement Plan. Ocean Outcomes, Portland, Oregon (https://www.oceanoutcomes.org/areasof-focus/fishery-improvementprojects/fujian-zhangzhou-red-swimming-crab/, accessed in May 19th 2020).

- Takashi Okutani, 2015. Cuttlefishes and Squids of the World [New Edition]. Japan: Tokai University Press.
- Windsor, A.M., Mendoza, J.C.E. and Deeds, J.R. 2019. Resolution of the *Portunus gladiator* species complex: taxonomic status and identity of *Monomia gladiator* (Fabricius, 1798) and *Monomia haanii* (Stimpson, 1858) (Brachyura, Decapoda, Portunidae). ZooKeys 858:11-43.
- Ye, S. 1998. Fisheries biology of red spot swimming crab, Portunus sanguinolentus,

on the Minnan-Taiwan bank fishing ground. Marine Fisheries 1998(2):60-63. (In Chinese with English abstract)

- Zhang, W., Liu, M., Sadovy de Mitcheson, Y., Cao, L., Leadbitter, D., Newton, R., et al. (2020). Fishing for feed in China: Facts, impacts and implications. Fish and Fisheries 21(1), 47-62.
- Zhang, Z. 1997. The fisheries and biological characteristics of *Portunus (Amphitrite)* gladiator in south Fujian-Taiwan Bank fishing ground. Marine Fisheries, 1997(1):17-21. (In Chinese with English abstract)

Websites

www.fishbase.org

www.fishdb.sinica.edu.tw

Four publications from this FIP

- Lin, B.-a., Boenish, R., Kritzer, J.P., Jiang, Y., Wang, S.-l., Liu, M. (2021). Reproductive dynamics of a swimming crab (*Monomia haanii*) in the world's crab basket. *Fisheries Research* 236, 105828.
- Boenish, R., Lin, B.-a., Kritzer, J.P, Wilberg, M., Shen, C.-c., Jiang, J., Liu, M. (2021).
 A bioeconomic approach towards improved fishery management of *Monomia haanii* in the southern Taiwan Strait, China. *Fisheries Research* 240, 105969.
- Lin, B.-a, Jiang, Y., Boenish, R., Xu, Q., Liu, M. (2021). Population, reproductive and fishery dynamics of spotted box crab (*Calappa philargius*), a new clawonly fishery species, in the southern Taiwan Strait, China. *Frontiers in Marine Science* 8, 751790.
- Lin, B.-a, Jiang, Y., Liu, M. (2023). Population structure and reproductive dynamics of the ridged swimming crab *Charybdis natator* in the southern Taiwan Strait of China: significant changes within 25 years. *Frontiers in Marine Science* 10, 1056640.