FLORE

Repository istituzionale dell'Università degli Studi

 di Firenze
Generalized geometry of Norden manifolds

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:
Original Citation:
Generalized geometry of Norden manifolds / Nannicini Antonella. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - STAMPA. - 99 (2016):(2016), pp. 244-255.
[10.1016/J.geomphys.2015.10.011]

Availability:
This version is available at: 2158/1015674 since: 2021-03-25T18:05:27Z

Published version:
DOI: 10.1016/J.geomphys.2015.10.011

Terms of use:
Open Access
La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Publisher copyright claim:

Generalized geometry of Norden manifolds

Antonella Nannicini
Università di Firenze, Italy

Abstract

Let (M, J, g, D) be a Norden manifold with the natural canonical connection D and let \widehat{J} be the generalized complex structure on M defined by g and J. We prove that \widehat{J} is D-integrable and we find conditions on the curvature of D under which the $\pm i$-eigenbundles of $\widehat{J}, E_{\widehat{J}}^{1,0}, E_{\widehat{J}}^{0,1}$, are complex Lie algebroids. Moreover we proove that $E_{\vec{J}}^{1,0}$ and $\left(E_{\widehat{J}}^{1,0}\right)^{*}$ are canonically isomorphic and this allow us to define the concept of generalized $\bar{\partial}_{\hat{J}}$-operator of (M, J, g, D). Also we describe some generalized holomorphic sections. The class of Kähler-Norden manifolds plays an important role in this paper because for these manifolds $E_{\vec{J}}^{1,0}$ and $E_{\vec{J}}^{0,1}$ are complex Lie algebroids. ${ }^{123}$

1 Introduction

Generalized complex structures were introduced by N. Hitchin in [6], and further investifated by M. Gualtieri in [8], in order to unify symplectic and complex geometry. In this paper we consider a more general concept of generalized complex structure introduced in [15], [16] and also studied in [17], [18], [3]. Let (M, g) be a smooth pseudo-Riemannian manifold, let $T(M)$ be the tangent bundle, let $T^{*}(M)$ be the cotangent bundle and let $E=T(M) \oplus T^{*}(M)$ be the generalized tangent bundle of M. In the previous papers [15], [16], we defined a generalized complex structure of M as a complex structure on E and we studied some classes of such structures, in particular calibrated complex structures with respect to the canonical symplectic structure, (,), of E. Using a linear connection, ∇, on M we introduced a bracket, $[,]_{\nabla}$, on sections of E, the corresponding concept of ∇-integrability for generalized complex structures and we studied integrability conditions. In [18] we concentrated on the canonical generalized complex structure defined by $g, J^{g}=\left(\begin{array}{cc}O & -g^{-1} \\ g & O\end{array}\right)$. We proved that in the case J^{g} is ∇-integrable the $\pm i$-eigenbundles of $J^{g}, E_{j a}^{1,0}, E_{J g}^{0,1}$, are complex Lie

[^0]algebroids and, by using the canonical isomorphism between $E_{J g}^{0,1}$ and $\left(E_{J g}^{1,0}\right)^{*}$ induced by the natural symplectic structure of $T(M) \oplus T^{*}(M)$, we defined the generalized $\bar{\partial}_{J^{g}}$-operator on M. We remark that this case is strictly related to the field of statistical manifolds introduced in [1]. In this paper we observe that Norden manifolds fit naturally in the context of our concept of generalized complex structures and we extend the results of [18] to the case of Norden manifolds. Precisely we prove that on a Norden manifold, (M, J, g), with the natural canonical connection D, the generalized complex structure defined by $\widehat{J}=\left(\begin{array}{cc}J & O \\ g & -J^{*}\end{array}\right)$ is D-integrable. Then we describe the $\pm i$-eigenbundles of $\widehat{J}, E_{\widehat{J}}^{1,0}, E_{\widehat{J}}^{0,1}$, we find conditions under which they are complex Lie algebroids and we prove that for Kähler-Norden manifolds these conditions are automatically satisfied, that is, for this class of manifolds, $E_{\vec{J}}^{1,0}$ and $E_{\vec{J}}^{0,1}$ are complex Lie algebroids. Then we define the generalized $\bar{\partial}_{\bar{J}}$-operator on M, from the Jacobi identity on $E_{\vec{J}}^{1,0}$ it follows that $\left(\bar{\partial}_{\widehat{J}}\right)^{2}=0$ and, as $\bar{\partial}_{\vec{J}}$ is the exterior derivative of the Lie algebroid $E_{\widehat{J}}^{1,0}$, we get that $\left(C^{\infty}\left(\wedge^{\bullet}\left(E_{\vec{J}}^{1,0}\right)\right), \wedge, \bar{\partial}_{\widehat{J}},[,]_{D}\right)$ is a differential Gerstenhaber algebra, where \wedge denotes the Schouten bracket, [12], [24]. The paper is organized as in the following. In section 2 we introduce preliminary material: first we describe the main geometrical properties of the generalized tangent bundle and of generalized complex structures, then we recall the basic definitions in the setting of Norden manifolds, Kähler-Norden manifolds and complex Lie algebroids. Original results are concentrated in section 3: the geometrical description of the generalized complex structure \widehat{J} associated naturally to a Norden manifold, the definition of the generalized $\bar{\partial}_{\hat{J}}$-operator and the description of some generalized holomorphic sections.

2 Preliminaries

$2.1{ }^{6}$ Generalized geometry

Let M be a smooth manifold of real dimension n and let $E=T(M) \oplus T^{*}(M)$ be the generalized tangent bundle of M. Smooth sections of E are elements $X+\xi \in C^{\infty}(E)$ where $X \in C^{\infty}(T(M))$ is a vector field and $\xi \in C^{\infty}\left(T^{*}(M)\right)$ is a $1-$ form.
E is equipped with a natural symplectic structure defined by:

$$
\begin{equation*}
(X+\xi, Y+\eta)=-\frac{1}{2}(\xi(Y)-\eta(X)) \tag{1}
\end{equation*}
$$

and a natural indefinite metric defined by:

$$
\begin{equation*}
<X+\xi, Y+\eta>=-\frac{1}{2}(\xi(Y)+\eta(X)) . \tag{2}
\end{equation*}
$$

$<,>$ is non degenerate and of signature (n, n).
A linear connection on M, ∇, defines, in a canonical way, a bracket on $C^{\infty}(E)$, $[,]_{\nabla}$, as follows:

$$
\begin{equation*}
[X+\xi, Y+\eta]_{\nabla}=[X, Y]+\nabla_{X} \eta-\nabla_{Y} \xi . \tag{3}
\end{equation*}
$$

The following holds:
Lemma $1([15])$ For all $X, Y \in C^{\infty}(T(M))$, for all $\xi, \eta \in C^{\infty}\left(T^{*}(M)\right)$ and for all $f \in C^{\infty}(M)$ we have:

1. $[X+\xi, Y+\eta]_{\nabla}=-[Y+\eta, X+\xi]_{\nabla}$,
2. $[f(X+\xi), Y+\eta]_{\nabla}=f[X+\xi, Y+\eta]_{\nabla}-Y(f)(X+\xi)$,
3. Jacobi's identity holds for $[,]_{\nabla}$ if and only if ∇ has zero curvature.

We consider the following concept of generalized complex structure, introduced in [15], [16] and further investigated in [17], [18], [3] :

Definition $2 A$ generalized complex structure on M is an endomorphism \widehat{J}, $\widehat{J}: E \rightarrow E$ such that $\widehat{J}^{2}=-I$.

A pseudo-Riemannian metric on M, g, defines, in a natural way, a complex structure J^{g} on E by:

$$
\begin{equation*}
J^{g}(X+\xi)=-g^{-1}(\xi)+g(X) \tag{4}
\end{equation*}
$$

where $g: T(M) \rightarrow T^{*}(M)$ is identified to the bemolle musical isomorphism defined by:

$$
\begin{equation*}
g(X)(Y)=g(X, Y) \tag{5}
\end{equation*}
$$

in block matrix form, is:

$$
J^{g}=\left(\begin{array}{cc}
O & -g^{-1} \tag{6}\\
g & O
\end{array}\right) .
$$

Definition 3 A generalized complex structure \widehat{J} is called pseudo calibrated if is (,) -invariant and if the bilinear symmetric form on $T(M)$ defined by (,J) is non degenerate, moreover \widehat{J} is called calibrated $i f(, \widehat{J})$ is positive definite, [15].

b

A direct computation shows that J^{g} is pseudo calibrated.
Let ∇ be a linear connection on M and let $[,]_{\nabla}$ be the bracket on $C^{\infty}(E)$ defined by ∇, the following holds:

Lemma 4 ([16]) Let $\widehat{J}: E \rightarrow E$ be a generalized complex structure on M and let

$$
\begin{equation*}
N^{\nabla}(\widehat{J}): C^{\infty}(E) \times C^{\infty}(E) \rightarrow C^{\infty}(E) \tag{7}
\end{equation*}
$$

defined by:

$$
\begin{equation*}
N^{\nabla}(\widehat{J})(\sigma, \tau)=[\widehat{J} \sigma, \widehat{J} \tau]_{\nabla}-\widehat{J}[\widehat{J} \sigma, \tau]_{\nabla}-\widehat{J}[\sigma, J \tau]_{\nabla}-[\sigma, \tau]_{\nabla} \tag{8}
\end{equation*}
$$

for all $\sigma, \tau \in C^{\infty}(E) ; N^{\nabla}(\widehat{J})$ is a skew symmetric tensor.

Definition $5 N^{\nabla}(\widehat{J})$ is called the Nijenhuis tensor of \widehat{J} with respect to ∇.
Definition 6 Let $\widehat{J}: E \rightarrow E$ be a generalized complex structure on M, \widehat{J} is called ∇-integrable if $N^{\nabla}(\widehat{J})=0$.

Proposition 7 ([16]) Let ∇ be a torsion free connection on M and let

$$
J^{g}=\left(\begin{array}{cc}
O & -g^{-1} \tag{9}\\
g & O
\end{array}\right)
$$

be the generalized complex structure on M defined by a pseudo-Riemannian metric g, J^{g} is ∇-integrable if and only if g is a Codazzi tensor, that is for all $X, Y \in C^{\infty}(T(M))$ we have:

$$
\begin{equation*}
\left(\nabla_{X} g\right) Y=\left(\nabla_{Y} g\right) X \tag{10}
\end{equation*}
$$

Definition 8 ([1]), ([4]), ([19]) Let (M, g, ∇) be a pseudo-Riemannian manifold with a torsion free linear connection, if ∇g is symmetric then (M, g, ∇) is called a statistical manifold.

Corollary 9 Let ∇ be a torsion free connection on M and let J^{9} be the generalized complex structure on M defined by a pseudo-Riemannian metric g, J^{g} is ∇-integrable if and only if (M, g, ∇) is a statistical manifold.

2.2 Norden manifolds

Norden manifolds were introduced by A. P. Norden in [20] and then studied also under the names of almost complex manifolds with B-metric and anti-Kählerian manifolds, [2], [9]. They have applications in mathematics and in theoretical physics.

Definition 10 Let (M, J) be an almost complex manifold of real dimension $2 n$ and let g be a pseudo-Riemannian metric on M, if J is a g-symmetric operator then g is called Norden metric and (M, J, g) is called Norden manifold.

Remark 11 We can easily prove that a Norden metric g on a $2 n$-dimensional almost complex manifold is of (n, n)-signature, that is g is a neutral metric.

Let (M, J, g) be a complex Norden manifold, that is a Norden manifold with J integrable, then there exists a natural canonical connection on M, precisely the following holds:

Theorem 12 ([9]) On a complex manifold with Norden metric (M, J, g) there exists a unique linear connection D with torsion T such that:

$$
\begin{gather*}
\left(D_{X} g\right)(Y, Z)=0 \tag{11}\\
T(J X, Y)=-T(X, J Y) \tag{12}\\
g(T(X, Y), Z)+g(T(Y, Z), X)+g(T(Z, X), Y)=0 \tag{13}
\end{gather*}
$$

for all vector fields X, Y, Z on $M . D$ is called the natural canonical connection of the Norden manifold or B-connection and it is defined by:

$$
\begin{equation*}
D_{X} Y=\nabla_{X} Y-\frac{1}{2} J\left(\nabla_{X} J\right) Y \tag{14}
\end{equation*}
$$

where ∇ is the Levi-Civita connection of g.

We remark that (14) is equivalent to:

$$
\begin{equation*}
D_{X} Y=\frac{1}{2}\left(\nabla_{X} Y-J \nabla_{X} J Y\right) \tag{15}
\end{equation*}
$$

then, by direct computation we get the following Proposition.
Proposition 13 If D is the natural canonical connection of the complex Norden manifold (M, J, g) then

$$
\begin{equation*}
D J=0 \tag{16}
\end{equation*}
$$

Definition 14 Let (M, J, g) be a Norden manifold and let

$$
\begin{equation*}
\tilde{g}(X, Y)=g(J X, Y) \tag{17}
\end{equation*}
$$

for all X and Y vector fields on $M . \tilde{g}$ is a pseudo-Riemannian metric on M with (n, n)-signature and (M, J, \widetilde{g}) is a Norden manifold. \widetilde{g} is called the associated metric to $g . \tilde{g}$ is also called the twin or the dual metric of g.

2.3 Kähler-Norden manifolds

Kähler-Norden manifolds are strictly related with complex analysis and they will be the main object of our theory. We recall here the definition and the main properties of Kähler-Norden manifolds, for details see [2],[11], [23].

Definition 15 Let (M, J, g) be a Norden manifold and let ∇ be the Levi-Civita connection of g, if $\nabla J=0$ then (M, J, g) is called Kähler-Norden manifold.

We remark that for a Kähler-Norden manifold (M, J, g) the structure J is integrable and the natural canonical connection is the Levi-Civita connection.
Moreover the following holds:
Theorem 16 ([22]) Let (M, J, g) be a Kähler-Norden manifold, the Levi-Civita connection of g coincides with the Levi-Civita connection of the associated metric \tilde{g}, in particular the Riemann curvature tensors of g and \tilde{g} coincide.

A large class of Kähler-Norden manifolds is given by complex parallelisable manifolds, ([2]).
An interesting property of Kähler-Norden manifolds is the following:
Proposition 17 ([2]) Let (M, J, g) be a Kähler-Norden manifold then, extending g by \mathbb{C}-linearity to the complexified tangent bundle $T(M) \otimes \mathbb{C}$, the components of the complex extended metric, \widehat{g}, are holomorphic functions.

We recall that on a complex manifold (M, J) an element $X \in C^{\infty}(T M)$ is an infinitesimal automorphism of the complex structure J on M if and only if X satisfies the following condition:

$$
\begin{equation*}
[X, J Y]=J[X, Y] \tag{18}
\end{equation*}
$$

for all $Y \in C^{\infty}(T M)$.
On Kähler-Norden manifolds, from the condition $\nabla J=0$, (18) can be written as:

$$
\begin{equation*}
\nabla_{J Y} X=\nabla_{Y} J X \tag{19}
\end{equation*}
$$

The Riemannian curvature tensor of a Kähler-Norden manifold has interesting properties, precisely we have the following:

Theorem 18 ([11]), ([22]) In a Kähler-Norden manifold the Riemannian curvature tensor, R^{∇}, of the Norden metric g is pure in all arguments, that is, for all $X, Y, Z, W \in C^{\infty}(T(M))$:

$$
\begin{gather*}
g\left(R^{\nabla}(J X, Y) Z, W\right)=g\left(R^{\nabla}(X, J Y) Z, W\right) \\
=g\left(R^{\nabla}(X, Y) J Z, W\right) \tag{20}\\
=g\left(R^{\nabla}(X, Y) Z, J W\right)
\end{gather*}
$$

2.4 Complex Lie algebroids

Lie algebroids were introduced by J. Pradines in [21]; we recall here the definition and the main properties.

Definition 19 A complex Lie algebroid is a complex vector bundle L over a smooth real manifold M such that: a Lie bracket [,] is defined on $C^{\infty}(L)$, a smooth bundle map $\rho: L \rightarrow T(M)$, called anchor, is defined and, for all $\sigma, \tau \in C^{\infty}(L)$, for all $f \in C^{\infty}(M)$ the following conditions hold:

1. $\rho([\sigma, \tau])=[\rho(\sigma), \rho(\tau)]$
2. $[f \sigma, \tau]=f([\sigma, \tau])-(\rho(\tau)(f)) \sigma$.

Let L and its dual vector bundle L^{*} be Lie algebroids; on sections of $\wedge L$, respectively $\wedge L^{*}$, the Schouten bracket is defined by:

$$
\begin{gather*}
{[,]_{L}: C^{\infty}\left(\wedge^{p} L\right) \times C^{\infty}\left(\wedge^{q} L\right) \longrightarrow C^{\infty}\left(\wedge^{p+q-1} L\right)} \tag{21}\\
{\left[X_{1} \wedge \ldots \wedge X_{p}, Y_{1} \wedge \ldots \wedge Y_{q}\right]_{L}=} \\
\leqslant=\sum_{i=1}^{p} \sum_{j=1}^{q}(-1)^{i+j}\left[X_{i}, Y_{j}\right]_{L} \wedge X_{1} \wedge . \hat{i}^{\hat{}} . . \wedge X_{p} \wedge Y_{1} \wedge . \hat{j}^{\prime} . \wedge Y_{q} \tag{22}
\end{gather*}
$$

and, for $f \in C^{\infty}(M), X \in C^{\infty}(L)$

$$
\begin{equation*}
[X, f]_{L}=-[f, X]_{L}=\rho(X)(f) \tag{23}
\end{equation*}
$$

respectively, by:

$$
\begin{gather*}
{[,]_{L^{*}}: C^{\infty}\left(\wedge^{p} L^{*}\right) \times C^{\infty}\left(\wedge^{q} L^{*}\right) \longrightarrow C^{\infty}\left(\wedge^{p+q-1} L^{*}\right)} \tag{24}\\
{\left[X_{1}^{*} \wedge \ldots \wedge X_{p}^{*}, Y_{1}^{*} \wedge \ldots \wedge Y_{q}^{*}\right]_{L^{*}}=} \\
=\sum_{i=1}^{p} \sum_{j=1}^{q}(-1)^{i+j}\left[X_{i}^{*}, Y_{j}^{*}\right]_{L^{*}} \wedge X_{1}^{*} \wedge . .^{\hat{i}} . . \wedge X_{p}^{*} \Lambda Y_{1}^{*} \wedge . .^{\hat{j}} . . \wedge Y_{q}^{*} \tag{25}
\end{gather*}
$$

and, for $f \in C^{\infty}(M), X \in C^{\infty}\left(L^{*}\right)$

$$
\begin{equation*}
[X, f]_{L^{*}}=-[f, X]_{L^{*}}=\rho(X)(f) \tag{26}
\end{equation*}
$$

Moreover the exterior derivatives d and d_{*} associated with the Lie algebroid structure of L and L^{*} are defined respectively by:

$$
\begin{gather*}
d: C^{\infty}\left(\wedge^{p} L^{*}\right) \longrightarrow C^{\infty}\left(\wedge^{p+1} L^{*}\right) \tag{27}\\
(d \alpha)\left(\sigma_{0}, \ldots, \sigma_{p}\right)= \\
=\sum_{i=0}^{p}(-1)^{i} \rho\left(\sigma_{i}\right) \alpha\left(\sigma_{0}, . .^{\hat{i}} . ., \sigma_{p}\right)+\sum_{i \lessdot j}(-1)^{i+j} \alpha\left(\left[\sigma_{i}, \sigma_{j}\right]_{L}, \sigma_{0}, . .^{i} . .^{j} . ., \sigma_{p}\right) \tag{28}
\end{gather*}
$$

for $\alpha \in C^{\infty}\left(\wedge^{p} L^{*}\right), \sigma_{0}, \ldots, \sigma_{p} \in C^{\infty}(L)$,

$$
\begin{gather*}
\text { and: } \begin{array}{c}
d_{\star}: C^{\infty}\left(\wedge^{p} L\right) \longrightarrow C^{\infty}\left(\wedge^{p+1} L\right) \\
\left(d_{*} \alpha\right)\left(\sigma_{0}, \ldots, \sigma_{p}\right)= \\
=\sum_{i=0}^{p}(-1)^{i} \rho\left(\sigma_{i}\right) \alpha\left(\sigma_{0}, \ldots i^{i} . ., \sigma_{p}\right)+\sum_{i<j}(-1)^{i+j} \alpha\left(\left[\sigma_{i}, \sigma_{j}\right]_{L^{*}}, \sigma_{0}, .^{\hat{i}} . . \hat{j}^{j} . ., \sigma_{p}\right)
\end{array}
\end{gather*}
$$

for $\alpha \in C^{\infty}\left(\wedge^{p} L\right), \sigma_{0}, \ldots, \sigma_{p} \in C^{\infty}\left(L^{*}\right)$.

3 Generalized geometry of Norden manifolds

3.1 Generalized complex structures

Let (M, J, g) be a Norden manifold, the almost complex structure J and the pseudo Riemannian metric g define, in a natural way, a complex structure \widehat{J} on E by:

$$
\begin{equation*}
\widehat{J}(X+\xi)=J(X)+g(X)-J^{*}(\xi) \tag{31}
\end{equation*}
$$

where $J^{*}: T^{*}(M) \rightarrow T^{*}(M)$ is the dual operator of J defined by:

$$
\begin{equation*}
J^{*}(\xi)(X)=\xi(J(X)) . \tag{32}
\end{equation*}
$$

In block matrix form, is:

$$
\widehat{J}=\left(\begin{array}{cc}
J & O \tag{33}\\
g & -J^{*}
\end{array}\right) .
$$

Remark 20 From the g-symmetry of J it follows immediately that \widehat{J} is a pseudo calibrated generalized complex structure on M, see also [16].

A direct computation gives the following:
Proposition 21 Let (M, J, g) be a Norden manifold and let ∇ be a linear connection on M with torsion T, let \widehat{J} be the generalized complex structure defined by J and g, we have:

$$
\begin{gather*}
N^{\nabla}(\widehat{J})(X, Y)=\left(\nabla_{J X} J\right) Y-J\left(\nabla_{X} J\right) Y-\left(\nabla_{J Y} J\right) X+J\left(\nabla_{Y} J\right) X+ \\
-T(J X, J Y)+J T(X, J Y)+J T(J X, Y)+T(X, Y)+ \\
+g\left(\left(\nabla_{Y} J\right) X-\left(\nabla_{X} J\right) Y\right)+g(T(X, J Y)+T(J X, Y))+ \tag{34}\\
+\left(\nabla_{J X} g\right) Y-\left(\nabla_{J Y} g\right) X+\left(\nabla_{X} g\right) J Y-\left(\nabla_{Y} g\right) J X \\
N^{\nabla}(\widehat{J})(X, \xi)=-J^{*}\left(\nabla_{X} J^{*}\right) \xi-\left(\nabla_{J X} J^{*}\right) \xi \tag{35}\\
N^{\nabla}(\widehat{J})(\xi, \eta)=0 \tag{36}
\end{gather*}
$$

for all $X, Y \in C^{\infty}(T(M))$ and for all $\xi, \eta \in C^{\infty}\left(T^{*}(M)\right)$.

Corollary $22 \hat{J}$ is ∇-integrable if and only if the following conditions hold:

$$
\begin{gather*}
o V^{+}+\left(\nabla_{J X} J\right)=J\left(\nabla_{X} J\right) \tag{37}\\
T(J X, J Y)-J T(X, J Y)-J T(J X, Y)-T(X, Y)=O \tag{38}\\
g\left(\left(\nabla_{Y} J\right) X-\left(\nabla_{X} J\right) Y\right)+g(T(X, J Y)+T(J X, Y))+ \tag{39}\\
+\left(\nabla_{J X} g\right) Y-\left(\nabla_{J Y} g\right) X+\left(\nabla_{X} g\right) J Y-\left(\nabla_{Y} g\right) J X=O
\end{gather*}
$$

for all $X, Y \in C^{\infty}(T(M))$.
6
Corollary 23 If \widehat{J} is ∇-integrable then J is integrable.
Proof. Let $N(J)$ be the Nijenhuis tensor of the almost complex structure J, we have:

$$
\begin{gather*}
N(J)(X, Y)=\left(\nabla_{J X} J\right) Y-J\left(\nabla_{X} J\right) Y-\left(\nabla_{J Y} J\right) X+J\left(\nabla_{Y} J\right) X+ \tag{40}\\
-T(J X, J Y)+J T(X, J Y)+J T(J X, Y)+T(X, Y)
\end{gather*}
$$

for all $X, Y \in C^{\infty}(T(M))$, then the statement follows from Corollary 22 .
As we are interested in integrable generalized complex structures in the following we will assume that (M, J, g) is a complex Norden manifold. In particular we get:

Proposition 24 Let (M, J, g) be a complex Norden manifold and let D be the natural canonical connection on M, let \widehat{J} be the generalized complex structure defined by J and g, then \widehat{J} is D-integrable.

Proof. It follows from the properties of D described in Theorem 12 and in Proposition 13.
Analogous statement can be given for the associated metric, precisely the following holds:
Proposition 25 Let (M, J, g) be a complex Norden manifold and let \widetilde{D} be the natural canonical connection of the associated metric \tilde{g}, let \tilde{J} be the generalized complex structure defined by J and \widetilde{g}, then \widetilde{J} is \widetilde{D}-integrable.

3.2 Generalized $\bar{\partial}_{\hat{J}}$-operator

Let (M, J, g) be a complex Norden manifold and let \widehat{J} be the generalized complex structure on M defined by J and g, let

$$
\begin{equation*}
E^{\mathbb{C}}=\left(T(M) \oplus T^{*}(M)\right) \otimes \mathbb{C} \tag{41}
\end{equation*}
$$

be the complexified generalized tangent bundle. The splitting in $\pm i$ eigenspaces of \widehat{J} is denoted by:

$$
\begin{equation*}
E^{\mathrm{C}}=E_{\widehat{J}}^{1,0} \oplus E_{\widehat{J}}^{0,1} \tag{42}
\end{equation*}
$$

with

$$
\begin{equation*}
E_{\vec{J}}^{0,1}=\overline{E_{\vec{J}}^{1,0}} \tag{43}
\end{equation*}
$$

A direct computation gives:

$$
\begin{equation*}
E_{\hat{J}}^{1,0}=\{Z-i J Z+g(W+i J W-i Z) \mid Z, W \in T(M) \otimes \mathbb{C}\} \tag{44}
\end{equation*}
$$

equivalently $E_{\vec{J}}^{1,0}$ is generated by elements of the following type:

$$
\begin{gather*}
X-i J X-i g(X) \text { with } X \in C^{\infty}(T M) \tag{45}\\
g(Y+i J Y) \text { with } Y \in C^{\infty}(T M) \tag{46}
\end{gather*}
$$

Analogously we have:

$$
\begin{equation*}
E_{\vec{J}}^{0,1}=\{Z+i J Z+g(W-i J W+i Z) \mid Z, W \in T(M) \otimes \mathbb{C}\} \tag{47}
\end{equation*}
$$

and $E_{\vec{J}}^{0,1}$ is generated by elements of the following type:

$$
\begin{gather*}
X+i J X+i g(X) \text { with } X \in C^{\infty}(T M) \tag{48}\\
g(Y-i J Y) \text { with } Y \in C^{\infty}(T M) \tag{49}
\end{gather*}
$$

Moreover, for any linear connection ∇, the following holds:
Lemma $26 E_{\widehat{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ are $[,]_{\nabla}$-involutive if and only if $N^{\nabla}(\widehat{J})=0$.
Proof. Let $P_{+}: E^{\mathbb{C}} \rightarrow E_{\vec{J}}^{1,0}$ and $P_{-}: E^{\mathbb{C}} \rightarrow E_{\vec{J}}^{0,1}$ be the projection operators:

$$
\begin{equation*}
P_{ \pm}=\frac{1}{2}(I \mp i \widehat{J}) \tag{50}
\end{equation*}
$$

for all $\sigma, \tau \in C^{\infty}\left(E^{\mathrm{C}}\right)$ we have:

$$
\begin{gather*}
P_{\mp}\left[P_{ \pm}(\sigma), P_{ \pm}(\tau)\right]_{\nabla}=P_{\mp}\left[\frac{1}{2}(\sigma \mp i \widehat{J} \sigma), \frac{1}{2}(\tau \mp i \widehat{J} \tau)\right]_{\nabla} \\
=-\frac{1}{8}\left(N^{\nabla}(\widehat{J})(\sigma, \tau) \pm i \widehat{J} N^{\nabla}(\widehat{J})(\sigma, \tau)\right)=-\frac{1}{4} P_{\mp}\left(N^{\nabla}(\widehat{J})(\sigma, \tau)\right) . \tag{51}
\end{gather*}
$$

From yow on we suppose that (M, J, g, D) is a complex Norden manifold with the natural canonical connection. A direct computation of the bracket associated to D on $E_{\vec{J}}^{1,0}$ and $E_{\widehat{J}}^{0,1}$ gives the following:
or

$$
\begin{align*}
\sigma & =X-i J X-i g(X) \\
\tau & =Y-i J Y-i g(Y) \tag{66}\\
v & =Z-i J Z-i g(Z)
\end{align*}
$$

Let us compute

$$
\begin{equation*}
J a c\left[[g(X+i J X), Y-i J Y-i g(Y)]_{D}, Z-i J Z-i g(Z)\right]_{D} \tag{67}
\end{equation*}
$$

We have:

$$
\begin{align*}
& {\left[[g(X+i J X), Y-i J Y-i g(Y)]_{D}, Z-i J Z-i g(Z)\right]_{D}=g(K+i J K)} \tag{68}\\
& {\left[[Y-i J Y-i g(Y), Z-i J Z-i g(Z)]_{D}, g(X+i J X)\right]_{D}=g(L+i J L)} \tag{69}\\
& g\left[[Z-i J Z-i g(Z), g(X+i J X)]_{D} Y-i J Y-i g(Y)\right]_{D}=g(H+i J H) \tag{70}
\end{align*}
$$

where

$$
\begin{gather*}
K=D_{Z} D_{Y} X+D_{Z} J D_{J Y} X+J D_{J Z} D_{Y} X+J D_{J Z} J D_{J Y} X \tag{71}\\
L=D_{[Y, Z]} X+J D_{J[Y, Z]} X-D_{[J Y, J Z]} X-J D_{J[J Y, J Z]} X \tag{72}\\
H=-D_{Y} D_{Z} X-J D_{Y} D_{J Z} X-J D_{J Y} D_{Z} X+D_{J Y} D_{J Z} X \tag{73}
\end{gather*}
$$

Then we get

$$
\begin{equation*}
J a c\left[[\sigma, \tau]_{D}, v\right]_{D}=O \tag{74}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
K+L+H=O \tag{75}
\end{equation*}
$$

or, by direct computation, if and only if:

$$
\begin{equation*}
R^{D}(J Y, J Z)-J R^{D}(J Y, Z)-J R^{D}(Y, J Z)-R^{D}(Y, Z)-J D_{J N(J)(Y, Z)}=O \tag{76}
\end{equation*}
$$

where $N(J)$ is the Nijenhuis tensor of J. By using the integrability of J, we have the first condition.
Let us compute

$$
\begin{equation*}
J a c\left[[X-i J X-i g(X), Y-i J Y-i g(Y)]_{D}, Z-i J Z-i g(Z)\right]_{D} \tag{77}
\end{equation*}
$$

We have:

$$
\begin{gather*}
{\left[[X-i J X-i g(X), Y-i J Y-i g(Y)]_{D}, Z-i J Z-i g(Z)\right]_{D}=} \\
=A-i J A-i g(A)+g(B+i J B) \tag{78}
\end{gather*}
$$

where

$$
\begin{equation*}
A=[[X, Y]-[J X, J Y], Z]-[J[X, Y]-J[J X, J Y], J Z] \tag{79}
\end{equation*}
$$

and

$$
\begin{align*}
B= & D_{J Z}[X, Y]+D_{J Z} T^{D}(J X, J Y)-D_{J \mid X, Y]} Z+ \tag{80}\\
& +D_{J \mid J X, J Y]} Z-D_{Z} D_{J Y} X+D_{Z} D_{J X} Y
\end{align*}
$$

where T^{D} denotes the torsion tensor of the connection D.
Fom the Jacobi identity of $[$,$] we have that \operatorname{Jac}(A)=O$, then it is enough to compute $J a c(B)$.
From the properties of the torsion tensor T^{D} we get:

$$
\begin{gather*}
J a c(B)=\left(R^{D}(J X, Y)+R^{D}(X, J Y)\right) Z+ \tag{81}\\
+\left(R^{D}(J Z, X)+R^{D}(Z, J X)\right) Y+\left(R^{D}(Y, J Z)+R^{D}(J Y, Z)\right) X .
\end{gather*}
$$

Analogpus computations for $E_{J}^{0,1}$ gives exactly the same conditions, then the Proof is complete.

Remark 29 We observe that (61) is equivalent to:

$$
\begin{equation*}
\left(R^{D}\right)^{(0,2)}=O \tag{82}
\end{equation*}
$$

where $\left(R^{D}\right)^{(0,2)}$ denotes the $(0,2)$-part of the curvalure with respect to the complex structure J on M. Moreover, if the torsion is zero, from the first Bianchi identity with zero torsion, we get that (62) is automatically satisfied; instead, from the first Bianchi identity with torsion:

$$
\begin{gather*}
R^{D}(X, Y) Z+R^{D}(Y, Z) X+R^{D}(Z, X) Y+ \\
-T^{D}(X,[Y, Z])-T^{D}(Y,[Z, X])-T^{D}(Z,[X, Y])+ \tag{83}\\
-D_{X} T(Y, Z)-D_{Y} T(Z, X)-D_{Z} T(X, Y)=O
\end{gather*}
$$

we obtain that (62) is equivalent to the following:

$$
\begin{align*}
\left(R^{D}(J X, J Y)\right. & \left.-R^{D}(X, Y)\right) Z+\left(R^{D}(J Z, J X)-R^{D}(Z, X)\right) Y+ \tag{84}\\
& +\left(R^{D}(J Y, J Z)-R^{D}(Y, Z)\right) X=O .
\end{align*}
$$

From Proposition 26 we get in particular the following:
Proposition 30 If $R^{D}=O$ then $E_{\vec{J}}^{1,0}$ and $E_{\vec{J}}^{0,1}$ are complex Lie algebroids.

In this sense the following result provides a class of examples, ([10]), ([13]).
Theorem 31 ([10]), ([19]) Each hyper-Kaehler NH-manifold is a flat pseudoRiemannian manifold of signature $(2 n, 2 n)$.

More generally we have the following:
Theorem 32 Let (M, J, g) be a Kähler-Norden manifold then $E_{\vec{J}}^{1,0}$ and $E_{\vec{J}}^{0,1}$ are complex Lie algebroids.

Proof. In this case the natural canonical connection D is the Levi-Civita connection ∇ and, as its torsion is zero, (62) is automatically satisfied. Moreover from (20) we get that (61) is equivalent to:

$$
\begin{equation*}
R^{\nabla}(Y, Z)+R^{\nabla}(J Y, Z) J=O \tag{85}
\end{equation*}
$$

and, by using again the fact that R^{∇} is a pure tensor, we have that, for all $Y, Z, W \in C^{\infty}(T(M))$, (85) becomes:

$$
\begin{equation*}
R^{\nabla}(Y, Z) W+R^{\nabla}(Y, Z) J J W=O \tag{86}
\end{equation*}
$$

which is automatically satisfied. Thus the proof is complete.
Remark 33 Analogous statement can be given for $E_{\tilde{J}}^{1,0}$ and $E_{\tilde{J}}^{0,1}$. In the following we will consider only \widehat{J}.

The following holds:
b
Proposition 34 The natural symplectic structure on E defines a canonical isomorphism between $E_{\hat{J}}^{0,1}$ and the dual bundle of $E_{\vec{J}}^{1,0},\left(E_{\vec{J}}^{1,0}\right)^{*}$.

Proof. We define

$$
\begin{equation*}
\varphi: E_{\widehat{J}}^{0,1} \rightarrow\left(E_{\widehat{J}}^{1,0}\right)^{*} \tag{87}
\end{equation*}
$$

by:

$$
\begin{align*}
& (\varphi(Z+i J Z+g(W-i J W+i Z)))(X-i J X+g(Y+i J Y-i X))= \tag{88}\\
& \quad=(Z+i J Z+g(W-i J W+i Z), X-i J X+g(Y+i J Y-i X))
\end{align*}
$$

for all $X, Y, Z, W \in T(M) \otimes \mathbb{C}$.
We get:

$$
\begin{gather*}
(\varphi(Z+i J Z+g(W-i J W+i Z)))(X-i J X+g(Y+i J Y-i X))= \tag{89}\\
\quad=g(Y, Z)-g(W, X)+i(g(W, J X)+g(Y, J Z)-g(X, Z))
\end{gather*}
$$

and we extend by linearity. We have immediately that φ is injective and furthermore φ is an isomorphism.
The canonical isomorphism φ between $E_{\widehat{J}}^{0,1}$ and the dual bundle $\left(E_{\widehat{J}}^{1,0}\right)^{*}$ allows us to define the $\bar{\partial}_{\hat{J}}$-operator associated to the complex structure \widehat{J} as in the following:
let $f \in C^{\infty}(M)$ and let $d f \in C^{\infty}\left(T^{*}(M)\right) \hookrightarrow C^{\infty}\left(T(M) \oplus T^{*}(M)\right)$, we pose

$$
\begin{equation*}
\bar{\partial}_{\widehat{J}} f=2(d f)^{0,1}=d f+i \widehat{J} d f \tag{90}
\end{equation*}
$$

or:
\star

$$
\begin{gather*}
\bar{\partial}_{\hat{J}} f=d f-i J^{*}(d f) \tag{91}\\
\quad=d f-i(d f) J
\end{gather*}
$$

moreover we define:

$$
\begin{equation*}
\bar{\partial}_{\widehat{J}}: C^{\infty}\left(E_{\widehat{J}}^{0,1}\right) \rightarrow C^{\infty}\left(\wedge^{2}\left(E_{\vec{J}}^{0,1}\right)\right) \tag{92}
\end{equation*}
$$

via the natural isomorphism

$$
\begin{equation*}
E_{\widehat{J}}^{0,1} \stackrel{\varphi}{\simeq}\left(E_{\widehat{J}}^{1,0}\right)^{*} \tag{93}
\end{equation*}
$$

as:

$$
\begin{gather*}
\bar{\partial}_{\widehat{J}}: C^{\infty}\left(\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \rightarrow C^{\infty}\left(\wedge^{2}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \tag{94}\\
\left(\bar{\partial}_{\widetilde{J}^{\alpha}}^{\alpha}\right)(\sigma, \tau)=\rho(\sigma) \alpha(\tau)-\rho(\tau) \alpha(\sigma)-\alpha\left([\sigma, \tau]_{D}\right) \tag{95}
\end{gather*}
$$

for $\alpha \in C^{\infty}\left(\left(E_{\vec{J}}^{1,0}\right)^{*}\right), \sigma, \tau \in C^{\infty}\left(E_{\widehat{J}}^{1,0}\right)$.
In general:

$$
\begin{equation*}
\bar{\partial}_{\widehat{J}}: C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \rightarrow C^{\infty}\left(\wedge^{p+1}\left(E_{\widehat{J}}^{1,0}\right)^{*}\right) \tag{96}
\end{equation*}
$$

is defined by:

$$
\begin{gather*}
\left(\bar{\partial}_{\widehat{J}} \alpha\right)\left(\sigma_{0}, \ldots, \sigma_{p}\right)= \\
=\sum_{i=0}^{p}(-1)^{i} \rho\left(\sigma_{i}\right) \alpha\left(\sigma_{0}, . . \hat{i}_{. .,} \sigma_{p}\right)+\sum_{i \lessdot j}(-1)^{i+j} \alpha\left(\left[\sigma_{i}, \sigma_{j}\right]_{D}, \sigma_{0}, . . \hat{i}^{i} . . \widehat{j}_{. .}, \sigma_{p}\right) \tag{97}
\end{gather*}
$$

for $\alpha \in C^{\infty}\left(\wedge^{p}\left(E_{\vec{J}}^{1,0}\right)^{*}\right), \sigma_{0}, \ldots, \sigma_{p} \in C^{\infty}\left(E_{\widehat{J}}^{1,0}\right)$.

Definition $35 \bar{\partial}_{\hat{J}}$ is called generalized $\bar{\partial}$ - operator of (M, J, g, D) or generalized $\bar{\partial}_{\widehat{J}}$ - operator.

We get the following:

Proposition 36 If (61) and (62) hold then $\left(\bar{\partial}_{\jmath}\right)^{2}=0$ and $\left(\partial_{\jmath}\right)^{2}=0$.

Proof. It follows from the fact that Jacobi identity holds on $E_{j}^{1,0}$ and $\left(E_{S}^{1,0}\right)^{*}$.

From now on we suppose that (61) and (62) hold. We have immediately that $\bar{\partial}_{\vec{J}}$ is the exterior derivative, d_{L}, of the Lie algebroid $L=E_{\hat{J}}^{1,0}$. Moreover the exterior derivative $d_{L^{*}}$ of $L^{*}=\left(E_{\hat{J}}^{1,0}\right)^{*}$ is given by the operator $\partial_{\hat{J}}$ defined by:

$$
\begin{gather*}
\partial_{\widehat{J} v}: C^{\infty}\left(\wedge^{p}\left(E_{\hat{J}}^{1,0}\right)\right) \rightarrow C^{\infty}\left(\wedge^{p+1}\left(E_{\hat{J}}^{1,0}\right)\right) \\
\left(\partial_{\hat{J}} \sigma\right)\left(\alpha_{0}^{*}, \ldots, \alpha_{p}^{*}\right)= \\
=\sum_{i=0}^{p}(-1)^{i} \rho\left(\alpha_{i}^{*}\right) \sigma\left(\alpha_{0}^{*}, . .^{i} . ., \alpha_{p}^{*}\right)+\sum_{i<j}(-1)^{i+j} \sigma\left(\left[\alpha_{i}^{*}, \alpha_{j}^{*}\right]_{D}, \alpha_{0}^{*}, . .{ }^{\hat{i}} . . \hat{j}^{p} . ., \alpha_{p}^{*}\right) \tag{99}
\end{gather*}
$$

for $\sigma \in C^{\infty}\left(\wedge^{p}\left(E_{\widehat{J}}^{1,0}\right)\right), \alpha_{0}^{*}, \ldots, \alpha_{p}^{*} \in C^{\infty}\left(\left(E_{\widehat{J}}^{1,0}\right)^{*}\right)$.

3.3 Generalized holomorphic sections

Definition 37 Let $\alpha \in C^{\infty}\left(\wedge^{p}\left(E_{\vec{J}}^{1,0}\right)^{*}\right)$, α is called generalized holomorphic section if

$$
\begin{equation*}
\bar{\partial}_{\widetilde{J}} \alpha=0 \tag{100}
\end{equation*}
$$

We remark that for all $f \in C^{\infty}(M)$ we have $\bar{\partial}_{\widehat{J}} f=0$ if and only if $d f=0$, so the generalized holomorphic condition for functions gives only constant functions on connected components of M.

Proposition 38 Let $W \in C^{\infty}(T(M))$ and let $\sigma=g(W-i J W) \in E_{\vec{J}}^{0,1}$ then $\bar{\partial}_{\vec{J}} \sigma=0$ if and only if for all $X, Y \in C^{\infty}(T(M))$ holds:

$$
\begin{equation*}
g\left(D_{X} W-D_{J X} J W, Y\right)=g\left(D_{Y} W-D_{J Y} J W, X\right) \tag{101}
\end{equation*}
$$

Proof. Let $X, Y \in C^{\infty}(T(M))$, from (95), direct computations give:
d

$$
\begin{gather*}
\left(\bar{\partial}_{\overparen{J}} \sigma\right)(g(X+i J X), g(Y+i J Y))=0 \tag{102}\\
\left(\bar{\partial}_{\overparen{J}} \sigma\right)(g(X+i J X), Y-i J Y-i g(Y))=0 \tag{103}\\
\left(\bar{\partial}_{\overparen{J}} \sigma\right)(X-i J X-i g(X), Y-i J Y-i g(Y))= \\
=g\left(-D_{X} W+D_{J X} J W+i\left(D_{J X} W+i J D_{X} W, Y\right)+\right. \tag{104}\\
+g\left(D_{Y} W-D_{J Y} J W-i\left(D_{J Y} W+J D_{Y} W\right), X\right) .
\end{gather*}
$$

In particular we have $\left(\bar{\partial}_{\vec{J}} \sigma\right)=0$ if and only if:

$$
\begin{align*}
& g\left(-D_{X} W+D_{J X} J W+i\left(D_{J X} W+i J D_{X} W, Y\right)+\right. \tag{105}\\
& +g\left(D_{Y} W-D_{J Y} J W-i\left(D_{J Y} W+J D_{Y} W\right), X\right)=0
\end{align*}
$$

and then, by separating real and imaginary parts, we get the statement.
Equivalently we can state Proposition 36 as follows:
Proposition 39 Let $W \in C^{\infty}(T(M))$ and let $\sigma=g(W-i J W) \in E_{\vec{J}}^{0,1}$ then $\bar{\partial}_{\widehat{J}} \sigma=0$ if and only if for all $X, Y \in C^{\infty}(T(M))$ holds:

$$
\begin{equation*}
(d(g(W)))(X, Y)=(d(g(W)))(J X, J Y) \tag{106}
\end{equation*}
$$

Proof. We have:

$$
\begin{gather*}
(d(g(W)))(X, Y)=X g(W, Y)-Y g(W, X)-g(W,[X, Y]) \tag{107}\\
=g\left(D_{X} W, Y\right)-g\left(D_{Y} W, X\right)-g\left(W, T^{D}(X, Y)\right)
\end{gather*}
$$

On the other hand:

$$
\begin{gather*}
(d(g(W)))(J X, J Y)=J X g(W, J Y)-J Y g(W, J X)-g(W,[J X, J Y]) \\
=g\left(D_{J X} W, J Y\right)-g\left(D_{J Y} W, J X\right)-g\left(W, T^{D}(J X, J Y)\right) \\
=g\left(D_{J X} J W, Y\right)-g\left(D_{J Y} J W, X\right)-g\left(W, T^{D}(J X, J Y)\right) \tag{108}
\end{gather*}
$$

From the property (12) of the torsion T^{D} of the natural canonical connection we get the conclusion.
Moreover:
Proposition 40 Let $Z \in C^{\infty}(T(M))$ and let $\sigma=Z+i J Z+i g(Z) \in E_{\widehat{J}}^{0,1}$ then $\bar{\partial}_{\widehat{J}} \sigma=0$ if and only if for all $X, Y \in C^{\infty}(T(M))$ the following conditions hold:

$$
\begin{gather*}
D_{J Y} J Z=-D_{Y} Z \tag{109}\\
g\left(D_{X} Z, Y\right)=g\left(D_{Y} Z, X\right) . \tag{110}
\end{gather*}
$$

Proof. Let $X, Y \in C^{\infty}(T(M))$, direct computations give:

$$
\begin{gather*}
\left(\bar{\partial}_{\vec{J}} \sigma\right)(g(X+i J X), g(Y+i J Y))=0 \tag{111}\\
\left(\bar{\partial}_{\widehat{J}^{\sigma}}\right)(g(X+i J X), Y-i J Y-i g(Y))= \\
=-g\left(D_{Y} Z+D_{J Y} J Z, X\right)+i g\left(D_{J Y} Z-D_{Y} J Z, X\right) \tag{112}\\
\left(\bar{\partial}_{\vec{J}} \sigma\right)(X-i J X-i g(X), Y-i J Y-i g(Y))= \\
=g\left(D_{J Y} Z, X\right)-g\left(D_{J X} Z, Y\right)+i\left(g\left(D_{Y} Z, X\right)-g\left(D_{X} Z, Y\right)\right) . \tag{113}
\end{gather*}
$$

and. by separating real and imaginary parts, we get the following conditions:
.

$$
\begin{equation*}
D_{J Y} J Z+D_{\mathrm{Y}} Z=O \tag{114}
\end{equation*}
$$

$$
\begin{equation*}
g\left(D_{J Y} Z, X\right)-g\left(D_{J X} Z . Y\right)=O \tag{115}
\end{equation*}
$$

From (114) we get

$$
\begin{equation*}
D_{J Y} Z=J D_{Y} Z \tag{116}
\end{equation*}
$$

and substituting in (115), we have

$$
\begin{equation*}
g\left(D_{Y} Z, J X\right)-g\left(D_{J X} Z, Y\right)=O \tag{117}
\end{equation*}
$$

for all $X, Y \in C^{x}(T(M))$, then we get the statement

Corollary 41 Given $Z \in C^{\infty}(T(M))$, infinitesimal automorphism of J, Z defines the following generalized holomorphic sections of $E_{\vec{j}}^{0.1}$.

$$
\begin{gather*}
\sigma=g(Z-i J Z) \tag{118}\\
\tau=Z+i J Z+i g(Z) \tag{119}
\end{gather*}
$$

if and only if for all $X, Y \in C^{\infty}(\boldsymbol{T}(\boldsymbol{M})$) the follouing condition hold:

$$
\begin{equation*}
g\left(D_{X} Z, Y\right)=g\left(D_{Y} Z, X\right) \tag{120}
\end{equation*}
$$

In particular for Kähler-Norden manifolds, as D is the Levi-Civita connection and tiôn torsion free, condition (120) is equivalent to the d-closure of $g(Z)$, and, by using a classical result in symplectic geometry, [14], we have:

Proposition 42 Let M be a Kähler-Norden manifold and let $Z \in C^{\infty}(T(M))$ be an infinutesimal automorphism of J then $g(Z-i J Z)$ and $Z+i J Z+i g(Z)$ are generalized holonorphic sections of $E_{\vec{J}}^{0,1}$ if and only if $g(Z)$ is a Lagrangian submanafold of $T^{*}(M)$ with respect to the standard symplectic structure.

References

11) S. Amari, "Differentual-Geometrucal Methods in Statistics" Lectures Notes in Statistice 20 (1985)
[2] A. Barowiec, M. Francaviglia, 1. Volovich," Antr-Kählerıarı manafolds" Diff. Goum. Apple 12 (2000), 281-209

13] L. David, "On cotangent manifolds, cornples structures and generalized geanertry" (math. DC/ 13043684×1)
[4] D. Djebbouri, S. Ouakkas, R. Nasri, "Dualistic structures on generalized warped products" arXiv: 1501.00308 v 1 math.DG.
[5] N. Hitchin, "The moduli space of special Lagrangian submanifolds" Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 503-515.
[6] N. Hitchin, "Generalized Calabi-Yau manifolds" Quart. J. Math. Oxford 54, 281-308, (2003), (math.DG/0209099).
[7] N. Hitchin, "Lectures on generalized geometry" arXiv:1008.0973v1 [math.DG].
[8] M. Gualtieri, "Generalized Complex Gcometry" PhD Thesis, Oxford University (2003), (math.DG/0401221).
[9] G. Ganchev, V. Mihova, "Canonical conncction and the canonical conformal group on an almost complex manifold with B-metric" Ann. Univ. Sofia Fac. Math. et Inf. 81, (1987) 195-206.
[10] K. Gribacev, M. Manev, S. Dimiev, "On the almost hypercomplex pseudoHermitian manifolds" arXiv:0809.0784 1,2,3,4.
[11] M. Iscan, A. A. Salimov, "On Kähler-Norden manifolds" Proc. Indian Acad. Sci. (Math. Sci.) vol. 119, No. 1, (February 2009), 71-80.
[12] Y. Kosmanm-Schwarzbach, "Exact Gerstenhaber Algebras and Lie Bialgebroids" Acta Applicandae Mathematicae 41, (1995), 153-165.
[13] M. Manev, "Quaternionic Kaehler manifolds with hermitian and Norden metrics" arXiv:0906.5052v1 [math.DG].
[14] D. McDuff, D. Salamon, "Introduction to Symplectic Topology" Oxford Mathematical Monographs, Oxford Science Publications (1995).
[15] A. Nannicini, "Calibrated complex structures on the generalized tangent bundle of a Riemannian manifold" Journal of Geometry and Physics 56 (2006), 903-916.
[16] A. Nannicini, "Almost complex structures on cotangent bundles and generalized geometry" Journal of Geometry and Physics 60 (2010), 1781-1791.
[17] A. Nannicini, "Special Kähler manifolds generalized geometry" Differential Geometry and its Applications 31 (2013), 230-238.
[18] A. Nannicini, " Genaralized geometry of pseudo-Riemannian manifolds and generalized $\bar{\partial}$-operator" (2014), to appear in Adv. in Geometry.
[19] M. Nogushi, "Geometry of statistical manifolds" Differential Geometry and its Applications 2 (1992), 197-222.
[20] A. P. Norden, "On a class of four-dimensional A-spaces" Russian Math. (Izv VUZ) 17 (4) (1960), 145-157.
[21] J. Pradines, "Théorie de Lie pour les groupoides différentiables. Calcul différentiel dans la catégorie des groupoides infinitésimaux" C.R.Acad. Sc. Paris, t. 264, Série A, (1967), 245-248.
[22] A. Salimov, "On operators associated with tensor fields" J. Geom. (2010), 107-145
[23] K. Słuka, "On the curvature of Kähler-Norden manifolds" Journal of Geometry and physics 54 (2005) 131-145.
[24] P. Xu, "Gerstenhaber algebras and BV-algebras in Poisson geometry" arxiv:dg-ga/9703001v1.

Author's address:
Dipartimento di Matematica e Informatica "U. Dini" Piazza ${ }^{\text {G Ghiberti, } 27-50122 ~ F i r e n z e ~}$
email: antonella.nannicini@unifi.it

[^0]: ${ }^{1}$ Mathematics Subject Classification (2010): 53C15, 53D18 53C80 53C38
 Key words: General geometric structures on manifolds, Generalized geometry, Norden manifolds, Kähler-Norden manifolds, Lie algebroids
 ${ }^{2}$ Subject Classification
 Real and complex differential geometry, Symplectic geometry
 Partially supported by PRIN "Proprietà geometriche delle varietà reali e complesse" of MIUR and by GNSAGA of INDAM.

