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1 Introduction
This is a collection of notes for part of a short course on modal methods in fluid
mechanics held at DAMTP, University of Cambridge, in the summer of 2019.
These notes in particular are meant to introduce the reader to resolvent analysis as
it is currently used in fluid mechanics. Most of the papers on the topic assume a
level of knowledge a bit beyond that of the average beginning PhD student, so there
is a need for some introductory material to get new students up to speed quickly.
These notes are a step towards providing such material and will serve as a base
from which to explore the literature on the topic. The presentation assumes a good
working knowledge of Fourier transforms and linear algebra, some familiarity with
the incompressible Navier-Stokes equations, and not much else. Some experience
with state space systems from an introductory course in control is beneficial. In
most cases, rigour and technical detail have been elided in order not to obscure the
central point. Inevitably, there will be mistakes in the notes and I would be grateful
to be informed of these by email.

The method of analysis described in what follows arose from a desire to have a
systematic and well-founded way to form ‘quick and dirty’ approximations to tur-
bulent Navier-Stokes flows from the equations themselves (that is, as far as possible
without recourse to simulation or experimental data). It was hoped that such ap-
proximations would successively approach the original equations as the detail of the
approximation was increased. Fast and simple calculations would then enable the
kind of parametric control studies that are expensive with direct numerical simula-
tion.
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This kind of approach was inspired by the successful model reduction methods of
modern linear control theory, such as balanced truncation. Unfortunately, the exist-
ing methods of the time were designed for linear systems, or nonlinear systems that
could sensibly be linearised around an operating point. Although many researchers
had long practised looking at linear operators formed around the mean flow, it was
not then clear to me what it was that was actually being calculated; the classical
linearisation theorem taught to undergraduates explains the correspondence be-
tween a nonlinear system and its locally valid linearisation around an equilibrium.
In contrast, turbulent flows are far from equilibrium, the turbulent mean is not an
equilibrium point in phase space, and the turbulent fluctuations are large.

This dissatisfaction ultimately resulted in the present analysis. If it makes sense
to speak of lineage in this context, one may draw a line back through the pseu-
dospectra insights of Trefethen and coworkers [1], and the laminar resolvent based
work arising from the control theory community [2]. Inevitably, this view and the
presentation that follows is my own individual perspective.

These notes begin with an introduction to the singular value decomposition and
its operator counterpart, the Schmidt decomposition. A general formulation of the
resolvent decomposition is then introduced. A brief discussion of the interpretation
as a nonlinear feedback loop is given. The methodology is then applied to the
Navier-Stokes equations.

2 The singular value decomposition
The singular value decomposition (SVD) is a particular matrix factorisation that
has very useful properties. It is widely used in data and model reduction because
it solves the problem of finding the optimal approximation of a linear operator.
Since we will be using it extensively, we now review some of its most important
properties. In this section, vectors will be represented by lowercase letters, matrices
by uppercase, and the conjugate transpose of A by A∗.

Lemma 2.1. Let M be a complex m× n matrix. The decomposition

M = UΣV ∗ (1)

always exists, whereU is anm×m complex matrix, V is an n×n complex matrix,Σ
is am×n real and diagonal matrix with elementsΣii = σi and σ1 ≥ σ2 ≥ . . . .The
σi are called the singular values and (1) is called the singular value decomposition
of M . Matrices U and V are unitary, UU∗ = U∗U = Im and V V ∗ = V ∗V = In.
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Figure 2.1: The structure of the singular value decomposition with n > m. The
linears in Σ and V ∗ represent the reduced SVD (see Section 2.2)

From the singular value decomposition, we can make the following observations.
SinceU and V are unitary, the rank ofM is equal to the number of nonzero singular
values. Notice that the inverse of a unitary matrix is its conjugate transpose. The
decomposition is unique up to a constant complex multiplicative factor on each
basis and up to the ordering of the singular values. That is, if UΣV ∗ is a singular
value decomposition, so is (eiθU)Σ(V ∗e−iθ). The columns of V and U that span
the space corresponding to any exactly repeating singular values may be combined
arbitrarily. The structure of the matrix decomposition is illustrated in figure 2.1.

2.1 The maximum gain problem and its relationship with norms
It is helpful to think of M as an operator mapping a complex vector in the domain
of M to another in the range of M . The columns of V , vi, provide a basis which
spans the domain. The singular value decomposition of M can be written in terms
of the vectors of U and V ,

M = UΣV ∗ =
m∑
i=1

σiuiv
∗
i . (2)

Since V is unitary, v∗i vj = δij , so applying M to vj gives

Mvj =
m∑
i=1

σiuiv
∗
i vj = σjuj . (3)

Since V provides a basis for the domain ofM , any vector a in the domain ofM can
itself be expressed in terms of a weighted sum of columns of V . That is, expressing
a as

a =
n∑

i=1

vici
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gives

Ma =
∑m

i=1 uiσiv
∗
i a

=
∑m

i=1 uiσici.

We may then pose the question, what is the maximum amplitude of ‘output’ for a
given ‘input’ amplitude? This is achieved with the input parallel to v1, with a gain
of σ1. So,

σ1 = max
a̸=0

∥Ma∥
∥a∥

is achieved with a/∥a∥ = v1. Any other choice of a that is not parallel to v1 would
achieve an inferior gain. This is illustrated in figure 2.2 for a of unit length. M
maps a circle (ball) of unit radius to an ellipse (hyperellipse). The singular values
are the major and minor axes of the ellipse.

v1

v2

σ1u1

σ2u2

σ1u1

−σ1u1

Figure 2.2: Mapping of the unit circle (∥a∥ = 1, left) to an ellipse (Ma, centre) and
mapping of Mv1 to σ1u1 (right). If we imagine the locus of points of a with unit
length being drawn on a rubber sheet, the effect on M is to rotate and stretch the
sheet. The amount of stretching in each direction is given by each singular value,
and the directions by the singular vectors.

2.2 The low-rank approximation of matrices
For a non-square or rank-deficient square matrix, some of the singular values will
be zero. In this case, the reduced SVD can be defined where the columns of U or
V relating to the zero singular values, and the corresponding entries of Σ, can be
truncated with the decomposition remaining exact. In this case, though, U (or V )
will not be unitary because the columns associated with the null space of M will
have been truncated. This is illustrated in Figure 2.1, where the truncated columns
of Σ and V are separated from the rest of the matrix by dotted lines.

Since these matrices often arise from numerical calculations, it is natural to ask
what to do with singular values that are approximately zero within some defined
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threshold. If these are truncated, the decomposition forms an approximation to
M .

Where M is approximated by its SVD expansion truncated to order r,

M ≃Mr =
r∑

i=1

uiσiv
∗
i , (4)

it can be seen that the approximation error is equal to the rest of the expansion (the
‘tail’),

Ma−Mra =
m∑

i=r+1

uiσiv
∗
i a, (5)

and so is bounded,

∥Ma−Mra∥ ≤ σr+1∥a∥. (6)

The effect of rank reduction can be seen by looking at the following Matlab code
extract, which applies the SVD to images.

[U, S, V] = svd(img);

aprox_img = U(:,1:r) * S(1:r,1:r) * V(:,1:r)';

The output for a pair of sample images is shown in Figure 2.3

2.3 The pseudo-inverse
For reference, we briefly mention the pseudo-inverse here. A better and more de-
tailed introduction (with proofs) is presented in [3]. The inverse of a matrix M in
terms of its SVD is simply

M = UΣV ∗

M−1 = V Σ−1U∗.

Clearly Σ−1 only exists if M is full rank and square. Otherwise, we define the
pseudo-inverse (or Moore-Penrose inverse) via the reduced SVD,

M+ = VrΣ
−1
r U∗

r

where Σr is the truncation of Σ to remove all zero singular values, so that Σr is
invertible. M+ is a one-sided inverse (which side depends on whether m > n; for
example, if m > n, then MM+ = In).
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Figure 2.3: The singular value decomposition applied to image reconstruction,
showing progressively higher rank approximations of an image. The upper im-
age series requires a high number of modes to capture the detail. The lower image
series shows that the Mondrian picture is well-approximated by a very low-rank
projection.

Consider the under- or over-determined linear system of equations

Mx = b. (7)

A least squares solution x′ that minimises ∥Mx− b∥ is given by

x′ =M+b.

In the case where M does not have linearly independent columns, the solution x′
(of all possible solutions) given by the pseudoinverse is the solution that has the
minimum length.

2.4 The singular value decomposition for linear operators
The matrix SVD has a direct analogy for linear operators on Hilbert spaces, called
either the Schmidt decomposition or sometimes also the singular value decompo-
sition. The reader not used to dealing with functions in and operators on Hilbert
spaces may rest assured that the situation is conceptually very similar to the matrix
case. A good and detailed reference is [4]. The following statement is equivalent to
that in [5]. In the following, ⟨·, ·⟩X represents the inner product on the space X .

Theorem 2.1. If T : X → Y is a compact (bounded, linear) operator, whereX and
Y are Hilbert spaces, then T has the following representation:
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Tx =

∞∑
i=1

σi ⟨x, ϕi⟩X ψi, (8)

for some x ∈ X where the set {ϕi} and the set {ψi} are the eigenvectors of T ∗T
and TT ∗ respectively, and σi ≥ 0 are the square roots of the eigenvalues. The {ϕi}
and {ψi} form an orthonormal basis for X and Y respectively (so ⟨ψi, ψj⟩Y = δij
and so on). A pair (ϕi, ψi) is a Schmidt pair of T with an associated singular value
σi and (8) is the Schmidt decomposition of T . Further, T is bounded with norm
σ1, so ∥Tx∥ ≤ σ1∥x∥.

Fortunately, many useful properties and much of the intuition arising from the sim-
pler matrix SVD carry over to the operator case. The most obvious difference is
that since X and Y are function spaces, there can be infinitely many singular val-
ues. Even then, T can still be approximated by a finite-rank operator with bounded
error, in a manner analogous to the matrix case. There are a few points to be aware
of in a numerical implementation. Since T is a mapping between Hilbert spaces,
inner products will have been defined for X and Y . Therefore, care must be taken
to be sure that any discretisation preserves the appropriate inner product in the form
of whatever mass matrix, grid weighting or similar is appropriate. This is often a
tedious step and not explicitly outlined in papers.

2.5 Further reading
The singular value decomposition is an extremely well established and widely used
piece of mathematics. For the matrix case, the reader may find the presentations
in [3] or [6] useful and insightful. The practical application in a control setting is
well explained in [7]. The operator case is thoroughly covered in [4] and, in an
infinite-dimensional linear systems setting, introduced in [5].

2.6 Exercises
Exercise 2.1. Determine the relationship between the SVD ofM and the eigenval-
ues and eigenvectors of MM∗ and of M∗M .

Exercise 2.2. Find the singular values of AM where A is a unitary matrix.

Exercise 2.3. Find the minimum singular value of λI−M where λ is an eigenvalue
of M .

Exercise 2.4. For the operator case, and using the eigenvalues and eigenvectors of
T ∗T , show that ∥Tx∥ ≤ σ1∥x∥.
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3 Resolvent analysis of dynamical systems
Resolvent analysis in various forms has emerged as a useful tool in fluid dynamics.
Here, we present the type introduced in [8] which is applicable to a broad range of
systems, including nonlinear systems far from a steady equilibrium, such as turbu-
lence. To prevent the general idea from being obscured by details involving fluid
dynamics, we start with the general case, then specialise to the Navier-Stokes equa-
tions. The basic idea presented here is relatively simple and can be understood using
just Fourier transforms, linear algebra and some familiarity with state space.

The approach differs from classical linearisation in the following way. A linearisa-
tion would typically proceed by doing the Taylor expansion about an equilibrium
and assuming the perturbations around it to be small, leading us to neglect higher-
order terms in the perturbations. This allows some qualitative statements to be made
about the region near the equilibrium. Clearly, it is convenient to expand around
a point where the equation associated with that point has no time derivatives; this
is true at an equilibrium but is also true at the mean. In contrast, although in our
case d

dtz is zero, the nonlinear terms are not small, so are kept.

We begin by illustrating the idea using a dynamical system with a finite-dimensional
state space. Let the state at time t be z(t), let z(t) ∈ Rn, and the dynamics be given
by a function g, g : Rn → Rn;

d

dt
z(t) = g (z(t)) . (9)

The aim is to get some sense of what the dynamics of the system look like without
having to time-integrate it. The approach is to put the system into a form where
we can apply tools from linear algebra, even though the system is nonlinear. To do
this, we will go into the frequency domain. Once there, a linear operator arising
from an expansion around the mean is formed. The most amplified directions of
this operator are found, and are assumed to be excited by the remaining nonlinear
terms in the expansion. These most amplified directions represent most favoured
motions in the state space for any given frequency.

In the following, we assume we know the long-time average of the state, z.¹ The

¹This is obviously a weakness of the method if it needs to be found by time integration, but in
some cases it may be known by other means such as experiment.
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Taylor expansion of (9) about z is

d

dt
z(t) = d

dt
z + d

dt
(z(t)− z) (10)

= g(z) + ∂g
∂z

∣∣∣
z̄
(z(t)− z) + H.O.T. (11)

= L(z(t)− z) + f(t) (12)

where f collects together the terms nonlinear in the fluctuations (z(t)− z) and the
constant term g(z). L is the Jacobian of g about z̄. This expansion is essentially just
a change of variables with the new origin being the mean. This splitting into mean
and fluctuations is basically a Reynolds decomposition. The expansion around z is
then Fourier transformed. This involves the Fourier transform of z,²

ẑ(ω) =
∫ ∞

−∞
e−iωtz(t) dt (13)

with inverse transform

z(t) = 1

2π

∫ ∞

−∞
eiωtẑ(ω) dω, (14)

and of f,

f̂(ω) =
∫ ∞

−∞
e−iωtf(t) dt. (15)

The mean, z, is closely related to the ω = 0 component. It can be verified by
substitution into (14) that

ẑ(ω = 0) = 2πzδ(ω), (16)

with δ being the Dirac delta, and the equation corresponding to ω = 0 is therefore
the mean equation.

To proceed, we integrate the expansion (12) against a chosen frequency ω. At any
particular ω ̸= 0 we then have

iωẑ(ω) = Lẑ(ω) + f̂(ω). (17)

which can be rearranged as

ẑ(ω) = (iωI − L)−1 f̂(ω). (18)

²Really, this integral diverges, because our signal is not bounded.
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The operator R(ω) := (iωI − L)−1 which maps the Fourier coefficient of the non-
linear excitation, f̂ to the Fourier coefficient of the state, ẑ, is the resolvent operator
(matrix, in this case) of L. It is essentially a transfer function from f̂ to ẑ.

It is worth pausing here to think about what has been done. The benefit of this
approach is that it brings us to a point where the familiar and powerful tools of
linear algebra can be applied, despite the actual dynamics being highly nonlinear.
The nonlinear terms in f̂, rather than being discarded, are essential and act to excite
the state. Since the effect of these terms is filtered by the linear part of the dynamics,
we will be able to say something about how the filtering affects the state. The tool
of choice in this situation is the singular value decomposition, which we will apply
to the resolvent.

3.1 The singular value decomposition of the resolvent operator
The question at hand is what typical motions in state space are to be expected. From
the preceding discussion we have shown that a matrix R maps some unknown vector
f̂ to the state’s Fourier coefficient ẑ. This matrix can be found from the governing
equations and is the resolvent of the Jacobian formed around the long-time average
state. We shall seek to find a basis in which to express ẑ as accurately as possible and
with as few coefficients as possible, but without knowing ẑ. This means we have to
guess what ẑ is going to look like. To do this, we find the optimal approximation to
R(ω). Since R(ω) is just a matrix, this is given by the singular value decomposition
at each ω,

R(ω) = U(ω)Σ(ω)V∗(ω). (19)
This decomposition at any particular frequency ω induces a basis in which to express
ẑ, which is the left singular vectors (the columns of U(ω)). In the absence of any
knowledge about f̂, we may truncate this basis to order r with the hope that the
relative smallness of the trailing singular values of R(ω), that is, σj(ω) with j >
r + 1, act to preclude any component of ẑ in the directions ûj , with j > r + 1.

The Fourier coefficients of the state can be expanded in terms of the left singular
vectors of R(ω),

ẑ(ω) = R(ω)̂f(ω) (20)

=

r∑
i=1

ui(ω)σi(ω)v∗i (ω)̂f(ω) (21)

=

r∑
i=1

ui(ω)σi(ω)ci(ω). (22)
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The truncation to order r defines an optimally reduced space that ẑ(ω) inhabits.
The ci are the coefficients obtained by the projection of f̂(ω) onto the right singu-
lar vectors, i.e. ci = v∗i (ω)̂f(ω). To fix the coefficients ci and calculate a specific
trajectory z would require invoking the nonlinear term.

3.2 Exercises
In [1], the resolvent operator formed around the laminar flow is suggested as a
model for transition. Many of the ideas presented in these notes are introduced. In
the same paper, the simple conceptual model system is proposed,

du
dt

(t) =

[
−1/ρ 1
0 −2/ρ

]
+ ∥u∥

[
0 −1
1 0

]
u. (23)

Exercise 3.1. Find the eigenvalues of the linear operator in the model system.

Exercise 3.2. Using the same linear operator, form the resolvent operator for ρ =
25. Plot the leading singular value as it varies with ω. What happens to the leading
singular value when there is an eigenvalue close to the imaginary axis?

4 Nonlinear feedback, solutions to the nonlinear system and
the Lur’e decomposition

In this section, we seek to understand the global behaviour when both nonlinear
and linear parts of the system co-exist. Some authors eschew this interpretation
and instead choose to model f̂ statistically using some prior knowledge obtained
through other means. Both approaches are reasonable.

Consider the dynamics in (12),

d

dt
z̃(t) = Lz̃(t) + f(t) (24)

where z̃ is defined to be the fluctuations at time t, z̃ := z(t) − z. This system
can be interpreted as a linear system with external forcing f(t). As such, it can be
integrated from some initial condition to solve for z̃(t). We have dealt with z̃(t)
(the state at some time t) as a vector inRn, but we can also talk of the solution being
a function z̃ : R → Rn which maps a real number (t) to a point in Rn (the state at
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H
f z̃

Figure 4.1: A block diagram representation of the open-loop relation H .

N
z̃ f

Figure 4.2: A block diagram representation of the open-loop nonlinear relationN .

t).³ This trajectory can be related to the equivalent forcing f by a linear operatorH ,

z̃ = Hf. (25)

That is to say, H maps a whole history of f(t) (the signal f in the space of such
functions) to a whole history of z̃(t) (a trajectory in the space of such functions).
As such, if f was known, applying H would result in z̃, which could give the state
at any time t by evaluating z̃(t). H could be calculated the time-integration of 24
with an initial condition. This is depicted in Figure 4.1.

The counterpart is the nonlinear relation

f = N(z̃) (26)

where N calculates the function f from the state trajectory z̃. Again, the nonlinear
term f(t) is calculated by supplying t as an argument to f. In the special case thatN
is memoryless, f(t) can be calculated instantaneously from z̃(t) without knowing
the whole time history.

Similarly to the open loop relation H , N maps a signal z̃ to an f. As such, if z̃ was
known, the whole history of f(t) could be reproduced finding f and then evaluating
at t. This is depicted in Figure 4.2.

A solution to the original equations is a pair (f, z̃) that simultaneously satisfies both
open-loop relations. The ‘closed-loop’ is such an arrangement, depicted in Figure
4.3. It should be noted that since H is linear, fixing the amplitudes of ẑ can only
occur in the closed-loop situation.

³Care should be taken to understand that this function represents a whole trajectory. A confusion
often arises at this point because of the common practice of omitting the argument t when discussing
the instantaneous state, thus leading to a confusion between z̃ and z̃(t).
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N

H

z̃ f

Figure 4.3: A block diagram representation of the closed-loop system consisting of
H and N .

Such a decomposition into a linear and memoryless nonlinear parts is called a Lur’e
decomposition. Its use is foundational to the study of stability in modern robust
control theory and is well explained in two beautiful papers by Zames [9, 10]. The
approach to proving global stability in those papers rests on finding conditions
where only one pair (f, z̃) is consistent with both open-loop elements. In general,
fluid systems are not globally stable and so many solutions may arise. The use of this
decomposition first appeared in the analysis of Navier-Stokes systems in [11] and
[12] which used sector-bounding arguments applied to stability/control and model
reduction respectively.

5 Derivation of the resolvent operator for the turbulent NSE
In this section we review how to form the resolvent operator for the incompressible
Navier-Stokes equations. There are minor complications arising from the pressure
term. In the case where you are able to express the velocity in terms of a divergence-
free basis, these difficulties are avoided. The more general case, including pressure,
is presented here.

5.1 The Fourier transformed Navier-Stokes-Equations
The non-dimensionalised incompressible Navier-Stokes equations are

∂tu(x, t) + u(x, t) · ∇u(x, t) =−∇p(x, t) + 1

Re
∇2u(x, t) (27)

∇ · u(x, t) =0,

where x ∈ X is a point in the physical flow domain, t is time, Re = ρUL/µ is
the Reynolds number, U is a characteristic velocity, L is a length scale and ∇ is the
gradient operator onX . The density of the fluid is ρ and its viscosity µ. Velocity and
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pressure are thus non-dimensional, with velocity scaled by U and pressure scaled by
ρU2.

As in the general case, first consider the temporal Fourier transform for the state u,

û(x, ω) =
∫ ∞

−∞
e−iωtu(x, t) dt, (28)

From the previous discussion, we know that û(x, ω = 0) gives the temporal mean
velocity. Define the fluctuations about the mean as ũ(x, t) = u(x, t)−u. Now, treat
the pressure similarly to the velocity,

p̂(x, ω) =
∫ ∞

−∞
e−iωtp(x, t) dt. (29)

Finally, Fourier transform ũ(x, t) · ∇ũ(x, t) in the same way,

f̂(x, ω) =
∫ ∞

−∞
e−iωtũ(x, t) · ∇ũ(x, t) dt, (30)

noticing that f̂(x, ω = 0) yields the time average ũ · ∇ũ, which does not to have to
be zero, even though the time average of ũ itself is.

Using these definitions and taking the Fourier transform of the Navier-Stokes equa-
tions, ∫ ∞

−∞
e−iωt

[
∂tũ(x, t)

+ ũ(x, t) · ∇ũ(x, t) + u(x) · ∇u(x)
+ u(x) · ∇ũ(x, t) + ũ(x, t) · ∇u(x)
+∇ (p(x) + p̃(x, t))

− 1

Re
∇2 (u(x) + ũ(x, t))

]
dt = 0.

This yields both the fluctuation equation and the RANS equation. The former
(ω ̸= 0) is

iωû(x, ω) + u(x) · ∇û(x, ω) + û(x, ω) · ∇u(x) (31)

= −∇p̂(x, ω) + 1

Re
∇2û(x, ω)− f̂(x, ω)

and the latter (ω = 0) is

u(x) · ∇u(x) = −∇p(x) + 1

Re
∇2u(x)− f(x). (32)
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These equations include the pressure. The next steps are in order to eliminate it.

For later convenience, define

L = u(x) · ∇+ (∇u(x))T

and the Leray projection [13]

Π =
(
I −∇(∇2)−1∇·

)
.

We will use the Leray projection to enforce incompressibility allowing the pressure
term to disappear. Care must be taken to specify the boundary conditions when
inverting the Laplacian. Using incompressibility, taking the divergence of both
sides of the NSE gets rid of the time derivative and gives the pressure Poisson
equation, which relates the pressure and the velocity field instantaneously,

−∇2p(x, t) = ∇ · (u(x, t) · ∇u(x, t)) .

Taking the Fourier transform, and using the Fourier transforms defined earlier, the
mean component is

−∇2p(x) = ∇ · (u(x) · ∇u(x)) +∇ · f(x)

and at other frequencies,

∇2p̂(x, ω) = −∇ · Lû(x, ω)−∇ · f̂(x, ω). (33)

Thus, p̂ is related to û and f̂ via a linear operator. Substituting these into (??), we
get (

iωI +ΠL− 1

Re
∇2

)
û(x, ω) = −Πf̂(x, ω). (34)

The operator

R(ω) := −
(
iωI +ΠL− 1

Re
∇2

)−1

Π (35)

is the resolvent of the NSE linearised about the mean, and

û(x, ω) = R(ω)̂f(x, ω). (36)

Notice that R depends on the time-average velocity field u and on frequency ω,
and that u appears naturally and with a consistent interpretation. The importance
of the spectrum of the linear operator about u thus has a clear interpretation even
in a fully nonlinear flow. The RANS equation (32) and the resolvent equations (36)
are connected via the Fourier transform, as shown in Figure 5.1. Notice also that
f = ũ ·∇ũ acts as a memoryless nonlinearity in the sense of Section 4, so the earlier
discussion on solutions applies.
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u · ∇u

RANS
∫∞
−∞ fe−iωt dt 1

2π

∫∞
−∞ ûeiωt dω

uf

f u

R(ω2)
f̂(ω2) û(ω2)

R(ω1)
f̂(ω1) û(ω1)

R(ωn)
f̂(ωn) û(ωn)

Figure 5.1: A schematic block diagram, showing the network of resolvent operators
and the nonlinear terms which compose the frequency-domain representation of
the NSE.
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6 The application of the singular value decomposition to the
resolvent

We should like to find a sensible basis in which to expand û. Ideally, the functions
should be orthonormal (to make projections and expansions simple), and chosen
and ordered in such a way that a truncation of the expansion should still approximate
the true û in a quantifiable way.

Like other modal decompositions including proper orthogonal decomposition [14]
or dynamic mode decomposition [15], we will use the singular value decomposition,
but on a dynamical flow operator instead of a dataset.

In the case that the dynamics are translation-invariant (such as the streamwise di-
rection in an infinite pipe), the Fourier transform already provides a unitary basis,
and we should immediately take the Fourier transform in those directions. In non-
invariant directions, such as a wall-normal direction, this is not the case, and we
proceed as follows.

Notice that R(ω) is a linear mapping from the Fourier-transformed ‘forcing’ field
to the Fourier-transformed ‘velocity’ field. Because there is no reason to expect
the nonlinear forcing f to look like the velocity field, we should expect to use two
different bases for û and f̂. One sensible way to form a basis is the Schmidt decom-
position ofR(ω), which provides different bases for û and f̂ and is optimal in useful
ways. With this choice,

R(ω)̂f(x, ω) =
∑
j∈N

σj(ω)
〈̂
f(x, ω), ϕj(x, ω)

〉
X
ψj(x, ω), (37)

〈
ψj(x, ω), ψj′(x, ω)

〉
X

= δj,j′ ,〈
ϕj(x, ω), ϕj′(x, ω)

〉
X

= δj,j′ ,

σj(ω) ≥ σj+1(ω). (38)

The pairs ϕj and ψj at each ω are the Schmidt pairs (singular vectors) in the decom-
position. The sets of ϕj and ψj at each ω each form an orthonormal basis (under
the inner product on the spatial domain X), with basis functions ordered by the
singular values σj . This ordering provides a criterion for truncation. Note that the
basis is different for each frequency, which is to be expected, since different motions
will ‘resonate’ in the flow at different frequencies.

From Section 2.1 we know that a particular choice of inner product is implicit in
the use of the SVD. For the incompressible Navier-Stokes equations, calculations
involving energy budgets and the nonlinearity are made simpler by the choice of
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the unweighted spatial L2 norm, but other systems (such as compressible or react-
ing flows) require further thought. Care should be taken when implementing the
Schmidt decomposition in numerical codes (i.e. translating the Schmidt decompo-
sition to a discrete, matrix SVD) to get the weighting matrix associated with the
discretisation scheme employed to correspond correctly to the desired inner prod-
uct.

In fluids applications,R(ω) often has very large separation between the leading (one
or two) singular values and the next. The physical basis for this is well documented
in the literature [8] and (in turbulent shear flows) is largely due to a resonance
associated with the critical layer. It also turns out that in shear flows, R is non-
normal, so in general ψj(x, ω) ̸= ϕj(x, ω).

The decomposition leads naturally to ordered expansions for both û and f̂ at any par-
ticular frequency; expressing each as a weighted superposition of its basis functions
gives

û(x, ω) =
∞∑
j=1

χj(ω)σj(ω)ψj(x, ω), (39)

f̂(x, ω) =
∞∑
j=1

χj(ω)ϕj(x, ω). (40)

The set of ψj are sometimes called the response modes (or resolvent modes) and the
set of ϕj the forcing modes. At this point, we do not know the scalar coefficients
χi. This decomposition truncated up to rank r is illustrated in Figure 6.1.

If it so happens that σ1 ≫ σ2, without knowing much about f̂, we may reasonably
approximate the Fourier coefficient of û (up to a complex coefficient) by û(x, ω) ∼=
ψ1(x, ω), regardless of our knowledge of f̂. By ‘up to a complex coefficient’ it is
meant that, while the functional form of each response mode is known, the complex
coefficient of the response mode (determining both the phase and magnitude of the
wave) is not determined by the decomposition. However, because the relative phase
between forcing and response mode pairs is fixed by the decomposition, the phase
between different response modes may be fixed either via a direct calculation of the
nonlinear forcing, by a projection onto DMD modes, by fitting to a limited set of
measurements [16, 17], or by other methods [18, 19].

Retaining just the first mode per frequency (a rank-1 approximation) is essentially
the same calculation as the ‘optimal response’ found by various authors [20]. The
approximation argument does not hold in reverse; which is to say, to approximate f̂
it would require R−1 to be approximately rank-1, which is not usually the case.
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f̂(ω)
+

û(ω)
⟨·, ϕ1(ω)⟩ σ1(ω)ψ1(ω)

χ1(ω)

⟨·, ϕ2(ω)⟩ σ2(ω)ψ2(ω)
χ2(ω)

⟨·, ϕr(ω)⟩ σr(ω)ψr(ω)
χr(ω)

Figure 6.1: The NSE resolvent operator, decomposed into into its forcing and re-
sponse modes and truncated to order r. The forcing f̂(ω) at frequency ω is projected
onto the forcing modes, to give their scalar coefficients χi. These are then amplified
by σi(ω) and multiplied by the response modes ψi(ω). The superposition of these
responses gives the velocity field Fourier coefficient û(ω).

In some systems, χj(ω) for the leading few modes may be quite small relative to
the following coefficients. This effect may outweigh the effect of any separation of
the leading singular values. This may happen, for instance, because the gradient
operator involved in calculating the nonlinear term f̂ can act to attenuate the larger
scales important at lower frequencies. In such cases, it is reasonable to approximate
R by a higher-rank projection induced by (38), with the number of modes retained
determining the level of accuracy, as in [18]. The extent to which either scenario
applies will depend on the particularities of the system under study.
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