
Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Ordering-based strategies for theorem proving

Maria Paola Bonacina

Visiting: Computer Science Laboratory, SRI International, Menlo Park, CA, USA

Affiliation: Dipartimento di Informatica, Università degli Studi di Verona, Verona,

Italy, EU

May 26, 2016

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Automated reasoning

Some building blocks for reasoning

The theorem-proving problem

Ordering-based inference mechanisms

Theorem-proving strategies

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Automated reasoning

Automated reasoning is

◮ Symbolic computation

◮ Artificial intelligence

◮ Computational logic

◮ ...

◮ Knowledge described precisely: symbols

◮ Symbolic reasoning: Logico-deductive, Probabilistic ...

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

The gist of this lecture

◮ Logico-deductive reasoning

◮ Focus: first-order logic (FOL)

◮ Take-home message:
◮ FOL as machine language
◮ Reasoning is about ignoring what’s redundant as much as it is

getting what’s relevant
◮ Orderings and ordering-based strategies
◮ Expansion and Contraction
◮ Inference and Search
◮ Algorithmic building blocks

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Signature

◮ A finite set of constant symbols: e.g., a, b, c ...

◮ A finite set of function symbols: e.g., f , g , h ...

◮ A finite set of predicate symbols: P , Q, ≃ ...

◮ Arities

◮ Sorts (important but key concepts can be understood without)

An infinite supply of variable symbols: x , y , z , w ...

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Defined symbols and free symbols

◮ A symbol is defined if it comes with axioms, e.g., ≃

◮ It is free otherwise, e.g., P

◮ Aka: interpreted/uninterpreted

◮ Equality (≃) comes with the congruence axioms

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Terms and atoms

◮ Terms: a, x , f (a, b), g(y)

◮ Herbrand universe U : all ground terms
(add a constant if there is none in the given signature)

◮ Atoms: P(a), f (x , x) ≃ x

◮ Literals: P(a), f (x , x) ≃ x , ¬P(a), f (x , x) 6≃ x

◮ Herbrand base B: all ground atoms

◮ If there is at least one function symbol, U and B are infinite

◮ This is key if the reasoner builds new terms and atoms

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Substitution

◮ A substitution is a function from variables to terms that is not
identity on a finite set of variables

◮ σ = {x1 ← t1, . . . , xn ← tn}

◮ σ = {x ← a, y ← f (z), z ← w}

◮ Application: h(x , y , z)σ = h(a, f (z),w)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Idempotent substitution

◮ A substitution σ is idempotent if tσσ = σ for all t

◮ σ = {x ← a, y ← f (z), z ← w} is not idempotent:
◮ h(x , y , z)σ = h(a, f (z),w)
◮ h(x , y , z)σσ = h(a, f (w),w)

◮ σ = {x ← a, y ← f (w), z ← w} is idempotent

◮ We are interested only in idempotent substitutions

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Matching

◮ Given terms or atoms s and t

◮ f (x , g(y)) and f (g(b), g(a))

◮ Find matching substitution: σ s.t. sσ = t

σ = {x ← g(b), y ← a}

◮ sσ = t: t is instance of s, s is more general than t

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Unification

◮ Given terms or atoms s and t

◮ f (g(z), g(y)) and f (x , g(a))

◮ Find substitution σ s.t. sσ = tσ:
σ = {x ← g(z), y ← a}

◮ Unification problem: E = {si =
? ti}

n
i=1

◮ Most general unifier: e.g., not
σ′ = {x ← g(b), y ← a, z ← b}

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Tree-solved form

◮ E = {si =
? ti}

n
i=1 is in tree-solved form if

◮ All the si ’s are variables
◮ For all i , j , 1 ≤ i 6= j ≤ n, si 6= sj
◮ For all i , j , 1 ≤ i , j ≤ n, si does not occur in tj

◮ σ = {si ← ti}
n
i=1 is an idempotent substitution

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Robinson’s unification algorithm

◮ Transform E = {si =
? ti}

n
i=1 in tree-solved form

◮ Exponential in the worst case

◮ It works well in practice

◮ Used by most reasoners

(Early version already in Herbrand’s thesis)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Orderings

◮ View U and B as ordered sets

◮ With variables: partial order

◮ Extend to literals (add sign) and clauses

◮ Extend to proofs (e.g., equational chains)

◮ Why? To detect and delete or replace redundant data

◮ E.g., replace something by something smaller in a
well-founded ordering

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Precedence

◮ A partial order > on the signature

◮ Example: the Ackermann function
◮ ack(0, y) ≃ succ(y)
◮ ack(succ(x), 0) ≃ ack(x , succ(0))
◮ ack(succ(x), succ(y)) ≃ ack(x , ack(succ(x), y))

◮ Precedence ack > succ > 0

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Stability

◮ ≻ ordering

◮ s ≻ t

◮ f (f (x , y), z) ≻ f (x , f (y , z))

◮ Stability: sσ ≻ tσ for all substitutions σ

◮ f (f (g(a), b), z) ≻ f (g(a), f (b, z))
σ = {x ← g(a), y ← b}

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Monotonicity

◮ ≻ ordering

◮ s ≻ t

◮ Example: f (x , i(x)) ≻ e

◮ Monotonicity: r [s] ≻ r [t] for all contexts r
(A context is an expression, here a term or atom, with a hole)

◮ f (f (x , i(x)), y) ≻ f (e, y)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Subterm property

◮ ≻ ordering

◮ s[t] ≻ t

◮ Example: f (x , i(x)) ≻ i(x)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Simplification ordering

◮ Stable, monotonic, and with the subterm property:
simplification ordering

◮ A simplification ordering is well-founded

◮ No infinite descending chain s0 ≻ s1 ≻ . . . si ≻ si+1 ≻ . . .

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Multiset extension

◮ Multisets, e.g., {a, a, b}, {5, 4, 4, 4, 3, 1, 1}
◮ From ≻ to ≻mul :

◮ M ≻mul ∅
◮ M ∪ {a} ≻mul N ∪ {a} if M ≻mul N
◮ M ∪ {a} ≻mul N ∪ {b} if a ≻ b and M ∪ {a} ≻mul N

◮ {5} ≻mul {4, 4, 4, 3, 1, 1}

◮ If ≻ is well-founded then ≻mul is well-founded

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Recursive path ordering (RPO)

s = f (s1, . . . , sn) ≻ g(t1, . . . , tm) = t if

◮ Either f > g and ∀k , 1 ≤ k ≤ m, s ≻ tk

◮ Or f = g and {s1, . . . , sn} ≻mul {t1, . . . , tn}

◮ Or ∃k such that sk � t

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Distributivity by RPO

◮ Precedence: ∗ > +

◮ x ∗ (y + z) ≻ x ∗ y + x ∗ z because
◮ ∗ > + and
◮ x ∗ (y + z) ≻ x ∗ y since {x , y + z} ≻mul {x , y}
◮ x ∗ (y + z) ≻ x ∗ z since {x , y + z} ≻mul {x , z}

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Lexicographic extension

◮ Tuples, vectors, words, e.g., (a, a, b), (5, 4, 4, 4, 3, 1, 1)

◮ From ≻ to ≻lex :
(a1, . . . , an) ≻lex (b1, . . . , bm) if ∃i s.t. ∀j , 1 ≤ j < i , aj = bj ,
and ai ≻ bi

◮ (5) ≻lex (4, 4, 4, 3, 1, 1)

◮ (1, 2, 3, 5, 1) ≻lex (1, 2, 3, 3, 4)

◮ If ≻ is well-founded then ≻lex is well-founded

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Lexicographic path ordering (LPO)

s = f (s1, . . . , sn) ≻ g(t1, . . . , tm) = t if

◮ Either f > g and ∀k , 1 ≤ k ≤ m, s ≻ tk

◮ Or f = g , (s1, . . . , sn) ≻lex (t1, . . . , tn),
and ∀k , i < k ≤ n, s ≻ tk

◮ Or ∃k such that sk � t

Multiset and lexicographic extension can be mixed: give each
function symbol either multiset or lexicographic status

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Ackermann function by LPO

◮ Precedence ack > succ > 0

◮ ack(0, y) ≻ succ(y)
because ack > succ and ack(0, y) ≻ y

◮ ack(succ(x), 0) ≻ ack(x , succ(0))
because (succ(x), 0) ≻lex (x , succ(0)),
as succ(x) ≻ x , and ack(succ(x), 0) ≻ succ(0),

since ack > succ and ack(succ(x), 0) ≻ 0

◮ ack(succ(x), succ(y)) ≻ ack(x , ack(succ(x), y))
because (succ(x), succ(y)) ≻lex (x , ack(succ(x), y)),
since succ(x) ≻ x and ack(succ(x), succ(y)) ≻ ack(succ(x), y),
because (succ(x), succ(y)) ≻lex (succ(x), y),

as succ(x) = succ(x) and succ(y) ≻ y

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Ordering atoms and literals

◮ Atoms are treated like terms

◮ Also predicate symbols in the precedence >

◮ ≃ is typically the smallest predicate symbol in >

◮ ≃ has multiset status: s ≃ t as {s, t}

◮ Literals: make the positive version smaller than the negative

◮ Add ⊤ and ⊥ both >-smaller than any other symbol and with
⊥ > ⊤

◮ For literal L take multiset {atom(L),⊥} if L negative,
{atom(L),⊤}, otherwise

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Variables cause partiality

◮ Let s and t be two distinct non-ground terms or atoms

◮ If ∃x ∈ Var(s) \ Var(t) then t 6≻ s

◮ g(x) 6≻ f (x , y)

◮ If ∃y ∈ Var(t) \ Var(s) then s 6≻ t

◮ Both: t#s (uncomparable)

◮ f (x)#g(y), f (x)#f (y), g(x , z)#f (x , y)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Transfiniteness

If there is more than one function symbol, these orderings are not
order-isomorphic to ω since, e.g., {f n(a)}n≥0 alone is

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Complete simplification ordering (CSO)

◮ LPO and RPO are simplification orderings

◮ Simplification ordering total on ground terms and atoms:
complete simplification ordering (CSO)

◮ LPO and RPO with a total precedence are CSO

◮ LPO and RPO do not correlate with size
e.g., f (a) ≻ g5(a) if f > g

◮ Knuth-Bendix ordering (KBO): based on precedence and a
weight function

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Summary of the first part

◮ Language: signature, terms, atoms, literals

◮ Substitutions instantiate variables

◮ Matching and unification

◮ A partially ordered world of terms, atoms, literals

◮ More building blocks: indexing to detect matching and
unification fast

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

At the dawn of computer science

◮ Kurt Gödel: completeness of first-order logic
Later: Leon Henkin (consistency implies satisfiability)

◮ Alan Turing: Entscheidungsproblem; computor; Turing
machine; universal computer; halting problem; undecidability;
undecidability of first-order logic

◮ Herbrand theorem: semi-decidability of first-order logic

Herbrand theorem: Jacques Herbrand + Thoralf Skolem + Kurt
Gödel

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

The theorem-proving problem

◮ A set H of formulas viewed as assumptions or hypotheses

◮ A formula ϕ viewed as conjecture

◮ Theorem-proving problem: H |=? ϕ

◮ Equivalently: is H ∪ {¬ϕ} unsatisfiable?

◮ If H |= ϕ, then ϕ is a theorem of H, or H ⊃ ϕ is a theorem

◮ Th(H) = {ϕ : H |= ϕ}

◮ Infinitely many interpretations on infinitely many domains:
how do we start?

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Two simplifications

◮ Restrict formulas to clauses: less expressive, but suitable as
machine language

◮ Restrict interpretations to Herbrand interpretations: a
semantics built out of syntax

◮ All we have in machine’s memory are symbols, that is, syntax

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Clausal form

◮ Clause: disjunction of literals where all variables are implicitly
universally quantified

◮ ¬P(f (z)) ∨ ¬Q(g(z)) ∨ R(f (z), g(z))

◮ Ordering ≻ on literals extended to clauses by multiset
extension

◮ No loss of generality: every formula can be transformed into a
set of clauses

◮ Every clause has its own variables

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Transformation into clausal form

◮ Eliminate ≡ and ⊃: F ≡ G becomes (F ⊃ G) ∧ (G ⊃ F) and
F ⊃ G becomes ¬F ∨ G

◮ Reduce the scope of all occurrences of ¬ to an atom: (each

quantifier occurrence binds a distinct variable¬(F ∨ G) becomes

¬F ∧ ¬G , ¬(F ∧ G) becomes ¬F ∨ ¬G , ¬¬F becomes F , ¬∃F

becomes ∀¬F , and ¬∀F becomes ∃¬F

◮ Standardize variables apart
(each quantifier occurrence binds a distinct variable symbol)

◮ Skolemize ∃ and then drop ∀

◮ Distributivity and associativity: F ∨ (G ∧ H) becomes

(F ∨ G) ∧ (F ∨ H) and F ∨ (G ∨ H) becomes F ∨ G ∨ H

◮ Replace ∧ by comma and get a set of clauses

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Skolemization

◮ Outermost ∃:
◮ ∃x F [x] becomes F [a] (all occurrences of x replaced by a)

a is a new Skolem constant
◮ There exists an element such that F : let this element be

named a

◮ ∃ in the scope of ∀:
◮ ∀y∃x F [x , y] becomes ∀y F [g(y), y]

(all occurrences of x replaced by g(y))
g is a new Skolem function

◮ For all y there is an x such that F : x depends on y ;
let g be the map of this dependence

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

A simple example

◮ ¬{[∀x P(x)] ⊃ [∃y ∀z Q(y , z)]}

◮ ¬{¬[∀x P(x)] ∨ [∃y ∀z Q(y , z)]}

◮ [∀x P(x)] ∧ ¬[∃y ∀z Q(y , z)]

◮ [∀x P(x)] ∧ [∀y ∃z ¬Q(y , z)]

◮ [∀x P(x)] ∧ [∀y ¬Q(y , f (y))] where f is a Skolem function

◮ {P(x), ¬Q(y , f (y))}: a set of two unit clauses

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Clausal form and Skolemization

◮ All steps in the transformation into clauses except
Skolemization preserve logical equivalence
(for every interpretation, F is true iff F ′ is true)

◮ Skolemization only preserves equisatisfiability
(F is (un)satisfiable iff F ′ is (un)satisfiable)

◮ Why Skolem symbols must be new?
So that we can interpret them as in the model of F when
building a model of F ′

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Herbrand interpretations

◮ First-order interpretation I = 〈D,Φ〉

◮ Let D be U
◮ Let Φ interpret constant and function symbols as themselves:

◮ Φ(a) = a
◮ Φ(f)(t1, . . . , tn) = f (t1, . . . , tn)

◮ Predicate symbols? All possibilities

◮ The powerset P(B) gives all possible Herbrand interpretations

◮ Herbrand model: a satisfying Herbrand interpretation

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Clausal form and Herbrand interpretations

◮ Theorem-proving problem: is H ∪ {¬ϕ} unsatisfiable?

◮ Transform H ∪ {¬ϕ} into set S of clauses

◮ H ∪ {¬ϕ} and S are equisatisfiable

◮ Theorem-proving problem: is S unsatisfiable?

◮ S is unsatisfiable iff S has no Herbrand model

◮ From now on: only Herbrand interpretations

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Not for formulas

◮ ∃x P(x) ∧ ¬P(a)

◮ Is it satisfiable? Yes

◮ Herbrand model? No!

◮ ∅ and {P(a)} or {¬P(a)} and {P(a)}

◮ Clausal form: {P(b), ¬P(a)}

◮ Herbrand model: {P(b)} or {P(b), ¬P(a)}

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Satisfaction

◮ I: Herbrand interpretation

◮ I |= S if I |= C for all C ∈ S

◮ I |= C if I |= Cσ for all ground instances Cσ of C

◮ I |= Cσ if I |= Lσ for some ground literal Lσ in Cσ

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Herbrand theorem

◮ S : set of clauses

◮ S is unsatisfiable iff there exists a finite set S ′ of ground
instances of clauses in S such that S ′ is unsatisfiable

◮ Finite sets of ground instances can be enumerated and tested
for propositional satisfiability which is decidable: the
first-order theorem-proving problem is semi-decidable

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Equality

◮ Congruence axioms in clausal form:
◮ x ≃ x
◮ x 6≃ y ∨ y ≃ x
◮ x 6≃ y ∨ y 6≃ z ∨ x ≃ z
◮ x 6≃ y ∨ f (. . . , x , . . .) ≃ f (. . . , y , . . .)
◮ x 6≃ y ∨ ¬P(. . . , x , . . .) ∨ P(. . . , y , . . .)

◮ E -satisfiability, E -interpretations, Herbrand E -interpretations

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Herbrand theorem

◮ S : set of clauses

◮ S is E -unsatisfiable iff there exists a finite set S ′ of ground
instances of clauses in S such that S ′ is E -unsatisfiable

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Summary of the second part

◮ First-order theorem-proving problem

◮ Clauses

◮ Herbrand interpretations

◮ Herbrand theorem

◮ Theorem proving in first-order logic is semi-decidable

◮ Design theorem-proving strategies that are semi-decision
procedures and implement Herbrand theorem

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Expansion and contraction

Like many search procedures, most reasoning methods combine
various forms of growing and shrinking:

◮ Recall CDCL in SAT/SMT: decisions and propagations grow
the model while backjumps shrink it

◮ Ordering-based strategies: expansion and contraction of a set
of clauses

◮ Ordering ≻ on clauses extended to sets of clauses by multiset
extension

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Expansion

An inference

A

B

where A and B are sets of clauses is an expansion inference if

◮ A ⊂ B : something is added

◮ Hence A ≺ B and

◮ B \ A ⊆ Th(A) hence B ⊆ Th(A) hence Th(B) ⊆ Th(A)
(soundness)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Contraction

An inference

A

B

where A and B are sets of clauses is a contraction inference if

◮ A 6⊆ B : something is deleted or replaced, and

◮ B ≺ A: if replaced, replaced by something smaller, and

◮ A \ B ⊆ Th(B) hence A ⊆ Th(B) hence Th(A) ⊆ Th(B)
(monotonicity or adequacy or soundness of contraction)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Propositional resolution

P ∨ ¬Q ∨ ¬R, ¬P ∨O

O ∨ ¬Q ∨ ¬R

where O, P , Q, and R are propositional atoms
(aka propositional variables, aka 0-ary predicates)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Propositional resolution

is an expansion inference rule:

S ∪ {P ∨ ¬Q ∨ ¬R, ¬P ∨ O}

S ∪ {P ∨ ¬Q ∨ ¬R , ¬P ∨O, O ∨ ¬Q ∨ ¬R}

where S is a set of clauses

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Propositional resolution

S ∪ {L ∨ C , ¬L ∨ D}
S ∪ {L ∨ C , ¬L ∨ D, C ∨D}

◮ L is an atom

◮ C and D are disjunctions of literals

◮ L and ¬L are the literals resolved upon

◮ C ∨ D is called resolvent

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

First-order resolution

S ∪ {L1 ∨ C , ¬L2 ∨D}
S ∪ {L1 ∨ C , ¬L2 ∨ D, (C ∨D)σ}

where L1σ = L2σ for σ most general unifier

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

First-order resolution

P(g(z), g(y)) ∨ ¬R(z , y), ¬P(x , g(a)) ∨ Q(x , g(x))

¬R(z , a) ∨Q(g(z), g(g(z)))

where σ = {x ← g(z), y ← a}

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Ordered resolution

S ∪ {L1 ∨ C , ¬L2 ∨D}
S ∪ {L1 ∨ C , ¬L2 ∨ D, (C ∨D)σ}

where

◮ L1σ = L2σ for σ most general unifier

◮ L1σ 6� Mσ for all M ∈ C

◮ ¬L2σ 6� Mσ for all M ∈ D

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Ordered resolution

P(g(z), g(y)) ∨ ¬R(z , y), ¬P(x , g(a)) ∨ Q(x , g(x))

¬R(z , a) ∨Q(g(z), g(g(z)))

◮ σ = {x ← g(z), y ← a}

◮ P(g(z), g(a)) 6� ¬R(z , a)

◮ ¬P(g(z), g(a)) 6� Q(g(z), g(g(z)))

◮ Allowed, e.g., with P > R > Q > g

◮ Not allowed, e.g., with Q > R > P > g > a

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Subsumption

S ∪ {P(x , y) ∨ Q(z), Q(a) ∨ P(b, b) ∨ R(u)}
S ∪ {P(x , y) ∨ Q(z)}

because C = P(x , y)∨Q(z) subsumes D = Q(a)∨P(b, b)∨R(u),
as there is a substitution σ = {z ← a, x ← b, y ← b} such that
Cσ ⊂ D which means {C} |= {D} (adequacy)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Subsumption ordering

◮ Subsumption ordering: C •≤ D if ∃σ Cσ ⊆ D (as multisets)

◮ Strict subsumption ordering: C •< D if C •≤ D and C 6•≤ D

◮ The strict subsumption ordering •< is well-founded

◮ Equality up to variable renaming: C
•

= D if C •≤ D and C •≤ D

(C and D are variants)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Subsumption

S ∪ {C , D}
S ∪ {C}

◮ Either C •< D (strict subsumption)

◮ Or C
•

= D and C ≺ D where ≺ is the lexicographic
combination of •< and another well-founded ordering
(e.g., C was generated before D) (subsumption of variants)

◮ Clause D is redundant

◮ Subsumption uses matching, resolution uses unification

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

And equality?

Replacing equals by equals as in ground rewriting:

S ∪ {f (a, a) ≃ a, P(f (a, a)) ∨ Q(a)}
S ∪ {f (a, a) ≃ a, P(a) ∨Q(a)}

It can be done as f (a, a) ≻ a

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Simplification

is a contraction inference rule:

S ∪ {f (x , x) ≃ x , P(f (a, a)) ∨Q(a)}
S ∪ {f (x , x) ≃ x , P(a) ∨ Q(a)}

◮ f (x , x) matches f (a, a) with σ = {x ← a}

◮ f (a, a) ≻ a

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Simplification

S ∪ {s ≃ t, L[r] ∨ C}
S ∪ {s ≃ t, L[tσ] ∨ C}

◮ L is a literal with r as subterm (L could be another equation)

◮ C is a disjunction of literals

◮ ∃σ such that sσ = r and sσ ≻ tσ

◮ Clause L[r] ∨ C is entailed by the resulting set (adequacy)

◮ Clause L[r] ∨ C is redundant

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Expansion for equality reasoning

◮ Simplification is a powerful rule that often does most of the
work in presence of equality

◮ But it is not enough

◮ Equality reasoning requires to generate new equations

◮ We need an expansion rule that builds equality into resolution
and uses unification not only matching

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Superposition/Paramodulation

f (z , e) ≃ z , f (l(x , y), y) ≃ x

l(x , e) ≃ x

◮ f (z , e)σ = f (l(x , y), y)σ

◮ σ = {z ← l(x , e), y ← e} most general unifier

◮ f (l(x , e), e) ≻ l(x , e)

◮ f (l(x , e), e) ≻ x

◮ Superposing two equations yields a peak:
l(x , e)← f (l(x , e), e) → x

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Completion

◮ New equations closing such peaks are called critical pairs, as
they complete the set of equations into a confluent one

◮ Confluence ensures uniqueness of normal forms

◮ This procedure is known as Knuth-Bendix completion

◮ Unfailing or Ordered Knuth-Bendix completion ensures ground
confluence (unique normal form of ground terms) which
suffices for theorem proving in equational theories as the
Skolemized form of ¬(∀x̄ s ≃ t) is ground

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Superposition/Paramodulation

S ∪ {l ≃ r , p[s] ≃ q}
S ∪ {l ≃ r , p[s] ≃ q, (p[r] ≃ q)σ}

◮ s is not a variable

◮ lσ = sσ most general unifier

◮ lσ 6� rσ

◮ pσ 6� qσ

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Superposition/Paramodulation

S ∪ {l ≃ r , p[s] ⊲⊳ q}
S ∪ {l ≃ r , p[s] ⊲⊳ q, (p[r] ⊲⊳ q)σ}

◮ ⊲⊳ is either ≃ or 6≃

◮ s is not a variable

◮ lσ = sσ most general unifier

◮ lσ 6� rσ and pσ 6� qσ

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Superposition/Paramodulation

S ∪ {l ≃ r ∨ C , p[s] ⊲⊳ q ∨ D}
S ∪ {l ≃ r ∨ C , p[s] ⊲⊳ q ∨ D, (p[r] ⊲⊳ q ∨ C ∨ D)σ}

◮ C and D are disjunctions of literals

◮ ⊲⊳ is either ≃ or 6≃

◮ s is not a variable

◮ lσ = sσ most general unifier

◮ lσ 6� rσ and pσ 6� qσ

◮ (l ≃ r)σ 6� Mσ for all M ∈ C

◮ (p[s] ⊲⊳ q)σ 6� Mσ for all M ∈ D

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Superposition/Paramodulation

S ∪ {l ≃ r ∨ C , L[s] ∨D}

S ∪ {l ≃ r ∨ C , L[s] ∨ D, (L[r] ∨ C ∨ D)σ}

◮ C and D are disjunctions of literals

◮ L is any literal, either equational or not, called literal
paramodulated into

◮ s is not a variable

◮ lσ = sσ most general unifier

◮ lσ 6� rσ

◮ (l ≃ r)σ 6� Mσ for all M ∈ C

◮ Lσ 6� Mσ for all M ∈ D

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

What’s in a name

◮ Paramodulation was used first in resolution-based theorem
proving where simplification was called demodulation

◮ Superposition and simplification, or rewriting, were used first
in Knuth-Bendix completion

◮ Some authors use superposition between unit equations and
paramodulation otherwise

◮ Other authors use superposition when the literal
paramodulated into is an equational literal and
paramodulation otherwise

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Derivation

◮ Input set S

◮ Inference system IS: a set of inference rules

◮ IS-derivation from S :

S0 ⊢
IS

S1 ⊢
IS

. . . Si ⊢
IS

Si+1 ⊢
IS

. . .

where S0 = S and for all i , Si+1 is derived from Si by an
inference rule in IS

◮ Refutation: a derivation such that ✷ ∈ Sk for some k

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Refutational completeness

An inference system IS is refutationally complete if for all sets S
of clauses, if S is unsatisfiable, there exists an IS-derivation from
S that is a refutation.

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Refutational completeness

An inference system with

◮ Expansion rules: resolution, factoring,
superposition/paramodulation, equational factoring, reflection
(resolution with x ≃ x)

◮ Contraction rules: subsumption, simplification, tautology
deletion, clausal simplification (unit resolution + subsumption)

is refutationally complete

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Summary of the third part

◮ Expansion and contraction

◮ Resolution and subsumption

◮ Paramodulation/superposition and simplification

◮ Contraction uses matching, expansion uses unification

◮ Inference system

◮ Derivation

◮ Refutational completeness

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Search

◮ Given S and IS, many IS-derivations from S are possible

◮ An inference system is non-deterministic

◮ Which one to build? Search problem

◮ Search space

◮ Rules and moves: inference rules and inference steps

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Strategy

◮ Theorem-proving strategy: C = 〈IS,Σ〉

◮ IS: inference system

◮ Σ: search plan

◮ The search plan picks at every stage of the derivation which
inference to do next

◮ A deterministic proof procedure

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Completeness

◮ Inference system: refutational completeness
there exist refutations

◮ Search plan: fairness
ensure that the generated derivation is a refutation

◮ Refutationally complete inference system + fair search plan =
complete theorem-proving strategy

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Fairness

◮ Fairness: consider eventually all needed steps: What is
needed?

◮ Dually: what is not needed, or: what is redundant?

◮ Fairness and redundancy are related

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Redundancy

◮ Based on ordering ≻ on clauses:
a clause is redundant if all its ground instances are;
a ground clause is redundant if there are ground instances of
other clauses that entail it and are smaller

◮ Based on ordering ≻ on proofs:
a clause is redundant if adding it does not decrease any
minimal proofs (dually, removing it does not increase proofs)

◮ Agree if proofs are measured by maximal premises

◮ Redundant inference: uses/generates redundant clause

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Fairness

◮ A derivation is fair if whenever a minimal proof of the target
theorem is reducible by inferences, it is reduced eventually

◮ A derivation is uniformly fair if all non-redundant inferences
are done eventually

◮ A search plan is (uniformly) fair if all its derivations are

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Contraction first

Eager-contraction search plan: schedule contraction before
expansion

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

The given-clause algorithm

◮ Two lists: ToBeSelected and AlreadySelected

(Other names: SOS and Usable; Active and Passive)

◮ Initialization: ToBeSelected = S0 and AlreadySelected = ∅

◮ Alternative: ToBeSelected = clauses(¬ϕ) and
AlreadySelected = clauses(H) (set of support strategy)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

The given-clause algorithm: expansion

◮ Loop until either proof found or ToBeSelected = ∅, the latter
meaning satisfiable

◮ At every iteration: pick a given-clause from ToBeSelected

◮ How? Best-first search: the best according to an evaluation
function (e.g., weight, FIFO, pick-given ratio)

◮ Perform all expansion steps with the given-clause and clauses
in AlreadySelected as premises

◮ Move the given-clause from ToBeSelected to AlreadySelected

◮ Insert all newly generated clauses in ToBeSelected

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Forward contraction

◮ Forward contraction: contract newly generated clauses by
pre-existing ones

◮ Forward contract each new clause prior to insertion in
ToBeSelected

◮ A very high number of clauses gets deleted typically by
forward contraction

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Backward contraction

◮ Backward contraction: contract pre-existing clauses by new
ones

◮ For fairness backward contraction must be applied after
forward contraction (e.g., subsumption)

◮ Detect which clauses can be backward-contracted and treat
them as new

◮ Every backward-contracted clause may backward-contract
others

◮ How much to do? How often?

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

A choice of two invariants

◮ Keep ToBeSelected ∪ AlreadySelected contracted
(Otter version of the given-clause algorithm)

◮ Keep only AlreadySelected contracted
(Discount version of the given-clause algorithm)

◮ Backward-contract {given−clause} ∪ AlreadySelected right
after picking the given-clause

◮ Deletion of “orphans” in ToBeSelected

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

More issues

◮ Options (binary flags) and parameters (numeric values)

◮ Proof reconstruction: ancestor-graph of ✷

◮ Proof presentation

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Interactivity

◮ Proof assistant ∼ interpreter

◮ Theorem prover ∼ compiler
◮ Iterative experimentation with settings
◮ Incomplete strategies
◮ Auto mode

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Some theorem provers

◮ Otter, EQP, and Prover9 by the late Bill McCune

◮ SNARK by the late Mark E. Stickel

◮ SPASS by Christoph Weidenbach et al.

◮ E by Stephan Schulz

◮ Vampire by Andrei Voronkov et al.

◮ Metis by Joe Leslie-Hurd

◮ MetiTarski by Larry Paulson et al.

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Some applications

◮ Analysis, verification, synthesis of systems, e.g.:
◮ cryptographic protocols
◮ message-passing systems
◮ software specifications
◮ theorem proving support to model checking

◮ Mathematics: proving non-trivial theorems in, e.g.,
◮ Boolean algebras (e.g., the Robbins conjecture)
◮ theories of rings (e.g., the Moufang identities), groups and

quasigroups
◮ many-valued logics (e.g., Lukasiewicz logic)

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Some textbooks

◮ Chin-Liang Chang, Richard Char-Tung Lee. Symbolic Logic and

Mechanical Theorem Proving. Computer Science Classics,

Academic Press, 1973

◮ Alexander Leitsch. The Resolution Calculus. Texts in Theoretical

Computer Science, An EATCS Series, Springer, 1997

◮ Rolf Socher-Ambrosius, Patricia Johann. Deduction Systems.

Graduate Texts in Computer Science, Springer, 1997

◮ John Harrison. Handbook of Practical Logic and Automated

Reasoning. Cambridge University Press, 2009

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

More textbooks

◮ Raymond M. Smullyan. First-order logic. Dover Publications 1995

(republication of the original published by Springer Verlag in 1968)

◮ Allan Ramsay. Formal Methods in Artificial Intelligence. Cambridge

Tracts in Theoretical Computer Science 6, Cambridge University

Press, 1989

◮ Ricardo Caferra, Alexander Leitsch, Nicolas Peltier. Automated

Model Building. Applied Logic Series 31, Kluwer Academic

Publishers, 2004

◮ Martin Davis. The Universal Computer. The Road from Leibniz to

Turing. Turing Centenary Edition. Mathematics/Logic/Computing

Series. CRC Press, Taylor and Francis Group, 2012

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Some surveys

◮ Maria Paola Bonacina. A taxonomy of theorem-proving strategies.

In Michael J. Wooldridge, Manuela Veloso (Eds.) Artificial

Intelligence Today – Recent Trends and Developments, LNAI

1600:43–84, Springer, 1999 [providing 150 references]

◮ Maria Paola Bonacina. A taxonomy of parallel strategies for

deduction. Annals of Mathematics and Artificial Intelligence

29(1/4):223–257, 2000 [providing 104 references]

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

More surveys

◮ Maria Paola Bonacina. On theorem proving for program checking –

Historical perspective and recent developments. In Maribel

Fernàndez (Ed.) Proceedings of the 12th International Symposium

on Principles and Practice of Declarative Programming (PPDP),

1–11, ACM Press, 2010 [providing 119 references]

◮ Maria Paola Bonacina, Ulrich Furbach, Viorica

Sofronie-Stokkermans. On first-order model-based reasoning. In

Narciso Mart́ı-Oliet, Peter Olveczky, Carolyn Talcott (Eds.) Logic,

Rewriting, and Concurrency, LNCS 9200:181–204, Springer, 2015

[providing 88 references]

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Some topics for further reading

◮ Strategies seeking proof/counter-model in one search:
model-based first-order reasoning

◮ Adding built-in theories

◮ Integration of theorem-proving strategies with SAT/SMT
solvers

◮ Theorem-proving strategies as decision procedures

◮ Parallel/distributed theorem proving

◮ Goal-sensitive or target-oriented strategies

◮ Machine-independent evaluation of strategies: strategy
analysis, search complexity

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Selected papers

◮ Maria Paola Bonacina, David A. Plaisted. Semantically-guided

goal-sensitive reasoning: model representation. Journal of

Automated Reasoning 56(2):113–141, 2016 [providing 96 references]

◮ Maria Paola Bonacina, Christopher A. Lynch, Leonardo de Moura.

On deciding satisfiability by theorem proving with speculative

inferences. Journal of Automated Reasoning 47(2):161–189, 2011

[providing 65 references]

◮ Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, Stephan

Schulz. New results on rewrite-based satisfiability procedures. ACM

Transactions on Computational Logic 10(1):129–179, 2009

[providing 90 references]

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Selected papers

◮ Maria Paola Bonacina, Nachum Dershowitz. Abstract canonical

inference. ACM Transactions on Computational Logic

8(1):180–208, 2007 [providing 47 references]

◮ Maria Paola Bonacina and Jieh Hsiang. On the modelling of search

in theorem proving – Towards a theory of strategy analysis.

Information and Computation, 147:171–208, 1998 [providing 44

references]

◮ Maria Paola Bonacina and Jieh Hsiang. Towards a foundation of

completion procedures as semidecision procedures. Theoretical

Computer Science, 146:199–242, 1995 [providing 62 references]

Maria Paola Bonacina Ordering-based strategies for theorem proving

Outline
Automated reasoning

Some building blocks for reasoning
The theorem-proving problem

Ordering-based inference mechanisms
Theorem-proving strategies

Thanks

Thank you!

Maria Paola Bonacina Ordering-based strategies for theorem proving

	Automated reasoning
	Some building blocks for reasoning
	The theorem-proving problem
	Ordering-based inference mechanisms
	Theorem-proving strategies

