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Abstract: A thermal microsystem is developed which consists of a microreactor integrated 
with a platinum sensor/heater, and automation equipment/software such as data 
acquisition system, control program and graphic user interface. From the control point of 
view, we analyze the dynamic characteristics of the fabricated microreactor and find 
some interesting dynamic features. On the basis of the analysis, we suggest an appropriate 
model structure and estimate the model parameters using the prediction error 
identification method. Requirements for a high-performance operation are discussed and 
a nonlinear control strategy is proposed to linearize the nonlinear dynamics of the thermal 
microsystem. We determine the parameters of the nonlinear controller using the optimal 
tuning method. The developed thermal microsystem shows much better control 
performances compared to commercial polymerase chain reaction (PCR) thermal cyclers. 
We successfully demonstrate the PCR of plasmid DNA using the thermal microsystem. 
Copyright © 2003 IFAC 
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1. INTRODUCTION 

 
The miniaturized processes integrated with 
microreactors, microsensors and microactuators 
using semiconductor fabrication technologies can 
realize extremely high efficiency and high 
throughput operation as well as surprising reduction 
of reagents, cost, reaction time, power etc. The 
thermal microsystem is one of the most typical 
miniaturized processes. In particular, it is useful for 
DNA polymerase chain reaction (PCR) that requires 
rapid temperature control to shorten the total running 
time and precise temperature control for high 
efficiency. Many types of thermal microsystems 
have been proposed. Belgrader et al. (2001) 
developed a compact, battery-powered fluorometric 
thermal cycler that consisted of two reaction modules 
for multiplex real-time PCR. Northrup et al. (1988) 

designed a portable thermal cycle system including 
silicon-based reaction chambers with integrated 
heaters for efficient temperature control and optical 
windows for real-time fluorescence monitoring. Lao 
et al. (2000) fabricated a silicon-based thermal 
microsystem and demonstrate its precise temperature 
control, rapid heating and cooling. They used a gain-
scheduling algorithm for the proportional-integral 
(PI) controller to incorporate the nonlinearity of the 
thermal cycler.  
In this research, we mainly focus on a systematic 
modeling and control of the thermal microsystem in 
the hope that the system level analysis and 
optimization would contribute to maximizing the 
performance of the thermal microsystem and provide 
some insights on the optimal operation. We fabricate 
a silicon-based microreactor integrated with a 
platinum sensor/heater and hardware/software for 



     

data acquisition, control and power supply. The 
dynamic thermal characteristics of the thermal 
microsystem is analyzed especially, from the control 
and modeling point of view. We propose an 
appropriate model structure on the basis of the 
dynamics analysis and estimate the model parameters 
using the prediction error identification method. 
Requirements for the high performance operation are 
discussed and a nonlinear control strategy linearizing 
the nonlinear dynamics of the thermal microsystem 
is proposed. We use the optimal tuning method to 
obtain the adjustable parameters of the controller.  
 
 

2. THERMAL MICROSYSTEM 
 
We manufactured the thermal microsystem as shown 
in Figure 1a. It is composed of six parts: silicon-
based microreactor, cooling fan, amplification circuit, 
data acquisition, external power supplier, software 
for the automatic control algorithm and graphic user 
interface. The control signal of the thermal 
microsystem flows like the following: The 
amplification circuit amplifies the voltage of the 
platinum sensor (equivalently, the temperature of the 
microreactor) and transfers the amplified voltage to 
the analog input of the data acquisition system as 
shown in Figure 1a. Then, the automatic control 
algorithm adjusts the analog output to control the 
temperature as fast and precisely as possible and the 
graphic user interface graphically displays the 
temperature and the analog output on screen. 
Subsequently, the external power supplier powers the 
platinum heater in proportion to the analog output of 
the data acquisition system. Then, the voltage of the 
platinum sensor (equivalently, the temperature of the 
microreactor) changes and passes through the 
amplification circuit again. The whole procedure is 
repeated every sampling time.  
The amplification circuit plays an important role in 
increasing the resolution in reading the temperature. 
The platinum heater connected to the external power 
supplier is to heat the microreactor while the cooling 
fan is for rapid cooling of the microreactor. We use a 
nonlinear proportional-integral (PI) controller as the 
control algorithm. The graphic user interface is a 
useful tool for users who are unfamiliar with the 
system to operate the thermal microsystem as he/she 
wants. The graphical user interface includes various 
functions for user’s conveniences such as easy real-
time scheduling of the desired temperature profile, 
manual setting of the controller tuning parameters, 
real-time plotting of the temperature and so on. 
The silicon-based microreactor was integrated with 
thin-film platinum sensor and heater. The microchip 
in Figure 1b is fabricated through several steps as 
shown in Figure 2. At step 4, the silicon is etched to 
100 µ m depth with tetramethylammoniumhydroxide 
(TMAH) for the microreactor and the microchannel. 
The thermal oxide film at step 5 serves as an 
electrical insulation layer. At step 7, titanium (Ti) 
film and platinum (Pt) film are deposited by dc off-
axis magnetron sputtering. 
 

 
(a) 
 

 
(b) 

Fig. 1. Thermal Microsystems: (a) Overall scheme, 
(b) Top view of the microreactor 

 

 
Fig. 2. Fabrication steps of the microreactor 
 

 
Fig. 3. Graphic user interface 
 
To guarantee a high resolution in the data acquisition, 
the following devices are integrated for the data 
acquisition system: the AD7715 of Analog Devices, 
Inc. for the 16bit analog input, the DAC8043 of 
Analog Devices, Inc. for the 12bit analog output and 
the AT89C2051 microcontroller of ATMEL, Inc. to 
communicate with the personal computer. 
 
 
 



     

3. MODELING OF THERMAL MICROSYSTEM 
 
In this section, we develop a model to 
mathematically represent the dynamics between the 
reactor temperature and the voltage applied to the 
heater.  
 
3.1 Determining Model Structure 
Before we estimate the model parameters, we should 
determine the model structure. The following five 
items are considered for the best model structure 
selection. 
 
1) For electrical heating systems like thermal 
microsystems, the voltage has been frequently 
chosen as the input of the model. However, the 
choice is not good because the temperature is in 
proportion to the electrical power rather than the 
voltage. Consider the following relationship between 
the power and the voltage. 

 
R
vp

2

=  (1) 

where, p and v  represent the power and the voltage. 
R  denotes the resistance of the heater. If we choose 
the voltage as the model input, the square 
nonlinearity between the model output (temperature) 
and the model input (voltage) cannot be avoided. The 
nonlinearity makes the controller design complicated 
and seriously degrades the control performance. So, 
we should choose the square of the voltage ( 2v ) as 
the model input to avoid the nonlinearity. 
 
2) A step test is one of the simplest techniques to 
detect the dynamic characteristics of the process. 
Figure 3 shows the step response of the thermal 
microsystem. It should be noted that there is a 
sudden jump from the initial temperature (67.9 oC) 
up to around 80 oC at the instance of the input 
change. This is strong evidence that the transfer 
function from the input (i.e., the square of the 
voltage) to the output (i.e., the temperature) includes 
a small negative ‘zero’ (here, ‘zero’ is defined as the 
solution that makes the transfer function zero). For a 
simple justification for the statement, consider the 
following second order transfer function for example. 
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Where )(su  and )(sy  are the Laplace transform of 
the input and the output, respectively.  

 
Fig. 4. Step response of the thermal microsystem: (a) 
step input, (b) temperature 
 

The transfer function has a negative zero of –0.2. To 
understand the effect of the negative ‘zero’, rewrite 
(2) as follows. 
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where )(1 sy  corresponds to the effect of the negative 
‘zero’ on the process output )(sy  that includes the 
time-derivative of the input (i.e., )(5 ssu , 
equivalently, dttdu /)(5 ).  
The time-derivative ( dttdu /)( ) of the input jumps 
from zero to infinite at the instance of the step input 
change and again becomes zero after the instance. 
But, such a sudden jump cannot be expected from the 
transfer function of (4) because it does not include 
the derivative term of the input. Putting it all together, 
we can realize that the initial jump comes from the 
small negative ‘zero’. 
 
3) We also recognize from the step response of 
Figure 4 that there is nearly no time delay between 
the input and the output. The existence of time delays 
seriously deteriorates the maximum achievable 
control performance of the feedback control system. 
The observation of nearly zero time delay is very 
favourable for us to design a high performance 
feedback controller. 
 
4) Another dynamic characteristic of the step 
response is that the jump is not a vertical line and the 
transition from the initial jump to the next dynamic 
response of the temperature is smooth rather than 
clearly separated. This means that the order of the 
dynamic system is at least two. Let us consider the 
dynamics of the first order dynamic system as 
follows: 
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From inspecting (6), we recognize that the step 
response )(sy  is a combination of the static value of 

)()/( 2 suk τ  and the dynamic response of 
)1/()()/( 21 +− ssukk ττ . Therefore, the jump should 

be totally vertical line and the transition should be 
clearly separated if the process is the first order 
system with a ‘zero’. This implies that the process 
order is at least two. 
 
5) Finally, it should be noted that there is always a 
small input nonlinearity due to various causes like 
the resistance variation of the heater during heating, 
nonlinear characteristic of the data acquisition system 
and the power supplier etc.   
 



     

Putting it all together, we should consider the 
following requirements to choose an appropriate 
model structure for the thermal microsystem:  

1. The input and output of the dynamic model 
should be the square of the voltage and the 
microreactor temperature, respectively. 

2. The dynamic model should contain a small 
negative ‘zero’. 

3. The time delay can be chosen as zero. 
4. The order of the dynamic thermal 

microsystem is at least two. 
5. Input nonlinearity should be included. 

Especially, if the model does not satisfy the first and 
second requirement, we cannot achieve acceptable 
model performances in a way of increasing the 
number of the model parameters. 
 
We suggest the following nonlinear model structure 
that satisfies the above model requirements.  
 
 2)()( tvtu =  (7) 
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Where )(tu  and )(ty  denote the model input (the 
square of the voltage) and the model output (the 
temperature), respectively. )(te  is a white 
measurement noise. )(tx  is the n-dimensional state. 
System matrices A  and B  have the following 
respective forms: 
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Here, (8) is the nonlinear static function and the 
system of (9) and (10) is the linear dynamic system. 
For readers who are familiar with time series 
expression, (9) and (10) can be rewritten equivalently 
like the following continuous-time output error (OE) 
model: 
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where )()( tz i  denotes the i-th derivative of the 
continuous-time signal )(tz . 
The chosen dynamic model of (7)-(15) satisfies the 
model requirements as follows: (7) is to satisfy the 
first requirement. If we do not fix 1,,2,1, −= nibi L  
at zeros, the second requirement would be satisfied. 
Because (9) does not include time delay, the third 
requirement is satisfied. The process order of the 
dynamic system composed of (9) and (10) is n . So, 
it should be 2≥n  to satisfy the fourth requirement. 
The fifth requirement is incorporated by the 
nonlinear equation of (8). 
 
3.2 Estimating Model Parameters 
The simple first or second order plus time delay 
model (here, ‘simple’ means that the transfer 
function has no ‘zero’) has been widely used in 
industry to describe the process dynamics and to tune 
the proportional-integral-derivative (PID) controller 
(Seborg et al., 1989). However, the dynamic 
behavior of the thermal microsystem is far from the 
simple first or second order dynamic system because 
it contains a small negative ‘zero’. So, we cannot use 
previous process reaction curve identification method, 
which is to identify only simple transfer functions. In 
this research, we use the prediction error 
identification method (Sung et al., 2001). It estimates 
the model parameters by minimizing the cost 
function as follows. 
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where, )(ty  and )(ˆ ty  denote the measured process 
output and the predicted model output, respectively. 
(17)-(20) are the optimal predictor for the process of 
(7)-(10). To solve the optimization problem, we use 
the Levenberg-Marquardt optimization method 
because its convergence rate is fast and robust. All 
equations to calculate the derivatives of the cost 
function in the Levenberg-Marquardt method can be 
easily derived from (16)-(20) as done in Sung et al. 
(2001). 
 
3.3 Model Performances 
We activated the thermal microsystem using roughly 
tuned PI controller to generate the test data. Table 1 
shows the model performances of three linear model 
types: (1) the simple linear second order model with 

)(2 tv  as the model input ( 2=n , 01 =b , )()( 2 tvtu = , 



     

1=m ); (2) the linear second order model which has a 
‘zero’ and the voltage as the model input 
( 1),()(,2 === mtvtun ); (3) the linear second order 

model which has a ‘zero’ and )(2 tv  as the model 

input ( 1),()(,2 2 === mtvtun ), respectively. 
The simple linear second order model cannot well 
describe the dynamics because the model has no 
‘zero’ as shown in Figure 5.  
The model performance is inevitably poor due to the 
nonlinearity of the square function if the voltage is 
chosen as the model input as shown in Figure 6. The 
linear second order model which has a negative 
‘zero’ and the square of the voltage as the model 
input can describe the dynamics more precisely than 
cases of Figure 6. Considering the remaining fifth 
model requirement, we can improve the model 
performance further by introducing the nonlinear 
polynomial to incorporate the nonlinear dynamics as 
shown in Figures 7 and 8. Table 1 shows the model 
performance of the second order model with the 
second order nonlinear polynomial function ( 2=n , 

)()( 2 tvtu = , 2=m ) and the third order nonlinear 
polynomial function ( 2=n , 3),()( 2 == mtvtu ), 
respectively. Both show satisfactory identification 
results. We identified the third order dynamic model 
also. Its performance is almost the same as that of the 
second order model. We finally choose the model 4 
of which the performance is shown in Figure 7 
because it is simple while its performance is close to 
the best.  
 

 
Fig. 5. Model performance when the model has no 
negative zero. 
 
Table 1. Estimated model parameters and the 
modeling error (ISE-integral of the square error) 

 
 

 
 Fig. 6. Model performances when the input is 
voltage. 

 
Fig. 7. Model performances when the model has a 
second order nonlinear polynomial. 

 
Fig. 8. Model performances when the model has a 
third order nonlinear polynomial. 

 
 

 
Fig. 9. Linearizing the nonlinear dynamics of the 
thermal microsystem: (a) The proposed nonlinear 
control strategy, (b) Equivalent control system 
 
 

4. CONTROL STRATEGY 
 
In this section, we will establish an automatic control 
strategy using the nonlinear proportional-integral (PI) 
controller as shown in Figure 9 on the basis of the 
identified nonlinear model. It satisfies the following 
three control requirements for high performance 
thermal microsystem.  
 
4.1 Linearization 
It should be noted that because the PI controller is a 
linear one, the corresponding process also should be 
linear to achieve the full performance of the PI 
controller. To satisfy the requirement, the proposed 



     

control strategy linearizes the nonlinear dynamics of 
the thermal microsystem using the identified 
nonlinear model as shown in Figure 9a, where the 
dotted-line-box is equivalent to the linear process of 
(9)-(10) if the model is perfect. That is, the linear PI 
controller controls the linear process as shown in 
Figure 9b, which makes the tuning of the PI 
controller easier as well as guarantees high 
performances as in the linear case. 
 
4.2 Tuning of the PI Controller 
For the tuning of the proposed controller in Figure 9a, 
we don’t have to consider the nonlinear parts of (17) 
and (18) because Figure 9a is essentially equivalent 
to Figure 9b. Then, we can tune the PI controller for 
the linear model of (19)-(20). To tune the PI 
controller, we estimate the tuning parameters by 
minimizing the following integral of the time-
weighted square value of the error (ITSE) for the unit 
step set point change (Sung et al. (2002)). 
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and (19)-(20) 
 
where, ip kk ,  and t∆  represent the proportional gain, 
integral gain and the sampling time. )(tys  and )(ˆ ty  
are the set point and the predicted model output, 
respectively. (23) is a mathematical representation of 
the PI controller. )(tyd  denotes the user-specified 
desired trajectory which has the following form.  
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As we decrease the time constant τ , the closed-loop 
response becomes faster but more sensitive to the 
modeling error and shows a bigger overshoot. To 
solve the optimization problem, we use the 
Levenberg-Marquardt optimization method. For 
details, refer to Sung et al. (2002). 
 
4.3 Integral Windup 
The maximum achievable control performance for 
the thermal microsystem is very high because it has 
almost negligible time delay and no unstable ‘zero’s 
(Morari and Zafiriou, 1983). This means that we can 
raise the temperature up to the desired temperature 
within very short time only if we can afford to apply 
high voltage. But, we cannot increase the maximum 
voltage as high as we want because of the limited 
resolution of the data acquisition system (note that 
the resolution decreases as the maximum voltage 
increases) and cost problems. Then, the control 
output may be initially saturated at the maximum 
value for a large set point change (for example, from 
room temperature to 95 oC). The same situation 
happens in the cooling process. We should initially 

enter the minimum control output (i.e., zero voltage) 
for a while to drop the temperature as fast as possible. 
It is clear from the above argument that there should 
be inevitably actuator saturation for high 
performance operation. Then, the integral part of the 
PI controller accumulates too much when the control 
output is saturated, resulting in a large overshoot in 
the heating process and a large undershoot in the 
cooling process (Seborg et al., 1989). The situation is 
called “integral windup”. In this research, when the 
control output is saturated, we stop the integral action 
of the PI controller to prevent the integral windup 
phenomenon. 
 
4.4 Control Results 
We choose 2.0=τ  sec as the time constant of the 
desired trajectory and the sampling time is 

055.0=∆t sec. The estimated optimal tuning results 
for the desired trajectory are 2107.0=ck  and 

2242.0/2107.0=ik . 
We use the anti-windup technique. The control 
performance is excellent as shown in Figure 10. It 
shows remarkable heating and cooling rates of 
approximately 36 oC/sec and –22 oC/sec, about 15 
times faster than commercial PCR machines. 

 
Fig. 10. Control performances of the proposed 
control strategy 

 
Fig. 11. Control performances of the nonlinear 
control strategy without anti-windup technique 
 

 
Fig. 12. Control performances of the linear PI 
controller 
 



     

The overshoot was not over 0.8 oC and the steady 
state error is less than ±0.1 oC. Figure 11 shows what 
happen if we don’t use anti-windup techniques.  
There are a big overshoot and a big undershoot 
because the integral part of the PI controller becomes 
too big when the control output is saturated. We 
strongly recommend using the anti-windup function 
for the high-performance thermal microsystem. 
Figure 12 demonstrates what happen if we use only 
the linear PI controller without linearizing the 
nonlinear dynamics of the thermal microsystem. The 
linear PI controller is tuned for the operating region 
of 55 oC. As a result, it shows acceptable 
performance for the corresponding region. But, it 
shows poor control performances for the other 
operating points of 72 oC and 95 oC because the 
linear controller cannot remove the nonlinear 
dynamics. 
 
4.5 PCR Test 
 
Figure 13 shows a fluorescent image of the amplified 
DNA after PCR in the chip of the developed thermal 
microsystem and the bulk e-tube of the conventional 
PCR machine.  
DNA was successfully amplified with our 
microsystem while it took much less time than the 
conventional machine. 
 

6. CONCLUSIONS 
 

We developed a thermal microsystem composed of a 
silicon-based microreactor and other 
equipment/software required for full automation. The 
dynamic characteristic of the thermal microsystem 
was analyzed and on the basis of the analysis, the 
model structure was determined. We identified the 
model parameters using the prediction error 
identification method and demonstrated its excellent 
model performances. A nonlinear control strategy 
was proposed to linearize the nonlinear dynamics of 
the thermal microsystem, which makes the tuning of 
the PI controller easier and guarantees high 
performances as in the linear case. We could 
demonstrate a high-performance operation with the 
anti-windup nonlinear PI controller tuned by the 
optimal tuning method. The PCR of plasmid DNA 
was performed successfully with the developed 
microsystem. 
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Figure 13. Slab gel electrophoresis for PCRs of the 
thermal microsystem and the conventional machine. 
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