

- Two solution approaches
- 1. Equilibrium-stage model (Ch. 10.3). Find N
 - Similar to distillation
 - (A) Graphical: McCabe-Thiele (any VLE)
 - (B) Analytical: Kremser (VLE: Assume dilute solution. 1) Henry's law, y = mx, +2) assume L/V constant)
- 2. Mass transfer model, (Ch. 10.4+10.6).
 - Find A=aSz (A=interfacial area)
 - Similar to heat transfer in heat exchanger
 - (A) Graphical: Must combine with integration
 - (B) Analytical (Henry's law): Log-mean driving, $(y-y^*)_{LM}$

- Equilibrium line usually straight line because of dilute solution
- Operating line goes through end points
 - These point are <u>not</u> on the diagonal*
 - Usually straight operating line because of dilute mixture
- *Note: For distillation the operating lines go through (x_D,x_D) and (x_B,x_B), which are on the diagonal.

Reason: Reflux/boilup generates "feed stream" with same composition as product.

m=2.53, L/V=3 L=90 kmol/h, V=30 kmol/h

From overall mass balance (assuming constant flows)

 $V y_{N+1} + L x_0 = V y_1 + L x_N$

Assume equilibrium in bottom (pinch)

 $x_N = x^*_{N+1} = y_{N+1}/m = 0.0040$

• Get min. reflux. $L_{min}/V = (y_{N+1} - y_1)/(x_{N+1}^* - x_0)$

- No such thing for absorption/stripping (N_{min}=0)
- Example: 1 stage is OK if we increase flows enough
 - Absorption: increase L enough
 - Stripping: increase V enough

10.6C Pressure drop and flooding in packed columns

To find column diameter and pressure drop:

- 1. Obtain packing factor F_p (from Table)
- 2. Find flooding pressure drop $\Delta P_{flood}[in.H2O/ft.packing] = 0.115F_p^{0.7}$ $F_p[ft^{-1}]$: packing factor
- 3. Find corresponding flooding gas velocity (using pressure drop correlation in Figure)
 - Typical: v_{flood} is about 6.6 ft/s = 2 m/s
- 4. Choose diameter such that gas velocity is about half of this
 - Typical: Design for v = 1 m/s
- 5. Find pressure drop in column (from pressure drop correlation in Figure)

	Туре		Material	Nomina size, in.	l Void fraction, e	St ar f (n	urface vea, a, 1²/ft³ 1²/m³)	Pi f	acking actor, F_{p} , (m^{-1})	Relative mass- transfer coefficient, fp
	Random Pack	ing								
	Raschig Rings		Ceramic	1/2	0.64	111	(364)	580	(1900)	1.52
				1	0.74	58	(190)	179	(587)	1.20
				1 1/2	0.73	37	(121)	95	(312)	1.00
				2	0.74	28	(92)	65	(213)	0.85
	Berl Saddles		Ceramic	1/2	0.62	142	(466)	240	(787)	1.58
				1	0.68	76	(249)	110	(361)	1.36
				2		32	(105)	45	(148)	
	Pall Rings		Metal	1	0.94	63	(207)	56	(184)	1.61
				1 1/2	0.95	39	(128)	40	(131)	1.34
				2	0.96	31	(102)	27	(89)	1.14
Table 10 C 1	Metal Intalox (IMTP) Nor-Pac		Metal	1	0.97	70	(230)	41	(134)	1.78
Table 10.0-1.				2	0.98	30	(98)	18	(59)	1.27
Packing factors F			Plastic	1	0.92	55	(180)	25	(82)	
r dening ractors r p				2	0.94	31	(102)	12	(39)	
	Hy-Pak		Metal	1	0.96	54	(177)	45	(148)	1.51
				2	0.97	29	(95)	26	(85)	1.07
			Plastic	1	0.92	55	(180)	25	(82)	
				2	0.94	31	(102)	12	(39)	
	Structured Pac	king								
	Mellapak	250Y	Metal		0.95	76	(249)	20	(66)	
		500Y				152	(499)	34	(112)	
	Flexipac	2			0.93	68	(223)	22	(72)	
		4			0.98			6	(20)	
	Gempak	2A			0.93	67	(220)	16	(52)	
		4A			0.91	138	(452)	32	(105)	
	Norton Intalox	2T			0.97	65	(213)	17	(56)	1.98
		3T			0.97	54	(177)	13	(43)	1.94
	Montz	B300				91	(299)	33	(108)	
	Sulzer	CY	Wire Mesh		0.85	213	(700)	70	(230)	
		BX			0.90	150	(492)	21	(69)	
	Dato from Ref. (K1, L	2, P2, S4). The	relative moss-tran	sfer coefficie	101, <i>f_e</i> , is discu	ised in S	ection 10.8E	1.	8	c .
$\Delta P_{flood}[in.H2O/ft.packing] =$	= 0.115	F_p^0	ľ	pf	t^{-1}	:	pac	:K11	ng :	tacto
$\Delta P_{flood}[bar/m \ packing] = 0.0$	$0958F_{r}$	J.7	$F_p[$	ft^-	1]:	pa	cki	ng	fac	tor

11.5F Flooding velocity and Diameter of tray towers

To find column diameter and pressure drop:

- 1. Obtain tray factor K_v [ft/s] (from Figure)
- 2. Find entrainment gas velocity from eq. 11.5-14 (occurs just before flooding). Fair correlation:

$$\begin{split} v_{max} &= K_v \big(\frac{\sigma}{20} \big)^{0.2} \sqrt{\frac{\rho_L - \rho_V}{\rho_V}} \quad \sigma \approx 20 \text{ dyn/cm for organic liquids, =72 for water} \\ \text{Typical value: } v_{max} &= 3 \text{ m/s} \end{split}$$

- 3. Choose diameter so that gas velocity is about $v = 0.7 v_{max}$
- 4. Pressure drop: Usually much larger than in packed columns, because of pressure drop for gas to pass through liquid on trays

$$\begin{split} \Delta p &= \Delta p_{dry} + \rho_L gh \\ \Delta p_{dry} &= \text{pressure drop through holes of trays} \\ h &= \text{sum of liquid levels on all trays (about 10% of column height)} \end{split}$$

Summary countercurrent vapor-liquid
separation

	Stage model (Tray column)	Differential model (Packed column)					
Equilibrium (between model in practice!) liquid and wapor bulk phases) Eq. stage. (Most common model in practice!) McCabe-Thiele Dilute: Fenske, Kremser		(Not possible with differential model*) (But one can use eq. stage + HETP!)					
Non- equilibrium	(Not covered in this course) Non-equilibrium between bulk phases is used sometimes. May use two-film theory on stages	Most common is two-film approach. Nondilute: Numerical integration Dilute mixtures: log- mean formula.					

