
FAR Planner: Fast, Attemptable Route Planner

using Dynamic Visibility Update

Fan Yang, Chao Cao, Hongbiao Zhu, Jean Oh, and Ji Zhang

Abstract— Path planning in unknown environments remains
a challenging problem - as the environment is gradually
observed during the navigation, the underlying planner has to
update the environment representation and replan, promptly
and constantly, to account for the new observations. In this
paper, we present a visibility graph-based planning framework
capable of dealing with navigation tasks in both known and un-
known environments. The planner employs a polygonal repre-
sentation of the environment and constructs the representation
by extracting edge points around obstacles to form enclosed
polygons. With that, the method dynamically updates a global
visibility graph using a two-layered data structure, expanding
the visibility edges along with the navigation and removing
edges that become occluded by newly observed obstacles. When
navigating in unknown environments, the method is attemptable
in discovering a way to the goal by picking up the environment
layout on the fly, updating the visibility graph, and fast re-
planning corresponding to the newly observed environment. We
evaluate the method in simulated and real-world settings. The
method shows the capability to attempt and navigate through
unknown environments, reducing the travel time by up to
12-47% from search-based methods: A*, D* Lite, and more
than 24-35% than sampling-based methods: RRT*, BIT*, and
SPARS.

I. INTRODUCTION

Visibility graph-based planning has been studied by the

research society but has not gained substantial popularity.

The main difficulty in visibility graph-based planning has to

do with its requirement on polygonal world [1]. Very often,

a considerable amount of computation has to be involved

in constructing the visibility graph [2], especially if the

environment is complex and three-dimensional (3D). In this

paper, we reconsider visibility graph in solving the path

planning problem and demonstrate its strength in fast re-

planning and the ability to handle unknown and partially

known environments. Our method benefits from the fact that

visibility edges connect between obstacles. When navigating

in an unknown environment, the unseen areas contain few

obstacles, involving a small number of visibility edges and

hence a low computational cost to adjust the visibility graph

– such adjustments often happen repetitively as more areas

are observed along with the navigation.

Our method employs a two-layered framework for real-

time visibility graph construction. On a local layer, the

method constructs the visibility graph at every data frame.

This uses data acquired from range sensors, from which,

the method extracts edge points around the obstacles and

All authors are with CMU Robotics Institute. Emails: {fanyang2,
ccao1, hongbiaz, jeanoh, zhangji}@cmu.edu

Fig. 1. Navigation through an unknown environment based on a simulated
campus model. The colorful curve is the vehicle trajectory staring at the blue
dot and ending at the red dot. The planner attempts to guide the vehicle
to the goal by registering obstacles in the environment (red polygons) and
building a visibility graph (cyan lines) along with the navigation. The red
area shows the global environment observed, and the yellow area represents
the local environment used to update the local graph. A and B are dead-
ends. The vehicle first attempts the path that leads to the dead-ends, then
re-plans to guide the vehicle out and finally reaches the goal.

converts the edge points into a set of enclosed polygons.

Then, visibility edges are connected between the polygons to

form the visibility graph, which is merged into a global layer

and maintained at the global scale. The incremental graph

construction results in a low computational cost needing only

a small amount of processing (∼20% of a single i7 CPU

thread). For aerial vehicle planning in a 3D environment,

the method is further extended to incorporate a multi-layer

polygonal representation.

With the visibility graph dynamically built and maintained,

the method searches the graph for the shortest path at

low latency (within ∼10ms), resulting in a fast response

after receiving a goal. When navigating through unknown

environments, the method constantly attempts multiple routes

in a sequential manner to guide the vehicle in finally reaching

the goal. In the case that dynamic obstacles are present in the

environment, the method eliminates visibility edges blocked

by the dynamic obstacles and later on reconnects the edges

after regaining the visibility.

We evaluate our method using both ground and aerial ve-

hicles, in simulated and real-world experiments. Our ground

vehicle simulation environments include a moderately con-

voluted indoor environment, a mid-scale outdoor campus

environment, and a large-scale, highly convoluted tunnel-

network environment. We benchmark the performance of the

state-of-the-art planners in handling navigation tasks through

unknown or partially known environments and compare them



with our method. We conclude that in large-scale, highly

convoluted environments, our method outperforms the state-

of-the-art planners in the planning time and the time to travel

to goals.

The main contributions of this paper are summarized as

follows:

• A two-layered algorithm framework for polygon ex-

traction from obstacles and incremental visibility graph

construction at a low computational cost.

• The framework is capable of dynamically adjusting the

visibility graph for attemptable navigation in unknown

environments and for handling dynamic obstacles.

• Benchmarking state-of-the-art planner performance in

unknown and partially known environments.

The FAR Planner open-source software1 has been inte-

grated to our open-source Autonomous Exploration Devel-

opment Environment [3]2 to promote research in navigation

autonomy. The two repositories form a full stack of planning

algorithms for ground vehicle navigation.

II. RELATED WORK

The path planning problem has been tackled from multiple

angles. However, navigation and planning through unknown

environments still remain challenging especially in real-

world settings. The approach described here is based on

key results of random sampling-based, search-based, and

learning-based planners, solving the planning problem in

both known and unknown environments.

Random sampling-based planners: The classic methods

in the Rapidly-expanding Random Tree (RRT) [4] family

include the original RRT and its variances such as RRT*

[5], RRT-Connect [6], Informed RRT* [7], and BIT* [8].

Together with probabilistic roadmap-based (PRM) methods

[9] such as Lazy PRM [10], and the latest SPARS [11] which

produces sparse subgraphs for fast query resolution, these

methods excel at exploring free space in the environments.

However, without a prior map, those methods suffer from a

long planning time in order to draw samples from both free

and unknown space. Approaches [12], [13] are developed to

draw samples biased to the goal or reuse previous samples

[14] to reduce the redundant sampling in unknown space.

Those methods are either greedy-guided which can be easily

trapped by local minima or require high computational cost

to maintain the tree/graph from previous iterations to account

for the newly observed environment.

Search-based planners: These methods include Dijkstra’s

algorithm [15], A* [16], D* [17], and D* Lite [18]. Dijkstra’s

algorithm and A* search on a discretized grid. The methods

often need a long planning time because they reinitialize the

propagation at each planning cycle. In addition, for unknown

environments, those methods often require a predefined re-

gion for discretization and are not scalable. The incremental

versions of A*: D* and D* Lite, are proposed to efficiently

handle environment changes for navigation through unknown

1FAR Planner: github.com/MichaelFYang/far_planner
2Development Environment: www.cmu-exploration.com

terrains. The methods reduce planning time by reusing the

results from the previous planning cycle and adjusting only

the local inconsistent states. However, recent work [19], [20]

shows that when the vehicle reaches a dead-end and requires

a distinctive path from the previous plan to leave the dead-

end, the planning time can be significant and even surpass

the non-incremental versions.

Learning-based planners: These methods [21]–[23] need

to be trained by a supervising method or using ground-truth

data. The training process essentially encodes map infor-

mation in the internal representation, e.g., a deep network.

At test time, the methods can handle environments sharing

similar settings with the training environments. In essence,

learning-based planners are data-driven and can be limited

to the environments that are present in the training data.

This paper focuses on a metric-based method with dy-

namic visibility graph updates. Although using visibility

graph for robot navigation has been studied in the literature

[1], [24]–[28], it is not well applied in real-world applications

due to its high computation complexity and the requirement

for well-defined polygonal geometry. Our work adapts the

visibility graph-based method and benefits from its line-of-

sight, relatively sparse visibility edges for fast planning in

unknown and partially known environments.

III. METHODOLOGY

DefineQ ⊂ R
3 as the work space for the robot to navigate.

Let S ⊂ Q be the set of sensor data points from obstacles.

Our method develops a visibility graph (v-graph), denoted

as G, from S . Given the robot position probot ∈ Q and goal

pgoal ∈ Q, a path can be searched between probot and pgoal.

A. Obstacle Polygon Extraction and Registration

We describe the process of converting sensor data points

S into a set of polygons, denoted as {Pk

local ⊂ Q | k ∈
Z
+}. For ground vehicles, very often, a terrain traversability

analysis module runs in the system to analyze the terrain

characteristics. The module takes in range measurements

such as from Lidar or depth camera and outputs S repre-

senting the obstacles. The polygon extraction process uses

image processing techniques. Let I be a binary image where

a black pixel corresponds to a point in the traversable space

and a white pixel corresponds to a point on an obstacle, I
is centered at the robot position probot. We first project S
onto I and at the same time inflate the points in S using

the vehicle size. Then, we blur the image with an average

filter to create a grayscale image Iblur. After that, we extract

edge points in Iblur and analyze the topological distribution

of the edge points using the method in [29]. This gives

us a set of enclosed polygons with dense vertices along

the contour, as shown in Fig. 2(a). Denote the polygons as

{Pk
contour ⊂ Q | k ∈ Z

+}. For each Pk
contour, we use the

method in [30] to downsize the vertices and further check the

inner angle between the two connected edges on the contour

for each vertex to infer the local curvature of the obstacle.

The vertices with the inner angle less than a threshold are

eliminated. The final, extracted polygons {Pk

local} are shown



(a) (b)

Fig. 2. (a) Polygons {Pk
contour

} extracted from blurred image Iblur with
dense vertices. The black pixels are traversable and the white pixels are
obstacles. Different colors represent different polygons. (b) Final, extracted
polygons {Pk

local
} (red) collated with sensor data points S (white).

in Fig. 2(b). To help readers follow the process, we write

down the polygon extraction algorithm in Algorithm 1.

B. Two-layer V-graph Dynamic Update

The v-graph G employed in this paper contains two layers

– a local layer, denoted as Llocal, surrounding the robot and

a global layer, denoted as Lglobal, covering the observed

environment. At each data frame, Llocal is generated from

sensor data points S and then merged with Lglobal. We know

that the computational complexity of constructing a v-graph

is O(n2 log n) [31], where n is the number of vertices on

the v-graph. Given that our v-graph is constructed locally

on Llocal, the computational cost is considerably limited. In

other words, our method incrementally updates the v-graph

to distribute the computation evenly to every data frame by

updating only the area in the vicinity of the vehicle.

Constructing Local Layer: Recall that the sensor data

points S are converted into polygons {Pk

local}. With {Pk

local},
we construct a partially reduced v-graph on the local layer

Llocal. Let Elocal be the set of visibility edges on Llocal.

Specifically, for the edges in Elocal that are longer than a

threshold, we neglect the unnecessary edges that head into

the one or both connected polygons and keep the edges

that “pass around” (see Fig. 3). The edges in Elocal that are

shorter than the threshold are all kept without “reduction”.

This is due to the effect of position noises of the vertices in

Elocal is increased with shorter edges, causing larger direction

Algorithm 1: Polygon Extraction and Registration

Input : Sensor Data Points: S
Output: Polygons: {Pk

local}
1 Create binary image I from points in S;

2 Apply average filter to generate blurred image Iblur;
3 Extract polygons {Pk

contour} based on [29];

4 for each Pk
contour do

5 Downsample vertices in Pk
contour based on [30];

6 Check the inner angle of each vertex and

eliminate the vertices with inner angle < ζ;

7 Use vertices kept to form final polygon Pk

local;

8 end

Fig. 3. Illustration of reduced v-graph. The two red polygons represent
{Pk

local
}. Visibility edges (yellow) that head into one or both connected

polygons from the shaded angles are useless and eliminated, and edges
(cyan) that “pass around” the polygons are kept.

changes of the edges and making it hard to identify whether

the edges are heading into the polygon or not. Specifically,

the edges that form the polygons in {Pk

local} are also kept

in Elocal as they “pass around” the polygons. In practice,

we observe that the traversable space in an environment is

often constrained where majority of the visibility edges are

blocked by polygons close by, resulting in a relatively small

number of final, connected edges in Elocal.

Updating Global Layer: After constructing the local v-

graph on Llocal, we merge Llocal with Lglobal to update

Lglobal in the area overlapping with Llocal. Define {P l

global ⊂
Q | l ∈ Z

+} as the set of polygons and Eglobal as the

set of visibility edges on Lglobal. The process starts with

associating the vertices between {Pk

local} and {P l

global}. A

vertex in {Pk

local} is associated to the vertex in {P l

global}
only if they are the closest vertex to each other and the

euclidean distance in between is less than a threshold. Then,

for the vertices in {P l

global} that are associated, the positions

are updated. Here, we use robust fitting [32] to further

eliminate outlier associations. Given a vertex in {P l

global},
the corresponding vertices over a number of data frames

are filtered through an iteration process. The iterations start

with all the vertices as inliers. At each iteration, we re-

calculate the mean and covariance of the inliers and use

those to re-assign the inliers and outliers among the vertices.

The iterations terminate if the inliers stay the same over

two consecutive iterations or a maximum iteration number

is meet. Then, the vertex in {P l

global} is updated to the

mean of the inliers. For the vertices in {P l

global} that are

not associated, they are removed based on a voting result

where an association is not found for certain times over a

number of data frames. For the vertices in {Pk

local} that are

not associated, they are added to {P l

global} as new vertices.

Finally, the edges in Elocal are merged into Eglobal. If the

edges exist in Eglobal, they are updated, otherwise they are

added as new edges. The overall process of the v-graph

update is presented in Algorithm 2.

C. Planning on V-Graph

Given the robot position probot and goal pgoal, we would

like to search the v-graph G for the shortest path between

probot and pgoal. The planner first add probot and pgoal as

two vertices on the global layer Lglobal and connect them to

the vertices in {P l

global} with non-blocking visibility edges.

Then, a breath-first search is run on Lglobal to propagate

through Eglobal and find the shortest path between probot

and pgoal, if a path is available.



Algorithm 2: Dynamic V-graph Update

Input : Sensor Data: S , V-graph: G
Output: Updated v-graph G

1 {Pk
vertex} ← PolygonExtraction(S);

2 Construct partially reduced v-graph on Llocal;

3 Associate vertices between {Pk

local} and {P l

global};

4 for each vertex ∈ {Pk

local}
⋃
{P l

global} do

5 if an association exists then

6 Update the vertex in {P l

global} to the mean of

the inliers assigned by robust fitting;

7 end

8 else if the vertex ∈ {P l

global} then

9 Remove the vertex from {P l

global} based on

voting result;

10 end

11 else

12 Add the vertex to {P l

global} as a new vertex;

13 end

14 end

15 Merge edges from Elocal into in Eglobal and eliminate

those blocked or connected with removed vertices;

As the robot navigates through the environment, the

vertices in {P l

global} that have established non-blocking

visibility edges with probot form the free space, and the

rest vertices in {P l

global} form the unknown space. After

the navigation completes, the v-graph is saved with a label

associated with each vertex to indicate the type of space. For

future runs, the v-graph can be loaded into the planner as a

prior map. When searching for a path through the vertices,

we provide the option of searching in the combined space

(free and unknown) for attemptable planning or in free space

only for non-attemptable planning.

D. Extension to 3D Multi-Layer V-Graph

An extended 3D version of our method for aerial vehicle

planning models the environment as multiple horizontal

slices and extracts multi-layer polygons. The visibility edges

are connected across multiple polygon layers. Note that the

partially reduced mechanism only applies to the visibility

edges on a single polygon layer. For the visibility edges

that connect different polygon layers, we keep all the non-

Fig. 4. Example 3D multi-layer v-graph. Multi-Layer polygons (red) are
extracted from a 3D environment. The visibility edges (cyan lines) cross
multiple polygon layers. Further, a path (blue) is searched on the 3D multi-
layer v-graph between the vehicle (coordinate frame) and goal (red dot).

blocking edges. Also, for the visibility edge that crosses

three or more polygon layers, the collision check takes into

account the blockage of the polygons on a mid-layer that

the edge passes through. An example 3D v-graph and a path

searched on the v-graph are shown in Fig. 4.

IV. EXPERIMENTS

Our ground vehicle platform and simulated aerial vehicle

platform are shown in Fig. 5. Both vehicles are equipped

with a Velodyne Puck Lidar used as the range sensor for

navigation planning. The ground vehicle has a camera at

640×360 resolution and a MEMS-based IMU, coupled with

the Lidar for state estimation [33]. The onboard autonomy

system incorporates navigation modules from our develop-

ment environment, e.g., terrain analysis, and way-point fol-

lowing based on kinodynamic feasible trajectories generated

by the local planner [34], as fundamental navigation modules

and runs FAR planner at the top of the system.

In the experiments, we compare our method to two search-

based methods: A* [16], D* Lite [18], and three sampling-

based methods: RRT* [5], BIT* [8], and SPARS [11]. Here,

BIT* is considered the state-of-the-art in the RRT-based

family and RRT* is the classic method of the family. SPARS

is considered the state-of-the-art in the PRM-based family.

All methods run on a 4.1GHz i7 computer. We configure

FAR planner to update the v-graph at 2.5Hz and perform

a path search for re-planning at each v-graph update. The

planner uses images at 0.2m/pixel resolution to extract edge

points for constructing polygons. The local layer on the v-

graph is a 40m×40m area with the vehicle in the center.

A. Ground Vehicle Simulation

The simulated experiments use the same vehicle and

sensor configurations as our real ground vehicle platform

in Fig. 5(a). The speed is set to 2m/s. The experiments

are performed in a moderately convoluted indoor environ-

ment, a mid-scale outdoor campus environment, and a large-

scale, highly convoluted tunnel-network environment. Fig. 6-

8 show the results from the three environments, respectively.

In all three environments, the vehicle is set to navigate

through a series of points. Each experiment includes two

settings: unknown and partially known. In the unknown

environment setting, we reset the planner after the vehicle

arrives at each point, such that the environment becomes

unknown as the vehicle navigates toward the next point in

the series. In the partially known environment setting, we do

(a) (b)

Fig. 5. (a) Ground experiment and (b) Simulated aerial platforms.



(a)

(b)

(c)

(d)

(e)

Fig. 6. Ground vehicle simulation in mid-scale, moderately convoluted
indoor environment. The vehicle is set to navigate in increasing order from
the start (point 0) to point 7 (see labels in (a)). The experiment is conducted
in two runs. In the first run, the planner is reset after arriving at each point.
This mimics navigation in an unknown environment. In the second run, the
planner accumulates the environment observations through the run. This
mimics navigation in a partially known environment. The trajectories in (a)
are from the run with planner reset. (b) and (c) present the time of arrival
at each point and the search time with planner reset. (d) and (e) show the
same metrics with accumulated environment observations.

not reset the planner but let it accumulate the environment

observations through the entire run, i.e., as the vehicle nav-

igates through the environment, the environment gradually

becomes a partially known environment.

Fig. 6-8(a) show the trajectories from ours and other

methods with the unknown environment setting. FAR planner

(a)

(b)

(c)

(d)

(e)

Fig. 7. Ground vehicle simulation in outdoor campus environment. The
vehicle is set to navigate in increasing order from the start (point 0) to point
4 (see labels in (a)). The figure shares the same layout with Fig. 6.

is able to produce efficient trajectories similar to A* and

D* Lite, while BIT*, SPARS, and RRT* are prone to

randomness and often generate back-and-forth patterns along

the trajectories. Fig. 6-8(b)-(c) present the travel time to

each point and the search time with planner reset. Fig. 6-

8(d)-(e) show the same metrics with the partially known

environment setting, where observations are accumulated

along the navigation. Tables I-III give the overall travel

time, the average path search time (planning time), and

processing load percentage in terms of the occupancy on a

single CPU thread through the entire runs. For FAR planner,



(a)

(b)

(c)

(d)

(e)

Fig. 8. Ground vehicle simulation in large-scale, highly convoluted tunnel-
network environment. The figure shares the same layout with Fig. 6.

the processing load includes the computation for all tasks of

polygon extraction, v-graph updates, and path searching.

For search-based methods, A* and D* Lite are known

for their resolution completeness in finding the optimal path.

However, those methods are difficult to scale as the com-

putational cost increases significantly when environments

are large and complex. The long planning time can result

in slow responses and a long travel time. Here, the map

resolution for both A* and D* is set to 0.2m. Tables II

and III show that the search time of A* almost doubles

from the indoor to the campus environment, and increases

around 3 times from the campus to the tunnel environment,

TABLE I

OVERALL TRAVEL TIME IN [S] FOR GROUND VEHICLE SIMULATION

Test BIT* SPARS RRT* A* D* Lite FAR

Indoor (reset) 1529 1506 1700 1089 1080 1032

Indoor (accum.) 1057 990 1593 883 921 852

Campus (reset) 994 1261 907 809 1607 852

Campus (accum.) 972 1009 901 777 1044 784

Tunnel (reset) 2588 3439 3097 2177 2724 1972

Tunnel (accum.) 3899 2762 2439 2050 2427 1804

TABLE II

AVERAGE SEARCH TIME IN [MS] FOR GROUND VEHICLE SIMULATION

Test BIT* SPARS RRT* A* D* Lite FAR

Indoor (reset) 20.4 27.3 39.2 59.0 28.6 1.59

Indoor (accum.) 203.5 132.6 294.6 58.8 27.1 4.11

Campus (reset) 5.9 36.1 2.7 115.3 462.7 1.74

Campus (accum.) 58.3 100.0 6.5 132.2 174.2 3.24

Tunnel (reset) 16.8 42.8 41.7 379.2 126.3 2.53

Tunnel (accum.) 392.3 179.5 169.7 394.9 94.2 7.37

TABLE III

AVERAGE PROCESSING LOAD [0-100%] FOR GROUND VEHICLE

SIMULATION BASED ON A SINGLE CPU THREAD

Test BIT* SPARS RRT* A* D* Lite FAR

Indoor (reset) 6.6 8.4 16.6 17.7 15.7 6.2

Indoor (accum.) 76.9 47.6 90.4 16.5 14.1 11.5

Campus (reset) 3.9 12.3 2.9 31.3 97.2 10.2

Campus (accum.) 36.1 43.6 3.4 35.1 77.8 18.1

Tunnel (reset) 9.6 15.8 15.4 89.6 78.0 4.3

Tunnel (accum.) 92.1 68.9 82.6 89.9 83.9 7.3

and the processing load increases from 16.5% in the mid-

scale indoor environment to 89.9% in the large-scale, highly

convoluted tunnel environment. D* Lite, on the other hand,

reduces the planning time by reusing the state values from

the last planning circle. However, when the vehicle reaches

a dead-end, many state values become inconsistent and the

re-planning takes a large number of iterations for the state

values to converge. The searching time of D* Lite increases

from 28.6ms in the indoor environment to 462.7ms in the

campus environment with the processing load increasing

from 15.7% to 97.2%.

For sampling-based methods, BIT*, SPARS, and RRT*,

their search times are highly inconsistent and prone to

randomness and often generate back-and-forth patterns along

the trajectories which increases the overall travel time. In

order to find paths through unknown environments, sam-

ples need to be drawn from not only free space but also

unknown space. When the environment becomes partially

observed, the search time can increase as the connections

from unknown space to free space are often blocked by

observed obstacles, and thus a feasible path to the goal

in unknown space is hard to find. As shown in Tables II

and III, the search time and processing load for all three

sampling-based methods: BIT*, SPARS, and RRT* increase

from the unknown to partially known environment settings.

Particularly, in the tunnel environment, the search time of

BIT* increases from 16.8ms to 392.3ms while the processing

load increases from 9.6% to 92.1%, resulting in the overall

travel time in the partially known environment setting to be



50.7% longer than the unknown environment setting.

As shown in Fig. 6-8(a), FAR planner is able to search for

optimal paths on the graph and generate efficient trajectories

through unknown environments to the goals. Table I shows

that in the indoor and tunnel environments, FAR planner

reduces the travel time up to 12.0% from A* and up to

47.0% from D* Lite. In the outdoor campus environment,

A* marginally surpasses FAR planner in terms of the travel

time. However, FAR planner consumes only around half of

the processing load and is nearly two orders of magnitude

faster than A* in re-planning.

Compared to the sampling-based planners, FAR planner

surpasses BIT*, SPARS, and RRT* in terms of travel time

as well as consistency of planning time and processing load

in different environment settings. In the tunnel environment,

FAR planner finishes the run more than 23.8% faster than

BIT*, more than 34.7% faster than SPARS, and more than

26.0% faster than RRT*. Further, with the two-layered v-

graph framework, FAR planner maintains a low processing

load in both the unknown and partially known environment

settings with an average processing load less than 20% of

a single CPU thread, shown in Table III. In addition, FAR

planner demonstrates fast re-planning with average search

time less than 10ms in all experiments, shown in Table II.

B. Ground Vehicle Physical Experiment

The physical experiment uses the ground vehicle platform

in Fig. 5(a) with the speed set to 1.5m/s. As shown in Fig. 9,

the vehicle starts from the inside of a building, navigates

to the outside, and reaches the goal in a garage building.

The environment is unknown beforehand. The vehicle gets

into four dead-ends and then re-routes. A cart initially

blocks the vehicle path forcing it to choose another way

that leads to a dead-end. While the vehicle navigates out

of the dead-end, the cart is removed allowing the vehicle

to pass through. In the outdoor area, pedestrians are present

as dynamic obstacles. FAR planner disconnects the visibility

edges blocked by the pedestrians and later on reconnects

them after the pedestrians move away. Fig. 10(b) presents the

search time through the run (average 7.32ms). The vehicle

drivers 388m in 406s.

FAR planner is used by the CMU-OSU team as the main

route planner in attending DARPA Subterranean Challenge.

In the final competition, the team received a “Most Sectors

Explored Award” by conducting the most complete travers-

ing and mapping across the site (26 out of 28 sectors).

C. Aerial Vehicle Simulation

We use the simulated aerial platform in Fig. 5(b) with

the speed set to 4m/s. The 3D version of FAR planner uses

multi-layer polygons. The vertical resolution between the

polygon layers is 1m. Fig. 10 shows a preliminary result

in simulation using an environment based on the university

campus. The vehicle follows a series of points and navigates

as in an unknown environment. Fig. 10 presents the goal

points and fly trajectory. Overall, the vehicle flies through a

210m trajectory in 57s.

(a)

(b)

Fig. 9. Ground vehicle physical experiment. In (a), the blue curve is
the vehicle trajectory staring at the blue dot and ending at the red dot.
The vehicle starts from the inside of a building, navigates to the outside,
and reaches goal in a garage building. The environment is unknown. The
visibility edges (cyan) are developed during the navigation. The small
images on the bottom are taken from A to F as labeled on the trajectory. B,
D, E, and F are four dead-ends where the vehicle re-routes. At A, a cart in
a corridor blocks the path forcing the vehicle to choose another way and get
into a dead-end at B. On the way back, the cart is removed and the vehicle
navigates through the corridor to the outside. The area around C involves
dynamic obstacles. (b) shows the search time through the run.

V. CONCLUSION

We present a planning framework based on visibility

graph. The method is capable of efficiently handling un-

known and partially known environments. The method in-

volves registering obstacle data into polygons and using a

two-layer data structure in dynamically updating the visibil-

ity graph for a low computational cost. The path search is

conducted by propagating through the visibility graph, find-

ing paths at low latency. We benchmark the performance of

the state-of-the-art sampling-based methods: BIT*, SPARS,

and the classic RRT*, as well as search-based methods: A*

Fig. 10. A preliminary result of aerial vehicle simulation in campus
environment. Similar to the ground vehicle simulation experiments, the
vehicle is set to navigate in increasing order from the start to point 3 as
point able and the trajectories shown in the figure. The planner is reset after
the vehicle arrives at each point.



and D* Lite, in unknown and partially known environments,

Further, we evaluate our method in both simulated and

real-world environments with ground vehicles and produce

preliminary results using a multi-layer 3D v-graph for aerial

vehicles. The comparison results indicate that our method is

efficient in both unknown and partially known environments

with a constant low processing load and uses significantly

less planning time compared to the state-of-the-art.

REFERENCES

[1] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning
collision-free paths among polyhedral obstacles,” Communications of

the ACM, vol. 22, no. 10, p. 560–570, 1979.

[2] J. Kitzinger, “The visibility graph among polygonal obstacles: a
comparison of algorithms,” 2003.

[3] C. Cao, H. Zhu, F. Yang, Y. Xia, H. Choset, J. Oh, and J. Zhang,
“Autonomous exploration development environment and the planning
algorithms,” in IEEE International Conference on Robotics and Au-

tomation, Philadelphia, PA, May 2022.

[4] S. M. LaValle, J. J. Kuffner, B. Donald et al., “Rapidly-exploring
random trees: Progress and prospects,” Algorithmic and computational

robotics: new directions, vol. 5, pp. 293–308, 2001.

[5] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[6] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in IEEE International Conference on

Robotics and Automation, 2000, pp. 995–1001.

[7] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*:
Optimal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2014, pp. 2997–3004.

[8] J. Gammell, S. Srinivasa, and T. Barfoot, “Batch Informed Trees
(BIT*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs,” in IEEE International

Conference on Robotics and Automation, 06 2015, pp. 3067–3074.

[9] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[10] R. Bohlin and L. Kavraki, “Path planning using lazy PRM,” in IEEE

International Conference on Robotics and Automation, 2000, pp. 521–
528.

[11] A. Dobson and K. E. Bekris, “Improving sparse roadmap spanners,”
in 2013 IEEE International Conference on Robotics and Automation,
2013, pp. 4106–4111.

[12] Y. Tian, L. Yan, G.-Y. Park, S.-H. Yang, Y.-S. Kim, S.-R. Lee, and
C.-Y. Lee, “Application of RRT-based local path planning algorithm in
unknown environment,” in International Symposium on Computational

Intelligence in Robotics and Automation, 2007, pp. 456–460.

[13] C. Lanzoni, A. Sanchez, and R. Zapata, “Sensor-based motion plan-
ning for car-like mobile robots in unknown environments,” in IEEE

International Conference on Robotics and Automation, 2003, pp.
4258–4263.

[14] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
IEEE International Conference on Robotics and Automation, 2006,
pp. 1243–1248.

[15] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[16] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[17] A. Stentz, “Optimal and efficient path planning for partially known
environments,” in Intelligent Unmanned Ground Vehicles, 1997, pp.
203–220.

[18] S. Koenig and M. Likhachev, “Fast replanning for navigation in
unknown terrain,” IEEE Transactions on Robotics, vol. 21, no. 3, pp.
354–363, 2005.

[19] A. T. Le, M. Q. Bui, T. D. Le, and N. Peter, “D* Lite with reset:
Improved version of D* Lite for complex environment,” in IEEE

International Conference on Robotic Computing, 2017, pp. 160–163.

[20] S. C. Yun, V. Ganapathy, and T. W. Chien, “Enhanced D* Lite algo-
rithm for mobile robot navigation,” in IEEE Symposium on Industrial

Electronics and Applications, 2010, pp. 545–550.
[21] C. Richter and N. Roy, Bayesian Learning for Safe High-Speed

Navigation in Unknown Environments, 01 2018, pp. 325–341.
[22] J. Zeng, R. Ju, L. Qin, Y. Hu, Q. Yin, and C. Hu, “Navigation

in unknown dynamic environments based on deep reinforcement
learning,” Sensors, vol. 19, p. 3837, 09 2019.

[23] X. Guo and Y. Fang, “Learning to navigate in unknown environments
based on GMRP-N,” in IEEE Annual International Conference on

CYBER Technology in Automation, Control, and Intelligent Systems,
2019, pp. 1453–1458.

[24] B. Oommen, S. Iyengar, N. Rao, and R. Kashyap, “Robot navigation in
unknown terrains using learned visibility graphs. part i: The disjoint
convex obstacle case,” IEEE Journal on Robotics and Automation,
vol. 3, no. 6, pp. 672–681, 1987.

[25] N. Rao, “Robot navigation in unknown generalized polygonal terrains
using vision sensors,” IEEE Transactions on Systems, Man, and

Cybernetics, vol. 25, no. 6, pp. 947–962, 1995.
[26] D. Wooden and M. Egerstedt, “Oriented visibility graphs: low-

complexity planning in real-time environments,” in Proceedings 2006

IEEE International Conference on Robotics and Automation, 2006.

ICRA 2006., 2006, pp. 2354–2359.
[27] H. Kaluder, M. Brezak, and I. Petrovic, “A visibility graph based

method for path planning in dynamic environments,” in The 34th

International Convention MIPRO, 2011, pp. 717–721.
[28] M. El Khaili, “Visibility graph for path planning in the presence of

moving obstacles,” Engineering Science and Technology an Interna-

tional Journal, vol. 4, pp. 118–123, 09 2014.
[29] S. Suzuki and K. Abe, “Topological structural analysis of digitized

binary images by border following,” Computer Vision, Graphics, and

Image Processing, vol. 30, pp. 32–46, 1985.
[30] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of

the number of points required to represent a digitized line or its
caricature,” Cartographica: The International Journal for Geographic

Information and Geovisualization, vol. 10, pp. 112–122, 1973.
[31] D.-T. Lee, “Proximity and reachability in the plane.” Ph.D. disserta-

tion, USA, 1978.
[32] R. Andersen and S. Publications, Modern Methods for Robust Regres-

sion. SAGE Publications, 2008.
[33] J. Zhang and S. Singh, “Laser-visual-inertial odometry and mapping

with high robustness and low drift,” Journal of Field Robotics, vol. 35,
no. 8, pp. 1242–1264, 2018.

[34] J. Zhang, C. Hu, R. G. Chadha, and S. Singh, “Falco: Fast likelihood-
based collision avoidance with extension to human-guided navigation,”
Journal of Field Robotics, vol. 37, no. 8, pp. 1300–1313, 2020.


