
Is there a Constrainedness Knife-edge?
John Slaney1

Abstract. Recent work on search has identified an intriguing fea-
ture dubbed the constrainedness knife-edge by Walsh (Proc. AAAI-
98, 406–411) whereby overconstrained problems seem to become
on average even more constrained as the search goes deeper, while
underconstrained ones become less constrained. The present paper
shows that while the knife-edge phenomenon itself is real, many of
the claims that have been made about it are incorrect. It is not always
associated with criticality, it is not a function of the problem so much
as of the algorithm used to solve it, and it does not help to explain
the peculiar hardness of problem instances near phase transitions.
Despite the negative findings, the upshot is that Walsh’s work has
opened a fascinating line of research which will surely repay further
investigation.

1 Introduction

This paper is a critical examination of ideas put forward in [3] con-
cerning the way in which the constrainedness of combinatorial search
problems changes with the depth of the search. Briefly, [3] reports
experiments showing a remarkable regularity in the relationship be-
tween constraint tightness and depth: overconstrained problems tend
to become even more constrained as the search goes deeper in the
tree, while underconstrained ones seem to become less constrained.
In between is the “knife-edge”, a region in which critically con-
strained problems (i.e. those at the solvability phase transition) re-
main critically constrained, independently of the depth at which one
examines the tree. It is suggested in [3] that this may explain why
problems near the phase transition are hard.

The results in the present paper are largely negative. It is shown
here that:

1. The presence of a knife-edge is not inevitable: its position and
even its existence depend on the search algorithm and heuristics
as much as on constrainedness.

2. It does little or nothing to explain cost peaks associated with phase
transitions in solvability.

3. It is somehow related to the effectiveness of search heuristics, but
in detail this relationship is still obscure.

All of this leaves the knife-edge phenomenon rather enigmatic: it is
obvious that it is interesting but far from obvious why.

In outline, the paper is organised as follows. x2 fills in some of the
background, setting out the generic definition of constrainedness �
given in [1] and attempting to explicate it in terms of information. x3
is also mainly expository, recapitulating the discoveries reported in
[3].

In x4 the notion of constrainedness changing with depth is devel-
oped further, resulting in a simple relationship between constrained-

1 Automated Reasoning Project, Australian National University, Canberra,
ACT 0200, Australia. e-mail: John.Slaney@anu.edu.au

ness to a given depth (that is, in the top part of the tree), constrained-
ness from that depth to the bottom of the tree, and the problem con-
strainedness �. From this is easily obtained an expression for the
derivative of constrainedness with respect to depth, from which it
appears that the knife-edge need not coincide with the critically con-
strained region.

In x5 an experimental investigation casts more doubt on the idea
that the knife-edge indicates criticality, and indicates that the phe-
nomenon is, despite appearances, not part of the explanation of the
familiar cost peak associated with the phase transition in solvabil-
ity. The final section, x6, takes up another suggestion, that the shape
and location of the knife-edge for a given search algorithm and given
heuristics could be used as an indicator of how closely they approach
the perfect solver for the problem. The conclusion is cautiously opti-
mistic, since experimental results for 3-SAT are encouraging. How-
ever, the situation is not simple, as is shown by the example of the
pure literal deletion rule for SAT, which greatly improves the effi-
ciency of the Davis-Putnam algorithm but leaves the knife-edge less
clear than it was before.

Throughout this paper, the example used for experiments is fixed
clause length random 3-SAT. This is the standard illustration of the
phenomenon and is the main example used in [3]. Although logically
one example is enough to refute an hypothesis, clearly it would be of
interest to examine other domains in the same way.

2 Constrainedness

A (finite) search problem consists of a (finite) set of states partitioned
into those satisfying a condition or constraint and the rest. A natural
way to define the probability of a constraint in the context of a state
space is as the proportion of states which satisfy it. If a state is deter-
mined by the values of n independent bits or boolean variables, then
there are 2n possible states and the ones which satisfy the constraint
may be picked out by a boolean formula in n variables which is true
on exactly those assignments of values to its variables which corre-
spond to the satisfying states. The probability of a boolean formula,
on this view, is the proportion of truth value assignments on which it
holds.2

Lozinskii [2], borrowing from standard information theory, defines
the information content I of a propositional formula as the negative
logarithm of its probability in the above sense. That is, where the
variables in the formula are p1; : : : ; pn and where M is the number
of assignments of truth values to these variables on which the formula

2 This somewhat simplistic idea has deep roots—tracable back to Laplace.
The reformulation in terms of boolean combinations of bits is also ancient,
being central to the early twentieth century philosophy of logical atomism
[4],x5.15. In computation theory it has recently become popular again—at
least as a useful fiction.

10 20 30 40 50

0.5

1

1.5

2

2.5

3

Figure 1. �i plotted against depth: Davis-Putnam algorithm (DP) for fixed
clause length 3-SAT with 50 variables.

is true:

I = n� log2M

More recently, Gent, MacIntyre, Prosser and Walsh [1] have
sought to provide a general account of how constrained an ensemble
of search problems is, devising a quantity � which amounts roughly,
in Lozinskii’s terms, to I=n, the average information content per
variable:

� = 1�
log

2
hsoli
n

Here hsoli is the expected number of solutions to a problem in the en-
semble, and n is the logarithm (base 2) of the size of the state space.
It is important to note that this definition applies to sets rather than to
single problems, and that it is not parochial to boolean satisfiability
but makes sense for search problems in general. An important effect
of defining � for sets of (cognate) problems is that it can have a finite
value even where some of the problems in the set have no solutions.

Evidently, � = 0 if hsoli = 2n: that is, if every state is a so-
lution. This is intuitively right, for in such a case the problems are
completely unconstrained. At the other extreme, � tends to infinity
(the problems become infinitely constrained) as the average number
of solutions tends to zero—as the constraints become so strong as to
rule out all solutions. In between, an important threshold occurs at
� = 1 where the problems are critically constrained, with an average
of one solution each.

If an average of hsoli solutions per problem instance were scat-
tered over large sets of instances randomly and independently, with
uniform distribution, then a phase transition in solvability would ap-
pear exactly where � = 1: instances in sets with � < 1 would almost
certainly have solutions, while those in sets with � > 1 would almost
certainly not. If the problems were completely unstructured, so that a
solution on one branch of a search tree was independent of whether
there is a solution on any other branch, then a peak in computational
cost would be associated with such a phase transition, not because
critically constrained problems have special features but just because
the hardest searches are for scarce needles in large haystacks. Real
problems are not exactly like that: solutions are not independent, and
there is structure in each problem instance. However, a wide range
of real problems are enough like that to show solvability phase tran-
sitions near � = 1 and corresponding cost peaks. Hence one reason
why � is important is that it provides a unified account of phase tran-
sition phenomena in combinatorial search problems.

3 The constrainedness knife-edge

The title of this section echoes that of a fascinating paper by Walsh
[3] in which the question is raised of how the (apparent) constrained-

ness of search problems changes with depth in the search tree. The
paradigm example of such a search problem is k-SAT, for which the
simplest definition of constraint tightness yields an estimate of �:

� =
�
Pk

j=1
Cj log2(1� 2�j)

n

where Cj is the number of clauses of length j. Now at a given node
at depth i of a search tree, the search branches into a subtree of depth
n�i containing zero or more of the hsoli solutions. The constrained-
ness �i of the subproblems rooted at depth i may be re-estimated: the
denominator of the fraction decreases by 1 at each level and the var-
ious clause counts Cj change as clauses are deleted or reduced in
length. The principal observation in [3] is that as the search deepens,
overconstrained problems appear to become more overconstrained,
while underconstrained ones tend to become less constrained. Criti-
cally constrained problems seem to remain on a knife-edge of criti-
cality until deep in the search tree. Figure 1 shows this phenomenon
in an experiment with the Davis-Putnam algorithm DP (without pure
literal deletion) for fixed clause length random 3-SAT problems.

A useful step towards understanding �i is to fix reasonably tight
upper and lower bounds on it. A lower bound is given in [3] follow-
ing the observation that, since the total number of solutions does not
increase during the search, hsoli is an upper bound on the average
number of solutions in the subtree into which a search branches at
depth i. Therefore,

�i � 1 �
log

2
hsoli

n� i

Now log
2
hsoli = n(1� �), so

�i �
n�� i

n� i

To obtain an upper bound in a similar way, at least for methods that
do not prune away solutions during the search, note that the maxi-
mum number of subproblems rooted at depth i is 2i, so the average
number of solutions per subproblem at that depth is at least hsoli=2i.
Therefore,

�i � 1�
log

2
hsoli � i

n� i
=

n�

n� i

The lower bound exhibits the knife-edge very clearly: if the problem
is underconstrained so that � < 1 then the lower bound decreases
as i increases; if it is overconstrained so that � > 1 then the lower
bound increases with i; if � = 1 then the lower bound on �i is also 1
for all i. The upper bound, however, is less reassuring: as i increases,
so does the upper bound on �i, regardless of the value of � provided
� > 0. It therefore shows no knife-edge at all for positive values of
�.

It is suggested in [3] that this knife-edge phenomenon may help
to explain why problems near the phase boundary tend to be hard.
Underconstrained problems have many solutions, and the deeper
the search goes the more plentiful they appear, so finding one be-
comes easy. Overconstrained problems have no solutions, and the
deeper one searches the more evident it becomes that no solutions
are present, so backtracking is quickly forced. On the knife-edge,
however, it is not obvious whether there are solutions or not, and
each time the search branches into a subproblem it looks similar to
the problem before—neither more nor less constrained—until at last,
deep in the search tree, the constrainedness breaks one way or the
other and there is either a solution or a backtrack point.

4 Inside the constrainedness of search

As is familiar, a systematic backtracking search, such as that car-
ried out by DP, traverses a tree. At the root, it has as axioms for
a deductive theory the input clauses of the problem. At each node
it reasons, checking the available clauses for consistency. The con-
sistency check can only be partial, since it must carried out in low-
order polynomial time. If no contradiction is detected, the remaining
search space is partitioned: in the case of DP, by choosing a variable
and adding it and its negation in turn as unit clauses. The additional
clause makes more information available to the inference engine, so
at the next level of the tree the partial consistency check is more
likely to result in a contradiction. As soon as an inconsistency is de-
tected, the search backtracks, terminating the branch. Intuitively, the
process may be seen as a game in which at each point the current
branch tries to grow by partitioning the search space and choosing
one of the subspaces, while the constraints try to stop it by using the
extra information provided by the partition to help detect an incon-
sistency. A solution is simply a branch which succeeds in growing to
its full length n before the constraints manage to stop it.

A natural relaxation of this concept of a solution is that of a branch
which succeeds in growing to a length k, for k � n. It is not obvious
how the number of such “quasi-solutions” Qk will vary with k, since
at each level in the tree some subset of the nodes will be shown incon-
sistent and will die, while the others will each spawn two immediate
successors.3 Clearly the behaviour of Qk depends on the problem
and on the algorithm and any heuristics used. Equally clearly, how-
ever, Q0 = 1 and, averaged over a set of problems over a state space
of size 2n, Qn = hsoli regardless of the algorithm.

Usefully for the purpose of understanding �i, we may define a
notion of local constrainedness, �, similar to � but with hqsolii, the
expected value of Qi, in place of hsoli:

�i = 1�
log

2
hqsolii
i

This represents the constrainedness to depth i, just as �i represents
the constrainedness from depth i. The two are interestingly related to
each other and to � itself.

Since there are on average hqsolii subproblems rooted at depth i
and hsoli solutions to be shared between them, the average subprob-
lem at depth i has hsoli=hqsolii solutions. Therefore, on average,

�i = 1 �
log

2
hsoli � log

2
hqsolii

n� i

By the definitions of �, and �i, that is to say

�i = 1�
n(1� �)� i(1� �i)

n� i
=

n�� i�i
n� i

or, where p = i=n and �p = 1� p,

� = p�i + �p�i

That is, the constrainedness of a set of problems is the sum of their
constrainedness to any depth and their constrainedness from that
depth, weighted in proportion to the depth.

3 For this purpose, unit propagation as applied in the Davis-Putnam algorithm
is seen as resulting in extension not to a single successor node but to two,
one of which dies immediately.

5 What does the knife-edge signify?

It is suggested above that the constrainedness knife-edge indicates
criticality: that as the search goes deeper, �i moves further away from
1. That is, for a problem to remain on the knife-edge, it must remain
critically constrained until near the bottom of the search tree, for as
soon as it falls off the knife edge it will become more and more over
or under constrained with increasing depth. It is also suggested that
the same phenomenon contributes to the special hardness of criti-
cally constrained problems by forcing the search to go deep before
decisions occur.

The lower bound on �i computed in x3 tends to support the asso-
ciation between the knife-edge and criticality, for its derivative with
respect to i is

n(�� 1)

(n� i)2

which is positive, negative or zero according to whether � is greater
than, less than or equal to 1. However, differentiating the real �i with
respect to i we get

n(�� �i)� i(n� i)�0i
(n� i)2

In other words, where p and �p are as above,

�p�0i + p�0i =
�� �i
n�p2

If the knife-edge is defined as the region in which constrainedness
neither increases nor decreases with depth, then this is to be found
where

�� �i = np�p2�0i

Since ���i is rather small (always in the range 0�1), for sufficiently
large n this equation requires �0i to be close to zero, meaning that
�� �i is almost constant, so that �0i is roughly on the order of 1=n.
As a special case, it holds wherever �i = � and �0i = 0. There are
many other solutions of course. The important observation is that in
general they do not require � to be near 1.

Note that � is algorithm-independent, but �i is not. �i might there-
fore reasonably be expected to depend on the algorithm too, whence
we might well suspect that the shape and even the existence of the
knife-edge will vary according to solution methods and heuristics. If
that is so, then the knife-edge cannot be indicative simply of critical-
ity.

In fact, it is so. Figure 2 shows an algorithm for solution of SAT
problems. It follows DP up to the point of performing unit resolu-
tion and unit subsumption, but lacks unit propagation. This is very
inefficient in comparison with the real Davis-Putnam algorithm, but
nonetheless it is a legitimate SAT solver and behaves much like other
complete search methods. In particular it exhibits a cost peak near
the solvability phase transition in random k-SAT, just as DP does,
and the shape of the peak is almost exactly the same in each case.

SDP does not, however, exhibit a knife-edge. Figure 3 shows the
results of an experiment just like that reported in Figure 1 but using
SDP in place of DP, and of course with smaller problems in order to
get results in an acceptable time. It is a matter of taste whether we
say that there is no knife-edge at all or that there is one at a clause
to variable ratio of 0. Either way, there is none in the critically con-
strained region. It follows that the knife-edge phenomenon is by no
means an inevitable product of the problem but depends on details of
the search method used to solve it.

So the claim that the knife-edge indicates criticality remains un-
convincing. What of the claim that it helps to explain the peculiar

function UNIT (S: clause-multiset,
l: literal) : clause-multiset

Sr S

For each c 2 Sr do
If l 2 c then Sr Sr n [c]

Else if l 2 c then c c n flg

Return Sr
end of function UNIT

function SDP (S: clause-multiset,
V : variable-set) : boolean

If 2 S then return FALSE
If V = ; then return TRUE
Randomly choose some p 2 V

If SAT (UNIT(S, p), V n fpg) then return TRUE
If SAT (UNIT(S, :p), V n fpg) then return TRUE
Return FALSE

end of function SAT

Figure 2. Simplified Davis-Putnam algorithm (SDP) for SAT

hardness of critically constrained problems? Again SDP casts doubt
on that, for it shows a cost peak of the same shape as that for more ef-
ficient algorithms, yet it does so without a knife-edge. Is there some
further aspect of phase transition behaviour in the case of algorithms
such as DP for which the knife-edge furnishes at least a partial ex-
planation?

To approach that question, first consider how the explanatory ef-
fect is supposed to work. As outlined above, the knife-edge of criti-
cality is supposed to drive the search deep into its search tree before it
finds backtrack points, thus increasing the tree depth. Since the width
of the tree is exponential in its depth, that increases the total number
of branches in the tree and also presumably the number in the portion
of the tree which will actually be searched before a solution is found.
An obvious experiment to check this account is to measure the size
of search trees through the 3-SAT phase transition and check for any
anomaly that may be attributed to, or have a common cause with, the
knife-edge.

The DP algorithm solving random 3-SAT problems with 100 vari-
ables is again a suitable example. It is not feasible to traverse the
search trees completely in very underconstrained cases, so we esti-
mate the tree sizes by measuring the length of a sample of branches.
Note that we are sampling branches from the total search tree
(i.e. containing all solutions) in order to test the hypothesis that the
knife-edge causes unexpectedly long branches near the phase transi-
tion; we are not directly measuring the search effort required to reach
the first solution if any. The null hypothesis is that the tree size will
decline as the constraints tighten, without any abrupt change near the
phase boundary.

For the experiment, 500 problem instances were generated with c
clauses for c ranging from 100 to 600 in steps of 5. 2000 branches
were generated for each instance, using the standard MOMS heuris-
tic to select variables for assignment but choosing randomly in each
case whether to make the selected variable true or false. The size
of the search tree for each instance was estimated as outlined in
Appendix A, and the geometric mean of the 500 instances plotted.
Figure 4 shows the results. For comparison, the curve has also been
plotted for SDP without any heuristics. It is clear that both curves

0.2 0.4 0.6 0.8

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3. �i plotted against depth: SDP for 3-SAT, 25 variables.

100 200 300 400 500 600
Clauses

1010

1020

1030

S
iz

e
of

tr
ee

Figure 4. Geometric mean tree size for 3-SAT with 100 variables, plotted
against number of clauses. Upper line: SDP; lower line: DP.

pass smoothly through the phase transition around 420–430 clauses
with no hint of special behaviour at that point. Hence the knife-edge,
where one is present, has no discernable effect on tree size (or the
length of branches). We therefore conclude that the attractive thought
that it helps to explain the cost peak, plausible as it may seem, is in-
correct.

6 The knife-edge and search heuristics

Since the knife-edge is present in the case of the ordinary Davis-
Putnam algorithm for SAT but absent when this is run without unit
propagation, a natural thought is that the sharpness of the knife-edge
may well correlate with the effectiveness of heuristics for a given
problem class. This thought is given more weight by the considera-
tion that the “perfect” knife-edge is that produced by the lower bound
on �i enunciated in [3] and in x3 above, which is what would obtain
if per impossibile all of the solutions were to be found on the only
branch explored by the search.

Unfortunately for that natural thought, matters are not quite so
simple. Figures 5 and 6 show the effect of enhancing DP with one
of the best known refinements: pure literal deletion. This deletes any
clause containing a literal which occurs only positively in the re-
maining problem. One result is that some solutions may be pruned
away, along with the dross, for of course not all solutions need make
the pure literal true. Pure literal deletion has little effect on overcon-
strained problems, but it brings huge efficiency gains on undercon-
strained ones. It is a highly effective addition to DP, yet figures 5 and
6 show that it tends somewhat to flatten out the knife-edge (on the
underconstrained side) rather than to exaggerate it.

0.2 0.4 0.6 0.8

Proportion of tree depth

0.5

1

1.5

2

2.5

3

C
on

st
ra

in
ed

ne
ss

Figure 5. �i plotted against depth: DP without pure literal deletion for 3-
SAT with 50 variables.

0.2 0.4 0.6 0.8

Proportion of tree depth

0.5

1

1.5

2

2.5

3

C
on

st
ra

in
ed

ne
ss

Figure 6. The same problems, DP with pure literal deletion.

7 Conclusions

The constrainedness knife-edge was an unexpected and striking dis-
covery. The idea that the deeper the search goes the more clearly
overconstrained and underconstrained problems reveal themselves as
such is intuitively appealing, and the corollary that critically con-
strained problems are self-similar in respect of constrainedness hints
at a new understanding of the relationship between criticality and
difficulty.

The present paper shows that those thoughts, appealing as they
may be, have to be rejected, or at least refined. The more closely we
examine the phenomenon, the more puzzling it becomes: contrary
to what at first looks obvious, it is not symptomatic of criticality,
and experimental measurements of search trees show no evidence of
a link between the knife-edge and hardness. At the same time, the
regularity revealed in Figure 1 is not an illusion. The idea of splitting
� into �i and �i is simple, but the pattern observed in these latter
points to something deep taking place inside search processes.

The obvious future direction for this research is to extend the
experimental investigation, with a view to identifying the features
which affect the presence, position and shape of a knife-edge. We are
far from having a satisfactory theoretical explanation, though surely
one is worth pursuing.

REFERENCES

[1] I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh, ‘The constrainedness
of search’, in Proc. AAAI-96, pp. 246–252, (1996).

[2] E. Lozinskii, ‘Information and evidence in logic systems’, Journal of
Experimental and Theoretical Artificial Intelligence, 6, 163–193, (1994).

[3] T. Walsh, ‘The constrainedness knife-edge’, in Proc. AAAI-98, pp. 406–
411, (1996).

[4] L. Wittgenstein, Tractatus Logico-Philosophicus, Routledge and Kegan
Paul, 1922.

A Estimating tree size by sampling

The experiments reported in x6 call for the number of branches in a
binary tree to be estimated from a sample. Sampling is easy: begin
at the root, at each stage select a variable, randomly assign it true
or false and propagate the constraints until a backtrack or a solution
occurs. However, averaging the branch lengths to obtain the loga-
rithm of the tree size gives a skewed result, short branches are over-
represented in the sample, since the probability of arriving at the end
of a given branch of length i is 2�i. The sum should therefore be
weighted, each actual observation of a branch of length i counting as
2i virtual observations.

Let obsi be the number of actual observations of branches of
length i, so obsi:2i is the number of virtual observations of length
i. Let OBS and VOBS be the totals of actual and virtual observations
respectively. Let T be the number of branches in the tree, bi the num-
ber which are of length i and pi the proportion which are of length i,
so trivially bi = piT . Now in any binary tree,

X
i

bi
2i

= 1

which is to say X
i

pi
2i

= T�1

The sample gives us an estimate of pi:

bpi = obsi:2i

VOBS

so, substituting in the previous equation:

dT�1 =
X
i

obsi
VOBS

or in other words
bT =

VOBS
OBS

