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Abstract. It is well-known that non-linear approximation has an advantage
over linear schemes in the sense that it provides comparable approximation
rates to those of the linear schemes, but to a larger class of approximands. This
was established for spline approximations and for wavelet approximations, and
more recently for homogeneous radial basis function (surface spline) approxi-
mations. However, no such results are known for the Gaussian function. The
crux of the difficulty lies in the necessity to vary the tension parameter in the
Gaussian function spatially according to local information about the approxi-
mand: error analysis of Gaussian approximation schemes with varying tension
are, by and large, an elusive target for approximators.

We introduce and analyze in this paper a new algorithm for approximating
functions using translates of Gaussian functions with varying tension param-
eters. Our scheme is sophisticated to a degree that it employs even locally
Gaussians with varying tensions, and that it resolves local singularities in a
non-local way. We show that our algorithm is suitably optimal in the sense that
it provides approximation rates similar to other established nonlinear method-
ologies like spline and wavelet approximations. As expected and desired, the
approximation rates can be as high as needed and are essentially saturated
only by the smoothness of the approximand.

1. Introduction

1.1. Nonlinear Radial Basis Function Approximation. In this article we con-
sider N -term approximation by Gaussian networks, an approximation technique
widely used in statistics and engineering. This is an example of nonlinear approxi-
mation since we select d-variate functions residing in
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which (failing to be closed under addition) is not a linear space. This stands in
contrast to the linear approximation problem, often studied in radial basis function
(RBF) theory, where the centers (cj)j , are predetermined and approximants are
chosen from a linear space
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that depends on the set of centers.
Heuristically, the benefit of the nonlinear approach is that by placing centers

strategically, one may overcome defects, like discontinuities, cusps or other local
deficiencies in smoothness, of the target function f . Because such defects may be
manifested in a variety of ways, over regions or on lower dimensional manifolds, and
may occur at different scales, finding a precise strategy is not at all straightforward.
In this article, we present a sophisticated method for placing centers in a way that
is suitable for creating effective nonlinear approximants.

An important distinction between the nonlinear and linear problems is in how
convergence is measured. In the linear setting, the main approximation param-
eter measures density of the centers, usually by means of the “fill distance” h =
maxx∈Ω dist

(
x, (cj)j

)
; the underlying approximation problem is to measure the rate

of convergence as h shrinks. In high dimensions, the assumption that centers fill a
(high dimensional) region Ω with a small fill distance is computationally imprac-
tical. In nonlinear approximation the rate of convergence is measured against the
parameter N , the cardinality of the set of centers. This approach lends itself to
more frugal approximation in high dimensions.

The approximation scheme we introduce selects sf,N from GN , and is shown

to have convergence rate ‖f − sf,N‖p = O(N−s/d) for target functions f having
Lτ smoothness s, with 1

τ = s
d + 1

p . Generally speaking, such nonlinear estimates

are sharp in the sense that they are similar to known results for nonlinear wavelet
approximation, and one cannot expect to achieve a similar rate distp(f,GN ) =

O(N−s/d) by decreasing either τ or the underlying smoothness.
To provide a more robust space of approximants, we permit the tension (aka

shape or dilation) parameters σj to respond to the nonuniform distribution of the
centers. The question of how to tune a tension parameter is of active interest to the
Learning Theory community, [10, 11], as well as the RBF community [7, 1], but in
most theoretical works, the tension parameter is taken to be constant for all centers.
Although the spatially varying tension parameter is a natural idea, and is used in
practice [6, 9], it has heretofore not been considered seriously in an approximation
theoretic sense. Although it may be tempting to use tight dilations when the centers
are dense, essentially setting σj proportional to a local spacing of centers around
cj , the manner in which our scheme sets the tension is more complicated, but one
that is ultimately justified by the error estimates we provide. In any case, we note
that there is some empirical evidence [4, Section 3] that Gaussian approximation is
unstable without adjusting the tension.

Nonlinear approximation with RBFs has not been investigated with the same
intensity as other basic elements of approximation theory (splines, wavelets, etc.).
Recently, DeVore and Ron, [2] have made a first foray into nonlinear RBF approx-
imation using RBFs that are fundamental solutions of elementary, homogeneous,
elliptic PDEs. Such RBFs, which include the “surface splines,” allow simple but
elegant approximation schemes that are not burdened by the requirement that the
target function must reside in the native space. In addition, the homogeneity of
these RBFs means that the N -term approximation spaces are, essentially, invariant
under rescaling and, thus, there is no need to select dilations σj – this is done
automatically. However, many prominent RBFs, including the Gaussians, do not
fall into this category. For the kernels considered by DeVore and Ron, the approx-
imation order is saturated, meaning that for this method there is an upper bound
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on the rate of convergence: by increasing smoothness beyond a saturation level k
(determined by the order of the elliptic differential operator inverted by the kernel)
there is no corresponding increase in the rate of decay of the error. This is not so
with Gaussian kernels. Furthermore, the kernels used by DeVore and Ron are de-
pendent on the operator they invert, and, hence, (subtly) dependent on the spatial
dimension. This is a hindrance which the Gaussians also avoid.

1.2. The Methodology. To construct the N -term approximant sN , we begin with
a wavelet decomposition of the target function f =

∑
I fIψI . Based on the size of

the wavelet coefficient and the smoothness norm of the target function, the fixed
budget ofN terms is distributed over the elements in the expansion – into individual
budgets NI (many of which are zero). Each wavelet ψI is then approximated by a
linear combination sI of Gaussians that uses at most NI terms. The full N term
approximant is then sf,N =

∑
fIsI . The main idea is that we have a scheme for

nonlinear approximation associated with this family of wavelets that can be lifted
to the Gaussians by means of approximating the individual members of the family.
Matters are simplified when we assume the entire family to be generated from a few
prototypes via dilation and translation: our collection of Gaussians are invariant
under these operations! This reduces the problem of efficiently approximating all
members of the wavelet family to the problem of approximating a few fixed wavelets
by linear combinations of Gaussians.

The crucial issue is to approximate a basic function ψ using a linear combination
of N shifted Gaussians. We view the number N as the portion we are willing to
invest in approximating ψ out of our total budget of centers. It is essential to
understand how to apportion the budget, and this can only be accomplished when
we have good N -term error estimates. Thus, we are interested in understanding
how to approximate globally using only finitely many centers. This is a very hard
problem for the Gaussian. We completely resolve this problem for a function ψ
that is band-limited, and in addition, has rapid decay:

for every k there is a constant Ck such that |ψ(x)| ≤ Ck(1 + |x|)−k.

The trick we employ is to create an approximant
∑

α∈hZd a(α, h)φ(· − α) that con-
verges rapidly (globally) to ψ in the L∞ norm, with coefficients a(α, h) that are
roughly the same size as ψ(α). Then we modify this approximation scheme by
throwing away centers from a region where ψ is small. This is where the two as-
sumptions on the wavelet – that ψ is bandlimited and that it is rapidly decaying –
come into play. Bandlimiting means that the “full” approximation scheme (using
centers hZd) has coefficients a(α, h) that can be expressed as the convolution of ψ
with a Schwartz function. Rapid decay allows us to attribute polynomial decay of
arbitrary orders to the coefficients.

1.3. Organization. In the Section 2 of this article, we develop the basic linear
approximation scheme at the heart of our approach. First considered is the operator

T ♯
h, which generates the ‘full’ approximant, an infinite series of Gaussians having the

grid hZd as the set of centers. Second we develop the operator T ♭
h, which generates

the ‘truncated’ approximant – a linear combination of roughly h−2d Gaussians . At
the end of Section 2 we generalize T ♭

h to treat scaled wavelets using a fixed budget of
N centers. This is the role of the map TN . Corollary 4 gives the error for wavelets
at all dilation levels.
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Section 3 treats nonlinear approximation in Lp for 1 ≤ p < ∞. Results match
those obtained for surface splines in [2]. This involves a sophisticated strategy for
distributing centers, which is expressed in Section 3.1. The main result is Theorem
9 in Section 3.3.

Section 4 treats nonlinear approximation in L∞, a case was not considered in [2].
For technical reasons, we consider approximation of functions from Besov spaces in
this section. The main result in that section is Theorem 12.

1.4. Notation and Background. We denote the ball with center c and radius R
by B(c, R). The symbol I ⊂ Rd will represent a cube with corner at c(I) ∈ Rd and
sidelength ℓ(I) > 0: it is the set c(I) + [0, ℓ(I)]d. We denote the volume of a set Ω
in Rd by |Ω|.

The natural affine change of variables associated with a cube I is denoted with
the subscript I: i.e., for a function g : Rd → C,

gI(x) := g

(
x− c(I)

ℓ(I)

)
.

The symbol C, often with a subscript, will always represent a constant. The
subscript is used to indicate dependence on various parameters. The value of C
may change, sometimes within the same line.

For Schwarz functions, the d-dimensional Fourier transform is given by the for-

mula f̂(ξ) =
∫

Rd f(x)e−i〈ξ,x〉 dx, and its inverse is f(x) = (2π)−d
∫

Rd f̂(ξ)e−i〈x,ξ〉 dξ.
An important property of the Gaussian functions

φσ : x 7→ exp
[
−|x/σ|2

]
, (1)

is that they satisfy φ̂σ = (σ
√
π)dφ(2/σ).

2. Shift-invariant Gaussian approximation of band-limited functions

2.1. Approximation using infinitely many centers. Let B ⊂ Rd be a fixed
ball centered at the origin. We denote by

HB (2)

the space of all Schwartz functions whose Fourier transform is supported in B. Let
φ be the d-dimensional Gaussian function, dilated by a fixed (arbitrary) dilation
σ > 0 (cf. (1)). Given h > 0, consider the linear space

Sh := Sh(φ) := span{φ(· − α) : α ∈ hZ
d},

closed in the topology, say, of uniform convergence on compact sets.
We consider in this section approximation schemes and approximation errors for

functions inHB from the space Sh. We adopt to this end the approximation schemes
of [1], and show that in our setup these schemes provide superb approximations to
the class HB : the error decays exponentially fast as the spacing parameter h tends
to 0!

Let us fix now f ∈ HB, and h > 0. We denote by fφ the function whose Fourier

transform is f̂ /φ̂. We note that fφ is in HB , since fφ = f ∗ ηΦ for a Schwartz
function ηφ (that depends only on φ and B) and HB is an ideal in the Schwartz
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space. We then approximate f by hdT ♯
hf , with

T ♯
hf :=

(
1

2π

)d ∑

α∈hZd

fφ(α)φ(· − α). (3)

Our main result in this subsection is the following:

Proposition 1. Let B = B(0, R) be the ball of radius R centered at the origin. The

uniform error in approximating f ∈ HB by hdT ♯
hf as above satisfies, for h < π/R,

‖f − hdT ♯
hf‖∞ ≤ C‖f̂‖L1h

de−
c

h2 .

The constants C and c depend on R and the dilation parameter σ used in the
definition of φ, but are independent of f and h.

Proof. Using the fact that f̂φ = f̂ /φ̂, we write hdT ♯
hf as

∫

Rd

f̂(θ)kh(θ, ·) dθ,

with

kh(θ, z) := (2π)−d hd

φ̂(θ)

∑

α∈hZd

φ(z − α)ei〈θ,α〉.

Invoking the Poisson summation formula (which obviously is valid for the Gaussian
function), we obtain that

kh(θ, z) = (2π)−d e
i〈z,θ〉

φ̂(θ)

∑

β∈2πZd/h

φ̂(θ + β)ei〈z,β〉.

When applying the above kernel to f , we are allowed to do the integration term-
by-term, with the (β = 0)-term yielding the original function f . Therefore,

f(z) − hdT ♯
hf(z) =

∫

Rd

f̂(θ)k′h(θ, z) dθ,

with

k′h(θ, z) := (2π)−d e
i〈z,θ〉

φ̂(θ)

∑

β∈2πZd/h\{0}

φ̂(θ + β)ei〈z,β〉.

Note that the kernel is integrated only over θ ∈ B, since supp(f̂) ⊂ B by assump-
tion. Thus, we obtain that

‖f − hdT ♯
hf‖∞ ≤ (2π)−d‖f̂‖1Kh,

with

Kh :=
∑

β∈2πZd/h\{0}

‖φ̂(· + β)/φ̂‖L∞(B).

Let R denote the radius of B. If 2R < |β| then, for ξ ∈ B, |ξ + β|2 − |ξ|2 ≥
(|β| − 2|ξ|)2. Consequently

Kh ≤ C1φ̂(a),

for a < dist2
(
2B, 2πZ

d/h\{0}
)

= 2(π/h−R). �
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2.2. Approximation using finitely many centers. In this subsection, we mod-
ify the approximant of the previous subsection and use only a finite number of
centers. This is a necessary step for us, since our budget of centers is finite. Our
approximand is still a function f ∈ HB .

Our setup is as follows. Given f and a mesh-scaling parameter h, we will ap-
proximate f by hdT ♭

hf , with

T ♭
hf := (2π)−d

∑

α∈hZd∩Bh

fφ(α)φ(· − α), (4)

with fφ and φ as in the previous subsection, and Bh is a ball of radius 1/h. The
crux here is the correspondence between the mesh size h, and the radius 1/h of

the domain of the shifts we “preserve”: T ♭
hf is obtained from T ♯

hf by removing
from the sum all shifts outside a ball of radius 1/h. Note that the number of shifts
N := N(h) that are being used for a given h satisfies

N ∼ h−2d

with constants of equivalence depending on d only. At the end, we need to control
the error in terms of the parameter N . For the time being, we still write the error
in terms of the mesh size h.

Once the approximation operator uses the above truncated sum, one cannot
expect the error to decay exponentially fast as in Proposition 1. However, the new
error, measured in the uniform norm, still decays rapidly:1

Lemma 2. Let k > 0, and f ∈ HB. Then there exists Ck > 0 that does not depend
on h such that for all small enough h

‖f − hdT ♭
hf‖∞ ≤ Ckh

k. (5)

Proof. Thanks to Proposition 1, we only need to show that

hd‖T ♯
hf − T ♭

hf‖∞ ≤ Chk.

However, the norm ‖T ♭
hf − T ♯

hf‖∞ is bounded above by the sum
∑

|α|>1/h,α∈hZd

|fφ(α)|.

Since fφ decays rapidly at ∞, the above sum is O(hk) for any fixed k, and our
claim follows. �

The uniform error bound that we just obtained is not refined enough for our
purposes. We will need better estimates for the error away from the origin, i.e.,
outside the ball Bh of radius 1/h. Indeed, such estimates are valid, but require a
different argument:

Lemma 3. Let k > 0, and f ∈ HB . Then there is a constant C′
k > 0 (depending

on k, d and f but independent of h), so that the function T ♭
hf from Lemma 2

approximates f with pointwise error:

|(f − hdT ♭
hf)(x)| ≤ C′

kh
k
(
1 + |x|

)−k
. (6)

1We could have made the dependence of Ck below on f more explicit. However, this is not
needed for our subsequent applications.
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Proof. If |x| ≤ 2/h, then
(
1 + |x|

)−k ≥ (h/3)k,

hence the requirement here follows from the inequality in Lemma 2 when k there
is replaced by 2k.

For the case |x| ≥ 2/h, we may prove that

|(f − hdT ♭
hf)(x)| ≤ C′

k

(
1 + |x|

)−2k
,

since

hk
(
1 + |x|

)−k ≥ C|x/2|−2k.

To this end, we estimate the difference

f(x) − hdT ♭
hf(x)

directly. First, f decays rapidly, by assumption, hence certainly satisfies the re-
quired estimate. As to hdT ♭

hf , we note that, since fφ decays rapidly, the sum

hd
∑

α∈hZd

|fφ(α)|

is bounded, and the bound can be made independent of h (the bound is, essentially,
the L1-norm of fφ). Thus, we can bound T ♭

hf(x), up to an h-independent constant,
by

max{φ(x− α) : |α| ≤ 1/h}.
Since |x| ≥ 2/h, |x− α| ≥ |x|/2, hence

hdT ♭
hf(x) ≤ C′

kφ(x/2).

Thus we are left to show that

φ(x) ≤ |x|−2k, for |x| ≥ 1/h,

for small enough h, which is clearly valid due to the exponential decay of φ at
∞. �

2.3. Gaussian approximation of a wavelet system. We now assume that we
have in hand a finite collection Ψ ⊂ HB, with HB as in the previous section. Then,
Lemma 3 holds for each f := ψ ∈ Ψ. Considering Ψ as the set of mother wavelets in
a suitable wavelet system, we need also to develop suitable approximation schemes
for shifted dilations of ψ, i.e., we need approximation schemes and error bounds for
functions of the form

ψ
(
(· − c)/ℓ

)
, ψ ∈ Ψ, c ∈ R

d, ℓ > 0.

However, such schemes are trivial: since we are allowed to use shifted-dilated ver-
sions of our original Gaussian φ, we may simply use the approximation

ψ
(
(· − c)/ℓ) ≈ (hdT ♭

hψ)((· − c)/ℓ
)
.

Note that T ♭
hψ employs N ∼ h−2d centers. Fixing N momentarily, we define a new

map, TN , that is defined on all dilated shifts of each ψ ∈ Ψ by

(TNψ)
(
(· − c)/ℓ)

)
:= N−1/2(T ♭

N−1/(2d)ψ)
(
(· − c)/ℓ

)
. (7)

The error bounds of the previous section apply directly here. We just need to
replace each occurrence of h by N−1/(2d). Thus, we obtain:
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Theorem 4. Let ψ ∈ HB be given and finite. Let k > 0, and let I be a cube.
Then, there exists a constant C independent of N and I such that, for every N
sufficiently large, and for every I as above,

|(ψI − TNψI)(x)| ≤ CN−k/d

(
1 +

|x− c(I)|
ℓ(I)

)−2k

.

3. Nonlinear Approximation in Lp, 1 ≤ p <∞
In the previous section, we derived error estimates for the approximation of each

member of a bandlimited smooth wavelet system by suitably chosen N shifted-
dilated Gaussians. Armed with these error estimates, we finally tackle in this section
our central problem: approximating a general function by finitely many shifted-
dilated Gaussians. Our approach follows [2] and is similarly based on approximating
the wavelets in the wavelet expansion of the actual approximand. To this end, we
choose first any, say orthogonal, wavelet system whose mother wavelets are all
bandlimited Schwartz functions. We define below MRA systems and wavelets in
the exact way that fits our needs. Let us stress that the actual definitions of wavelet
systems are far more flexible.

Definition 5 (Wavelets). In this article a univariate wavelet system is an orthonor-
mal MRA wavelet system whose generators are bandlimited Schwartz functions: a
scaling function η0 and a (mother) wavelet η1, both bandlimited Schwartz func-
tions. See [8, 3.2] or [5] for a possible construction. Multivariate wavelet systems
are tensor products of a univariate one, hence its wavelets are indexed by (I, e), an
ordered pair consisting of a dyadic cube, I, and a gender e ∈ E ∈ {0, 1}d \ {0},
corresponding to one of the (non-origin) corners of the unit cube [0, 1]d:

ψe(x) =

d∏

j=1

ηej (xj), ψI,e := (ψe)I .

Let D be the collection of all dyadic cubes, viz., with I0 the unit cube,

D := {2j(k + I0) : j ∈ Z, k ∈ Z
d}.

We denote by Dj the subset of dyadic cubes with common edgelength 2j .
The wavelet ψI,e is an affine change of variable (as in Section 1.4) of the mother

wavelet ψe = ψI0,e, for some e ∈ E . Since we use more than one mother wavelet
(indeed, we use #E = 2d − 1), we regard D and Dj as multisets and we suppress
dependence on the gender e. Thus, the notation ψI stands for the I-version of
any of the mother wavelets, and a summation over D or over one of its subsets,
unless otherwise noted, is assumed to take place over E as well. This does not cause
any confusion, since in this section our algorithms and their analysis do not pay
attention to the details of the actual mother wavelet that is employed.

Our problem is then the following basic one. We are given a smooth function f
(from some smoothness class, see below) and a budget of N centers. We are then
allowed to approximate f by a total of N shifted-dilated Gaussians. We carry out
this approximation by distributing the centers across the wavelet system: for each
I ∈ D, we allocate NI centers as “the I-budget” and use these budgeted centers
for approximating the term fIψI in the wavelet expansion

f =
∑

I∈D

fIψI . (8)
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The individual error when approximating fIψI by NI Gaussians was the subject
of the previous section. Thus, our analysis here will focus on the estimation of
the cumulative error. But, first and foremost, we need to devise an algorithm for
distributing the budget across the different wavelets. We refer to this algorithm as
the cost distribution.

3.1. Triebel-Lizorkin Cost Distribution. It is convenient to associate each
wavelet with cost cI > 0 that is not necessarily an integer, and then to deter-
mine NI from the formula

NI :=

{
⌊cI⌋, ⌊cI⌋ ≥ N0,

0, otherwise,

where N0 is a some fixed integer, that depends on the wavelet system and on
nothing else.

We now discuss the cost distribution cI , which depends on several factors. In
addition to the volume of the dyadic cube, |I|, it depends on the wavelet coefficient
fI , the smoothness norm of f (defined below), and an estimate of the size of a
partial reconstruction of f . To this end, we make the following definitions:

Definition 6. Given s, q > 0, we define the maximal function Ms,qf as

Ms,qf(x) :=

(
∑

I∈D

|I|−sq/d|fI |qχI(x)

)1/q

. (9)

For a dyadic interval I, we define a partial function by

Ms,q,If(x) :=

(
∑

I⊂I′∈D

|I ′|−sq/d|fI′ |qχI′(x)

)1/q

. (10)

Given now τ, s, q > 0, we define the Triebel-Lizorkin space F s
τ,q via the finiteness of

the following quasi-seminorm:

|f |F s
τ,q

:= ‖Ms,qf‖τ . (11)

We note that for any interval I, the partial maximal function Ms,q,If is nonneg-
ative and always ≤Ms,qf . Furthermore, it achieves its maximum on the interval I,
where it is constant. Thus the number ms,q,I := Ms,q,If(x), x ∈ I, is well-defined,
and ms,q,I = supy∈Rd Ms,q,If(y) ≤ Ms,qf(x). In the definition below, s stands for
the smoothness of the function we approximate, and p for the norm in which we
measure the error.

Definition 7 (Cost Distribution). Let s > 0, and p ≥ 1. Define τ, q by 1/τ :=
1/p+ s/d and 1/q := 1+ s/d. Let f ∈ F s

τ,q, with wavelet expansion (8). We choose
then the cost of a dyadic cube I ∈ D as

cI := |f |−τ
F s

τ,q
mτ−q

s,q,I |fI |q |I|qN. (12)

Let us first verify that the sum of all the costs is our budget N :
∑

I∈D

cI =
∑

I∈D

|f |−τ
F s

τ,q
mτ−q

s,q,I |fI |q |I|1−qs/dN.
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Since |I| =
∫

Rd χI(x) dx, we can write the right hand side as an integral, namely

|f |−τ
F s

τ,q
N
∫

Rd

∑
I m

τ−q
s,q,I |fI |q |I|−qs/dχI(x) dx. Invoking the fact that, for x ∈ I,

ms,q,I ≤Ms,qf(x) (and that τ > q), gives

∑

I

cI ≤ |f |−τ
F s

τ,q
N

∫

Rd

∑

I

(
Ms,qf(x)

)τ−q |fI |q |I|−qs/dχI(x) dx

≤ |f |−τ
F s

τ,q
N

∫

Rd

(
Ms,qf(x)

)τ
dx = N.

3.2. Approximating the Wavelet Expansion. Once a budget of NI centers is
allocated for the approximation of the term fIψI in the wavelet expansion of f ,
we appeal to Theorem 4 to conclude that the term can be approximated by NI

Gaussians with error that is bounded (up to a constant that depends only on the
wavelet system and on the parameter k) by |fI |RI , where

RI(x) := Ck,d min(1, N
−k/d
I )

(
1 +

dist(x, I)

ℓ(I)

)−2k

≤ C′
k,d min(1, c

−k/d
I )

(
1 +

dist(x, I)

ℓ(I)

)−2k

. (13)

The following lemma, which is proved in the next subsection, simplifies the above
error:

Lemma 8. Let 1 ≤ p <∞, then
∥∥∥∥∥
∑

I∈D

|fI |RI

∥∥∥∥∥
p

≤ Ck,d

∥∥∥∥∥
∑

I∈D

min(1, c
−k/d
I )fIχI

∥∥∥∥∥
p

.

We are ready to state and prove our main result concerning the case 1 ≤ p <∞.

Theorem 9. Given s > 0 and 1 ≤ p < ∞, there is a constant Cp,s,d so that for
f ∈ F s

τ,q, with 1/τ = 1/p+ s/d and 1/q = 1 + s/d, there is a linear combination of

N Gaussians sf (x) :=
∑N

j=1 Aj exp
[
−
(

x−ξj

σj

)2]
so that

‖f − sf‖p ≤ Cp,s,dN
−s/d|f |F s

τ,q
.

Proof. Using the coefficients of the wavelet expansion (8), we can express sf as

sf :=
∑

fI TNIψI ,

where each term, [TNIψI ] (x) =
∑NI

j=1 aI,j exp

[
−
(

x−cI,j

ℓ(I)

)2
]
, defined in (7), is

composed of NI Gaussians by the construction preceding Theorem 4 (note that
the notation cI stands for the I-cost, and is very different from the notation cI,j

above). By the enumeration at the end of Section 3.1 (
∑

I∈DNI ≤ N), we know
that no more than N Gaussians are used.

From Lemma 8 we have the error estimate

‖f − sf‖p ≤ Ck,d

∥∥∥∥∥
∑

I∈D

min(1, c
−k/d
I )|fI |χI

∥∥∥∥∥
p

.
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As long as k (which is arbitrary) is greater than s, we can estimate the error as the
Lp norm of a series:

‖f − sf‖p ≤ Ck,d

∥∥∥∥∥
∑

I∈D

EI

∥∥∥∥∥
p

,

where EI(x) := c
−s/d
I |fI |χI(x). We now focus on estimating this series, pointwise.

By applying the definition of cI , we obtain (after some elementary manipulation

of exponents), c
−s/d
I |fI | = |f |τs/d

F s
τ,q
m

τ/p−q
q,s,I |fI |q |I|−qs/dN−s/d. We recall that the Ith

partial square-like function is constant on the cube I, where it equals mq,s,I . This
implies that χI(x)mq,s,I = χI(x)Mq,s,I(x), which shows that each term is

EI(x) = N−s/d|f |τs/d
F s

τ,q
Mq,s,I(x)

τ/p−q|fI |q |I|−qs/dχI(x).

The series becomes much more manageable by making some simple substitutions.
Writing the basic summand of the maximal function as zI := |fI |q|I|−qs/dχI(x),
the partial sum of these basic summands, ZI :=

∑
I⊂I′ zI′ , is observed to be the

qth power of the partial maximal function ZI =
(
Ms,q,I(x)

)q
, while the full sum

of these, Z :=
∑

I∈D zI , is simply the qth power of the (full) maximal function

Z =
(
Ms,q(x)

)q
. It is a simple observation that the full series under consideration

now has the compact form
∑

I∈D

EI(x) = N−s/d|f |τs/d
F s

τ,q

∑

I∈D

zIZ
τ
pq −1

I .

It follows from the inequality
∑

I∈D zIZ
ǫ−1
I ≤ CǫZ

ǫ, valid for nonnegative sequences
(zI)I∈D and 0 < ǫ with constant Cǫ <∞ (this is [2][Lemma 6.3]), that
∑

I∈D

EI(x) ≤ C τ
pq
N−s/d|f |τs/d

F s
τ,q

((
Ms,q(x)

)q) τ
pq = Cp,s,dN

−s/d|f |τs/d
F s

τ,q

(
Ms,q(x)

)τ/p
.

Taking the Lp norm controls the error:

(∫

Rd

(
∑

I∈D

EI(x)

)p

dx

)1/p

≤ Cp,s,dN
−s/d|f |τs/d

F s
τ,q

(∫

Rd

(
Ms,q(x)

)τ
dx

)1/p

= Cp,s,dN
−s/d|f |τs/d+τ/p

F s
τ,q

= Cp,s,dN
−s/d|f |F s

τ,q

since τs/d+ τ/p = 1. �

3.3. On Lemma 8. The vector-valued maximal inequality of Fefferman and Stein,
[3, Theorem 1], controls the Lr(ℓs) norm of the sequence of functions (MFj)j by
the Lr(ℓs) norm of (Fj)j , provided 1 < r, s < ∞ (the operator M is the usual
Hardy–Littlewood maximal operator MF (x) := supx∈[a,b]d

1
(b−a)d

∫
[a,b]d |F (y)| dy ):

∥∥∥∥
(∑

|MFj(x)|s
)1/s

∥∥∥∥
r

≤ Cr,s

∥∥∥∥
(∑

|Fj(x)|s
)1/s

∥∥∥∥
r

In the lemma we make use of a minor generalization of this for the modified maximal
operator Mτ , defined for 0 < τ <∞ by

Mτf(x) := sup
x∈[a,b]d

(
1

(b− a)d

∫

[a,b]d
|f(y)|τ dy

) 1
τ

.
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It is not difficult to show that for τ < p, q <∞,
∥∥∥∥
(∑

|Mτfj(x)|q
)1/q

∥∥∥∥
p

≤ K

∥∥∥∥
(∑

|fj(x)|q
)1/q

∥∥∥∥
p

. (14)

Indeed, this follows by a direct application of the Fefferman–Stein inequality with

s = q
τ , r = p

τ (both greater than one), Fj = f τ
j and K = C

1/τ
r,s , because the

modified maximal operator is related to the Hardy-Littlewood maximal operator
by MF s

j = Mτf
q
j and the r and p norms are related by ‖g‖r = ‖g1/τ‖τ

p.

Proof of Lemma 8. From (13) follows RI ≤ Ck,d min(1, c
−k/d
I )

(
1 + dist(x,I)

ℓ(I)

)−2k

.

Observe that there is a constant, Cd, depending only on d so that
(

1 +
dist(x, I)

ℓ(I)

)−d

≤M(χI)(x).

We can assume k > d/2 without loss. For τ between d/2k and 1 we have
(

1 +
dist(x, I)

ℓ(I)

)−2k

≤
(

1 +
dist(x, I)

ℓ(I)

)−d/τ

≤ CdMτ (χI)(x),

since Mτ (χI) = M(χI)
1/τ . It follows from the modified Fefferman-Stein inequality

(14), that
∥∥∥∥∥
∑

I∈D

|fI,e|RI

∥∥∥∥∥
p

≤ Ck,d

∥∥∥∥∥
∑

I∈D

|fI,e| min(1, c
−k/d
I )Mτ (χI)

∥∥∥∥∥
p

≤ Ck,d

∥∥∥min(1, c
−k/d
I )|fI,e|χI

∥∥∥
p
.

�

4. Nonlinear Approximation in L∞

Although the basic strategy for nonlinear RBF approximation in L∞ is, at heart,
the same as in Lp, there are some complications that require us to give it a slightly
different treatment. The fundamental difference is that the Hardy-Littlewood maxi-
mal inequality (and, hence, its vector valued analogue, the Fefferman-Stein inequal-
ity, used in the previous section) does not hold for p = ∞. For this reason, we choose
to work with family of smoothness spaces that do not require us to explicitly work
with maximal operators. Smoothness is measured using a Besov norm, and we use
a Besov space based cost distribution to determine how to distribute the budget.2

Definition 10. For τ = d/s ∈ (0,∞) and q ∈ (0,∞), the Besov space Bs
τ,q is the

space of Lτ functions for which the (quasi-)seminorm |f |Bs
τ,q

is finite, where

|f |Bs
τ,q

:=

∥∥∥∥∥∥
k 7→

(
∑

I∈Dk

|fI |τ
)1/τ

∥∥∥∥∥∥
ℓq(Z)

.

Here, the coefficients (fI) are as in (8).

2The Besov space approach is valid for the case p < ∞ that was analysed in the previous
section, too. However, the Triebel-Lizorkin space F s

τ,q is slightly larger than the Besov space of

the same parameters.



NONLINEAR APPROXIMATION USING GAUSSIAN KERNELS 13

Note that for q ≤ τ ≤ 1, f ∈ Bs
τ,q implies that the wavelet coefficients fI are

absolutely summable. Since the wavelets ψI are uniformly bounded, this means
that the wavelet expansion (8) is absolutely convergent for s ≥ d and f ∈ Bs

τ,q

(meaning that the main issue for L∞ approximation is resolved in this case). For
1 < τ < ∞ and q ≤ 1, we also have unconditional convergence of the wavelet
expansion, since

∑

k∈Z

∑

I∈Dk

|fI ||ψI(x)| ≤
∑

k∈Z

(
∑

I∈Dk

|fI |τ
)1/τ (∑

I∈Dk

|ψI(x)|τ
′

)1/τ ′

.

Because |ψI(x)|τ
′ ≤ C

(
1+ |x−c(I)|/ℓ(I)

)−(d+1)
, the second factor is bounded with

a constant depending on d and totally independent of k and x. Thus, the right hand
side is controlled by |f |Bs

τ,q
. This is a reflection of the fact that Bs

τ,q is embedded

in L∞ for τ = d/s and q ≤ min(τ, 1). Although L∞ has no unconditional basis,
the Besov space does; the wavelet expansion (8) converges unconditionally in these
cases.

4.1. Besov Cost Distribution: The approach we take for treating L∞ error is
to alter the strategy for budgeting slightly. As before, for each wavelet ψI , we
create an approximant TNIψI using a portion NI of the total budget N , but the
precise distribution of this budget follows different rules. We rely again on a cost
distribution. In this case, it is:

cI = N |f |−q
Bs

τ,q
Aq−τ

j |fI |τ = N

(
Aj

|f |Bs
τ,q

)q ( |fI |
Aj

)τ

. (15)

The indices τ and q are determined by 1/τ = s/d and 1/q = 1 + s/d. The
quantity Aj is a sort of “energy” of f at the dyadic level j:

Aj :=




∑

I∈Dj

|fI |τ



1/τ

.

We do not invest in the wavelet corresponding to I if ⌊cI⌋ ≤ N0 (the constant from
Lemma 3). Thus, we set

NI =

{
⌊cI⌋ =

⌊
N |f |−q

Bs
τ,q
Aq−τ

j |fI |τ
⌋
, ⌊cI⌋ ≥ N0

0 otherwise.
(16)

With this choice at most N Gaussians are used:

∑

I∈D

NI ≤
∑

I∈D

cI ≤ N |f |−q
Bs

τ,q

∞∑

j=0

Aq−τ
j

∑

I∈Dj

|fI |τ

= N |f |−q
Bs

τ,q

∞∑

j=0

Aq−τ
j Aτ

j = N.

4.2. Approximating the Wavelet Expansion: The following lemma is a rough
analogue to Lemma 8, where we show that the investment of centers made in one
“energy level” gives a suitable error.
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Lemma 11. For a finitely supported sequence of coefficients (aI)I∈Dj , we have the
estimate, which holds for 2k > d:

∥∥∥∥∥∥

∑

I∈Dj

aIψI −
∑

I∈Dj

aI [TNIψI ]

∥∥∥∥∥∥
∞

≤ Ck,d sup
I∈Dj

∣∣∣aIN
−k/d
I

∣∣∣ .

Proof. We treat the estimate by considering the error termwise. Theorem 4 gives
the pointwise bound

∑

I∈Dj

|aI | |ψI(x) − [TNIψI ] (x)| ≤ Ck,d

∑

I∈Dj

|aI |N−k/d
I

(
1 +

dist(x, I)

ℓ(I)

)−2k

.

By applying Hölder’s inequality, the lemma follows, since for 2k > d, the series
∑

I∈Dj

(
1 + dist(x,I)

ℓ(I)

)−2k

is bounded by a finite constant Ck,d that is independent

of both j and x. �

We are now in a position to prove our main result for L∞ approximation.

Theorem 12. Given s > 0, there is a constant Cs,d so that for f ∈ Bs
τ,q, with

1/τ = s/d and 1/q = 1 + s/d, there is a linear combination of N Gaussians

sf (x) :=
∑N

j=1 Aj exp
[
−(

x−ξj

σj
)2
]

so that

‖f − sf‖∞ ≤ Cs,dN
−s/d|f |Bs

τ,q
.

Proof. Using the budget (16), the approximant is

sf :=
∑

I∈Dk

fI TNIψI ,

where each term, [TNIψI ] is composed of NI Gaussians as in Theorem 4.
We estimate ‖f − sf‖∞, recalling the unconditional convergence of the wavelet

expansion for functions coming from the Besov space for this choice of τ and q.

‖f − sf‖∞ ≤
∞∑

j=−∞

∥∥∥∥∥∥

∑

I∈Dj

fI(ψI − TNIψI)

∥∥∥∥∥∥
∞

≤ C(k, d)

∞∑

j=−∞

∥∥∥I 7→ N
−k/d
I |fI |

∥∥∥
ℓ∞(Dj)

≤ C(k, d)

∞∑

j=−∞

∥∥∥I 7→ c
−s/d
I |fI |

∥∥∥
ℓ∞(Dj)

.

The first inequality is simply the triangle inequality, since the sums considered are
all finite, while the second is Lemma 11. The final inequality holds for s < k,
because cI ≤ 1 +NI ≤ CNI .
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By invoking the definition of cI , and by manipulating exponents (specifically,
using the facts that τs/d = 1 and that s/d+ 1 = 1/q) we arrive at

‖f − sf‖∞ ≤ C(k, d)N−s/d|f |qs/d
Bs

τ,q

∞∑

j=−∞

A
(τ−q)s/d
j

∥∥∥I 7→ |fI |1−τs/d
∥∥∥

ℓ∞(Dj)

= C(k, d)N−s/d|f |qs/d
Bs

τ,q

∞∑

j=−∞

A
(τ−q)s/d
j

= C(k, d)N−s/d|f |qs/d
Bs

τ,q

∞∑

j=−∞

Aq
j = C(k, d)N−s/d|f |Bs

τ,q
.

�
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