
Shortest Axiomatizations of Implicational S4 and S5Zachary ErnstPhilosophy Department, University of Wisconsin{Madison, andMathematics & Computer Science Division, Argonne National LaboratoryBranden FitelsonPhilosophy Department, University of Wisconsin{Madison,Mathematics & Computer Science Division, Argonne National LaboratoryKenneth HarrisMathematics & Computer Science Division, Argonne National LaboratoryLarry WosMathematics & Computer Science Division, Argonne National LaboratoryAugust 6, 2001Abstract. Shortest possible axiomatizations for the implicational fragments ofthe modal logics S4 and S5 are reported. Among these axiomatizations is included ashortest single axiom for implicational S4 (which is unprecedented in the literature),and several new shortest single axioms for implicational S5. A variety of automatedreasoning techniques were essential to our discoveries.Keywords: axiomatization, modal logic, implication, single axiom1. Some Background and ConventionsThe implicational fragments of the modal logics S4 and S5 have beenstudied quite extensively over the years (see, for instance, [8], [7], [1],[5], and [13], just to name a few). Following tradition, we will use thelabels \C4" and \C5" to denote the implicational fragments of S4 andS5, respectively. Prior [16, Appendix I] reports a variety of Hilbert-styleaxiomatizations for C4 and C5. All such axiomatizations presuppose de-tachment as their sole rule of inference (as will ours). We will also followthe convention of writing implicational formulae in polish notation (i.e.,instead of the in�x `p ! q', we will use the Polish `Cpq'). When wereport our deductions, we will use Meredith's D-notation (as explainedin Prior's [16, Appendix II]). That is, the notation `D:a:b' (appearing tothe left of each line in our deductions) is used to denote the most generalpossible result of detachment (i.e., the condensed detachment [6]) witha, or some substitution in a, for the major premise C��, and with b,or some substitution in b, for the minor premise �. All proofs reportedbelow were discovered with the assistance of the automated reasoningprogram Otter [12]. The extensive role of automated reasoning in thepresent research is discussed in x 4. c45.tex; 8/10/2001; 17:53; p.1



2 Ernst, Fitelson, Harris & Wos2. Axiomatic C42.1. A Brief History of Axiomatic C4The axiomatization of C4 has an interesting history. As far as we cantell, the �rst time an axiomatization for C4 appeared explicitly inprint was in Anderson & Belnap's 1962 paper [1]. Anderson & Bel-nap report the following 3-axiom basis for C4, which we will adopt asour \reference" C4 axiomatization (the detachment rule, as always, ispresupposed to be the sole rule of inference of the systems):CppCCpqCrCpqCCpCqrCCpqCpr(1)Anderson & Belnap credit Kripke's 1959 discussion [7] with providingthe original insight on how to axiomatize C4. However, according toCurry [3] and Hacking [5], similar work was concurrently being doneindependently across the Atlantic by Hacking & Smiley. The work ofHacking & Smiley was not published until 1963 [5], but their work onC4 was available in mimeograph form several years before this [3].Other 3-axiom bases were later discovered for C4 (see [16, AppendixI]). But, as far as we know, no 2-axiom bases for C4 were ever reportedin the literature. Moreover, no single axiom for C4 has been discovered(this is stated as an open problem in [2, page 83]). Indeed, the onlyaxiomatizations of C4 that we have seen are the two 3-axiom basesreported in [16, Appendix I]. Each of these bases contains 3 axioms, 25symbols (total), and 11 occurrences of the implication connective C.12.2. Shortest Axiomatizations of C4Using a variety of automated reasoning techniques (see x 4 below formore on these techniques), we have discovered many new 2-axiom basesfor C4. The most elegant of these include the following 2-basis, whichcontains only 20 symbols, and 9 occurrences of C:CpCqqCCpCqrCCpqCsCpr(2)1 The other C4 3-basis reported in Prior's [16, Appendix I] is: fCpCqq,CCpqCCqrCpr, CCpCpqCpqg. Ulrich [18] shows that C4 is also the implicationalfragment of each modal logic between S4 and S4.3 (so, our bases are also new, andshortest bases for the implicational fragments of these extensions of S4 as well).c45.tex; 8/10/2001; 17:53; p.2



Shortest Axiomatizations of Implicational S4 and S5 3So far, we have found six such 2-bases, and we know that there are atmost eight such 2-bases (we suspect there are exactly six).2Moreover, we have been able to show that these are the shortestpossible bases for C4. That is, no other basis for C4 (with any numberof axioms) contains fewer symbols (or occurrences of C) than the above2-basis.3 Our automated reasoning techniques also yielded the followingnew 21-symbol (10-C) single axiom for C4:CCpCCqCrrCpsCCstCuCpt(3)To our knowledge, no single axiom for C4 has previously been reported.Indeed, this has been a long-standing open problem in the axiomaticsof modal logic [2, page 83]. We have ruled-out all shorter single axiomcandidates (see x 4, below, for more on the techniques used to elimi-nate and discover single-axiom candidates). Therefore, (3) is a shortestpossible single axiom for C4. In fact, (3) is the shortest C4 single axiom(all other 21-symbol candidates have been eliminated).With a circle of three deductions, we will now establish that each of(2) and (3) is necessary and su�cient for (1). This will su�ce to showthat both (2) and (3) are bases for C4. First, we prove (1) ) (3):1. Cpp2. CCpqCrCpq3. CCpCqrCCpqCprD:3:3 4. CCCpCqrCpqCCpCqrCprD:2:3 5. CpCCqCrsCCqrCqsD:3:5 6. CCpCqCrsCpCCqrCqsD:6:2 7. CCpqCCrpCrqD:3:7 8. CCCpqCrpCCpqCrqD:7:2 9. CCpCqrCpCsCqrD:7:8 10. CCpCCqrCsqCpCCqrCsrD:7:9 11. CCpCqCrsCpCqCtCrsD:9:2 12. CCpqCrCsCpqD:12:1 13. CpCqCrrD:9:13 14. CpCqCrCssD:4:13 15. CCpCCqqrCprD:4:14 16. CCpCCqCrrsCps2 We have eliminated all other 2-bases of this complexity, except for the followingtwo candidates, whose status remains open: fCpCqCrr, CCpqCCqCqrCprg andfCpCqq, CCpqCrCCqCqsCpsg. We suspect these are not bases for C4.3 The proof of this result (omitted due to space limitations), which proceeds byexhaustion of all other possible candidate bases, requires the use of only 20 distinctlogical matrices of size � 4. In x 4, below, we will say a bit more about how thisexhaustion was achieved and how the matrices and bases were discovered.c45.tex; 8/10/2001; 17:53; p.3



4 Ernst, Fitelson, Harris & WosD:6:16 17. CCpCCqCrrCstCCpsCptD:15:17 18. CCpCCqCrrCpsCpsD:9:18 19. CCpCCqCrrCpsCtCpsD:10:19 20. CCpCCqCrrCpsCCstCptD:11:20 21. CCpCCqCrrCpsCCstCuCpt�Next, we prove that (3) ) (2):1. CCpCCqCrrCpsCCstCuCptD:1:1 2. CCCpCqqrCsCCpCCtCuuCpvrD:2:1 3. CpCCqCCrCssCqtCCCuuvCwCqvD:3:3 4. CCpCCqCrrCpsCCCttuCvCpuD:1:3 5. CCCpCqrsCtCCCuursD:5:1 6. CpCCCqqCrsCCstCuCrtD:6:6 7. CCCppCqrCCrsCtCqsD:4:6 8. CCCppqCrCCstqD:1:6 9. CCCpCqrsCtCCqrsD:1:8 10. CCpqCrCCCsspqD:9:7 11. CpCCqrCCrsCtCqsD:7:10 12. CCCCCppqqrCsCtrD:7:11 13. CCCCpqCrCsqtCuCCsptD:1:12 14. CCpqCrCCCCCssttpqD:12:14 15. CpCqCrCCCCCssttCCuuvvD:15:15 16. CpCqCCCCCrrssCCttuuD:16:16 17. CpCCCCCqqrrCCssttD:17:17 18. CCCCCppqqCCrrssD:13:18 19. CpCCqCCrrsCqsD:18:12 20. CpCqq�D:19:19 21. CCpCCqqrCprD:21:13 22. CCCCpqCrCsqtCCsptD:21:1 23. CCpCCqCrrCpsCtCpsD:22:21 24. CCpqCCqrCprD:24:24 25. CCCCpqCrqsCCrpsD:25:25 26. CCpCqrCCsqCpCsrD:24:26 27. CCCCpqCrCpstCCrCqstD:27:21 28. CCCppCqrCCsqCsrD:25:28 29. CCpqCCrpCrqD:28:7 30. CCpCqrCpCsCqrD:24:30 31. CCCpCqCrstCCpCrstD:31:23 32. CCpCpqCrCpqD:29:32 33. CCpCqCqrCpCsCqrD:27:33 34. CCpCqrCCpqCsCpr�c45.tex; 8/10/2001; 17:53; p.4



Shortest Axiomatizations of Implicational S4 and S5 5Finally, we prove that (2) ) (1), which completes the circle:1. CpCqq2. CCpCqrCCpqCsCprD:1:1 3. Cpp�D:2:2 4. CCCpCqrCpqCsCCpCqrCtCprD:2:1 5. CCpqCrCpq�D:4:1 6. CpCCqCqrCsCqrD:6:6 7. CCpCpqCrCpqD:7:7 8. CpCCqCqrCqrD:2:8 9. CCpCqCqrCsCpCqrD:9:2 10. CpCCqCrsCCqrCqsD:10:10 11. CCpCqrCCpqCpr�The above circle of proofs (1) ) (3) ) (2) ) (1) has the additionalbene�t of being pure | in the sense of [19] and [20]. That is, (i) theproof of (1) ) (3) does not make use of (2), (ii) the proof of (3) )(2) does not make use of (1), and (iii) the proof of (2) ) (1) doesnot make use of (3). We think this circle of pure proofs provides anespecially elegant demonstration that (2) and (3) are bases of C4.3. Axiomatic C53.1. A Brief History of Axiomatic C5The problem of axiomatizing the implicational fragment of S5 wassolved in 1956 by Lemmon, Meredith, Meredith, Prior, and Thomas.In their seminal paper [8], Lemmon et. al. report several bases forC5, including 4, 3, 2, and 1-axiom bases. We will adopt the following3-axiom basis from [8] as our \reference" axiomatization of C5.4CqCppCCpqCCqrCprCCCCpqrCpqCpq(4)Since the late 50's, and until now, the shortest known bases for C5 havebeen the 2-axiom bases (v) and (vi) of Lemmon et. al. [8, page 227].4 (4) is basis (ii) from Lemmon et. al. [8, page 227]. This basis is C.A. Meredith'ssimpli�cation of Lemmon's original 4-axiom basis for C5 | see [13].c45.tex; 8/10/2001; 17:53; p.5



6 Ernst, Fitelson, Harris & WosThese bases contain 20 symbols (9 C's).5 Interestingly, Carew Meredithwas able to �nd the following 21-symbol (10-C) single axiom for C5.6CCCCCppqrCutCCtqCsCuq(5)3.2. Shortest Axiomatizations of C5Applying our automated reasoning techniques to C5 (see x 4), we havediscovered several new (and maximally elegant) 2-axiom bases for C5,including the following 18-symbol, 8-C basis:CppCCpqCCCCqrurCpr(6)By exhausting all other possible shorter bases (with any number ofaxioms), we have established that (6) is a shortest possible basis forC5. Furthermore, we have ruled-out all other 2-bases of this complexity.Therefore, (6) is the shortest basis for C5. It is a corollary of this result,of course, that there is no single axiom for C5 shorter than Meredith's(5). There are, however, at least six other single axioms of length 21.We have discovered six such axioms, including the following:CCCCpqrCCuuqCCqtCsCpt(7)As we did in the case of C4, we will now present a circle of three pureproofs (this time, using (4) as our reference basis) which establishesthat (6) and (7) are both bases for C5. First, we prove that (6) ) (4):1. CCpqCCCCqrurCpr2. CppD�1�1 3. CCCCCCCCpqrqCuqtstCCuptD�1�2 4. CCCCpqrqCpqD�3�3 5. CCpCqrCCuqCpCurD�5�2 6. CCpqCCqrCpr�D�5�1 7. CCpCCCqrurCCtqCpCtrD�6�6 8. CCCCpqCrquCCrpu5 Meredith & Prior's [13] seems to be \the last word" on this matter | untilnow.6 What makes this interesting is that | as far as we know | Meredith failedto �nd a single axiom for C4. This is surprising, since Meredith was responsible for�nding (shortest) single axioms for just about every system (that has one) which hestudied. We sometimes wonder whether the 21-symbol C4 single axiom we reportedabove had been previously discovered (but never published) by Meredith.c45.tex; 8/10/2001; 17:53; p.6



Shortest Axiomatizations of Implicational S4 and S5 7D�6�8 9. CCCCpqruCCCCqtCptruD�8�4 10. CCpCqCprCqCprD�7�9 11. CCpCqrCCCCuqtCurCpCurD�6�10 12. CCCpCqruCCqCpCqruD�12�7 13. CCCCpqrCuCCCpqrqCCtpCuCtqD�4�13 14. CCpqCCrpCuCrqD�14�2 15. CCpqCrCpqD�15�2 16. CpCqq�D�11�16 17. CCCCpqrCpqCuCpqD�6�17 18. CCCpCqruCCCCqrtCqruD�17�18 19. CpCCCCqruCqrCqrD�19�19 20. CCCCpqrCpqCpq�Next, we show that (4) ) (7):1. CCpqCCqrCpr2. CCCCpqrCpqCpq3. CpCqqD�1�1 4. CCCCpqCrquCCrpuD�1�3 5. CCCppqCrqD�4�4 6. CCpCqrCCuqCpCurD�4�2 7. CCpCpqCpqD�6�4 8. CCpCqrCCCCruCqutCptD�6�3 9. CCpqCrCpqD�4�7 10. CCCpqpCCpqqD�1�9 11. CCCpCqruCCqruD�11�10 12. CCpqCCCpqrrD�6�12 13. CCpCCqruCCqrCpuD�1�5 14. CCCpqrCCCuuqrD�11�13 15. CCCpqrCCpqCurD�1�13 16. CCCCpqCrutCCrCCpqutD�16�2 17. CCpCCCpqrqCpqD�14�17 18. CCCppCCCqrurCqrD�16�18 19. CCCCpqrCCuuqCpqD�8�19 20. CCCCpqCrquCCCCrptCCsspuD�20�15 21. CCCCpqrCCuuqCCqtCsCpt�Finally, we complete the circle by showing that (7) ) (6):
c45.tex; 8/10/2001; 17:53; p.7



8 Ernst, Fitelson, Harris & Wos1. CCCCpqrCCuuqCCqtCsCptD�1�1 2. CCCpCqruCtCCqruD�2�1 3. CpCCCqqrCCruCtCsuD�3�3 4. CCCppqCCqrCuCtrD�1�3 5. CCCCCppqCrCuqtCsCt6tD�2�4 6. CpCCqrCCCqruCtCsuD�1�5 7. CCCpCqruCtCCCssruD�4�6 8. CCCCpqCCCpqrCuCtrsCt6Ct7sD�1�7 9. CCCCCppqqrCuCtrD�1�8 10. CCCCCpqrCuCtrsCt6CCpqsD�1�9 11. CCCpqrCuCCCttCpqrD�1�10 12. CCCCpqCrutCsCCCpqutD�9�11 13. CpCqCrCCCuuCCttssD�12�1 14. CpCCCCqrurCCrtCsCqtD�13�13 15. CpCqCCCrrCCuuttD�14�14 16. CCCCpqrqCCquCtCpuD�15�15 17. CpCCCqqCCrruuD�16�16 18. CCCCpqCrCuqtCsCCuptD�17�17 19. CCCppCCqqrrD�1�18 20. CCCCpqCpruCtCCqruD�19�19 21. Cpp�D�19�20 22. CCpqCCrpCrqD�9�22 23. CpCqCCrCCuutCrtD�19�23 24. CCpCCqqrCprD�22�24 25. CCpCqCCrruCpCquD�25�16 26. CCCCpqrqCCquCpuD�26�26 27. CCCCpqCrquCCrpuD�24�26 28. CCCCpqrqCpqD�27�27 29. CCpCqrCCuqCpCurD�29�28 30. CCpqCCCCqrurCpr�4. The Role of Automated Reasoning in Our ResearchThroughout our investigations into axiomatic C4 and C5, automatedreasoning techniques played a crucial role. In particular, we relied heav-ily on William McCune's automated reasoning program Otter [12],H. Zhang and J. Zhang's model-�nder SEM [22], as well as John Slaney'smodel-�nder MaGIC [17]. In the �nal section of this paper, we outlinethe techniques used to derive these results.c45.tex; 8/10/2001; 17:53; p.8



Shortest Axiomatizations of Implicational S4 and S5 9In our search for single axioms for C4 and C5, we used the followingprocedure.1. First, we wrote computer programs to generate a large list of can-didate formulas which were to be tested as axioms. For most prob-lems, it was practical to generate an exhaustive list of all formulaswith up to twenty-one symbols.2. All the formulas in the list were tested (using matrices) to see whichwere likely to be tautologies in the system in question.73. We immediately eliminated large numbers of formulas by applyingknown results about axiomatizations in the various systems. Forexample, as reported by Lemmon et. al., every axiomatization forC5 must contain a formula with Cpp as a (possibly improper)subformula [8]. Another useful result is the Diamond-McKinseytheorem that no Boolean algebra can be axiomatized by formulascontaining less than three distinct propositional letters [2, p. 83].4. A set of formulas was selected from the list at random. Using eitherSEM or a program written by the authors, we found a matrix modelthat respects modus ponens, invalidates a known axiom-basis forthe system, but validates the formulas selected from the list. Sucha model su�ces to show that the formulas are not single axioms forthe system.5. All the remaining formulas in the list were tested against that ma-trix. Every formula validated by that matrix would be eliminated.6. Steps 4 and 5 were repeated until the list of candidate formulas wasdown to a small number, or eliminated entirely.7. Finally, we used Otter to attempt to prove a known axiom basisfrom each of the remaining candidates.Obvious changes were made when we searched for axiom-bases withmore than a single formula.Upon implementing the above procedure, we were surprised to dis-cover that even a small number of simple matrix models was capableof eliminating a very large proportion of candidate formulas. For ex-ample, it is possible to show that no formula with nineteen symbols isa single axiom for C5 by using ten (and possibly fewer) matrices, none7 We say `likely to be tautologies' because C4 and C5 do not have �nite char-acteristic matrices. Thus, we used matrices which validate all tautologies for thesystem, but also validate a small percentage of contingent formulas.c45.tex; 8/10/2001; 17:53; p.9



10 Ernst, Fitelson, Harris & Wosof which have more than �ve elements. Because of the e�ciency of thisprocedure, we were able to complete all of our searches using ordinaryconsumer-grade computers, with no esoteric hardware.We believe that this technique for �nding axiom-bases in Hilbert-style systems could be used for a wide variety of logics, with equalsuccess. For instance, the authors have used the same technique todiscover the shortest known basis for the implicational fragment of thelogic RM (�rst axiomatized by Meyer and Parks [14], [15]) [4], whileMcCune and Vero� have independently used a very similar techniqueto search for axioms in lattice theory [11].8At the present time, this procedure is prohibitively time-consumingwhen applied to logics with a more complete vocabulary of sententialconnectives. For not only are there exponentially more formulas of anyparticular length when additional connectives are added to the lan-guage, but the matrices and proofs tend to be larger and more complex.Currently, it is di�cult, and sometimes impossible, to discover largematrices or extremely complex condensed-detachment proofs for someproblems, although progress is being made on both of these fronts.9 Webelieve that further results regarding axiomatizations for more complexlogics await future advances in automated reasoning.10References1. Alan Ross Anderson and Nuel D. Belnap, Jr. The pure calculus of entailment.J. Symbolic Logic, 27:19{52, 1962.2. Alan Ross Anderson and Nuel D. Belnap, Jr. Entailment. Princeton UniversityPress, Princeton, N. J., 1975. Volume I: The logic of relevance and necessity.3. H.B. Curry. Review of Hacking's \What is strict implication?". MathematicalReviews, 31: #4717, 1963.4. Z. Ernst, B. Fitelson, K. Harris, and L. Wos. A concise axiomatization for theimplicational fragment of RM . Under consideration for The Bulletin of theSection of Logic.5. Ian Hacking. What is strict implication? J. Symbolic Logic, 28:51{71, 1963.6. J. A. Kalman. Condensed detachment as a rule of inference. Studia Logica,42(4):443{451 (1984), 1983.7. Saul A. Kripke. The problem of entailment. J. Symbolic Logic, 24:324, 1959.8 McCune has used di�erent automated reasoning techniques to solve ax-iomatization problems for the left group and right group calculi. See [9] and[10].9 See [21] for a information on the solution of challenge problems using Otter,as well as for open problems.10 We wish to thank Michael Byrd and Ted Ulrich for extremely helpful discus-sions. c45.tex; 8/10/2001; 17:53; p.10
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