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Abstract. Shortest possible axiomatizations for the implicational fragments of
the modal logics S4 and S5 are reported. Among these axiomatizations is included a
shortest single axiom for implicational S4 (which is unprecedented in the literature),
and several new shortest single axioms for implicational S5. A variety of automated
reasoning techniques were essential to our discoveries.
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1. Some Background and Conventions

The implicational fragments of the modal logics S4 and S5 have been
studied quite extensively over the years (see, for instance, [8], [7], [1],
[5], and [13], just to name a few). Following tradition, we will use the
labels “C4” and “C5H” to denote the implicational fragments of S4 and
S5, respectively. Prior [16, Appendix I] reports a variety of Hilbert-style
axiomatizations for C4 and Cb. All such axiomatizations presuppose de-
tachment as their sole rule of inference (as will ours). We will also follow
the convention of writing implicational formulae in polish notation (i.e.,
instead of the infix ‘p — ¢’, we will use the Polish ‘Cpq’). When we
report our deductions, we will use Meredith’s D-notation (as explained
in Prior’s [16, Appendix I1]). That is, the notation *D.a.b’ (appearing to
the left of each line in our deductions) is used to denote the most general
possible result of detachment (i.e., the condensed detachment [6]) with
a, or some substitution in a, for the major premise C'a3, and with b,
or some substitution in b, for the minor premise «. All proofs reported
below were discovered with the assistance of the automated reasoning
program OTTER [12]. The extensive role of automated reasoning in the
present research is discussed in § 4.
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2. Axiomatic C4

2.1. A BRIEF HIsTORY OF AXioMaTIiCc C4

The axiomatization of C4 has an interesting history. As far as we can
tell, the first time an axiomatization for C4 appeared explicitly in
print was in Anderson & Belnap’s 1962 paper [1]. Anderson & Bel-
nap report the following 3-axiom basis for C4, which we will adopt as
our “reference” C4 axiomatization (the detachment rule, as always, is
presupposed to be the sole rule of inference of the systems):

Cpp
(1) CCpqCrCpq
CCpCagrCCpqgCopr

Anderson & Belnap credit Kripke’s 1959 discussion [7] with providing
the original insight on how to axiomatize C4. However, according to
Curry [3] and Hacking [5], similar work was concurrently being done
independently across the Atlantic by Hacking & Smiley. The work of
Hacking & Smiley was not published until 1963 [5], but their work on
C4 was available in mimeograph form several years before this [3].
Other 3-axiom bases were later discovered for C4 (see [16, Appendix
1]). But, as far as we know, no 2-axiom bases for C4 were ever reported
in the literature. Moreover, no single axiom for C4 has been discovered
(this is stated as an open problem in [2, page 83]). Indeed, the only
axiomatizations of C4 that we have seen are the two 3-axiom bases
reported in [16, Appendix I]. Each of these bases contains 3 axioms, 25
symbols (total), and 11 occurrences of the implication connective C'.!

2.2. SHORTEST AXIOMATIZATIONS OF C4

Using a variety of automated reasoning techniques (see § 4 below for
more on these techniques), we have discovered many new 2-axiom bases
for C4. The most elegant of these include the following 2-basis, which
contains only 20 symbols, and 9 occurrences of C"

2) CpCyq
CCpCaqrCCpqCsCopr

! The other C4 3-basis reported in Prior’s [16, Appendix I] is: {CpCqq,
CCpqCCqrCpr, CCpCpqCpq}. Ulrich [18] shows that C4 is also the implicational
fragment of each modal logic between 34 and S4.3 (so, our bases are also new, and
shortest bases for the implicational fragments of these extensions of 34 as well).
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So far, we have found six such 2-bases, and we know that there are at
most eight such 2-bases (we suspect there are ewactly six).?

Moreover, we have been able to show that these are the shortest
possible bases for C4. That is, no other basis for C4 (with any number
of axioms) contains fewer symbols (or occurrences of C') than the above
2-basis.? Our automated reasoning techniques also yielded the following
new 21-symbol (10-C) single axiom for C4:

(3) CCpCCqCrrCpsCCstCuCpt

To our knowledge, no single axiom for C4 has previously been reported.
Indeed, this has been a long-standing open problem in the axiomatics
of modal logic [2, page 83]. We have ruled-out all shorter single axiom
candidates (see § 4, below, for more on the techniques used to elimi-
nate and discover single-axiom candidates). Therefore, (3) is a shortest
possible single axiom for C4. In fact, (3) is the shortest C4 single axiom
(all other 21-symbol candidates have been eliminated).

With a circle of three deductions, we will now establish that each of
(2) and (3) is necessary and sufficient for (1). This will suffice to show
that both (2) and (3) are bases for C4. First, we prove (1) = (3):

1. Cpp

2. CCpgCrCpg

3. CCpCqrCCpgCpr
D.3.3 4. CCCpCaqrCpqCCpCarCpr
D.2.3 5. CpCCqCrsCCqrCyqs
D.3.5 6. CCpCqCrsCpCCaqrCys
D.6.2 7. CCpgCCrpCryg
D.3.7 8. CCCpgCrpCCpqgCryg
D.7.2 9. CCpCqrCpCsCqr
D.7.8 10. CCpCCaqrCsqCpCCaqrCsr
D.7.9 11. CCpCqCrsCpCqCtCrs
D.9.2 12. CCpgCrCsCpq

D.12.1 13. CpCqCrr
D.9.13 14. CpCqCrCss
D.4.13 15. CCpCCqqrCpr
D.A4.14 16. CCpCCqCrrsCps
2 We have eliminated all other 2-bases of this complexity, except for the following
two candidates, whose status remains open: {CpCqCrr, CCpgCCqCqrCpr} and
{CpCqq, CCpqCrCCqCqsCps}. We suspect these are not bases for C4.
® The proof of this result (omitted due to space limitations), which proceeds by
exhaustion of all other possible candidate bases, requires the use of only 20 distinct
logical matrices of size < 4. In § 4, below, we will say a bit more about how this
exhaustion was achieved and how the matrices and bases were discovered.
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D.6.16
D.15.17
D.9.18
D.10.19
D.11.20
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17.
18.
19.
20.
21.

CCpCCqCrrCstCCpsCpt
CCpCCqCrrCpsCps
CCpCCqCrrCpsCtCps
CCpCCqCrrCpsCCstCpt
CCpCCqCrrCpsCCstCuCpt*

Next, we prove that (3) = (2):

D.1.1
D21
D.3.3
D.1.3
D51
D.6.6
D46
D.1.6
D.1.38
D97
D.7.10
D.7.11
D.1.12
D.12.14
D.15.15
D.16.16
D717
D.13.18
D.18.12
D.19.19
D.21.13
D211
D.22.21
D.24.24
D.25.25
D.24.26
D.27.21
D.25.28
D.28.7
D.24.30
D.31.23
D.29.32
D.27.33

=)
_ o

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

CCpCCqCrrCpsCCstCuC'pt
CCCpCaqqrCsCCpCCtCuuCpor
CpCCqCCrCssCaqtCCCuuvCwCaqu
CCpCCqCrrCpsCCCttuCvCpu
CCCpCaqrsCtCCCuurs
CpCCCqqCrsCCstCuCrt
CCCppCaqrCCrsCtCqs
CCCppgCrCC sty
CCCpClaqrsCtCCqrs

. CCpgCrCCCsspq
. CpCCaqrCCrsCtCys
12.

CCCCCppqggrCsCtr
CCCCpgCrCsqtCuCCspt
CCpgCrCCCCCssttpg
CpCqCrCCCCCssttC'Cuuvv
CpCqCCCCCrrssCCttuu
CpCCCCCqqrrCCsstt
CCCCCppgqCCrrss
CpCCqCCrrsCys

CpCqq”

CCpCCaqqrCpr
CCCCpgCrCsqtCCspt
CCpCCqCrrCpsCtCps
CCpqgCCaqrCpr
CCCCpqCrqgsCCrps
CCpCaqrCCsqCpCsr
CCCCpqCrCpstCCrClgst
CCCppCaqrCCsqCsr
CCpgCCrpCrq
CCpCaqrCpCsCqr
CCCpCqCrstCCpCrst
CCpCpgCrCpg
CCpCqCaqrCpCsCqr
CCpCarCCpqCsCpr*
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Finally, we prove that (2) = (1), which completes the circle:

1. CpCqq
2. CCpCqrCCpgCsCpr
D.1.1 3. Cpp*
D.2.2 4. CCCpCqrCpqCsCCpCaqrCtCpr
D.2.1 5. CCpgCrCpg*
D.4.1 6. CpCCqCqrCsCqr
D.6.6 7. CCpCpeCrCpq
D.7.7 8. CpCCqCqrCqr
D.2.8 9. CCpCqCaqrCsCpCqr
D.9.2 10. C'pCCqCrsCCqrCqs
D.10.10 11. CCpCaqrCCpgCpr* O

The above circle of proofs (1) = (3) = (2) = (1) has the additional
benefit of being pure — in the sense of [19] and [20]. That is, (7) the
proof of (1) = (3) does not make use of (2), (ii) the proof of (3) =
(2) does not make use of (1), and (7ii) the proof of (2) = (1) does
not make use of (3). We think this circle of pure proofs provides an
especially elegant demonstration that (2) and (3) are bases of C4.

3. Axiomatic C5

3.1. A BRIEF HisTORY OF AxioMmaTIic C5

The problem of axiomatizing the implicational fragment of S5 was
solved in 1956 by Lemmon, Meredith, Meredith, Prior, and Thomas.
In their seminal paper [8], Lemmon et. al. report several bases for
Cb, including 4, 3, 2, and 1-axiom bases. We will adopt the following
3-axiom basis from [8] as our “reference” axiomatization of C5.*

CqCpp
(4) CCpgCCqrCopr
CCCCparCpqCpy

Since the late 50°s, and until now, the shortest known bases for C5 have
been the 2-axiom bases (v) and (vi) of Lemmon et. al. [8, page 227].

* (4) is basis (i) from Lemmon et. al. [8, page 227]. This basis is C.A. Meredith’s
simplification of Lemmon’s original 4-axiom basis for C5 — see [13].
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These bases contain 20 symbols (9 C’s).5 Interestingly, Carew Meredith
was able to find the following 21-symbol (10-C') single axiom for C5.6

(5) CCCCCppgrCutCCtgCsCug

3.2. SHORTEST AXIOMATIZATIONS OF C5

Applying our automated reasoning techniques to C5 (see § 4), we have
discovered several new (and maximally elegant) 2-axiom bases for C5,
including the following 18-symbol, 8-C' basis:

(©) Cpp
CCpgCCCCqrurCpr

By exhausting all other possible shorter bases (with any number of
axioms), we have established that (6) is a shortest possible basis for
C5. Furthermore, we have ruled-out all other 2-bases of this complexity.
Therefore, (6) is the shortest basis for C5. It is a corollary of this result,
of course, that there is no single axiom for C5 shorter than Meredith’s
(5). There are, however, at least six other single axioms of length 21.
We have discovered six such axioms, including the following:

(7) CCCCpgrCCuugCCqtCsCpt

As we did in the case of C4, we will now present a circle of three pure
proofs (this time, using (4) as our reference basis) which establishes
that (6) and (7) are both bases for C5. First, we prove that (6) = (4):

1. CCpeCCCCqrurCopr

2. Chpp
D-1-1 3. CCCCCcCCCpgrgCuqtstCCupt
D-1-2 4. CCCCpgrqgCpq
D-3-3 5. CCpCqrCCuqCpCur
D-5-2 6. CCpgCCaqrCopr*
D-5-1 7. CCpCCCqrurCCtqCpCtr
D-6-6 8. CCCCpeCrquCCrpu

5 Meredith & Prior’s [13] seems to be “the last word” on this matter — until
now.

6 What makes this interesting is that — as far as we know — Meredith failed
to find a single axiom for C4. This is surprising, since Meredith was responsible for
finding (shortest) single axioms for just about every system (that has one) which he
studied. We sometimes wonder whether the 21-symbol C4 single axiom we reported
above had been previously discovered (but never published) by Meredith.
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D-6-8 9. CCCCpgruCCCCqtCptru

D-84 10. CCpCqCprCqCopr

D79 11. CCpCagrCCCCuqtCurCpCur
D-6-10 12. CCCpCaqruCCqCpCqru

D-12-7 13. CCCCperluCCCpqrqCCtpCuCty
D-4-13 14. CCpgCCrpCuCrq

D-14-2 15. CCpgCrCpq

D-15-2 16. CpCqq*

D-11-16 17. CCCCparCpeCulpy

D-6-17 18. CCCpCaruCCCCqrtCqru

D-17-18 19. CpCCCCqruCqrCqr
D-19-19 20. CCCCpgrCpeCpg*

Next, we show that (4) = (7):

1. CCpgCCaqrCpr

2. CCCCpgrCpqCpg

3. CpClqq
D-1-1 4. CCCCpqCrquCCrpu
D-1-3 5. CCCppgCryq
D-4-4 6. CCpCaqrCCuqCpCur
D-4-2 7. CCpCpgCpq
D-6-4 8. CCpCaqrCCCCruCqutCpt
D-6-3 9. CCpqCrCpq
D-4.7 10. C'CCpgpCCpgq
D19 11. CCCpCaqruCCqru
D-11-10 12. CCpgCCCpgrr
D-6-12 13. CCpCCqruCCaqrCpu
D-1-5 14. CCCpgrCCCuugr
D-11-13 15. CCCpgrCCpgCur
D-1-13 16. CCCCpgCrutCCrCCpgut
D-16-2 17. CCpCCCpgrqgCpq
D-14-17 18. CCCppCCCqrurCqr
D-16-18 19. CCCCpgrCCuuqgCpg
D-8-19 20. CCCCpgCrquCCCCrptCCsspu
D-20-15 21. CCCCpgrCCuugCCqtCsCpt*

Finally, we complete the circle by showing that (7) = (6):
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D-1-1
D-2:1
D-3-3
D-1.3
D-2.4
D-1:5
D-4-6
D-1.7
D-1.8
D-1.9
D-1-10
D-9-11
D-12-1
D-13-13
D-14-14
D-15-15
D-16-16
D-1717
D-1-18
D-19-19
D-19-20
D-9.22
D-19-23
D-22-24
D-25-16
D-26-26
D-24-26
D-27.27
D-29-28

4. The Role of Automated Reasoning in Our Research

Throughout our investigations into axiomatic C4 and C5, automated
reasoning techniques played a crucial role. In particular, we relied heav-
ily on William McCune’s automated reasoning program OTTER [12],
H. Zhang and J. Zhang’s model-finder SEM [22], as well as John Slaney’s
model-finder MAGIC [17]. In the final section of this paper, we outline

Ernst, Fitelson, Harris & Wos
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CCCCparCCuuqCCqtC'sCpt
CCCpCaqruCtCCqru
CpCCCqqarCCruCtCsu
CCCppgCCaqrCuCltr
CCCCCppgCrCuqtCsCtot
CpCCagrCCCqruCtCsu
CCCpCaqruCtCCCssru
CCCCpqgCCCpgrCuCtrsCt6CtTs
CCCCCppqqrCuCtr

. CCCCCpgrCuCtrsCt6CCpgs
. CCCpgrCuCCCttCpgr

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

CCCCpqCrutCsCCCpgut
CpCqCrCCCuuCCltss
CpCCCCqrurCCrtCsCat
CpCqCCCrrCCuutt
CCCCpqrqgCCquCtCpu
CpCCCqqCCrruu
CCCCpqCrCuqtCsCCupt
CCCppCCaqqrr
CCCCpeCpruCtCCqru
Cpp*

CCpgCCrpCrq
CpCqCCrCCuutCrt
CCpCCaqqrCpr
CCpCqCCrruCpCaqu
CCCCparqgCCquCpu
CCCCpeCrquCCrpu
CCCCpgrqgCpq
CCpCarCCuqCpCur
CCpqCCCCqrurCpr* O

the techniques used to derive these results.
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In our search for single axioms for C4 and C5, we used the following

procedure.

1.

First, we wrote computer programs to generate a large list of can-
didate formulas which were to be tested as axioms. For most prob-
lems, it was practical to generate an exhaustive list of all formulas
with up to twenty-one symbols.

. All the formulas in the list were tested (using matrices) to see which

were likely to be tautologies in the system in question.

. We immediately eliminated large numbers of formulas by applying

known results about axiomatizations in the various systems. For
example, as reported by Lemmon et. al., every axiomatization for
C5 must contain a formula with C'pp as a (possibly improper)
subformula [8]. Another useful result is the Diamond-McKinsey
theorem that no Boolean algebra can be axiomatized by formulas
containing less than three distinct propositional letters [2, p. 83].

. A set of formulas was selected from the list at random. Using either

SEM or a program written by the authors, we found a matrix model
that respects modus ponens, invalidates a known axiom-basis for
the system, but validates the formulas selected from the list. Such
a model suffices to show that the formulas are not single axioms for
the system.

. All the remaining formulas in the list were tested against that ma-

trix. Every formula validated by that matrix would be eliminated.

. Steps 4 and 5 were repeated until the list of candidate formulas was

down to a small number, or eliminated entirely.

. Finally, we used OTTER to attempt to prove a known axiom basis

from each of the remaining candidates.

Obvious changes were made when we searched for axiom-bases with
more than a single formula.

Upon implementing the above procedure, we were surprised to dis-

cover that even a small number of simple matrix models was capable
of eliminating a very large proportion of candidate formulas. For ex-
ample, it is possible to show that no formula with nineteen symbols is
a single axiom for C5 by using ten (and possibly fewer) matrices, none

7 We say ‘likely to be tautologies’ because C4 and C5 do not have finite char-

acteristic matrices. Thus, we used matrices which validate all tautologies for the
system, but also validate a small percentage of contingent formulas.
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of which have more than five elements. Because of the efficiency of this
procedure, we were able to complete all of our searches using ordinary
consumer-grade computers, with no esoteric hardware.

We believe that this technique for finding axiom-bases in Hilbert-
style systems could be used for a wide variety of logics, with equal
success. For instance, the authors have used the same technique to
discover the shortest known basis for the implicational fragment of the
logic RM (first axiomatized by Meyer and Parks [14], [15]) [4], while
McCune and Veroff have independently used a very similar technique
to search for axioms in lattice theory [11].8

At the present time, this procedure is prohibitively time-consuming
when applied to logics with a more complete vocabulary of sentential
connectives. For not only are there exponentially more formulas of any
particular length when additional connectives are added to the lan-
guage, but the matrices and proofs tend to be larger and more complex.
Currently, it is difficult, and sometimes impossible, to discover large
matrices or extremely complex condensed-detachment proofs for some
problems, although progress is being made on both of these fronts.? We
believe that further results regarding axiomatizations for more complex
logics await future advances in automated reasoning.'®
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