

-	,		
		۰.	
-	-		

Range-based positioning (1)

- La medida básica realizada por un receptor GNSS es el tiempo que tarda la señal en recorrer la distancia satélite-receptor (τ_r^s)
- La distancia al satélite en el instante t, $\rho_r^s(t)$, se obtiene multiplicando por la velocidad de propagación de la luz en el vacío c

$$\rho_r^s(t) = c\tau_r^s$$

 <u>Condiciones ideales</u>: si los relojes de satélite y receptor están sincronizados, y en ausencia de errores producidos por ionosfera y troposfera, sin ruido de medida, entonces:

$$\rho_r^s(t) = \|\boldsymbol{r}_r(t) - \boldsymbol{r}^s(t)\| =$$

= $\sqrt{(x_r(t) - x^s(t))^2 + (y_r(t) - y^s(t))^2 + (z_r(t) - z^s(t))^2}$

Donde

- $r^s = (x^s, y^s, z^s)^T$: coordenadas del satélite (conocida)

- $r_r = (x_r, y_r, z_r)^T$: coordenadas del receptor (incógnita)

Ramón Martínez, Miguel A. Salas, ETSIT-UPM. 2022. v1.0

Pange-based positioning (3) • La posición del receptor $(x_r(t), y_r(t), z_r(t))$ debe cumplir simultáneamente el siguiente conjunto de ecuaciones: $p_r^1(t) = ||\mathbf{r}_r(t) - \mathbf{r}^1(t)|| = \sqrt{(x_r(t) - x^1(t))^2 + (y_r(t) - y^1(t))^2 + (z_r(t) - z^1(t))^2}$ $p_r^2(t) = ||\mathbf{r}_r(t) - \mathbf{r}^2(t)|| = \sqrt{(x_r(t) - x^2(t))^2 + (y_r(t) - y^2(t))^2 + (z_r(t) - z^2(t))^2}$ $p_r^2(t) = ||\mathbf{r}_r(t) - \mathbf{r}^3(t)|| = \sqrt{(x_r(t) - x^3(t))^2 + (y_r(t) - y^3(t))^2 + (z_r(t) - z^3(t))^2}$ • La resolución se realiza linearizando el problema e iterando. • La notación matricial, se pueden expresar las ecuaciones de rango como $p = [p_{r}^1, p_r^2, p_r^3]^T$ y: $p = p_0 + A\Delta x$ • Donde p_0 es la solución calculada a partir de unas coordenadas del satélite $(x^i, y^i, z^i), i = 1, 2, 3$ y una estimación inicial de la posición del receptor $x_0 = (x_r(0), y_r(0), z_r(0))^T = (x_{r,0}, y_{r,0}, z_{r,0})^T$

	GNSS error sources. Satellite clock and ephemeris	
	 Clock errors: appear when the satellite clock suffers a fault that leads to changes in the timing of the transmitted signal Clock stability Relativistic effects Ephemeris errors: occur when the navigation mesage contains wrong information 	
	of the satellite orbit (for example, if the ephemeris info is not updated after a satellite maneouver)	
	Produce pseudorange errors	31
	Mitigation in GNSS:	
	 Clock: downloading accurate information on the clock to the control segment to 	
	 Ephemeris: uploading precise ephemeris obtained from a ground station network and reducing the time to update navigation message 	Ĩ
	 Both errors can be corrected using Precise Point Positioning (PPP) 	
	Curso de capacitación en EGNSS para UNAM. Ramón Martínez, Miguel A. Salas, ETSIT-UPM. 2022. v1.0	
1		

	UERE error budge	et in GNSS
El error budget muestra la contribución	Error source	Contribution 1σ (m)
de cada fuente de error al UERE	SISRE	
 El UEE final tiene una gran 	Broadcast satellite orbit	0.2-1.0
dependencia con:	Broadcast satellite clock	0.3-1.9
 Tipo de receptor (receptores duales 	Broadcast group delays	0.0-0.2
pueden corregir error ionosférico)	UEE	
 Antena (puede mitigar el efecto del 	Unmodeled ionospheric delay	0-5
multitrayecto)	Unmodeled tropospheric delay	0.2
 Figura de ruido del receptor 	Multipath	0.2-1
	Receiver noise	0.1-1
	UERE	0.5-6m
	$UERE = \sqrt{SISRE}$	$^2 + UEE^2$
σ	$\sigma_{ijFPF}^2 = \sigma_{clk}^2 + \sigma_{enb}^2 + \sigma_{iono}^2 + \sigma_{clk}^2$	$\sigma_{max}^2 + \sigma_{multingth}^2 + \sigma_{multingth}^2$

• Position Dilution of Precision (PDOP): precisión de posición

$$PDOP = \sqrt{\sigma_E^2 + \sigma_N^2 + \sigma_U^2}$$

Horizontal Dilution of Precision (HDOP): precisión en el plano horizontal

$$HDOP = \sqrt{\sigma_E^2 + \sigma_L^2}$$

• Vertical Dilution of Precision (VDOP): precisión en la altura

$$VDOP = \sqrt{\sigma_U^2}$$

• Time Dilution of Precision (TDOP): precisión temporal

$$TDOP = \sqrt{\sigma_t^2}$$

Ramón Martínez, Miguel A. Salas, ETSIT-UPM. 2022. v1.

GNSS performance evaluation

The four parameters used to characterize GNSS performance are based on the RNP (Required Navigation Performance) specification are:

- Accuracy: The accuracy of an estimated or measured position of a craft (vehicle, aircraft, or vessel) at a given time is the degree of conformance of that position with the true position, velocity and/or time of the craft. Since accuracy is a statistical measure of performance, a statement of navigation system accuracy is meaningless unless it includes a statement of the uncertainty in position that applies.
- Availability: The availability of a navigation system is the percentage of time that the services of the system are usable by the navigator. Availability is an indication of the ability of the system to provide usable service within the specified coverage area. Signal availability is the percentage of time that navigation signals transmitted from external sources are available for use. It is a function of both the physical characteristics of the environment and the technical capabilities of the transmitter facilities.
- **Continuity**: The continuity of a system is the ability of the total system (comprising all elements necessary to maintain craft position within the defined area) to perform its function without interruption during the intended operation. More specifically, continuity is the probability that the specified system performance will be maintained for the duration of a phase of operation, presuming that the system was available at the beginning of that phase of operation.
- Integrity: Integrity is the measure of the trust that can be placed in the correctness of the information supplied by a navigation system. Integrity includes the ability of the system to provide timely warnings to users when the system should not be used for navigation.

 Source: Navipedia
 - Curso de capacitación en EGNSS para UNAM.

47

Ramón Martínez, Miguel A. Salas, ETSIT-UPM. 2022. v1.0

GNSS performance. Accuracy Def.- Degree of conformance of that position with the true position, velocity and/or time of the craft. Since accuracy is a statistical measure of performance, a statement of navigation system accuracy is meaningless unless it includes a statement of the uncertainty in position that applies. Accuracy measures: - x Percentile (x% or x-th): Means that x% of the positions calculated have an error lower or equal to the accuracy value. Typical used values are 50%, 67%, 75% and 95%. Having an accuracy of 5m (95%) means that in 95% of the time the positioning error will be equal or below 5m. Circular Error Probable (CEP): Percentile 50%. Root Mean Square Error (rms): The square root of the average of the squared error. x sigma: 1 sigma corresponds to one standard deviation and x sigma corresponds to x times 1 sigma. - Mean Error: Average error Standard Deviation: Standard deviation of the error. Ramón Martínez, Miguel A. Salas, ETSIT-UPM. 2022. v1.0 Curso de capacitación en EGNSS para UNAM. 48

GNSS performance. Integrity Def.- Measure of the trust that can be placed in the correctness of the information supplied by a navigation system. Integrity includes the ability of the system to provide timely warnings to users when the system should not be used for navigation • Integrity parameters: Alert Limit (AL): The alert limit for a given parameter measurement is the error tolerance not to be exceeded without issuing an alert. - Time to Alert (TTA): The maximum allowable time elapsed from the onset of the navigation system being out of tolerance until the equipment enunciates the alert. Integrity Risk: Probability that, at any moment, the position error exceeds the Alert Limit. - Protection Level (PL): Statistical bound error computed so as to guarantee that the probability of the absolute position error exceeding said number is smaller than or equal to the target integrity risk. Ramón Martínez, Miguel A. Salas, ETSIT-UPM. 2022. v1.0 Curso de canacitación en EGNSS nara UNAM 53

GNSS performance. Integrity. Protection level • During normal operations it is not possible to know the position error of an aircraft • Thus, a statistical bound to position error called protection HPL level needs to be computed in order to be able to measure the risk that the alert limit is surpassed VPL • Hence, the system is not declared unavailable when the alert limit is exceeded by the actual position error, but by the protection level (as then the risk for position error to exceed the alert limit would be above the target integrity risk). A horizontal (respectively vertical) protection level is a statistical bound of the horizontal (respectively vertical) position error computed so as to guarantee that the probability of the absolute horizontal (respectively vertical) position error exceeding said number is smaller than or equal to the target integrity risk. Ramón Martínez, Miguel A. Salas, ETSIT-UPM. 2022. v1.0 Curso de capacitación en EGNSS para UNAM 54

GNSS signal components The structure of GNSS signals comprises three main components: **Carrier** – sinusoidal electromagnetic waves generated by an oscillator synchronized with an atomic clock on every satellite. Carrier frequencies are chosen in the range 1100-1600 MHz and are used to transmit information (through modulation with spreading codes and data component, when present), and for carrier phase ranging. **Spreading codes** – seemingly random binary sequences, that can be reproduced in a deterministic manner by intended receivers. They are mainly used to spread the signal spectrum for increased strength, immunity to interference and authorization of the signal usability for public, military, commercial or other services. Codes are typically generated at 1-10 MHz. After de-spreading the signal in the correlator, the GNSS receiver is able to perform synchronization over time and code phase ranging. Data component – low-frequency data streams (e.g. 125 Hz for Galileo I/NAV) containing navigation information: primarily satellite clock and ephemeris data (CED) but also ionospheric correction models, service parameters, integrity and authentication indicators, and other data. Some signals (named 'pilot') are not modulated with data for improved tracking performance. Source: GNSS User Tech Report 2020, EUSPA Curso de canacitación en EGNSS para LINAM. 57

GNSS frequencies Dual-frequency receivers offer significant advantages over single-frequency receivers in terms of achievable accuracy, but also in terms of improved resistance to interference (owing to frequency diversity). Historically, dual-frequency use has been limited for many years to professional or governmental users and to expensive L1 + L2 receivers. The advent of four full GNSS constellations that provide high quality open signals in the E5 frequency band has been a game changer, and has triggered widespread availability of E1 + E5 dual frequency chipsets for the mass market. E5 brings a wealth of advantages: being supported by all GNSS and modernised SBAS, these signals will be broadcast on more satellites than any other frequency. Furthermore, this frequency band is shared with the Aeronautical Radio Navigation Service (ARNS) and therefore subject to increased regulatory protection (similar to L1/E1) and suitable for safety critical applications. In addition, signals on E5 benefit from a high chipping rate and of a higher received power than E1/L1 or L2. In terms of compatible PVT strategies, dual (or more) frequency processing brings even more significant advantages. Despite the theoretical single frequency compatibility of all processing methods listed in the table on the left, in practice dual frequency is the minimum requirement for carrier phase-based algorithms (RTK, PPP-RTK and PPP). Triple frequency can further improve the performance of the carrier phase ambiguity resolution algorithms along three characteristics: the maximum separation from a reference station (for RTK and Network RTK), the reliability of the solution, and the time required to obtain and validate this solution. However currently only high accuracy, professional grade receivers have adopted triple or even quadruple frequency processing. Source: GNSS User Tech Report 2020, EUSPA. Ramón Martínez, Miguel A. Salas, ETSIT-UPM, 2022, 91 II Curso de capacitación en EGNSS para UNAM

Part 1. Fundamentals of GNSS systems 1. Operation of GNSS systems and 7. Orbits used in GNSS systems applications 8. Classification and description of 2. GNSS positioning basics satellite navigation systems – GNSS Observables - Global (GNSS) Range-based positioning Regional (RNSS) Pseudorange positioning Augmented (SBAS) 3. GNSS error sources 9. Position computing strategies in GNSS 4. GNSS solution. Performance 10. Annexes indicators Spatial reference systems 5. GNSS signals and spectrum Time reference systems 6. GNSS vulnerabilities Ramón Martínez, Miguel A. Salas, ETSIT-UPM. 2022. v1.0 Curso de capacitación en EGNSS para UNAM

Part 1. Fundamentals of GNSS systems 1. Operation of GNSS systems and applications 2. GNSS positioning basics – GNSS Observables - Global (GNSS) Range-based positioning

- Pseudorange positioning
- 3. GNSS error sources
- 4. GNSS solution. Performance indicators
- 5. GNSS signals and spectrum
- 6. GNSS vulnerabilities

- 7. Orbits used in GNSS systems
- 8. Classification and description of satellite navigation systems
 - Regional (RNSS)
 - Augmented (SBAS)
- 9. Position computing strategies in GNSS
- 10. Annexes
 - Spatial reference systems
 - Time reference systems

Curso de capacitación en EGNSS para UNAM.

BeiDou (BDS) (formerly, Compass)

Access

CDMA

CDMA

CDMA

BOC/QMBOC CDMA

Global GNSS owned and operated by People's Republic of China.

Central

frequency

1561.098

1575.42

1176.45

1268.52

MHz

MHz

MHz

MHz

Satellites

MEO,

IGSO

MEO,

IGSO,

GEO Source: Navipedia

Signals

Bandwidth

4.096 MHz

32.736 MHz

20.46 MHz

20.46 MHz

_			2.4				
6		11	1	C		C	
9	C				C	Э	

- Global services
 - Open service (similar to GPS and Galileo, 10m)
 - Authorized service
- Regional services:
 - Wide area differential services (1m, supported by 30 station broadcasing GEO corrections)
 - Short message service

Curso de	capacitación	en EGNSS	para UNAM.	

Signal Modulation

BPSK

BPSK

BPSK

Β1

B1C

(OS)

B2a

B3

(OS)

Reg und	ional GNSS ov ler Quasi-Zeni	vned and oper th Satellite Sys	ated by NC an tem Service C	nite Systems) nd Mitsubishi Electric Corporation	Sulformer and the second secon	
	QSZ-1	QSZ-2, QSZ-	3 and QSZ-4			
	Block IQ	Block IIQ	Block IIG			
Signal name	Quasi zenith satellite orbit (QZO)	Quasi zenith satellite orbit (QZO)	Geostationary orbit (GEO)	Transmission service	frequency	
	One satellite	Two satellites	One satellite			
L1C/A	Ø	Ø	Ø	Satellite Positioning, Navigation and Timing Service (PNT)		
L1C	Ø	Ø	Ø	Satellite Positioning, Navigation and Timing Service (PNT)		
	-	۵		Sub-meter Level Augmentation Service (SLAS)	1575.42 MHz	
L1S	Ø		Ø	Satellite Report for Disaster and Crisis Management (DC Report)	-	
L1Sb	-	-	© Around 2020	SBAS Transmission Service	-	
L2C	Ø	Ø	Ø	Satellite Positioning, Navigation and Timing Service (PNT)	1227.60 MHz	
L5	Ø	Ø	Ø	Satellite Positioning, Navigation and Timing Service (PNT)		
L5S	-	Ø	Ø	Positioning Technology Verification Service	1176.45 MHz	
L6 (LEX)	Ø	Ø	Ø	Centimeter Level Augmentation Service (CLAS)	1278.75 MHz	
S-band	-	_	Ø	07SS Safety Confirmation Service	2 GHz band	

Part 1. Fundamentals of GNSS systems

- 1. Operation of GNSS systems and applications
- 2. GNSS positioning basics
 - GNSS Observables
 - Range-based positioning
 - Pseudorange positioning
- 3. GNSS error sources
- 4. GNSS solution. Performance indicators
- 5. GNSS signals and spectrum
- 6. GNSS vulnerabilities

- 7. Orbits used in GNSS systems
- 8. Classification and description of satellite navigation systems
 - Global (GNSS)
 - Regional (RNSS)
 - Augmented (SBAS)
- 9. Position computing strategies in GNSS
- 10. Annexes
 - Spatial reference systems
 - Time reference systems

GNSS Interoperablity at signal level	CALLEO ECMOS BANDENDE MOR E MORE MEDINATION MENDES
 For GNSS, signal interoperability considers the following factors Reference Frames: Two GNSS are said to be interoperable from a reference frame perspective if the difference between frames is below the target accuracy. E.g GP uses WGS84 and Galileo uses GTRF, with a difference within 3 cm 	e S
• Time Reference : GPS Time and Galileo System Time (GST) are expected to be within the nanoseconds order of magnitude. the required parameters to transform the GST time to UTC as part of the Galileo navigation messages. The Galileo System provides the "Galileo to GPS Time Offset" (GGTO) as part of the navigation messages.	-03
• Use of the same carrier frequency : it has high impact on receiver complexity and cost (e.g. number of bandpass filters)	
 Signals In Space: design of the modulation, signal structure or selection of the codes that require only "software modifications" at the receiver 	vinedia
SULLCE. No Curso de capacitación en EGNSS para UNAM. Ramón Martínez, Miguel A. Salas, ETSIT-UPM. 2022. v1.0	vipeula

1	0	2

Overall	view of GNS	S, RNSS and S	SBAS				
System	GPS	Galileo	GLONASS	BeiDou	NavIC	QZSS	EGNOS
Owner and Operator	USA	EU	Russian Fed.	China	India	Japan	EU
Orbital altitude	20180 km	23222 km	19130 km	21528 km (MEO) 36000 km (IGSO, GEO)	36000 km (GEO, IGSO)	QZO (a=42164 km)	36000 km (GEO)
Orbital period	11h58m	14h5m	11h16m	12h38m	23h56	23h56	23h56
Orbital inclination	55 deg	56 deg	64.8 deg	55 deg	27 deg (IGSO)	43 deg (IGSO)	0 deg
Number of satellites	24+	24+	24+	35	7	3+	(2021)
Services	SPS / PPS	OS / HAS / PRS / SAR	SP / HP	OS / AS (global) WADS / PRS (regional)	SPS / RS	PNT / SLAS / CLAS / PTVS / Q-ANPI / PRS / DC-Report / SBAS	OS / EDAS / SoL
Frequency	1575.42 MHz (L1) 1227.6 MHz (L2) 1176.45 MHz (L5)	1575.42 GHz (E1) 1278.75 MHz (E6) 1191.795 MHz (E5) 1176.450 MHz (E5a) 1207.140 MHz (E5b)	~1602 MHz (~L1) ~1246 MHz (~L2)	1561.098 MHz (B1) 1589.742 MHz (B1-2) 1207.14 MHz (B2) 1268.52 MHz (B3)	1176.45 MHz (L5) 2492.028 MHz (S)	1575.42 MHz (L1) 1227.60 MHz (L2) 1176.45 MHz (L5) 1278.75 MHz (L6) 2 GHz band (S)	1575.42 MHz (L1) 101 1176.45 MHz (L5) (EGNOS v3)
Signal format	CDMA	CDMA	FDMA	CDMA	CDMA	CDMA	CDMA
Reference frame	WGS84	GTRF	PZ-90	CGCS 2000	WGS84	JGS	ENT
Time reference	GPST	GST	UTC(SU)	BTC	IRNSS System time	QZSSRT	ETRF
Service area	Global	Global	Global	Global	India + 1500km	East Asia, Oceania	Regional
Initial service	Dec 1993	>2016	Sept 1993	Dec 2012			
Status	Operational	Operational	Operational	Operational			Operational
	Curso de c	apacitación en EGNSS para	UNAM.	Ramón Mart	inez, Miguel A. Salas, ET	si Sourcep <u>Geospatial</u>	world

Part 1. Fundamentals of GNSS systems

- 1. Operation of GNSS systems and applications
- 2. GNSS positioning basics
 - GNSS Observables
 - Range-based positioning
 - Pseudorange positioning
- 3. GNSS error sources
- 4. GNSS solution. Performance indicators
- 5. GNSS signals and spectrum
- 6. GNSS vulnerabilities

- 7. Orbits used in GNSS systems
- 8. Classification and description of satellite navigation systems
 - Global (GNSS)
 - Regional (RNSS)
 - Augmented (SBAS)
- 9. Position computing strategies in GNSS
- 10. Annexes
 - Spatial reference systems
 - Time reference systems

Curso de capacitación en EGNSS para UNAM.

Ramón Martínez, Miguel A. Salas, ETSIT-UPM. 2022. v1.0

	Method *	SPP	DGNSS	SBAS	RTK	PPP-RTK	PPP
	Observable	Code	Code	Code	Carrier	Carrier	Code / Carrier
SPP: Single Point Positioning PPP: Precise Point Positioning	Positioning	Absolute (in the GNSS reference frame)	Relative	Relative	Relative	Absolute (in the tracking network reference frame)	Absolute (in the tracking network reference frame)
RTK: Real Time Kinematic	Comm Link	No	Yes	Yes (GNSS like)	Yes	Yes	Yes
DGNSS: Differential GNSS	Single Frequency (SF) Dual Frequency (DF) Triple Frequency (TF)	SF or DF	SF	SF current DF planned	Mostly DF	(SF) DF or TF	(SF) DF or TF
Augmentation System SF: Single Frequency DF: Dual Frequency	Time To First Fix (TTFF)	Rx TTFF	As SPP + time to receive corrections	As DGNSS	As DGNSS + time to resolve ambiguities	Faster than PPP, but slower than RTK	As RTK, but time to estimate ambiguities significantly higher (more unknowns)
T. Inple frequency	Accuracy Horizontal	5-10 m DF 15-30 m SF	< 1 m to < 5 m	< 1 m	1 cm + 1 ppm baseline	< 10 cm	< 10 cm to < 1 m
	Coverage	Worldwide	Up to 100s Km	Up to 1000s Km	Up to 10s Km	Regional	Worldwide

GNSS. Position computing strategies. PPP

- PPP is a signal augmentation technique that removes GNSS system using a single reciver
- PPP relies on GNSS satellite ia satellite or Internet clock and orbit corrections provided by a network of global Continuously Operating Reference Stations (CORS)
- After calculation of the corrections, they are transmitted to the user via satelie or the Internet
- Convergence times of 5 to 30 minutes are required to resolve local biases (atospheric conditions, multipath and satellite geometry)

Curso de capacitación en EGNSS para UNAM.

IGS network. Galileo stations Stations providing GNSS observation data Ramón Martínez, Miguel Source: IGS upp. 2022. v1.0

Solution	Features	Benefits	Drawbacks
РРР	State-space Global No integer nature of ambiguity, i.e. dm accuracy	Has no local ground infrastructure requirements Global	Long convergence times Lower accuracy
RTK	Observation space Local/Regional Integer nature of ambiguity, i.e. cm accuracy	High accuracy (2cm) Near-instant convergence times	Highly reliant upon local ground infrastructure Short range of transmissions
PPP-RTK	State space Local/Regional Integer nature Cm accuracy	Fast convergence times High accuracy Lower density CORS network than NRTK Degrades to standard PPP	Reliant upon local ground infrastructure

Sistemas de coordenadas. ECEF

- Las coordenadas cartesianas del satélite y receptor deben expresarse en un sistema de referencia
- Se usan sistemas de referencia celestial o terrestre
- Como sistema de referencia terrestre se usa el ECEF (Earth-Centered, Earth Fixed):
 - Origen: centro de la Tierra
 - Eje z: eje de rotación terrestre
 - Eje x: une el centro de la tierra con la intersección del plano ecuatorial y el meridiano de Greenwich promedio

